发明名称

牡荆属医药新用途及药物中间体的制备方法

摘要

本发明涉及牡荆属医药新用途及药物中间体的制备方法，本发明还包括本发明的药物在制备抗肿瘤和抑制骨质疏松药物中的应用。
1. 含有木脂素的杜荆属植物提取物在制备抗肿瘤，抗骨质疏松的药物中的应用，所述提取物含有结构如下的 4 种木脂素：

<table>
<thead>
<tr>
<th>No.</th>
<th>名称</th>
<th>结构</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-glucosyloxy methyl-7-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6-hydroxy-4-(3,4-dimethoxyphenyl)-3-hydroxymethyl-5-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-7-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-hydroxymethyl-5-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
</tr>
</tbody>
</table>
2. 一种含有木脂素的牡荆属植物提取物，其制备方法如下：
 A. 牡荆属药材，用乙醇溶液提取，得到提取液
 B. 过聚酰胺柱色谱柱
 C. 洗脱液浓缩后用乙酸乙酯萃取，得到萃取液；或将洗脱液用聚酰胺柱吸附，装柱后用乙酸乙酯洗脱，收集洗脱液
 D. 浓缩萃取液或洗脱液得到本发明的提取物

其中所述乙醇溶液为含20~90%的乙醇水溶液。

3. 权利要求2的提取物，所述牡荆属药材包括以下药材：灰毛牡荆、黄荆、蔓荆、单叶蔓荆、穗花牡荆、长序荆、和山牡荆。

4. 权利要求2的提取物，所述牡荆属药材选自：灰毛牡荆、黄荆、蔓荆、单叶蔓荆、穗花牡荆、长序荆和山牡荆的果实。

5. 权利要求2的提取物，其制备方法如下：
 A. 药材煎煮
 （A）将牡荆属原料（药材）粉碎，按原料与40%乙醇溶液的体积分数比为1:8~10向原料中加入40%乙醇溶液，然后加将两者的混合物热至70℃~100℃，保温1~3小时之后，滤渣取液。
 （B）按所述牡荆属原料与40%乙醇溶液的体积分数比为1:6~8向A步（A）滤出的渣中加入40%乙醇溶液，并将两者混合物加热至70℃~100℃，保温1~3小时之后，滤渣取液。
 （C）按所述牡荆属原料与40%乙醇溶液的体积分数比为1:6~8向A步（B）滤出的渣中加入40%乙醇溶液，并将两者混合物加热至70℃~100℃，保温1~3小时之后，滤渣取液。
 B. 液体浓缩
 将分别通过所述各A步（A）、（B）、（C）制取的液体混合一起后减压浓缩，直至其中重量与所述原料重量之比为1:1~5为止。
 C. 吸附、洗脱
 浓缩后的浸膏加75%乙醇溶解，按浸膏与聚酰胺的重量分数比为1:0.3拌样，回收乙醇，拌样树脂加水混悬，加到经活化处理后的聚酰胺柱，使液体中的总木脂素被聚酰胺吸附，并弃去流出液，用蒸馏水冲洗聚酰胺柱，弃去流出液。继用0.1~2.0%的氨水洗脱聚酰胺柱，将此洗脱液浓缩后用乙酸乙酯萃取，或将此洗脱液浓缩后用处理好的聚酰胺柱吸附，干燥，装柱后用1~2倍柱体积的水饱和的乙酸乙酯洗脱，收集洗脱液。
 D. 成品回收、干燥
 回收工序C所得的萃取液或洗脱液，余留物质干燥后，即得。
6. 含有权利要求 2 的提取物的药物制剂。
7. 权利要求 6 的药物制剂在制备抗肿瘤，抗骨质疏松的药物中的应用。
8. 权利要求 2 的提取物的制备方法，包括如下步骤:
 A. 杜荆属药材，用乙醇溶液提取，得到提取液
 B. 过聚酰胺柱色谱柱
 C. 洗脱液浓缩后用乙酸乙酯萃取，得到萃取液，或将洗脱液用聚酰胺柱吸附，装柱后用乙酸乙酯洗脱，收集洗脱液
 D. 浓缩萃取液，或将洗脱液得到本发明的提取物
其中所述乙醇溶液为含 20~90%的乙醇水溶液。
9. 权利要求 8 的制备方法，步骤如下:
 A. 药材煎煮
 （A）将杜荆属原料（药材）粉碎，按原料与 40%乙醇溶液的体积分数比为 1: 8~10 向原料中加入 40%乙醇溶液，然后加将两者的混合物热至 70°C~100°C，保温 1~3 小时之后，滤渣取液。
 （B）按所述杜荆属原料与 40%乙醇溶液的体积分数比为 1: 6~8 向 A 步
 （A）滤出的渣中加入 40%乙醇溶液，并将两者混合物加热至 70°C~100°C，保温 1~3 小时之后，滤渣取液。
 （C）按所述杜荆属原料与 40%乙醇溶液的体积分数比为 1: 6~8 向 A 步
 （B）滤出的渣中加入 40%乙醇溶液，并将两者混合物加热至 70°C~100°C，保温 1~3 小时之后，滤渣取液。
 B. 液体浓缩
 将分别通过所述各 A 步 (A)、(B)、(C) 制取的液体混合一起后减压浓缩，直至其中重量与所述原料重量之比为 1: 1~5 为止。
 C. 吸附、洗脱
 浓缩后的浸膏加 75%乙醇溶解，按浸膏与聚酰胺的重量分数比为 1: 0.3 拌
 和，回收乙醇，拌样树脂加水混悬，加到经活化处理后的聚酰胺柱，使液体中的
 总木脂素被聚酰胺吸附，并弃去流出液，用蒸馏水冲洗聚酰胺柱，弃去流出液。
 继用 0.1~2.0%的氨水洗脱聚酰胺柱，将此洗脱液浓缩后用乙酸乙酯萃取，或将
 此洗脱液浓缩后用处理好的聚酰胺柱吸附，干燥，装柱后用 1~2 倍柱体积的水饱和
 的乙酸乙酯洗脱，收集洗脱液。
 D. 成品回收、干燥
 回收工序 C 所得的萃取液或洗脱液，余留物质干燥后，即得。
10. 权利要求 9 的制备方法，其中杜荆属原料为黄荆子。
说明 书

