Feed 10

Flotation 11

Concentrate 13

Dewatering 14

Mixing 15

Washing 16

Flotation 17

Phosphate Concentrate 18

Gravity Separation 23

Heavy Minerals 24

Phosphate Fraction 25

Silica-Heavy Minerals 19 Float

Dewatering 20

Mixing 21

Washing 22

Inventor: Homer E. Uhland

By: Ernest V. Haines

Attorney:
METHOD FOR RECOVERY OF MINERALS

Homer E. Uhland, Lakeland, Fla., assignor to International Minerals & Chemical Corporation, a corporation of New York

Filed June 28, 1957, Ser. No. 665,801
5 Claims. (Cl. 209—12)

This invention relates to the recovery of certain valuable mineral constituents from ores containing the same. More particularly, the invention relates to the recovery of metallic minerals such as ilmenite, rutile, zircon, as well as certain other minerals from ores containing substantial amounts of phosphate rock and siliceous materials.

The occurrence of minerals such as ilmenite (FeTiO₃), zircon (ZrSiO₄), and rutile (TiO₂) is widespread. Up to the present time, it has been common practice to process or beneficiate only those ores which contain a rather high percentage of such valuable minerals. For example, it has been found that the raw material used in the Florida phosphate field. As distinguished from their occurrence in various Florida or Australian sands, the heavy minerals are present in the phosphate matrix in quantities of less than about 0.1% by weight. By subjecting phosphate material to flotation operation for the recovery of the valuable phosphates contained therein, according to the flotation processes heretofore in use, the metallic mineral content of the phosphate ore may be gathered together into a heavy mineral concentrate having a heavy mineral content of 2 to 4% by weight. In the past, the silica concentrates produced in the flotation of phosphate ores have been discarded. This practice, it has been found, contains the 2 to 4% by weight of heavy minerals as a result of treatment of the ore with cationic reagents. The composition of the silica concentrate produced by this method averages about 60 to 70% by weight of silica, about 10 to 20% by weight of tricalcium phosphate, the remainder consisting of the aforementioned heavy minerals together with other gangue impurities. A silicfrac containing only 2 to 4% by weight of metallic minerals is not commercially adaptable to industrial recovery processes and requires elaborate flotation operation with consequent capital investment to recover the heavy mineral in the form of a concentrate adaptable to industrial processes. It is the primary object of this invention to provide a new and novel process, eliminating the disadvantages and shortcomings of processes heretofore in use.

It is an object of this invention to provide a novel and simplified process for the recovery of metallic mineral values from a phosphatic ore.

It is another object of this invention to provide a novel process whereby the phosphate in the concentrate is recovered in higher purity and with more complete recovery of metallic minerals recovered in commercially acceptable concentrations.

It is still another object of this invention to provide a process which eliminates a large number of flotation operations of the processes heretofore known.

It is still a further object of this invention to provide a process whereby the metallic minerals are accumulated in a predominantly silicate fraction which formerly was discharged to waste, and the silica fraction processed to recover the minerals and phosphate therefrom.

These and other objects of the invention are accomplished by subjecting a finely divided phosphatic-siliceous ore which contains basic metal oxide type metallic minerals to at least one flotation operation in the presence of anionic flotation agents having an affinity for a positive ion or cationic type reagent value and nitrogenous cationic agents having an affinity for silicate gangue, separating out a predominantly silicate fraction rich in metallic minerals, removing the amine flotation reagent, i.e., nitrogenous cationic agent, from said silicate fraction, slurrying the de-reagentized siliceous material with water, separating the heavy minerals from silica and phosphate on the basis of difference of specific gravity and recycling the silica-phosphate fraction to the flotation system.

In carrying out the process for recovery of phosphates and heavy minerals, the phosphoric ore is subjected to a washing operation in order to remove slime and other organic material. The washed rock is in an agglomerate form is subjected to screening or hydraulic sizing operation whereby the pebble or larger particles of phosphate rock are segregated from material which is approximately +1 mm. size. The —1 mm. size material is subjected to further washing for complete desliming, which desliming is produced by separating the —150 mesh size material from the +150 mesh size material. The +150 mesh size material, called "sand," is subjected to a screening operation to produce a +35 mesh size fraction which is passed to a spiral for concentration and a —35 mesh size fraction which is the feed to the flotation circuit. The major portion of the heavy mineral in this phosphatic material reports in this —35 +150 mesh size fraction.

