A system and method to compile different types of data from different locations into one reliable assemblage is provided. The assemblage may include an index of information provided to a user. The assemblage may be in the form of a three dimensional (3D) representation of an object, where the 3D representation includes an index and links to more detailed information regarding the object. The 3D representation may be of any object, for example, a body part in the context of medical imaging, or a building in the context of architectural and engineering design. The assemblage may be comprised of 3D and 2D artifacts. The 2D artifact may include 2D vector and raster embellishment in a variety of forms, such as vector graphics, raster graphics from many sources included hand drawn graphics that are scanned, specification documents, texts, cost data from cost databases, data in tabular form, notes, text, dimensions, link icons (links to other media). The 3D artifact may include vector graphics (2D and 3D) including all data obtained through data conversion methods, and "Point clouds" (voxels).
FIG. 2A

FIG. 2B
FIG. 5
MULTIDIMENSIONAL ARTIFACT ASSEMBLAGE FOR INFRASTRUCTURE AND OTHER ASSETS WITH INTERFACE NODE MEDIATORS

BACKGROUND

Related Art

[0001] Computer Aided Design software is well-known, and used by architects, engineers, designers, planners, construction firms, and owner operators and the like to create and use precision models and technical illustrations. The software is used to create design simulations that are two-dimensional (2-D) drawings, and three-dimensional (3-D) models and related tabular and business property data. Applications such as, e.g., MicroStation® products, including design applications spanning many infrastructure disciplines, and general purpose review applications such as (Navigator®) and construction applications such as ConstructSIM® which are developed by Bentley Systems, Inc., Exton, Pa. U.S.A., and AutoCAD® products, which are developed by Autodesk, Inc., San Rafael, Calif., U.S.A. are typical of such CAD software which may be used in the Architecture, Engineering, Construction, and Operations (AECO) marketplace.

[0002] Three-dimensional (3-D) assets are commonly designed, analyzed, and built, using a process in which design teams invest large amounts of time, money, and effort, creating insightful 3D digital models of those assets using design software. Design teams gain a tremendous amount of insight into projects while constructing and editing these 3D models. These 3D models are used commonly for analytical and visualization purposes, and increasingly, models are used to automate the production of conventional construction drawings.

[0003] Conventional construction drawings are 2D, flat abstractions of things. Conventional construction documentation drawings assist design professionals in explicitly defining limits of liability of the design professionals who draw them. Project designers mitigate liability prior to selecting the locations within a project at which they intend to design, draw (automated by 3D models or not), and be held accountable.

[0004] The locations that the designers select are the locations that they draw. The selection of these locations is designated with graphical callout symbols (“callouts”). Callouts are an a priori statement of intent. These callouts are placed on various drawings, typically starting with plan drawings.

[0005] Assuming that designers abide by their professional standards of care by selecting enough locations to draw, and that these locations are sufficiently representative of the diversity of designed construction details of a project, design professionals are held accountable for the drawings that they draw, not for the ones they don’t draw and that therefore do not appear on construction drawings.

[0006] Conventional construction drawings, whether their production is automated from 3D models or not, have remained essentially innovation-less for hundreds of years. Conventional drawings leave much of the insight gained during the creation of the 3D digital models behind.

[0007] Design teams that invest energy, time, effort, and money into the creation of 3D digital models desire to transfer more or all of the insight they gain while building those 3D models, to the design collaborators on their team while they work, and into the next phase of work – delivery for construction, and beyond, into asset operation, maintenance, management.

[0008] Design teams desire to provide as much useful information from their design processes as possible. The insight developed during the design of 3D models should be delivered downstream to users, like contractors, subcontractors, owners, and operators. Therefore, delivery of the 3D models, on which considerable effort has been expended, and which contain essential project insight, is desired.

