This invention comprises an apparatus which permits an intense beam of high-energy electrons to be removed or issue from the vacuum region of an electron acceleration or accelerating tube, and which interposes a barrier between the high-voltage region and the atmospheric region, such barrier consisting of a plurality of vacuum chambers and the total assembly forming a pressure gradient between atmospheric pressure and the high vacuum of the acceleration or accelerating tube, which apparatus permits the electron beam to emerge from the high-vacuum region of such tube without the necessity of permeating and losing energy through a solid barrier between atmospheric pressure exterior to said tube and the high vacuum region of said tube.

In order that the principle of my invention may be readily understood, I have in the accompanying drawings disclosed one type of apparatus embodying the structural features of my invention.

In said drawings:

Fig. 1 is a vertical or longitudinal sectional view of an acceleration tube that may be of any suitable type, it being shown, without limitation, as of the Van de Graaff type, and embodying the structural features of my invention, partly broken away because of space limitations, and indicating the cathode from which the beam of high-energy electrons is emitted, and a few of the alternating metallic electrode disks and the insulating disks of which the wall of the said tube is composed throughout at least the main vacuum chamber or portion thereof, and also representing two auxiliary vacuum chambers and the wholly open lower end of said acceleration tube;

Fig. 2 is a similar view to Fig. 1, but showing the latest form of acceleration tube of the Van de Graaff type, preferably employed by me, but broken away through the small diameter tube just below the main vacuum chamber, the auxiliary vacuum chambers being omitted because of space limitations;

Fig. 3 is a diagram indicating means that I preferentially employ for electronically controlling the axis and diameter of the electron beam for the purpose stated.
membrane without losing very much energy by reason of absorption in the said window. This thin cathode-ray window is easily damaged by one or several causes. The force due to atmospheric pressure on the window can cause a rupture; the electron energy absorbed by the window can cause local overheating and possibly melting; the effect of the high-energy electron stream permeating the window tends to cause a change in the crystalline structure of the window material, thereby weakening and eventually rupturing it; and because of its thin nature, it can be easily damaged through mechanical impact. When the window ruptures, atmospheric pressure is allowed to rush into the vacuum region, possibly damping the performance of the vacuum pump and contaminating the interior surface of the accelerating tube with condensable vapors.

This invention herein disclosed eliminates the necessity for such a permeable foil or membrane and thus increases the reliability of the exit region of the electron beam. The fact that in this invention there is no foil, membrane or other closure at or constituting the window, results in all of the available electron energy accelerated in the vacuum region being used for sterilization, irradiation or therapy purposes. In some instances, the increase in available energy is considerable. For example, a foil of aluminum 0.005 of an inch thick absorbs 50 keV of electron energy. In the case of a beam of one milliamperes intensity, the energy lost to the window amounts to fifty watts.

This invention is useful with any source of electrons whose energies are greater than 100,000 electron volts. The types of electron accelerators to which this invention applies or relates include the following, to which, however, the use of my invention is not limited: electrostatic or Van de Graaff generators, resonance transformers, transformer-rectifiers regardless of the type of circuit used, linear accelerators, betatrons and synchrotrons, and also the impulse or Marx-type generator or Capacitor.

Referring more particularly to the drawings, and first to Fig. 1, an acceleration tube is indicated generally at 1 in Figs. 1, 1A and 2. While it is herein shown as of the Van de Graaff type, and in Fig. 1A as of the latest Van de Graaff type, as built by the assignee (the High Voltage Engineering Corporation of Cambridge, Massachusetts), it may be of any suitable type, and my invention is in no wise limited to any particular type of acceleration tube. The wall of the tube below the cathode 2, which may be of tungsten, is herein represented as composed of alternate metallic electrode disks 3 and insulating disks 4 or other material such as porcelain, suitably welded together. However, as already stated, any suitable type of acceleration tube may be employed. A high speed diffusion pumping system is indicated diagrammatically at 5. Thereby a vacuum is maintained at conditions required by the said acceleration tube (e.g. 10^{-8} mm. Hg).