In the phosphate flotation operation, the —35 mesh fraction of the ore is mixed with anionic reagents which have an affinity for phosphate material and the heavy minerals. The desilicified material is subjected to flotation under conditions giving high recovery and selectivity permitting production of a throw-away silica tail product. Anionic or carboxyl containing negative ion agents which are useful in the first or rougher stage of phosphate concentration are, for example, the higher fatty acids, i.e., oleic, stearic, and palmitic acids, natural resin acid, tall oil, naphthenic acids, alkyl sulphated fatty acids, acid esters of high molecular weight, aliphatic alcohols and the soaps of such materials. Included within the term soaps of such negative ion or anionic type reagents are the alkali metal and alkaline earth metal soaps of the higher fatty acids, ammonium, and alkyl sulphated fatty acids.

The metallic mineral-containing ore and phosphate having a —35 mesh particle size is reagentized with one or more of these reagents in the presence of water by agitation in the mixture at a solids content between about 25% and about 50% by weight, following which the slurry is diluted to a concentration suitable for introduction into the flotation cells. In these cells a froth is formed which carries the phosphate and heavy mineral to the top where this fraction is removed by overflow. This ore product overflowing from the anionic flotation cell is recovered for further processing as follows: The anionic reagents...
are removed from the solids by scrubbing with sulfuric acid; after scrubbing, the solids are washed free of reagents in the wash water with water. The washed solids are then reagentized with a cationic flotation reagent designed to remove the minor component of the concentrate, i.e., silica, and the heavy mineral. Useful cationic or positive ion reagents for this stage of the flotation procedure are the nitrogenous positive ion reagents such as the higher molecular weight aliphatic amines containing at least one alkyl group having 12 to 20 carbon atoms and their water-soluble addition salts with mineral and organic acids, esters of amino alcohol with higher molecular weight fatty acids, and higher alkyl-substituted isoureas and their water-soluble salts, high molecular weight aliphatic quaternary ammonium bases and their water-soluble salts, alkyl-substituted pyridinium and quinolinium water-soluble salts and the like.

One of the products of this cationic flotation operation is a final phosphate concentrate which is the underflow from the flotation cells. The overflow from the cationic flotation is a mixture of silica and heavy minerals. This mixture is freed of amine reagents by any one of a number of treatments. The mixture may be "de-reagentized" by treating it with an acid material such as a mineral acid, for example, sulfuric acid; following which the acid-treated material is washed with water until it is substantially neutral. The amine reagent may also be removed by treating the slurry mixture overflowing from the cationic flotation operation with sodium hypochlorite and the like, or chlorine water with or without subsequent washing operations. In still another method of cationic reagent removal, the froth slurry is mixed with slime previously removed in the washing of the ore. Following agitation in the presence of the slime, the mixture is subjected to classification as a hydroseparator to float the slime material away from the sand. The sands are then washed with water and are ready for further processing. The de-reagentized mixture of silica, phosphate, and heavy mineral is next subjected to separation on the basis of specific gravity differences of the various materials. This specific gravity separation may be effected on the Wilfley tables but preferably is carried out in spirals where a slurry of the mixture is flowed by gravity through a trough having a spiral port adapted for drop out of the heavy minerals of highest specific gravity along the inside of troughs. As the lighter specific gravity materials continue to flow in a path adjacent to the outer perimeter of the spiral and are recovered from the bottom of the spiral. Specific gravity differences between the heavy mineral and silica and phosphate are such that in a specific gravity separation a concentrate of heavy minerals may be produced of between 80% and 95% by weight of heavy mineral. The tail product from the specific gravity separation consisting predominantly of silica and phosphate, may then be recycled to the rougher flotation feed.

The metallic mineral concentrate produced in accordance with the instant novel process is a bulk product containing all of the various heavy minerals present and may be subsequently dried and subjected to further concentration by suitable means.

Reference has been made herein to rougher separation of materials treated with anionic reagents followed by further separation of the phosphate concentrate by flotation under cationic flotation conditions as though these operations were performed in a single flotation stage. A single flotation stage in each instance is the preferred embodiment of the process but it is not meant to exclude the possibility that each of these stages may be carried out in a multiplicity of stages.