[0009] However, certain factors prevent the delivery of 3D models and make such delivery, practically speaking, unachievable. A 3D model represents the full scope of a project, a whole thing, rather than a limited pre-selected set of locations within a project that are drawn. This whole 3D model may be incomplete. As much as any design team may wish to try, the 3D model may never be 100% complete throughout every cubic millimeter of the project, and far from it, in fact. 3D models are a mixture of locations that are complete and locations that may be, and may remain, incomplete. 3D models, delivered as they are today in the industry, “naked” so to speak, are completely ambiguous. No one can distinguish between the locations in 3D models that are complete and the locations that are not complete. Models are frequently discarded because of that ambiguity. No one can tell which locations in the model are complete and which locations are not complete, nor can anyone tell who claims responsibility for any particular location in a model. 3D models are an unreliable medium with which to communicate design and construction intent, as 3D models omit any device that provides clarity with regard to location-specific authorship and location-specific completeness, precisely those things that design professionals require in order to be clear and in order to mitigate risk in their professional practice. It is this deficiency of 3D models that is addressed by this invention and solved.

SUMMARY

[0010] In an exemplary embodiment a computer usable information storage medium storing computer readable program code means for causing a computer to perform the steps of: creating a 3D artifact representing an object; creating a 2D artifact defining design details of a location in the object; creating an assemblage of the 2D and 3D artifacts where the 2D artifact is linked to the location in the 3D artifact; providing an interface node in the 3D artifact at the location indicating a 2D artifact is provided; dynamically displaying the 2D artifact at the location in the 3D artifact when the interface node is selected.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] In the accompanying drawings:

[0012] FIG. 1 depicts an exemplary embodiment of 3D model including interface nodes;

[0013] FIGS. 2A and 2B depict an exemplary embodiment of interface nodes;

[0014] FIG. 3 depicts an exemplary embodiment of a clipped and annotated 3D model;

[0015] FIG. 4 depicts an exemplary embodiment of another clipped and annotated 3D model; and
FIG. 5 depicts an exemplary embodiment of a computer system.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE PRESENT INVENTION

Example embodiments of the invention are discussed below in the context of CAD software. While specific example embodiments are discussed, it should be understood that this is done for illustration purposes only. The present invention may be used in any environment where disparate data is compiled and delivered.

Embodiments of the invention provide a system and method to compile different types of data from different locations into one reliable assemblage. The assemblage may include an index of information provided to a user. The assemblage may be in the form of a three-dimensional (3D) representation of an object, where the 3D representation includes an index and links to more detailed information regarding the object. The 3D representation may be of any object, for example, a body part in the context of medical imaging, or a building in the context of architectural and engineering design.

The assemblage may be comprised of 3D and 2D artifacts. The 2D artifact may include 2D vector and raster embellishment in a variety of forms, such as vector graphics, raster graphics from many sources included hand drawn graphics that are scanned, specification documents, texts, cost data from cost databases, data in tabular form, notes, text, dimensions, link icons (links to other media). The 3D artifact may include vector graphics (2D and 3D) including all data obtained through data conversion methods, and "Point clouds" (voxels).

The combined 2D and 3D artifacts together make a whole greater than the sum of its parts. By bringing the 3D and 2D artifacts together in mutual context both the 3D and the 2D are richer, clearer, and easier understood than when they are separate.

When viewed, the assemblage may include interface nodes indicating those areas about which additional information is provided. The interface nodes may be graphical indicators displayed in the 3D representation. Selecting an interface node may result in the 3D representation being annotated and resymbolized to display the additional information. The amount of available additional information that is displayed may be controlled based on user input, as is described in more detail below. The annotation and resymbolization may be performed according to rules, based on the particular type of additional information that is being displayed. For example, the scale or portions of the 3D representation may be temporarily altered to display the additional information in situ of the 3D representation. In an exemplary embodiment, the additional information may include a 2D artifact detailing the area of interest.

Further embodiments of the invention may provide a solution to the general issue of designer limits of liability in the context of construction deliverables. In this context, the 3D representation of the design requires a statement of intent to clarify design and constructability and to limit liability with the purposeful selection of locations in a design to draw and be held responsible for. This is the function of callouts on conventional drawings, to indicate which locations authors intend to detail and annotate and be responsible for. Embodiments of the invention may include those callouts as interface nodes within a 3D representation of the design and make the 3D representation a reliable construction deliverable by mediating the content of all deliverable construction communication and presenting it in context on demand from the interface nodes.