Instead of the acceleration tube being of one diameter throughout its length, at some suitable distance below the pumping system 5, the said tube is closed as indicated at 6, except for the axially positioned, small orifice 7, which is in communication with a straight tube 8 of small diameter and which is axially positioned or coaxial with the longitudinal axis of the upper part of the accelerating tube 1 wherein the vacuum is maintained as near a perfect or complete vacuum as is customary in the usual acceleration tube. At its lower end by tube 8, which may be of any suitable length, is secured to or forms a part of a horizontal or transversely extending wall 10 of another or auxiliary vacuum chamber 11, the bottom wall whereof is indicated at 12. I have shown the vacuum chamber 11 as of the same diameter as the main vacuum chamber 1, but it may be of any other suitable diameter, and the wall thereof may be constructed in the same manner as is the wall of the main chamber 9. The vacuum chamber 11 is provided with a high speed pumping system 13, by which an intermediate vacuum is maintained (e.g. 10^{-4} mm. Hg).

Desirably, but not necessarily, below the auxiliary vacuum chamber 11 is another auxiliary vacuum chamber 14, the bottom of which is indicated at 15, and which is in communication with a mechanical pumping system indicated at 16, and by which a less complete vacuum is maintained (e.g. 10^{-2} mm. Hg). The vacuum chamber 14 is represented as the same as the vacuum chambers 9 and 11, but this may be varied as desired, and the wall of the said second auxiliary vacuum chamber may be constructed in the same manner as that of the main vacuum chamber 9.

It will be noted that centrally or axially within the chamber 14 is provided a small diameter tube 17 that is itself provided with a graduated set of holes 18, 19. These holes are of greater diameter at the upper end of the tube 17, as indicated at 18, and gradually decrease in size to the smallest diameter holes 19 at the lower end (that is, at the end of the tube nearest atmospheric pressure). The purpose of this graduated size of openings is to establish a pressure gradient along the said tube 17. There may be any desired number of said gradient holes.

The center line of the axis at the emerging high-speed electron beam is indicated at 20.

It is to be understood that below the tube 17 (that is, at the point where the said tube 17 communicates with the outside) there is atmospheric pressure (e.g. 760 mm. Hg).

It will be understood that the lower end of the tube 17 is in communication with the atmosphere. That is, there is no foil or membrane or other closure, and yet there is no loss of electron energy. A high vacuum is maintained in the main portion or chamber 9 of the acceleration tube.

There are thus provided a plurality of vacuum-pumping evacuating chambers below or posterior to the main vacuum chamber 9. These several vacuum pumps-system evacuating chambers 11 and 14, which if desired may be of greater number and similarly connected, are separated from each other by a small diameter orifice or tube that is large enough in diameter to permit ready passage of the said beam of high energy electrons, but small enough in diameter to allow the vacuum pumping speed at the chambers 11 and 14 to be low. The said plurality of pumping systems below or posterior to the main vacuum chamber 9 act to maintain a degree of vacuum that are progressively higher from atmospheric pressure back to the nearly complete vacuum of the main chamber 9.

Thus high vacuum is maintained in the main portion 9 of the acceleration tube withoutstanding the fact that the lower end of the entire acceleration tube 1 is in open communication with the external atmosphere.
Thus I have provided a so-called exit "window" which is completely permeable to electrons without any loss of electron energy, and which "window" permits a high vacuum to be maintained in the main portion of the acceleration tube. It will be understood that by my invention there is provided or secured an electron window that is obtained by differential pumping. To make sure that the electron beam proceeds through the co-axial tubes or orifices and connecting the parts of the differential pumping system, an annular focusing magnet, such as indicated at 22 in Fig. 2, is desirably used at the first orifice or tube 8 to shrink or reduce the beam diameter down so as to focus at the center of the next tube or orifice such as 11. The annular focusing magnet minimizes the effect of stray electrons impinging on the sides of the interconnecting tubes, such as 7 and 11, of the magnetic field. To prevent the electron beam deviating from the axis of the acceleration tube, a set of insulated plates, here shown as quadrants or segments 22, 23, 24, 25 are placed directly before the second orifice or interconnecting tube such as 11. The focusing magnet arrangement for the electron beam path and quadrant or segment arrangement are indicated in Fig. 2 and in the diagram Fig. 3. If a portion of the electron beam falls on one of the said insulated quadrants, the resulting current is desirably amplified, as by amplifiers 26 and 27, and used as a signal in an electronic circuit, indicated at 28 in Fig. 3, to control the intensity of current in through one of a pair of solenoid-type magnets 29 and 30, Figs. 2 and 3, whose axes are mutually perpendicular to themselves and to the electron beam, as shown in Fig. 2. The signal from the quadrants 22, 23, 24 and 25 results in a correction of the magnetic field to deflect the electron beam, indicated at 31, enough to reduce the signal on the quadrants 22, 23, 24 and 25 to zero, thus keeping the electron beam centralized.