The invention will be more fully understood from a study of the figures which illustrates the preferred embodiment of this process. Referring to the flowsheet, deslimed phosphate ore of about —35 mesh size is indicated by the numeral 10. This material is mixed with flotation agent composition containing a negative ion agent such as tall oil and delivered to flotation unit 11 from which is recovered a throw-away silica tail 12 and a phosphate rock concentrate 13 containing the so-called heavy mineral. The concentrate 13 is a slurry which is raised to a solids content of about 75% at a dewatering station 14. Dewatered concentrate is conveyed to a feed stock station 15 where sufficient water is added from the pot to remove the anionic flotation reagents. Concentrate is washed to neutrality at washing station 16. Following washing, the concentrate is delivered to a second flotation unit 17 where it is mixed with a positive ion flotation agent such as a long chain aliphatic amine, and aerated and agitated to cause formation of a froth which can be overflowed from the flotation cell. From this flotation cell is recovered a phosphate concentrate or underflow fraction 18 and a silica float 19 containing said heavy minerals. Silica float 19 is conducted to a dewatering station 20 and then to a de-reagentizing unit consisting of a mixing station 21 where either slimes or chlorine water is added and then to washing station 22 where water is added until the slimes or chlorine water is washed out of the slurry being treated. De-reagentized silica fraction is delivered from washing station 22 to a gravity separation unit 23 where the slurry of the de-reagentizing fraction is flowed in a spiral or elliptical path. From this elliptical path is recovered the heavy mineral fraction 24 and the silica-phosphate fraction 25. The silica-phosphate fraction 25 is then preferably recycled for combining with the rougher feed.

The nature and character of the invention is further illustrated by reference to the preferred embodiment of the invention without any intention that the invention be limited thereto.

Example

A phosphate rock of the type found in phosphate pebble fields of Florida is subjected to a washing operation in order to remove slimes and other organic matter. The washed rock, in an aqueous pulp, is subjected to a screening or hydraulic sizing operation whereby the larger particles of rock are segregated from material which is approximately —35 mesh standard screen size. The latter material is then reagentized in an aqueous pulp containing about 60% solids with about one pound of a reagent comprising about 88% tall oil and about 12% kerosene per ton of ore treated. About 2% of a portion of the wash added sufficient caustic soda is mixed into the mixture to give the latter a pH of about 8 to 9. The resultant pulp is then subjected to a flotation operation at a solids content of about 25 to 40% by weight in a Fagergren machine and a float product is recovered containing approximately 60% tricalcium phosphate, about 30% silica, and about 0.5% of metallic metal. This phosphatic product is then treated with about 2 pounds of sulfuric acid (60° Bé.) in order to remove the reagents therefrom. The acid-treated product is washed until it is substantially neutral and is then reagentized in an aqueous pulp with a mixture of long chain aliphatic amine, the latter comprising a mixture of about 73% of monooleatearylamine and about 24% monobehexadecylamine together with small quantities of secondary and tertiary amines whose aliphatic groups contain between about 12 and 18 carbon atoms. This reagent is preferably added in the form of acetic acid addition salt. The reagentized product is then subjected to a flotation operation at a solids content as previously described. The resultant froth product from this flotation contains a majority of the silica and about 2 to 4% by weight of metallic mineral. This froth product was mixed with slime material in proportions of approximately 5 pounds of slime solids per ton of slime flotation silica product, the slime being the fine material obtained from the hydroseparator in the washing of phosphate ore. The solids mixture was agitated for about 2 minutes and then deslimed by decantu-
tion. This de-reagentized siliceous material is then slurried with water to adjust the solids content of the slurry to approximately 50 to 60% by weight of solids and the slurry is fed through a distributor which introduces into a spiral at about 5 tons per hour of solids. From the draw-off ports in each spiral is recovered the bulk heavy mineral fraction and from the end of the spiral is obtained a silica-phosphate slurry.

When feeding through this process a 35 mesh phosphate feed of approximately 31.1% BPL, 0.4% heavy minerals, at a rate of 600 parts by weight per hour, a separation is made in the froth flotation cells which produces a phosphate concentrate assaying about 68% BPL and 1% heavy minerals and containing about 250 parts by weight of the feed. The throw-away tail fraction consists of about 350 parts by weight of the feed and about 91% silica and about 6% BPL.

The phosphate concentrate is separated in the amine flotation cell to recover a concentrate containing about 180 parts by weight per hour and a froth flotation product containing about 70 parts by weight per hour. The concentrate from the amine flotation will assay about 77% BPL and the amine froth product will assay 33% silica, 36% BPL, and 7% heavy minerals. As a part of the spiral, this froth product from the amine flotation will be separated to produce about one ton per hour of heavy mineral assaying 70% heavy mineral, 19% BPL, and a tail fraction of 73 parts by weight per hour assaying 60% silica and about 30% BPL. This silica-phosphate fraction, having the same concentration of phosphate as the feed, is mixed therewith.