In the context of construction deliverables, the 3D representation may be a 3D model of a building, plant, roadway, etc. The 3D model may be viewed in a viewer. The 3D model may have interface nodes indicating detail (section, profile, detail, etc.) of the design. In the viewer, clicking on one of the interface nodes may clip the model at the interface node location and toggle on the display of any relevant additional information, including 2D and 3D artifacts like annotations. In another embodiment, an illumination meter, described below, may be provided to reveal the additional information. The illumination meter may be manipulated by a user to control the additional information displayed. The additional information may include 2D artifacts such as 2D graphic references for that location so that now a 2D drawing can be viewed in the context of the 3D model, and viewed from any viewing angle, including the viewing angle normal to the clipping location of the interface node.

Now both the 2D drawing and the 3D model may be easier to understand because they are viewed in mutual context. The capability for a user to view the combined data from any viewing angle, including the viewing angle normal to the clip, may be provided. When viewed at a viewing angle normal to the clip, the 3D model may appear as a conventional 2D drawing. At any other viewing angle, additional insight from the visual richness of the 3D context gives faster, deeper insight into the meaning of the drawing graphics.

In addition to providing richer, faster insight into project information, the interface nodes in the model disambiguate the 3D model. Responsibility may be claimed at the locations of the interface nodes, elsewhere is contextual background. So for the first time, those parts of the 3D model that someone has claimed responsibility for, and those parts which are uncertified and possibly incomplete, may be determined.

Turning to an exemplary embodiment of the invention, FIG. 1 illustrates an example of an assemblage including interface nodes 10. The assemblage in the disclosed embodiment includes a 3D model created using CAD software. However, the following description is equally applicable to other assemblages and interface nodes. The assemblage may also include photographs, video, medical imaging, combinations and among the same and the like. The 3D model shown in FIG. 1 includes a plurality of interface nodes 10, in this case callouts, that are visible when the 3D model is viewed.

When an interface node is placed in the 3D model, a 2D or 3D artifact may be created and linked automatically to the 3D model at the location of the interface node. The type of 2D or 3D artifact may be selected by a user. Exemplary artifacts may include in the context of construction and design a drawing or a sheet model. Of course, other types of artifacts may be provided in different use environments. The choice of drawing or sheet model for attachment at interface node placement may extend also to the choice of either creating a new sheet/drawing model, or selecting an existing sheet or
drawing. As the 3D model is being created, the option of placing an interface node at a desired location in the 3D model may be provided. A cursor may be manipulated by the user to the desired location of the interface node in the 3D model. The user may be presented with the option to place the interface node via a menu revealed by a mouse click or other action. One of the options presented in the menu may be to create a 2D or 3D artifact, for example, a new sheet or drawing, for the interface node. The location of the desired artifact is noted and the appropriate window to create the new sheet or drawing may be presented to the user. A link between the interface node drawing or sheet and the appropriate location in the 3D model is created.

[0028] An option to utilize an already existing sheet or model for the 2D artifact may also be provided. In this scenario, a listing of the existing sheets or drawings may be presented to the user. The desired sheet may be dragged onto the interface node. Once that is done, a link to the sheet is automatically created. The sheet link is stored and the artifact is placed at the desired location in the 3D model at the interface node. In an alternative embodiment, the cursor may be placed at the desired location in the 3D model. A menu presenting the option of selecting a sheet may be shown. A desired sheet may be displayed and selected via the menu. The selected sheet is then linked to the 3D model via an interface node at the appropriate location.