技术领域：
本发明涉及中药提取工艺及其药物制剂，本发明还包括本发明的药物在制备抗肿瘤和抑制骨质疏松药物中的应用。

背景技术：
牡荆属 Vitex 植物系马鞭草科乔木或灌木，约 250 种，主要分布于热带和温带地区，我国有 14 种，7 亚种，3 种产于长江以南。在我国有 7 种药用，即：灰毛牡荆 V. canescens、黄荆 V. negundo、蔓荆 V. trifolia、单叶蔓荆 V. rotundifolia、穗花牡荆 V. agnus-castus、长序荆 V. peduncularis 和山牡荆 V. quinata。

牡荆属植物提取物所含有的主要成分是下表中的一种或数种：表 1。

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Structure</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-glucosyloxy methyl-7-methoxy-3,4dihydr o-2-naphthaldehyde</td>
<td></td>
<td>UV, IR, ESI-MS, (^1H)-NMR, (^13C)-NMR, HMQC, HMBC</td>
</tr>
<tr>
<td>2</td>
<td>6-hydroxy-4-(3,4-dimethoxyphenyl)-3-hydroxymethyl-5-m ethoxy-3,4dihydro-2-naphth aldehyde</td>
<td></td>
<td>UV, IR, EI-MS, (^1H)-NMR, (^13C)-NMR, HMQC, HMBC</td>
</tr>
<tr>
<td>3</td>
<td>6-hydroxy-4-(4-hydroxy-3-m ethoxyphenyl)-3-hydroxym ethyl-7-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
<td>UV, IR, EI-MS, (^1H)-NMR, (^13C)-NMR, HMQC, HMBC</td>
</tr>
<tr>
<td>4</td>
<td>6-hydroxy-4-(4-hydroxy-3-m ethoxyphenyl)-3-hydroxym ethyl-5-methoxy-3,4dihydro-2-naphthaldehyde</td>
<td></td>
<td>UV, IR, (^1H)-NMR, (^13C)-NMR, HMQC, HMBC</td>
</tr>
</tbody>
</table>

表中数据表明，该属中一些植物或其组分具有镇痛、抗炎、抗菌、抗肿

现代药理研究表明，该属中一些植物或其组分具有镇痛、抗炎、抗菌、抗肿
瘤、抑制淋巴细胞及激素调节、抗氧化、蜕皮、驱虫等功效。分述如下：

① 调节内分泌作用：富含黄酮的黄荆提取物具有抗雄激素作用。黄荆中分离得到的黄酮 5, 7, 3' - 三羟基-6, 8, 4' - 三甲氧基黄酮具有弱的雌激素作用。穗花牡荆叶和果实中的黄酮提取物具有增加血清中催乳激素的作用。另有研究报道，5, 7, 4' - 三羟基黄酮为选择性 ER 配基。富集黄酮成分的蔓荆子乙醇和甲醇提取物可以用于治疗女性经期前综合症，并于 2005 年申请了专利。

② 抗肿瘤作用：从牡荆属植物中得到的一些化合物显示出一定的细胞毒作用。Diaz 等报道从黄荆中得到的黄酮类化合物如紫花牡荆素在生物活性测定中对人类癌细胞显示了广泛的细胞毒作用；Ko 等在对从蔓荆果实中得到的黄酮木犀草素进行活性研究，发现它能够抑制人骨髓白血病细胞 HL-60 的增殖并诱导其凋亡，具有作为化疗药物开发的潜力。Masateru 等的研究发现，紫花牡荆素在 MTT 试验中对人肺癌细胞 (PC-12) 和人结肠癌细胞 (HCT-116) 的生长抑制作用。Kobayakawa 等报道紫花牡荆素对 KB 细胞的生长具有显著的抑制作用，其 IC₅₀ 值为 0.23 μM。紫花牡荆素阻止了 KB 细胞 G2-M 期。应用 MTT 法测定黄酮类化合物的细胞毒性，结果表明具有 C-2, 3-双键的黄酮类有抑制 T-淋巴细胞的活性。木犀草素-6-C-(4’-甲基-6”-O-反-咖啡酰基)葡萄糖苷、木犀草素-6-C-(6”-O-反-咖啡酰基)葡萄糖苷、木犀草素-6-C-(2’-O-反-咖啡酰基)葡萄糖苷具有抑制 P388 淋巴细胞的活性，其 IC₅₀ 值分别为 7.60, 14 和 70 μg/mL。王海燕等首次报道 vitexcarpin 对 A2780（人卵巢癌细胞）、HCT-15（人大肠癌细胞）、HT-1080（人纤维肉瘤细胞）及 K562（人白血病细胞）有较强的抑制作用，其 IC₅₀ 值分别为 19.1 μM (48h), 0.66 μM (48h), 0.44 μM (48h) 和 0.28 μM (24h)。

③ 解热镇痛、抗炎作用：蔓荆果实的提取物具有血管松弛作用和镇痛作用，在利用小鼠扭体实验指导分离的过程中，发现该提取物中镇痛成分主要为苯丁基糖苷类及木脂素类化合物。Tiwari 等报道黄荆富含酚类化合物的提取部位通过捕获自由基与金属螯合而产生抗氧化作用，从而下调自由基水平而达到抗炎作用。vitexcarpin 对胸腺依赖性淋巴细胞和胸腺依赖性淋巴细胞均有抑制活性。其 IC₅₀ 为 0.7 μM，且抑制作用是可逆的。对淋巴瘤 EL-4 and P815.9 的 (IC₅₀ = 0.25-0.3 μM)。这些结果表明，vitexcarpin 可以用于抗炎或免疫失调的治疗，如类风湿性关节炎和淋巴瘤。Vitex leucoxyylon 的乙醇提取物和黄酮类化合物具有抗炎症的活性，而对慢性炎症无效。

④ 呼吸系统活性：Alam 等在对蔓荆中分离得到的 vitexcarpin 进行生物活性测定中发现，该化合物能够阻断由组胺诱导的雄性豚鼠气管的自发性收缩，
vitexcarpin 通过稳定细胞膜，从而抑制组胺从肥大细胞中的释放。