Instead of employing the pair of solenoid-type magnets, I may employ one annular magnet, or a series of magnets, of suitable type for focusing the beam. For example, I may employ one annular magnet, or a series of magnets, placed about the path of the electron beam at a suitable position and preferably at substantially the position indicated. It will be within the scope of the invention, employ any other suitable agency for centralizing the electron beam. Furthermore, electrostatic or mechanical centralization may be caused to take place either manually or automatically. By noting the amount of current falling on the insulated quadrants or segments, the operator may then vary the magnetic field, or the electrostatic field, as the case may be, or he can effect a mechanical adjustment remotely.

Having thus described several types of apparatus for practicing the invention, it is to be understood that although specific terms are employed, they are used in a generic and descriptive sense and not for purposes of limitation, the scope of the invention being set forth in the following claims.

I claim:
1. Apparatus for sterilizing (i.e. irradiating) by the action of high-energy electrons, comprising means for creating and directing a beam of high-energy electrons, said means including a high-vacuum acceleration tube-like envelope internally along which such beam of high-energy electrons is transmitted from its emanating source, and from which envelope said beam of high-energy electrons may be discharged into such respective substances for sterilizing (i.e. irradiating) the same, said high-vacuum envelope having a high-energy electron-beam exit "window" which is completely permeable to electrons without any loss of electron energy and which exit "window" for the electron beam is in open communication with the outer atmosphere and means to prevent impairment of the degree of vacuum in said main chamber, and to maintain as near a perfect vacuum as is customary in usual acceleration tubes, notwithstanding said unsealed exit opening.

2. In an apparatus in accordance with claim 1 a high-voltage high-vacuum electron device, means to correct any occurrence of decentralization of the said beam of high-speed electrons within the acceleration tube-like envelope, such means including a series of insulated plates in an electric circuit, and positioned about said tube-like envelope and closely adjacent the normal path of beam along the longitudinal axis of said envelope so that onto some one of said plates, the beam, if decentralized, will fall or strike, and also including means whereby an electric signal is thereupon conveyed from such plate onto which the beam falls or strikes, which electric signal causes correction of the magnetic field about such decentralized beam, and consequently causes decentralization of said beam along the longitudinal axis of such envelope.

3. Apparatus for sterilizing (i.e. irradiating) by the action of high-energy electrons in accordance with claim 1 wherein there is means to correct any occurrence of decentralization of the said beam of high-speed electrons within said tube-like envelope, said means to correct decentralization of said beam of electrons including a series of insulated plates in an electric circuit and positioned about said tube-like envelope and closely adjacent the normal path of said beam lengthwise through said tube-like envelope and vertically along said tube-like envelope, so that onto some one of said plates the beam, if decentralized, will fall or strike, and also including means whereby an electric signal is thereupon conveyed from such plate onto which the beam falls or strikes, and which electric signal causes correction of the magnetic field about said decentralized beam and consequently causes decentralization of said beam along the longitudinal axis of said tube-like envelope and vertically along said tube-like envelope.