[0029] In addition to allowing the placement of an interface node into a 3D model by the manual intervention of a user with the subsequent automated creation and linking of drawing and sheet artifacts, in an exemplary embodiment, interface nodes may be collected and presented in the 3D model automatically. Interface nodes may be generated at their correct locations in the 3D artifact through the recognition of their prior placement on drawings and sheets elsewhere, in other drawing and sheet files that are external to the 3D artifact. Where, through a variety of means software may recognize the relationships among different data and different files and different formats, and through one or more means of federation among these data, the creation and placement of an interface node anywhere within that collection of federated information may be automatically recognized, collected, presented, and made available for use within the 3D artifact, including those uses of interface nodes described elsewhere in this document such as: clipping the artifact at the location of the interface node, attaching and displaying additional artifacts (such as 2D and 3D drawing and sheet annotations) within the context of the 3D artifact, resymbolization of the artifacts as required, as well as other special functions such as required display scale alterations, and the general interface concepts associated with the interface nodes.

[0030] One of various kinds of interface nodes is a section view interface node. The symbol for the section view may be different or the same as that for other interface nodes. In a similar manner, a plan interface node may be created and placed. The plan interface node may also include its own distinct symbol indicating that it is a plan view. Also, the interface node may store multiple views. In other contexts, many different types of data may be referenced to the 3D model.

[0031] A hierarchy of interface nodes may also be provided. For example, primary interface nodes may be top-level interface nodes placed in the 3D model that indicate major views like building sections, plans, elevations. There may also be secondary interface nodes. Secondary interface nodes may often be detail interface nodes. The ability to turn interface nodes on and off may also be provided. This may be done on a global basis. A toggle/button may be provided in a user interface for this purpose.

[0032] Secondary interface nodes may become visible when the primary interface node view is invoked if the primary interface node contains secondary interface nodes. When the selection for the display of interface nodes is toggled on to display all interface nodes—this may display only primary interface nodes. Secondary interface nodes may be seen only when the primary interface node that contains the secondary interface node is invoked.

[0033] FIG. 2A illustrates an example of an interface node that is selected in a 3D model. The interface node may be selected by positioning a cursor at the interface node and a mouse click or other action to select the interface node. Visual feedback that an interface node has been selected may be provided. The interface node may be highlighted indicating that the interface node is selected. In an exemplary embodiment of the invention, as the cursor approached the interface node, an interactive dialog, such as an illumination meter, may appear. An example is shown in FIG. 2B. Additionally, in an exemplary embodiment of the invention, an indication of the boundaries of the interface node reference plane attached at that location may also be provided. This indication may be provided via a graphical indication, such as a semitransparent plane provided in the 3D model.

[0034] Once the interface node is selected, a menu 20 of available actions may be presented to the user. One of the menu options may be to clip the model at the interface node location. Another option may be to show annotation (show 2D or 3D artifacts). For example, the illumination meter 40 may be labeled “none” at the bottom, “clip” in the middle and “annotate” at the top. A user may manipulate the illumination meter to select the desired option. This moves the state of the model from unclipped, to clipped (at the location of the interface node) to clipped and annotated (embellishing references present in-situ) at the top. The interface and the process are reversible by dragging the illumination bar back to the bottom.

[0035] FIG. 3 illustrates an example of the resultant clipped and annotated 3D model. The information from the 2D artifact is displayed directly in the 3D model. However, the 3D model is not simply sliced at the location of the interface node and the additional information superimposed on the 3D model. Instead, in embodiments of the invention, the 3D model is annotated and resymbolized to include the additional information. Changes may be made to both the 2D and 3D artifacts. The changes may include display clipping, graphic resymbolization, spatial scale distortion, etc. For example, the 3D model may be resymbolized to include hatching, patterning, color, line weight, line style and the like.

[0036] Additionally, the viewing angle may be changed so that a user can view the assemblage from any angle. A straight on view, that is, a view that is normal to the angle of clipping, of the clipped and annotated model has the essential appearance of a conventional 2D sheet drawing view, for example as is shown in FIG. 4A. FIG. 4B illustrates a zoomed in view of FIG. 4A.

[0037] A rotation tool may be provided to change the viewing angle in order to gain more insight from the assemblage.
A shortcut may be provided to take the user to the normal viewing angle for the drawing.