5. 抗氧化作用：对黄荆子提取物和抗氧化成分的抗氧化作用进行了较深入研究，发现其主要成分为具有查尔酮骨架的黄酮类化合物。从黄荆子中分离得到木脂素成分 vitedoin A, vitedoamine A, 6-羟基-4-(4′-羟基-3′-甲氧基基)-3-羟甲基-7-甲氧基-3, 4-二氢-2-萘甲醛, detetrahydrocondendrin, vitrofolal E, vitrofolal F 均具有抗氧化性。其中，6-羟基-4-(4′-羟基-3′-甲氧基苯基)-3-羟甲基-7-甲氧基-3, 4-二氢-2-萘甲醛, vitrofolal E, vitrofolal F 对 DPPH 的清除作用于维生素 E 相当。

6. 抗菌作用 Kazuyoshi 等研究发现，一些苯基萘类木脂素如 vitrofolal 等具有抗菌作用。

7. 抑制酰胺酸凝集酶作用：黄荆子中分离得到的木脂素具有抑制酰胺酸凝集酶的活性，其中 (+)-lyoniresinol 的抑制活性最强，IC₅₀ 值为 3.21 μM。通过构效关系研究表明木脂素中 C-2, C-3 上的取代基及-CH₃OH 基团在抑制活性方面起着重要的作用。 (+)-lyoniresinol 作为酰胺酸凝集酶抑制剂有望成为治疗色素过度沉着的药物。

自 20 世纪 80 年代以来，各国学者对牡荆属植物的化学成分进行了一系列的研究，发现主要有黄酮类、挥发油类、三萜类及木脂素类等 200 余种化学成分。

总之，至今未发现牡荆属木脂素类化合物对抗肿瘤和抑制骨质疏松的作用。

发明内容：

本发明提供一种牡荆属木脂素提取物。

本发明还发现本发明的牡荆属木脂素提取物具有抗肿瘤和抑制骨质疏松的作用，为此，本发明提供一种牡荆属木脂素提取物的医药新用途。

本发明还提供牡荆属木脂素提取物的制备方法及含有该提取物的药物制剂及其制备方法。

本发明的牡荆属木脂素提取物其制备方法如下：

A. 牡荆属药材，用乙醇溶液提取，得到提取液
B. 过聚酰胺柱色谱柱
C. 用脱脂液浓缩后用乙酸乙酯萃取，得到萃取液；或将洗脱液用聚酰胺柱吸附，装柱后用乙酸乙酯洗脱，收集洗脱液
D. 浓缩萃取液；或洗脱液得到本发明的提取物

其中所述乙醇溶液为含 20~90% 的乙醇水溶液。

优选的制备方法可以是：

A. 药材煎煮

(A) 将牡荆属原料 (药材) 粉碎，按原料与 40% 乙醇溶液的体积分数比为 1:
8～10 向原料中加入 40%乙醇溶液，然后将两者的混合物热至 70℃～100℃，保温 1～3 小时之后，过滤取液。

（B）按所述去介质原料与 40%乙醇溶液的体积分数比为 1: 6～8 向 A 步，
（A）滤出的渣中加入 40%乙醇溶液，并将两者混合物加热至 70℃～100℃，保温 1～3 小时之后，过滤取液。

（C）按所述去介质原料与 40%乙醇溶液的体积分数比为 1: 6～8 向 A 步，
（B）滤出的渣中加入 40%乙醇溶液，并将两者混合物加热至 70℃～100℃，保温 1～3 小时之后，过滤取液。

B、液体浓缩

将分别通过执行所述 A 步（A）、（B）、（C）制取的液体混合一起后减压浓缩，
直至其中重量与所述原料重量之比为 1: 1～5 为止。

C、吸附、洗脱

浓缩后的清膏用 70%乙醇溶解，按清膏与聚酰胺的体积分数比为 1: 0.3 拌样，
回收乙醇，拌样树脂加水混悬，加到经活化处理后的聚酰胺柱，使液体中的
总成分被聚酰胺吸附，并弃去流出液，在聚酰胺柱体积的 1: 1～2 的蒸馏水
冲洗聚酰胺柱，弃去流出液。继而 0.4%的氨水清洗聚酰胺柱，并收集洗脱液。
将此洗脱液浓缩后用乙酸乙酯萃取，或将此洗脱液浓缩后用处理好的聚酰胺柱吸
附，干燥，装柱后用 1～2 倍柱体积的水饱和的乙酸乙酯洗脱，收集洗脱液。

D、成品回收、干燥

回收工序 C 所得的萃取液或洗脱液，余留物质干燥后，即可得到制备中间体
的成品。

本发明所述去介质原料包括以下药材：
灰毛旋覆、黄荆、蔓荆、单叶蔓荆、穗花旋复、长序荆和山旋复，优选的是
黄荆、蔓荆或穗花旋复的果实。

本发明的提取物，优选的是黄荆子提取物，其优选的提取方法列在本发明实
施例 1 中。

本发明的药物制剂，是以本发明的提取物作为药物活性物质，提取物在制剂
中所占重量百分比可以是 0.1～99.9%，其余为药物可接受的载体。本发明的药物
制剂，以单位剂量形式存在，所述单位剂量形式是指制剂的单位，如片剂的每片，
胶囊的每粒胶囊，口服液的每瓶，颗粒剂每袋等。

本发明的药物制剂可以是任何可药用的剂型，这些剂型包括：片剂、糖衣片
剂、薄膜衣片剂、肠溶衣片剂、胶囊剂、硬胶囊剂、软胶囊剂、口服液、口含剂、
颗粒剂、冲剂、丸剂、散剂、膏剂、丹剂、混悬剂、粉剂、溶液剂、注射剂、栓
剂、软膏剂、硬膏剂、霜剂、喷雾剂、滴剂、贴剂。本发明的制剂，优选的是口
服剂型，如：胶囊剂、片剂、口服液、颗粒剂、丸剂、散剂、丹剂、膏剂等。

本发明的药物制剂，其口服给药的制剂可含有常用的赋形剂，诸如粘合剂、填充剂、稀释剂、压片剂、润滑剂、崩解剂、着色剂、调味剂和湿润剂，必要时可对片剂进行包衣。

适宜的填充剂包括纤维素、甘露醇、乳糖和其它类似的填充剂。适宜的崩解剂包括淀粉、聚乙烯吡咯烷酮和淀粉衍生物，例如羟基乙酸淀粉钠。适宜的润滑剂包括，例如硬脂酸镁。适宜的药物可接受的湿润剂包括十二烷基硫酸钠。

