The invention relates to a floating fence post that may be used with either electrified or non-electrified fence wire. The floating fence post consists of a hollow tube section (post), a floating means detachably attachable to the hollow tube section and movable vertically thereon, a weighting means located inside the hollow tube section, a cap on the lower end of the hollow tube section, and a detachable cap on the upper end of the hollow tube section with a means for holding fence wire thereon.
FIG. 2
FLOATING FENCE POST

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention
[0002] The present invention relates generally to fence posts. More particularly, the present invention relates to floating electric (or hot-wire) fence posts.
[0003] 2. Description of Related Art
[0004] An electric fence is a barrier that uses electric shocks to deter animals and/or people from crossing a boundary. Although electric fences are frequently used to enhance security of sensitive areas, most electric fences in use today are for agricultural purposes and/or other forms of animal control purposes.
[0005] Electric fences are designed to create an electrical circuit when touched by a person or animal. A component called a power energizer converts power into a brief electric pulse. One terminal of the power energizer releases an electric pulse along a connected bare wire about once per second. Another terminal is connected to a metal rod implanted in the earth, called a ground or earth rod. A person or animal touching the wire and the earth simultaneously will complete an electrical circuit and will conduct the pulse, causing a painful electric shock. The effects of the electrical shock depend upon the voltage, the electrical current used, and the degree of contact between the animal and the fence or ground; the shock can range from barely noticeable to uncomfortable, painful, or even lethal.
[0006] Smooth steel wire is the material most often used for electric fence, ranging from a fine thin wire used as a single line to thicker, high-tensile wire. Less often, woven wire or barbed wire fences can be electrified, though such practices create a more hazardous fence, particularly if a person or animal becomes caught by the fencing material. Synthetic webbing and rope-like fencing materials woven with fine conducting wires (usually of stainless steel) have come onto the market in the last several decades, and are particularly useful for areas requiring additional visibility or as temporary fencing.
[0007] The electrified fence itself must be kept insulated from the earth and from any materials that will conduct electricity, burn, or short out the fence. Thus, fencing must avoid vegetation, and cannot be attached directly to wood or to metal posts. Typically, wood or metal posts are driven into the ground, plastic or porcelain insulators are attached to the posts, and fencing material is attached to the insulators. Other techniques include using fence posts made of non-conducting synthetic materials.

BRIEF SUMMARY OF THE INVENTION
[0008] The present invention relates to a fence post that may be used with electric (or hot-wire) fence that floats on water. An object of the invention is to provide a fence post that may be used with either regular fence wire or electric fence wire. Another object of the invention is to provide a fence post that may be used in a body of water. Another object of the invention is to provide a fence post that floats on a body of water.

BRIEF DESCRIPTION OF THE VARIOUS VIEWS OF THE DRAWING
[0009] A preferred embodiment of the present invention is described in detail below with reference to the attached drawing figures, wherein:

FIG. 1 illustrates an exploded isometric view of one embodiment of the invention.
FIG. 2 illustrates a cross sectional view of one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION
[0010] The embodiments discussed herein are merely illustrative of specific manners in which to make and use the invention and are not to be interpreted as limiting the scope of the instant invention.
[0011] Referring to the drawings in detail, FIG. 1 illustrates an exploded isometric view of one embodiment of the invention. A hollow tubular support member 200 having an upper end, a lower end, an inner surface and an outer surface, a lower cap 300 that attaches to the lower end of the hollow tubular support member, a weight 400 shaped to fit within the hollow tubular support member, a detachably attachable float 500 shaped to fit snugly around the outer surface of the hollow tubular support member and movable vertically thereon, an adapter 600 with notches 601 that attaches to the upper end of the hollow tubular support member, an upper cap 700 that attaches to the adapter, and a wire 800 fitting within the adapter notches and held into place by the upper cap.