[0038] In addition to viewing the drawing/sheet model (2D or 3D artifacts) in situ in the context of the clipped 3D design model, the interface nodes may also have a menu item to open the relevant drawing/sheet model, the ones associated with the interface node. Cross referencing in both directions, sheet/drawing into 3D model, and 3D model into sheet/drawing, maintains correct positioning and alignment.

[0039] In a further embodiment, the authorship or ownership of an interface node may also be indicated. Users may apply their registration seal and/or signature to an interface node to claim responsibility for the design information provided at the location of the interface node. The use of different “master models”, one for each discipline, may be provided for this purpose. On a project, structural users, and mechanical users, and architectural users (for example) each may control their own master files and their own interface nodes. These files may be referenced together as needed. This kind of domain separation may also be preserved even when all references are published.

[0040] Examples of Ownership properties may include:

[0041] Source application (Architecture, Structural, Mechanical . . .)

[0042] Firm name (business name) of authoring consultant firm

[0043] Design Professional’s name

[0044] Interface node display per ownership criteria

[0045] The display of interface nodes may be controlled in such a way that a user can display selection sets of interface nodes according to interface node ownership properties. Since interface nodes owned by more than one source may often be displayed at once, a graphical indication of ownership may be shown. In an exemplary embodiment, a different interface node style may be defined for each owner—for example, mechanical interface nodes might be green in color and structural interface nodes may be red.

[0046] FIG. 5 depicts an exemplary block diagram of a computer system 800 that may be configured to execute the functions described herein. Computer system 800 may include one or more components that may include a bus 802, a processor 804, a memory 806, a read only memory (ROM) 808, a storage device 810, an input device 812, an output device 814, and a communication interface 816.

[0047] Bus 802 may include one or more interconnects that permit communication among the components of computer system 800, such as processor 804, memory 806, ROM 808, storage device 810, input device 812, output device 814, and communication interface 816.

[0048] Processor 804 may include any type of processor, microprocessor, or processing logic that may interpret and execute instructions (e.g., a field programmable gate array (FPGA)). Processor 804 may comprise a single device (e.g., a single-core) and/or a group of devices (e.g., multi-core). The processor 804 may include logic configured to execute computer-executable instructions configured to implement one or more embodiments. The instructions may reside in the memory 806 or ROM 808.

[0049] Memory 806 may be a computer-readable medium that may be configured to store instructions configured to implement one or more embodiments. The memory 806 may be a primary storage accessible to the processor 804 and may comprise a random-access memory (RAM) that may include RAM devices, such as Dynamic RAM (DRAM) devices, flash memory devices, Static RAM (SRAM) devices, etc.

[0050] ROM 808 may include a non-volatile storage that may store information and computer-executable instructions for processor 804. The computer-executable instructions may include instructions executed by processor 804.

[0051] Storage device 810 may be configured to store information and instructions for processor 804. Examples of storage device 810 may include a magnetic disk, optical disk, flash drive, etc. The information and computer-executable instructions and information may be stored on a medium contained in the storage device 810. Examples of media may include a magnetic disk, optical disk, flash memory, etc. Storage device 810 may include a single storage device or multiple storage devices. Moreover, storage device 810 may attach directly to computer system 800 and/or may be remote with respect to computer system 800 and connected thereto via a network and/or another type of connection, such as a dedicated link or channel.

[0052] Input device 812 may include any mechanism or combination of mechanisms that may permit information to be input into computer system 800 from, e.g., a user. Input device 812 may include logic configured to receive information for computer system 800 from, e.g., a user. Examples of input device 812 may include a keyboard, mouse, touch sensitive display device, microphone, pen-based pointing device, and/or biometric input device, etc.

[0053] Output device 814 may include any mechanism or combination of mechanisms that may output information from computer system 800. Output device 814 may include logic configured to output information from computer system 800. Embodiments of output device 814 may include displays, printers, speakers, cathode ray tubes (CRTs), plasma displays, light-emitting diode (LED) displays, liquid crystal displays (LCDs), printers, vacuum fluorescent displays (VFDs), surface-conduction electron-emitter displays (SEDs), field emission displays (FEDs), etc.