可通过混合、填充、压片等常用的方法制备固体口服组合物。进行反复混合可使活性物质分布在整个使用大量填充剂的那些组合物中。

口服液体制剂的形式例如可以是水性或油性悬浮液、溶液、乳剂、糖浆剂或酏剂，或者可以是一种在使用前可用水或其他适宜的载体复配的干燥产品。这种液体制剂可含有常规的添加剂，诸如悬浮剂，例如山梨醇、糖浆、甲基纤维素、明胶、羟乙基纤维素、羧甲基纤维素、硬脂酸铝凝胶或氢化食用脂肪，乳化剂，例如卵磷脂、脱水山梨醇一油酸酯或阿拉伯胶；非水性载体（它们可以包括食用油），例如杏仁油、分馏椰子油、诸如甘油的酯的油性酯、丙二醇或乙醇；防腐剂，例如对羟基苯甲酸酯或对羟基苯甲酸丙酯或山梨酸，并且如果需要，可含有常规的香味剂或着色剂。

对于注射剂，制备的液体单位剂量型含有本发明的活性物质和无菌载体。根据载体和浓度，可以将此化合物悬浮或者溶解。溶液的制备通常是通过将活性物质溶解在一种载体中，在将其装入一种适宜的小瓶或安瓶前滤过消毒，然后密封。辅料例如一种局部麻醉剂、防腐剂和缓冲剂也可以溶解在这种载体中。为了提高其稳定性，可在装入小瓶以后将这种组合物冰冻，并在真空下将水除去。

本发明的药物制剂，在制备成药剂时可选择性的加入适合的药物可接受的载体，所述药物可接受的载体选自：甘露醇、山梨醇、焦亚硫酸钠、亚硫酸氢钠、硫代硫酸钠、盐酸半胱氨酸、巯基乙酸、蛋氨酸、维生素 C、EDTA 二钠、EDTA 钙钠，一价碱金属的碳酸盐、醋酸盐、磷酸盐或其水溶液、盐酸、醋酸、硫酸、磷酸、氨基酸、氯化钠、氯化钾、乳酸钠、木糖醇、麦芽糖、葡萄糖、果糖、右旋糖苷、甘氨酸、淀粉、蔗糖、乳糖、甘露糖醇，硅衍生物、纤维素及其衍生物、藻酸盐、明胶、聚乙烯吡咯烷酮、甘油、土温 80、琼脂、碳酸钙、碳酸氢钙、表面活性剂、聚乙醇硫酸、环糊精、β - 环糊精、磷脂类材料、高岭土、滑石粉、硬脂酸钙、硬脂酸镁等。

本发明的制备在使用时根据病人的情况确定用法用量，可每日服三次，每次 1-20 剂，如：1-20 袋或粒或片。

本发明的提取物和药物制剂具有抗肿瘤和抗骨质疏松作用，以下通过实验数
据证明本发明的药物用途，实验采用常规手段，药物使用本发明实施例方法得到的提取物或药物制剂。

1、牡荆属植物提取物的抗癌肿作用

（1）黄荆子提取物对裸鼠人卵巢癌（COCl）细胞异种移植瘤的研究

取 Balb/c-nu 裸鼠 29 只，4 周龄，体重约 14-16g。饲养于屏障环境（100级无菌室）中，饲料，饮水，垫料，笼具均经高压蒸汽灭菌后使用，所有操作均严格执行 SPF 级实验动物操作规程。

用无菌 PBS 调整 COCl 细胞浓度为 3×10^7/mL，在 Balb/c-nu 小鼠背部皮下接种 COCl 细胞 0.2mL/只，接种观察待出现肉眼可见移植瘤后，于给药卡尺测量移植瘤最长径（L）和最短径（W），按公式 V=L×W^2×0.52 计算瘤体积，待移植瘤体积达 100mm^3 左右时按瘤体积和荷瘤鼠体重均衡原则分组。即荷瘤 Balb/c-nu 对照组（生理盐水 3）；药物组。以上各组均隔 7 日瘤内注射给药 1 次，共 2 次，给药期间每 4 日测量鼠体重及移植瘤体积，绘制移植瘤生长曲线。末次给药 48小时后脱口处死小鼠，切除移植瘤，称取瘤重，计算瘤重抑制率。

实验数据采用 SPSS 12.0 统计分析软件，以 One-way ANOVA 及 Student t test 方法进行检验，所得数据以 x±s 表示，以 P<0.05 为具有统计学显著性差异标准。实验结果如表 1 所示，黄荆子提取物对人卵巢癌（COCl）细胞异种移植瘤的抑制率为 61.6%。

表 2 黄荆子提取物对人卵巢癌（COCl）细胞 Balb/c-nu 移植瘤瘤重的影响（x±s，n=4）

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量(mg/kg)</th>
<th>瘤重(克)</th>
<th>抑制率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>-</td>
<td>8435±3618</td>
<td>-</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>3243±2655</td>
<td>61.6</td>
</tr>
</tbody>
</table>

F=2.470，P=0.072 *p<0.05, vs Control(NS)

表 3 黄荆子提取物给药后对人卵巢癌（COCl）细胞 Balb/c-nu 移植瘤体积的影响

（x±s，n=5）

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量(mg/kg)</th>
<th>天数(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>对照组</td>
<td>-</td>
<td>1585±1285</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>1933±1244</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01 vs Control (NS)

（2）黄荆子提取物对裸鼠人乳腺癌（MCF-7）细胞异种移植瘤的研究

突变系 Balb/c-nu 雌性裸小鼠 24 只，6-7 周龄，体重 18-20g，背部皮下接种 MCF-7 细胞 2×10^6 cells/只，待移植瘤体积达 100mm^3 以上时，按瘤体积和体重均衡原则，分为 6 组，每组 4 只。A 组，荷瘤 Balb/c-nu 对照组（NS 0.1ml/10g, i.p）；B 组，内分泌治疗剂他莫昔芬阳性药对照组（TAM 10mg/kg, i.g）；C 组，
化疗剂紫杉醇阳性药对照组（TAX 10mg/kg, i.p）；D 组，低剂量黄荆子提取物实验组（黄荆子提取物 5mg/kg, i.p）；E 组，中剂量黄荆子提取物实验组（黄荆子提取物 10mg/kg, i.p）；F 组，高剂量黄荆子提取物实验组（黄荆子提取物 20mg/kg, i.p），以上各组隔日给药 1 次，共计 7 次，给药期间每 4 日用游标卡尺测量移植瘤最径长和最径短，按标准公式计算瘤体积：
V= \pi \times 1/6 \times 0.52。末次给药 48 小时后测定移植瘤体积，脱颈白处死裸小鼠，切除移植瘤，用皿式电子分析天平称量瘤重。肿瘤生长抑制率（%）=（1-实验组瘤体积均值/对照组瘤体积均值）×100%；瘤重抑制率（%）=(1-实验组瘤重均值/对照组瘤重均值)×100%。