4. A high-voltage, high-vacuum device in accordance with claim 1, wherein there is means to correct any occurrence of decentralization of the said beam of high-speed electrons within said tube-like envelope, said means to correct decentralization of said beam of electrons including a series of insulated plates in an electric circuit and positioned about said tube-like envelope and closely adjacent the normal path of said beam lengthwise through said tube-like envelope.
envelope along the longitudinal axis thereof, so that onto some one of said plates the beam, if decentralized, would mean that an electric signal is thereupon conveyed from the plate onto which the beam falls or strikes, and which electric signal causes correction of the magnetic field about said decentralized beam and consequently causes recentralization of said beam along the longitudinal axis of said tube-like envelope, and wherein there are a pair of solenoid-type magnets adjacent the normal path of said beam whose axes are mutually perpendicular to themselves and to the path of said beam, and electric circuiting from said plates to said magnets and including amplifying means, whereby the current from the plate onto which the beam falls or strikes controls the intensity of current through said magnets, and resulting in a correction of the magnetic field at said magnets, thereby reducing the signal on such plate to zero.

5. A high-voltage high-vacuum device in accordance with claim 1, wherein there is means to correct any occurrence of decentralization of the said beam of high-speed electrons within said tube-like envelope, said means to correct decentralization of said beam of electrons including a series of insulated plates in an electric circuit and positioned about said tube-like envelope and closely adjacent the normal path of said beam lengthwise through said tube-like envelope along the longitudinal axes thereof, so that onto some one of said plates the beam, if decentralized, will fail or strike, and including means whereby an electric signal is thereupon conveyed from the plate onto which the beam falls or strikes, and wherein the means to correct decentralization of the beam of high-speed electrons is under the manual control of the operator who for such purpose may note the amount of current falling on any one of said insulated plates and may then himself vary the field or effect mechanical adjustment remotely.

8. Apparatus for sterilizing (i.e. irradiating) the actions of high-energy electrons, respective masses of substances, such as foods, drugs, medical and surgical supplies, cosmetics, packaging material, etc. containing organisms to be destroyed by the action of a beam of high-energy electrons, and for use in cathode-ray therapy of malignant growths, comprising means for creating and directing a beam of high-energy electrons, said means including a high-vacuum acceleration tube-like envelope perpendicularly and wherein such beam of high-energy electrons is transmitted from its emanating source, and from which envelope said beam of high-energy electrons is discharged into such respective substances, and wherein the same, said high-vacuum acceleration tube-like envelope having an unclosed exit opening through which such beam of high-energy electrons issues into such respective substances, and means to maintain substantially a high vacuum in said envelope notwithstanding the existence of said unclosed exit opening.

9. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 3, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes at least one supplemental vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which chamber is separated from the preceding interior portion of said envelope by a small, reduced-diameter orifice that is large enough in diameter to permit ready passage of the said beam of high-energy electrons, but is small enough in diameter to allow the vacuum pumping speed to said supplemental pumping system evacuating chamber to be low.

10. An apparatus in accordance with claim 9, wherein there is provided means anterior to and close to said small, reduced-diameter orifice to correct any occurring decentralization of said beam of high-energy electrons.

11. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes a succession of pumping-system evacuating chambers at the said exit opening portion of the said envelope, each of said chambers being connected with any preceding and with succeeding evacuating chambers by relatively long, small-diameter tubing, each of said succession of evacuating chambers being provided with an auxiliary pumping system, and the first of said succession of evacuating chambers being in open communication with the preceding portion of the interior of said envelope, by means of an unclosed exit opening.

12. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to substantially a high vacuum in said envelope notwithstanding the ex-
existence of said unclosed exit opening, includes at least one vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which chamber is separated from the preceding interior portion of said envelope by a small, reduced-diameter orifice that is large enough in diameter to permit ready passage of the said beam of high-energy electrons, but is small enough in diameter to allow the vacuum pumping speed to adjacent regions to be low, and means closely adjacent said reduced diameter orifice to correct decentralization of said beam of high-energy electrons.

13. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes at least one vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which chamber is separated from the preceding interior portion of said envelope by a small, reduced-diameter orifice that is large enough in diameter to permit ready passage of the said beam of high-energy electrons, but is small enough in diameter to allow the vacuum pumping speed to adjacent regions to be low, and means closely adjacent said reduced diameter orifice to correct decentralization of said beam within the said envelope.

14. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes at least one vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which chamber is separated from the preceding interior portion of said envelope by a small, reduced-diameter orifice that is large enough in diameter to permit ready passage of the said beam of high-energy electrons, but is small enough in diameter to allow the vacuum pumping speed to adjacent regions to be low, and electron beam focusing magnet means about the path of said beam, anterior to and in substantial proximity to said small, reduced-diameter orifice, and means between said electron beam focusing magnet means and said small reduced-diameter orifice to correct any occurring decentralization of said beam of high-energy electrons.

15. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes at least one vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which chamber is separated from the preceding interior portion of said envelope by a relatively long, small-diameter tubing, and electron beam focusing magnet means surrounding the path of said beam, anterior to and adjacent the entrance end of said tubing to constrict the diameter of said beam within the said tubing.

16. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes a succession of pumping-system evacuating chambers at the said exit opening portion of said envelope, each of said chambers being connected with any preceding and with succeeding evacuating chambers by relatively long, small-diameter tubing, each of said succession of evacuating chambers being provided with an auxiliary pumping system, and the first of said succession of evacuating chambers being in open communication with the preceding portion of the interior of said envelope, by means of said unclosed exit opening, the final one of said evacuating chambers having a small-diameter tubing axially extending therethrough for the passage of the electron beam, and at the outer end communicating with the external atmosphere, said tubing having a series of openings in the wall thereof communicating with said final evacuating chamber.

17. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes a succession of pumping-system evacuating chambers at the said exit opening portion of the said envelope, each of said chambers being connected with any preceding and with succeeding evacuating chambers by relatively long, small-diameter tubing, each of said succession of evacuating chambers being provided with an auxiliary pumping system, and the first of said succession of evacuating chambers being in open communication with the preceding portion of the interior of said envelope, by means of said unclosed exit opening, the final one of said evacuating chambers having a small-diameter tubing axially extending therethrough for the passage of the electron beam, and at the outer end communicating with the external atmosphere, said tubing having a series of openings in the wall thereof communicating with said final evacuating chamber, the said series of openings being increasingly smaller in size the direction of the movement of the electron beam.

18. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy
2,640,948

electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes at least one vacuum pumping-system evacuating chamber at the electron beam exit portion of said envelope and which is separated from the preceding interior portion of said envelope by a small, reduced-diameter orifice that is large enough in diameter to allow ready passage of the said beam of high-energy electrons, but is small enough in diameter to allow the vacuum pumping speed to adjacent regions to be low, and annular electron-beam-focusing magnetic means about the path of said beam in substantial proximity to said small reduced-diameter orifice.

20. Apparatus for sterilizing (i.e. irradiating) by the action of high-energy electrons, respective masses of substances, such as foods, drugs, medical and surgical supplies, cosmetics, packaging material, etc. containing organisms to be destroyed by the action of a beam of high-energy electrons, and for use in cathode-ray therapy of malignant growths, comprising means for creating and directing a beam of high-energy electrons, said means including a high-vacuum tube-like envelope along which such beam of high-energy electrons is transmitted from its emanating source, and from which envelope said beam of high-energy electrons may be discharged into such respective substances, said high-vacuum envelope having an unclosed exit opening through which such beam of high-energy electrons issues into such respective substances, pumping means to create a high vacuum in said envelope and other vacuum creating pumping means in communication with the interior of said envelope at an area adjacent said unclosed exit opening to maintain substantially said high-vacuum in said envelope.

21. An apparatus for sterilizing (i.e. irradiating) substances by the action of high-energy electrons in accordance with claim 8, wherein the means to maintain substantially a high-vacuum in said envelope notwithstanding the existence of said unclosed exit opening, includes a plurality of vacuum pumping-system evacuating chambers at the electron beam exit portion of said envelope and which chambers are respectively separated from each other by a small reduced-diameter orifice that is large enough in diameter to allow the vacuum pumping speed between respective chambers to be low.