[0054] Communication interface 816 may include logic configured to interface computer system 800 with network 1406 and enable computer system 800 to exchange information with other entities connected to network 1406, such as, for example, service provider 1410, target environment 1404 and cluster 1408. Communication interface 816 may include any transceiver-like mechanism that enables computer system 800 to communicate with other devices and/or systems, such as a client, a server, a license manager, a vendor, etc. The communications may occur over a communication medium, such as a data network. Communication interface 816 may include one or more interfaces that are connected to the communication medium. The communication medium may be wired or wireless. Communication interface 816 may be implemented as a built-in network adapter, network interface card (NIC), Personal Computer Memory Card International Association (PCMCIA) network card, card bus network adapter, wireless network adapter, Universal Serial Bus (USB) network adapter, modem or any other device suitable for interfacing computer system 800 to any type of network.
It should be noted that embodiments may be implemented using some combination of hardware and/or software. It should be further noted that a computer-readable medium that comprises computer-executable instructions for execution in a processor may be configured to store various embodiments. The computer-readable medium may include volatile memories, non-volatile memories, flash memories, removable discs, non-removable discs and so on. In addition, it should be noted that various electromagnetic signals such as wireless signals, electrical signals carried over a wire, optical signals carried over optical fiber and the like may be encoded to carry computer-executable instructions and/or computer data that embodies the invention on e.g., a communication network.

Embodiments may be embodied in many different ways as a software component. For example, it may be a stand-alone software package, or it may be a software package incorporated as a “tool” in a larger software product, such as, for example, a scientific modeling product. It may be downloadable from a network, for example, a website, as a stand-alone product or as an add-in package for installation in an existing software application. It may also be available as a client-server software application, or as a web-enabled software application.

While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should instead be defined only in accordance with the following claims and their equivalents.

What is claimed is:

1. A computer useable information storage medium storing computer readable program code means for causing a computer to perform the steps of:

 creating a 3D artifact representing an object;

 creating a 2D artifact defining design details of a location in the object;

 creating an assemblage of the 2D and 3D artifacts where the 2D artifact is linked to the location in the 3D artifact;

 providing an interface node in the 3D artifact at the location indicating the 2D artifact is provided;

 dynamically displaying the 2D artifact at the location in the 3D artifact when the interface node is selected.

2. The computer useable information storage medium of claim 1, further comprising modifying the 2D or 3D artifact when it is displayed.

3. The computer useable information storage medium of claim 2, wherein the modification includes at least one of display clipping, graphic resymbolization, or spatial scale distortion.

4. The computer useable information storage medium of claim 1, further comprising receiving user input modifying the 2D or 3D artifacts in the assemblage.

5. The computer useable information storage medium of claim 1, further comprising:

 providing a plurality of interface nodes at a respective plurality of locations in the 3D model; and

 displaying a subset of the plurality of the interface nodes.

6. The computer useable information storage medium of claim 5, further comprising filtering the plurality of interface nodes to determine the subset.

7. The computer useable information storage medium of claim 6, wherein the filtering comprises:

 arranging the plurality of interface nodes in a hierarchy;

 determining those interface nodes at the first level of the hierarchy and displaying only those interface nodes at the first level of the hierarchy.

8. The computer useable information storage medium of claim 7, further comprising displaying the interface nodes at a second, lower level of the hierarchy only when the corresponding higher level indicator is selected.

9. The computer useable information storage medium of claim 1, wherein the 2D artifact is a drawing sheet or a model.

10. The computer useable information storage medium of claim 1, further comprising receiving user input selecting the modifications.

11. The computer useable information storage medium of claim 1, further comprising receiving user input signing the interface node.

12. The computer useable information storage medium of claim 1, further comprising receiving user input selecting the modifications.

13. The computer useable information storage medium of claim 1, further comprising:

 detecting when a cursor approaches the location; and

 then displaying an illumination meter.

* * * * *