各组瘤体积和瘤重均用x±s 表示，采用 Spss windows 10.0 软件 One Way ANOVA 方式行方差分析及两两采用 Student’t 检验，P<0.05 为统计学意义显著标准。实验结果如表 3 所示，黄荆子提取物对人乳腺癌（MCF-7）细胞 Balb/c-nu 异种移植瘤生长具有抑制作用，供剂量依赖性。

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量 (mg/kg)</th>
<th>瘤重</th>
<th>抑制率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>145±20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAM</td>
<td>62±9**</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>TAX</td>
<td>50±2***</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>66±5***</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>65±29***</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>76±9***</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

F=9.356, P=0.000, *** P<0.001 vs Control(NS)

表 5 黄荆子提取物给药后对人乳腺癌（MCF-7）细胞 Balb/c-nu 移植瘤体积的影响

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量 (mg/kg)</th>
<th>天数(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>对照组</td>
<td>138±46</td>
<td>167±57</td>
</tr>
<tr>
<td>TAM</td>
<td>152±34</td>
<td>122±26</td>
</tr>
<tr>
<td>TAX</td>
<td>132±15</td>
<td>104±4*</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>151±13</td>
<td>131±21</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>165±50</td>
<td>124±25</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>156±55</td>
<td>118±29*</td>
</tr>
</tbody>
</table>

* P<0.05, ** P<0.01, *** P<0.001 vs Control(NS)

（3）黄荆子提取物对裸鼠人宫颈癌（Hela）细胞异种移植瘤的研究
突变系 Balb/c-nu 雌性裸小鼠 28 只，6-7 周龄，体重 18-22g，背部皮下接
种 Hela 细胞 2×10^6 cells/只，待移植瘤体积达 350mm^3 以上时，按瘤体积和体重均衡原则，分为 7 组，每组 4 只。A组，荷瘤 Balb/c-nu 对照组 (NS 0.1ml/10g, i.p.): B组，顺铂 (DDP) 阳性药对照组 (4mg/kg, i.p.);C组，化疗剂紫杉醇阳性药对照组 (20mg/kg, i.p.);D 组，低剂量黄荆子提取物实验组 (5mg/kg, i.p.);E组，中剂量黄荆子提取物实验组 (10mg/kg, i.p.);F 组，高剂量黄荆子提取物实验组 (20mg/kg, i.p.);G 组，高剂量黄荆子提取物灌胃组 (20mg/kg, i.g.) 以上各组隔日给药 1 次，共计 7 次，每 4 日用游标卡尺测量移植瘤最长径和最短径，按标准公式计算瘤体积: V=L×W^2×0.52。末次给药 48 小时后测定移植瘤体积，脱颈处死裸小鼠，切除移植瘤，用血清液中量瘤重。肿瘤生长抑制剂率（%）=(1−实验组瘤体积均值 / 对照组瘤体积均值)×100%；瘤重抑制剂率（%）=(1−实验组瘤重均值 / 对照组瘤重均值)×100%。实验结果如表 5 所示，黄荆子提取物对人宫颈癌 (Hela) 细胞 Balb/c-nu 异种移植瘤生长具有抑制作用，呈剂量依赖性。

表 6 黄荆子提取物对人宫颈癌 (Hela) 细胞 Balb/c-nu 移植瘤瘤重的影响 (x±s, n=4)

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量 (mg/kg)</th>
<th>瘤重</th>
<th>抑制剂率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>-</td>
<td>2244±219</td>
<td>-</td>
</tr>
<tr>
<td>DDP</td>
<td>10</td>
<td>785±432***</td>
<td>65</td>
</tr>
<tr>
<td>TAX</td>
<td>10</td>
<td>916±492***</td>
<td>59</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>868±121***</td>
<td>61</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>10</td>
<td>842±266***</td>
<td>62</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td>745±119***</td>
<td>67</td>
</tr>
<tr>
<td>黄荆子提取物 (g)</td>
<td>20</td>
<td>1061±569***</td>
<td>53</td>
</tr>
</tbody>
</table>

F=10.006, P=0.000
* P <0.05, ** P <0.01, *** P <0.001 vs Control (NS)

表 7 黄荆子提取物给药后对人宫颈癌 (Hela) 细胞 Balb/c-nu 移植瘤体积的影响 (x±s, n=5)

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量 (mg/kg)</th>
<th>天数 (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>对照组</td>
<td>-</td>
<td>380±51</td>
</tr>
<tr>
<td>DDP</td>
<td>10</td>
<td>390±35</td>
</tr>
<tr>
<td>TAX</td>
<td>10</td>
<td>394±29</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>375±51</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>10</td>
<td>409±38</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td>425±56</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td>410±39</td>
</tr>
</tbody>
</table>
取物(i.g)

* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ vs Control(NS)