22. Apparatus for sterilizing (i.e. irradiating) by the action of high-energy electrons, respective masses of substances, such as foods, drugs, medical and surgical supplies, cosmetics, packaging material, etc. containing organisms to be destroyed by the action of a beam of high-energy electrons, and for use in cathode-ray therapy of malignant growths, comprising means for creating and directing a beam of high-energy electrons, said means including a high-vacuum tube-like envelope interiorly along which such beam of high-energy electrons is transmitted from its emanating source, and from which envelope said beam of high-energy electrons may be discharged into such respective substances, said high-vacuum envelope having an unclosed exit opening through which such beam of high-energy electrons issues into such respective substances, and means to establish a pressure gradient between exterior atmospheric pressure and the high vacuum of the acceleration tube.

23. Apparatus for sterilizing (i.e. irradiating) by the action of high-energy electrons, respective masses of substances, such as foods, drugs, medical and surgical supplies, cosmetics, packaging materials, etc. containing organisms to be destroyed by the action of a beam of high-energy electrons, and for use in cathode-ray therapy of malignant growths, comprising means for creating and directing a beam of high-energy electrons, said means including a high-vacuum acceleration tube-like envelope along which such beam of high-energy electrons may be discharged into such respective substances for sterilizing (i.e. irradiating) the same, said high-vacuum envelope having a high-energy electron-beam exit "window" which is completely permeable to electrons without any loss of electron energy, said tube-like acceleration envelope at the end most remote from the emanating source of the high speed electrons having at the axial center, in open communication therewith, a tube of much smaller diameter than said envelope, for the passage of said electrons, said envelope being closed at its end opposite the emanating source of the beam of high energy electrons, excepting for the said smaller diameter tube, the said smaller diameter tube having an auxiliary vacuum chamber in communication therewith and means to maintain in said auxiliary vacuum chamber a lesser degree of vacuum than in said envelope, there being an open communication between said auxiliary vacuum chamber and the outer air, whereby a substantially high degree of vacuum is maintained in said tube-like acceleration envelope, notwithstanding the existence of the unclosed exit from the said auxiliary vacuum chamber.

ERNEST A. BURRILL.

References Cited in the file of this patent

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,182,165</td>
<td>Trump</td>
<td>Dec. 5, 1939</td>
</tr>
<tr>
<td>2,214,779</td>
<td>Hickok</td>
<td>Sept. 17, 1940</td>
</tr>
<tr>
<td>2,232,030</td>
<td>Kallman et al.</td>
<td>Feb. 18, 1941</td>
</tr>
<tr>
<td>2,264,469</td>
<td>Wilner</td>
<td>Dec. 2, 1941</td>
</tr>
<tr>
<td>2,314,302</td>
<td>Ziebolz</td>
<td>Mar. 16, 1943</td>
</tr>
<tr>
<td>2,323,566</td>
<td>Ziebolz</td>
<td>June 25, 1943</td>
</tr>
<tr>
<td>2,333,001</td>
<td>Ziebolz</td>
<td>Sept. 26, 1944</td>
</tr>
<tr>
<td>2,449,872</td>
<td>Brasch</td>
<td>Sept. 21, 1948</td>
</tr>
<tr>
<td>2,460,201</td>
<td>Trump et al.</td>
<td>Jan. 25, 1949</td>
</tr>
<tr>
<td>2,501,882</td>
<td>Trump et al.</td>
<td>Mar. 28, 1950</td>
</tr>
<tr>
<td>2,611,426</td>
<td>Trump et al.</td>
<td>Sept. 5, 1950</td>
</tr>
<tr>
<td>2,525,319</td>
<td>Loughren</td>
<td>Oct. 17, 1950</td>
</tr>
<tr>
<td>2,544,898</td>
<td>Obserany et al.</td>
<td>Mar. 12, 1951</td>
</tr>
</tbody>
</table>