Having thus described the invention, what is desired to be secured by Letters Patent is:

1. A process for the recovery of base metal oxide type metallic mineral from phosphate-silica ores containing the metallic minerals in minor amounts which comprises subjecting the ore in a finely divided state to a flotation operation employing amionic reagents having an affinity for phosphate to recover a phosphate-metallic mineral concentrate and a throwaway silica tail, removing the anionic reagents from said phosphate concentrate, subjecting the phosphate concentrate after removing the anionic reagents to a flotation operation employing cationic reagents to recover a final phosphate concentrate and a silica-metallic mineral froth product, said cationic reagents from said silica-metallic mineral product being removed by washing the silica-metallic mineral product with water and subjected to a gravitational separation thereby straining the minerals according to their specific gravities, recovering a strata rich in metallic minerals, and recycling the silica-phosphate strata to the feed to the anionic flotation.

2. A process for the recovery of base metal oxide type metallic mineral from phosphate-silica ores containing the metallic minerals in minor amounts which comprises subjecting the ore in a finely divided state to a flotation operation employing carboxy-containing negative ion agent having an affinity for phosphate to recover a phosphate-metallic mineral concentrate and a throwaway silica tail, removing the carboxy-containing negative ion agent from said phosphate concentrate, subjecting the phosphate concentrate after removing the carboxy-containing negative ion agent to a flotation operation employing carboxy-containing negative ion agent after washing to a flotation operation employing carboxy-containing negative ion agent to recover a final phosphate concentrate and a silica-metallic mineral froth product, removing said nitrogenous positive ion agent from said silica-metallic mineral product, diluting the silica-metallic mineral product with water, subjecting the diluted silica-metallic mineral product to a gravitational separation thereby straining the minerals according to their specific gravities, recovering a strata rich in metallic minerals, and recycling the silica-phosphate strata to the feed to the anionic flotation.

3. A process for the recovery of base metal oxide type metallic mineral from phosphate-silica ores containing the metallic minerals in minor amounts which comprises subjecting the ore in a finely divided state to a flotation operation employing anionic reagents having an affinity for phosphate to recover a phosphate-metallic mineral concentrate and a throwaway silica tail, removing the anionic reagents from said phosphate concentrate, subjecting the phosphate concentrate after the removal of said cationic reagents to a flotation operation employing cationic reagents to recover a final phosphate concentrate and a silica-metallic mineral froth product, removing said cationic reagents from said silica-metallic mineral product, diluting the silica-metallic minerals product after the removal of said cationic reagents with water, subjecting the diluted silica-metallic mineral product to a gravitational separation thereby straining the minerals according to their specific gravities, recovering a strata rich in metallic minerals, and recycling the silica-phosphate strata to the feed to the anionic flotation.

4. A process for the recovery of base metal oxide type metallic mineral from phosphate-silica ores containing the metallic minerals in minor amounts which comprises subjecting the ore in a finely divided state to a flotation operation at a pH in the range between about 8 and 9, employing carboxy-containing negative ion agent having an affinity for phosphate to recover a phosphate-metallic mineral concentrate and a throwaway silica tail, removing the carboxy-containing negative ion agent from said phosphate concentrate, subjecting the phosphate concentrate after the removal of carboxy-containing negative ion agent to a flotation operation employing nitrogenous positive ion agent to recover a final phosphate concentrate and a silica-metallic mineral froth product, removing nitrogenous positive ion agents from said silica-metallic mineral product, diluting the silica-metallic minerals product after the removal of said nitrogenous positive ion agent with water, subjecting the diluted silica-metallic mineral product to a gravitational separation thereby straining the minerals according to their specific gravities, recovering a strata rich in metallic minerals, and recycling the silica-phosphate strata to the feed to the carboxy-containing negative ion agent flotation.

5. A process for the recovery of base metal oxide type metallic mineral from phosphate-silica ores containing the metallic minerals in minor amounts which comprises subjecting the ore in a finely divided state to a flotation operation employing carboxy-containing negative ion agent having an affinity for phosphate to recover a final phosphate concentrate and a silica-metallic mineral froth product, removing said nitrogenous positive ion agent from said silica-metallic mineral product, diluting the silica-metallic mineral product with water, subjecting the diluted silica-metallic mineral product to a gravitational separation thereby straining the minerals according to their specific gravities, recovering a strata rich in metallic minerals, and recycling the silica-phosphate strata to the feed to the anionic flotation.

References Cited in the file of this patent

UNITED STATES PATENTS

2,614,692 Lawver ___________ Oct. 21, 1952
2,753,997 Duke et al. ___________ July 10, 1956

OTHER REFERENCES