(4) 黄荆子提取物对裸鼠人肝癌(Hep G2) 细胞异种移植瘤的研究

突变系 Balb/c-nu 雌性裸小鼠 24 只，6-7 周龄，体重 17-20g，背部皮下接种人肝癌(Hep G2) 细胞 2×10^6 cells/只，待移植瘤体积达 150mm³ 以上时，按瘤体积和体重均衡原则,分为 6 组，每组4 只。H1 组，荷瘤 Balb/c-nu 对照组 (NS 0.1ml/10g, i.p.); H2 组，5-氟尿嘧啶阳性药对照组 (5-FU 20mg/kg, i.p.); H3 组，低剂量黄荆子提取物实验组 (黄荆子提取物 5mg/kg, i.p.); H4 组，中剂量黄荆子提取物实验组 (黄荆子提取物 10mg/kg, i.p.); H5 组，高剂量黄荆子提取物实验组 (黄荆子提取物 20mg/kg, i.p.); H6 组，高剂量黄荆子提取物(灌胃)实验组 (黄荆子提取物 20mg/kg, i.g.)。以上各组隔日给药一次，共计 7 次，给药期间每 4 日用游标卡尺测量移植瘤最大径和最小径，按标准公式计算瘤体积, $V=\frac{1}{3}\pi r^2 h$，末次给药 48 小时后测定移植瘤体积，脱颈处死裸小鼠，切除移植瘤，用皿式电子分析天平称量瘤重。肿瘤生长抑制剂率（%）=$\frac{(1-实验组瘤体积均值/对照组瘤体积均值) \times 100%}{1-实验组瘤重均值/对照组瘤重均值} \times 100%$。

各组瘤体积和瘤重均用 $x \pm s$ 表示，采用 Spss windows 10.0 软件 One Way ANOVA 方式行方差分析及两两比较采用 Student’s 检验，$P<0.05$ 为统计学意义显著标准，实验结果表 7 所示，黄荆子提取物对人肝癌(Hep G2) 细胞 Balb/c-nu 异种移植瘤生长具有抑制作用，呈剂量依赖性。

表 8 黄荆子提取物对人肝癌(Hep G2) 细胞 Balb/c-nu 移植瘤瘤重的影响（$x \pm s$, n=4）

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量(mg/kg)</th>
<th>瘤重</th>
<th>抑制率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>—</td>
<td>1797±260</td>
<td>—</td>
</tr>
<tr>
<td>5-FU</td>
<td>20</td>
<td>232±41***</td>
<td>87</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>808±45***</td>
<td>55</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>10</td>
<td>679±196***</td>
<td>62</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td>561±302***</td>
<td>69</td>
</tr>
<tr>
<td>黄荆子提取物(i.g)</td>
<td>20</td>
<td>1199±542***</td>
<td>33</td>
</tr>
</tbody>
</table>

F=36.561, $P=0.000$

* $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ vs Control(NS)

表 9 黄荆子提取物给药后对人肝癌(Hep G2) 细胞 Balb/c-nu 移植瘤体积的影响（$x \pm s$, n=5）

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量(mg/ kg)</th>
<th>天数(d) 0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>—</td>
<td>177±31</td>
<td>515±151</td>
<td>545±95</td>
<td>1034±308</td>
<td>1100±161</td>
</tr>
<tr>
<td>5-FU</td>
<td>20</td>
<td>216±55</td>
<td>189±62**</td>
<td>179±12***</td>
<td>136±32***</td>
<td>131±23***</td>
</tr>
<tr>
<td>黄荆子提</td>
<td>5</td>
<td>219±38</td>
<td>326±174</td>
<td>375±110*</td>
<td>409±74***</td>
<td>464±54***</td>
</tr>
</tbody>
</table>
（5）黄荆子提取物对裸鼠人胃癌（SGC-7901）细胞异种移植瘤的研究

突变系 Balb/c-nu 雄性裸小鼠 30 只，6-7 周龄，体重 18-23g，背部皮下接种 SGC-7901 细胞 2×10^6 cells/只，待移植瘤体积达 300mm3 以上时，按瘤体积和体重均衡原则，分为 6 组，每组 5 只。I 组，荷瘤 Balb/c-nu 对照组（NS 0.1ml/10g, i.p.）；II 组，化疗剂丝裂霉素（化疗阳性药物对照组（MMC 1mg/kg, i.p.）；III组，低剂量黄荆子提取物实验组（黄荆子提取物 5mg/kg, i.p.）；IV组，中剂量黄荆子提取物实验组（黄荆子提取物 10mg/kg, i. p.）；V 组，高剂量黄荆子提取物实验组（黄荆子提取物 20mg/kg, i.p.）；VI 组，高剂量黄荆子提取物灌胃实验组（黄荆子提取物 20mg/kg, i.g.），以上各组隔日给药 1 次，共计 7 次，给药期间每 4 日用游标卡尺测量移植瘤最长径和最短径，按标准公式计算瘤体积：$V=L \times W^2 \times 0.52$。末次给药 48 小时后测定移植瘤体积，脱颈处死裸小鼠，切除移植瘤，用皿式电子分析天平称量瘤重。肿瘤生长抑制剂率为（%）=$\left(1-\frac{\text{实验组瘤体积均值}}{\text{对照组瘤体积均值}}\right) \times 100$%；瘤重抑制剂率为（%）=$\left(1-\frac{\text{实验组瘤重均值}}{\text{对照组瘤重均值}}\right) \times 100$%

各组瘤体积和瘤重均用 $x \pm s$ 表示，采用 Spss windows 10.0 软件 One Way ANOVA 方式行方差分析及两两比较采用 Student’t 检验，P < 0.05 为统计学意义显著标准。实验结果如表 9 所示，黄荆子提取物对人胃癌（SGC-7901）细胞 Balb/c-nu 异种移植瘤生长具有抑制作用，呈剂量依赖性。

表 10 黄荆子提取物对人胃癌（SGC-7901）细胞 Balb/c-nu 移植瘤瘤重的影响（$x \pm s, n=4$）

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量(mg/kg)</th>
<th>瘤重</th>
<th>抑制率(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>对照组</td>
<td>—</td>
<td>2880 ± 1021</td>
<td>—</td>
</tr>
<tr>
<td>MMC</td>
<td>1.0</td>
<td>935 ± 218***</td>
<td>68</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td>1959 ± 380*</td>
<td>32</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>10</td>
<td>1645 ± 421**</td>
<td>43</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td>1273 ± 481***</td>
<td>56</td>
</tr>
<tr>
<td>黄荆子提取物(i.g)</td>
<td>20</td>
<td>1942 ± 481*</td>
<td>33</td>
</tr>
</tbody>
</table>

$F=8.135, \quad P=0.000$
* £0.05, ** £0.01, *** £0.001 vs Control(NS)

表11 黄荆子提取物给药后对人胃癌(SGC-7901)细胞Balb/c-前株移植瘤体积的影响

\[(x \pm s, n=5) \]