FIG. 2 illustrates a cross sectional view of one embodiment of the invention. The hollow tubular support member 200 includes an outer surface, an inner surface, an upper end, and a lower end. The hollow tubular support member may be made of plastic or any other appropriate material capable of achieving the desired form and performing the desired function. In the preferred embodiment, the hollow tubular support member is composed of acrylonitrile butadiene styrene (hereinafter ABS). The hollow tubular support member may have a length of between 12 inches and 80 inches, and an inner diameter of between 0.25 inches and 3.00 inches. The lower cap 300 may be made of plastic or any other appropriate material capable of achieving the desired form and performing the desired function. In the preferred embodiment, the lower cap is a slip cap composed of ABS. The lower cap is attached to the lower end of the hollow tubular support member. In the preferred embodiment, the lower cap is slipped onto and attached or fused to the lower end of the hollow tubular support member by the use of an adhesive or any other appropriate means. In an alternate embodiment, not shown, the lower cap may be attached to the hollow tubular support member by interlocking threads located on the inner surface of the lower cap with corresponding threads located on the lower end of the hollow tubular support member. The weight 400 may be formed of any appropriate material capable of achieving the desired form and performing the desired function, such as sand, small rocks, shot, metal rods, etc. In the preferred embodiment, the weight is a cylindrical shaped rod that is slid into the inner cavity of the hollow tubular support member. When held or maintained in an upright position, the weight slides to the lower end of the hollow tubular support member. The float 500 is tubular in shape and includes an outer surface, an inner surface, an upper end, and a lower end. The float is formed to fit snugly around the outer surface of the hollow tubular support member, detachably attachable thereto, and movable vertically thereon. The float may be formed of large cell foam, expanded polyethylene, extruded polystyrene, or any other appropriate material capable of achieving the desired form and performing the desired function with an inner diameter that allows the float to be slid onto and maintained on the outer surface of the
hollow tubular support member. In the preferred embodiment, the float is a common pool noodle/water noodle. The adapter 600 is a common slip and threaded adapter and may be made of plastic or any other appropriate material capable of achieving the desired form and performing the desired function. In the preferred embodiment, the adapter is composed of ABS. The adapter is attached to the upper end of the hollow tubular support member. In the preferred embodiment, the adapter is slipped onto and attached or fused to the upper end of the hollow tubular support member by the use of an adhesive or any other appropriate means. In an alternate embodiment, not shown, the adapter may be attached to the hollow tubular support member by interlocking threads located on the inner surface of the adapter with corresponding threads located on the upper end of the hollow tubular support member. The adapter 600 contains notches 601 that bisect the threaded portion of the adapter. The notches 601 are of sufficient size to allow fence wire to be maintained therein. The upper cap 700 may be made of plastic or any other appropriate material capable of achieving the desired form and performing the desired function. In the preferred embodiment, the upper cap is a threaded cap composed of ABS. The upper cap is detachably attachable to the adapter by interlocking threads located on the inner surface of the upper cap with corresponding threads located on the outside of the adapter. In an alternate embodiment, not shown, the lower cap may be attached directly to the hollow tubular support member by interlocking threads located on the inner surface of the lower cap with corresponding threads located on the upper end of the hollow tubular support member; in this alternate embodiment, the notches would be located in the threaded portion of the hollow tubular support member itself, and no adapter would be used. The wire 800 fits within the notches in the notched adapter (or hollow tubular support member) and is held into place by the upper cap.

While the invention has been described with a certain degree of particularity, it is to be noted that modifications may be made in the details of the invention’s construction and the arrangement of its components without departing from the spirit and scope of this disclosure. It is understood that the invention is not limited to the embodiments set forth herein for the purposes of exemplification.

The invention claimed is:

1. A floating fence post comprising:
 a hollow tubular support member having an upper end, a lower end, an inner surface, and an outer surface;
 a means for closing said lower end of said hollow tubular member;
 a means for maintaining a wire on or about said upper end of said hollow tubular support member;
 a means for weighting said lower end of said hollow tubular member and maintaining it below the surface of a body of water;
 a means for floating said upper end of said hollow tubular support member and maintaining it above the surface of a body of water.

2. A floating fence post comprising:
 a hollow tubular support member having an upper end, a lower end, an inner surface, and an outer surface;
 a slip cap with a smooth inner surface that slips onto and encloses said outer surface of said lower end of said hollow tubular member;
 a slip and threaded adapter with a smooth inner surface and a threaded outer portion that slips onto and encloses said outer surface of said upper end of said hollow tubular support member;
 a notch that bisects said threaded outer portion of said slip and threaded adapter, said notch being of sufficient size to allow fence wire to be maintained therein;
 a threaded cap with threads located on the inner surface thereof that is detachably attachable to said slip and threaded adapter by interlocking said threads located on said inner surface of said threaded cap with said threaded outer portion of said slip and threaded adapter;
 a cylindrically shaped rod that may be selectively slid into and slid out of said hollow tubular support member;

3. A floating fence post comprising:
 a hollow tubular support member having an upper end, a lower end, an inner surface, and an outer surface;
 a threaded portion located on said outer surface of said upper end of said hollow tubular support member;
 a slip cap with a smooth inner surface that slips onto and encloses said outer surface of said lower end of said hollow tubular member;
 a notch that bisects said threaded portion of said outer surface of said upper end of said hollow tubular support member, said notch being of sufficient size to allow fence wire to be maintained therein;
 a threaded cap with threads located on the inner surface thereof that is detachably attachable to said hollow tubular support member by interlocking said threads located on said inner surface of said threaded cap with said threaded outer portion of said hollow tubular support member;
 a cylindrically shaped rod that may be selectively slid into and slid out of said hollow tubular support member;

 hollow tubular float having an upper end, a lower end, an inner surface, and an outer surface with an inner diameter that allows said float to be slid onto and maintained on said outer surface of said hollow tubular support member.

* * * * *