<table>
<thead>
<tr>
<th>组号</th>
<th>剂量 (mg/kg)</th>
<th>天数(d)</th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>对照组</td>
<td>-</td>
<td></td>
<td>391±58</td>
<td>858±48</td>
<td>1323±95</td>
<td>2388±310</td>
<td>4087±1285</td>
</tr>
<tr>
<td>MMC</td>
<td>1.0</td>
<td></td>
<td>402±36</td>
<td>775±54*</td>
<td>1092±117**</td>
<td>1197±129**</td>
<td>1362±451***</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>5</td>
<td></td>
<td>347±63</td>
<td>821±77</td>
<td>1214±181</td>
<td>1843±590</td>
<td>2466±1030*</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>10</td>
<td></td>
<td>385±58</td>
<td>787±46</td>
<td>1136±151**</td>
<td>1577±247*</td>
<td>2059±1606**</td>
</tr>
<tr>
<td>黄荆子提取物</td>
<td>20</td>
<td></td>
<td>391±31</td>
<td>785±74</td>
<td>1120±101**</td>
<td>1326±744*</td>
<td>1416±434***</td>
</tr>
<tr>
<td>黄荆子提取物(i.g)</td>
<td>20</td>
<td></td>
<td>392±53</td>
<td>779±69</td>
<td>1196±143</td>
<td>1926±1063</td>
<td>2513±710*</td>
</tr>
</tbody>
</table>

2、黄荆子提取物抑制骨质疏松的作用

(1)、黄荆子提取物抑制骨质疏松的作用

骨髓腔是两种干细胞的贮存库，包括造血干细胞和骨髓间质干细胞(Bone Mesenchymal Stem Cells, BMSCs)。BMSCs 来源于中胚层，是一类具有很强的自我增殖能力和多向分化潜能的干细胞，可在不同诱导剂的诱导下分化成多种细胞的前体细胞，如脂肪细胞、软骨细胞、成骨细胞、成纤维细胞等。BMSC 虽然在骨髓中含量极少，但只占骨髓有核细胞的十分之一，但 BMSCs 是出生后骨改建过程中成骨细胞最主要的来源，对骨量的维持具有重要意义；因此，体外培养 BMSCs 为我们提供了一个很好的研究成骨细胞分化调控的体外模型。

本实验中，我们假设或代 HBMSCs 能对黄荆子提取物刺激发生反应，并且 NO 信号途径是黄荆子提取物效应发挥过程中的重要信号传导通路。为证实这一假设，我们在体外培养相对均质的原代人骨髓间质干细胞(HBMSCs)，诱导其向成骨细胞分化；在此基础上，观察 NO 对 HBMSCs 的细胞增殖和向成骨细胞分化的影响，考察该效应是否与黄荆子提取物的雌激素样活性有关，并进一步探讨 NO 信号传导通路在黄荆子提取物效应中的介导作用。

经孕妇自愿捐献，取 4~5 月左右水囊引产胎儿，用酒精消毒胎儿四肢，取出血长骨 (遵循湖南省伦理委员会的伦理学标准，并经湖南省卫生厅同意)。在超净操作台中剥尽肌肉和骨膜，剪去两端骨骺，用 5 ml 一次性注射器冲洗骨髓腔。冲洗液以 1000 转/秒的速度，4℃离心 10 分钟，弃掉上清，加入 15ml 含 10%FBS 的 a-MEM 培养液重悬细胞。将细胞的浓度调整至每毫升 10^7 个，将重
悬液以 1:1 比例缓慢加入装有 3ml Ficoll 淋巴分离液的离心管中，以 1800 转/分速度离心 30 分钟，可见淋巴细胞分离液分层。小心吸出基和分离液之间的间质干细胞层，放入塑料离心管中，用 a-MEM 培养基洗涤 3 次（1000 转/分，5－10 分钟）。加入含有 15％FBS 的 a-MEM 重悬。将浓度调整至每毫升 10^6 个细胞，种入 25cm²的塑料培养瓶中，置于 37℃，5％CO₂培养箱中孵育。3 天后换一半基，5 天后更换全部基质，除去未贴壁的细胞。细胞长满培养瓶底部 90％左右后，用 0.25％胰蛋白酶消化，传代培养，到第四代细胞生长已基本稳定。取第四~六代细胞以 5×10⁴cells·mL⁻¹的密度种板，细胞贴壁后，基质换为含 10％FBS(经葡萄糖包被的炭末吸附，DCC)的无酚红 a-MEM, 加入促进 HBMSCs 向成骨细胞分化的促分化剂 (10 mmol·L⁻¹ 地塞米松, 50mg·L⁻¹ 维生素 C 及 10 mmol·L⁻¹ β-甘油磷酸, OS)。同时给予不同的处理，以后每三天更换基质，并加药。

实验结果见表 12，黄荆子提取物可通过雌激素受体介导的 NO 信号传导通路促进原代 HBMSCs 的增殖及其向成骨细胞的分化：黄荆子提取物具有潜在的抗骨质疏松的作用。

表 12 黄荆子提取物促进 NO 通路促进 HBMSCs 向成骨细胞分化的指标

<table>
<thead>
<tr>
<th>分组</th>
<th>NO (umol/l)</th>
<th>ALP 活性 (nmol/h/ug pro)</th>
<th>钙沉积 (ug/ug pro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>阴性对照组(乙醇)</td>
<td>18.6±3.6</td>
<td>4.7±0.58</td>
<td>0.57±0.04</td>
</tr>
<tr>
<td>17β－雌二醇 0.1umol/l</td>
<td>20.3±2.3</td>
<td>6.2±0.91</td>
<td>0.63±0.21</td>
</tr>
<tr>
<td>黄荆子提取物 1umol/l</td>
<td>23.3±1.4</td>
<td>6.5±0.93</td>
<td>0.97±0.16</td>
</tr>
<tr>
<td>黄荆子提取物 0.1umol/l</td>
<td>21.0±2.5</td>
<td>3.8±0.80</td>
<td>0.50±0.26</td>
</tr>
<tr>
<td>黄荆子提取物 0.01umol/l</td>
<td>18.7±3.4</td>
<td>3.5±0.34</td>
<td>0.39±0.18</td>
</tr>
</tbody>
</table>

每组数据重复 3 次，两组实验结果均值。所有参数用均数±标准差（mean±SD）表示，采用单因素方差分析（one-way ANOVA）进行统计分析。各组间概率 P<0.05 表示在统计学上差异具有显著性。

本发明与已有技术相比具有以下优点：
1. 成本低
2. 杂质含量低
3. 工艺稳定，易于操作，易于实现
4. 生产过程对环境无污染

具体实施方式：
以下通过实施例进一步说明本发明，但不作为对本发明的限制。

实施例1（原料为黄荆子）

A、药材煎煮

(A) 将黄荆子10kg粉碎加入容器中，再向容器中加入40%乙醇溶液80升，然后加将两者的混合物热至85℃，保温1.5小时之后，滤渣取液。

(B) 向A步(A)滤出的渣中加入40%乙醇溶液60升，并将两者混合物加热至85℃，保温1小时之后，滤渣取液。

(C) 向A步(B)滤出的渣中加入40%乙醇溶液60升，并将两者混合物加热至85℃，保温1小时之后，滤渣取液。

B、液体浓缩

将分别通过所述各A步(A)、(B)、(C)制取的液体混合一起后减压浓缩，直至浓缩至10升为止。

C、吸附、洗脱

浓缩后的浸膏加75%乙醇溶解，按浸膏与聚酰胺的重量分数比为1:0.3拌样，回收乙醇，拌样树脂加水混悬，加到经活化处理后聚酰胺柱（10升），使液体中的总木脂素被聚酰胺吸附，弃去流出液，20升蒸馏水冲洗聚酰胺柱，弃去流出液。继用0.4%的氨水40升清洗聚酰胺柱，并收集洗脱液。将此洗脱液浓缩后用处理好的聚酰胺柱吸附（2升），干燥，装柱（8升）后用20升水饱和的乙酸乙酯洗脱，收集洗脱液。

D、成品回收、干燥

回收工庁C所得的洗脱液，其余废物干燥后，即得提取物。

实施例2（原料为穗花杜荆果实）

(A) 将穗花杜荆子10kg粉碎加入容器中，再向容器中加入20%乙醇溶液80升，然后加将两者的混合物热至85℃，保温1.5小时之后，滤渣取液。

(B) 向A步(A)滤出的渣中加入20%乙醇溶液60升，并将两者混合物加热至85℃，保温1小时之后，滤渣取液。

(C) 向A步(B)滤出的渣中加入20%乙醇溶液60升，并将两者混合物加热至85℃，保温1小时之后，滤渣取液。

B、液体浓缩

将分别通过所述各A步(A)、(B)、(C)制取的液体混合一起后减压浓缩，直至浓缩至10升为止。

C、吸附、洗脱

浓缩后的浸膏加75%乙醇溶解，按浸膏与聚酰胺的重量分数比为1:0.3拌
样，回收乙醇，拌样树脂加水湿悬，加到经活化处理后的聚酰胺柱（10 升），使液体中的总木脂素被聚酰胺吸附，并弃去流出液，20 升蒸馏水冲洗聚酰胺柱，弃去流出液。继用 0.4% 的氨水 40 升清洗聚酰胺柱，并收集洗脱液。将此洗脱液浓缩至无氨水味（约 5 升）用 20 升水饱和的乙酸乙酯分五次萃取，收集乙酸乙酯萃取液。

D、成品回收、干燥
回收工序 C 所得萃取的液，余留物质干燥后，即得提取物
实施例 3（原料为蔓荆子）
A、药材煎煮
（A）将蔓荆子 10kg 粉碎加入容器中，再向容器中加入 90%乙醇溶液 80 升，然后加将两者的混合物热至 70℃，保温 1.5 小时之后，滤渣取液。
（B）向 A 步（A）滤出的渣中加入 90%乙醇溶液 60 升，并将两者混合物加热至 70℃，保温 1 小时之后，滤渣取液。
（C）向 A 步（B）滤出的渣中加入 90%乙醇溶液 60 升，并将两者混合物加热至 70℃，保温 1 小时之后，滤渣取液。
B、液体浓缩
将分别通过上述各 A 步（A）、（B）、（C）制取的液体混合一起后减压浓缩，直至浓缩至 10 升为止。
C、吸附、洗脱
浓缩后的浸膏加 75%乙醇溶解，按浸膏与聚酰胺的重量分数比为 1：0.3 拌样，回收乙醇，拌样树脂加水湿悬，加到经活化处理后的聚酰胺柱（10 升），使液体中的总木脂素被聚酰胺吸附，并弃去流出液，20 升蒸馏水冲洗聚酰胺柱，弃去流出液。继用 0.4% 的氨水 40 升清洗聚酰胺柱，并收集洗脱液。将此洗脱液浓缩后用处理好的聚酰胺柱吸附（2 升），干燥，装柱（8 升）后用 20 升水饱和的乙酸乙酯洗脱，收集洗脱液。
D、成品回收、干燥
回收工序 C 所得的洗脱液，余留物质干燥后，即得提取物
实施例 4
本发明药物的剂型：
1. 注射用黄荆子提取物（冻干）
黄荆子提取物 20～100g
（相当于总木脂索总量标示量 90～110%）
甘露醇 适量作支持剂
制成冻干粉针剂 1000 支

制法：在无菌条件下（或超净化工作台内操作）将处方量提取物和支持剂，
加注射用水，加热溶解，加注射用活性炭，加热过滤，分装 1000 支，-40℃冷冻
后，升温，冻干为止。

性状：本品为淡黄色无定性粉末或疏松固体状物，为苦涩。

2. 片剂

黄荆子提取物的 80～400g

（含木脂素含量 50%以上）

赋形剂适量（乳糖、淀粉）

制成 1000 片

制法：将处方量中间体（提取物）与赋形剂混匀，湿法或一步制粒，若湿法
制粒在 60℃～80℃干燥，将颗粒整粒后加适量润滑剂压制成 1000 片，色衣或薄
膜包衣即得。

性状：剥去糖衣或薄膜后为棕黄色粉末，味苦，涩。

3. 胶囊剂

黄荆子提取物的中间体 80～400g

（含木脂素含量 50%以上）

赋形剂适量（乳糖、淀粉）

制成 1000 粒

制法：将处方量中间体混匀制制成颗粒，装入胶囊中即得。

性状：本品内容物为黄褐色无定性或疏松固体颗粒状物，味苦涩。