发明名称 共轭的精神抑制药及其用途

摘要
本发明公开了精神抑制药与有机酸的新的化学共轭物，其在治疗精神和/或增殖性紊乱和疾病中的用途及作为化学敏化剂的用途，以及合成它们的方法。选择有机酸，以减少由精神抑制药引起的副作用和/或产生抗增殖活性。
1. 一种含有与第二化学部分共价连接的第一化学部分的化学共轭物，其中所述第一化学部分为精神抑制药残基，第二化学部分为有机酸残基，所述的有机酸残基是为减少当精神抑制药本身给药而引起的副作用和/或为了产生抗增殖活性而选择的有机酸残基。

2. 根据权利要求1中所述的化学共轭物，其中所述的第二化学部分选自GABA促进剂残基和抗增殖药残基。

3. 根据权利要求1中所述的化学共轭物，其中所述的第二化学部分通过酯键与所述的第一化学部分共价连接，所述的酯键选自酰酸酯键、酰胺键和硫酯键。

4. 根据权利要求1中所述的化学共轭物，其中所述的精神抑制药残基具有抗增殖活性。

5. 根据权利要求1中所述的化学共轭物，其中所述的精神抑制药残基具有化学教化活性。

6. 根据权利要求4中所述的化学共轭物，其中所述的精神抑制药残基选自咪唑酸残基和咪唑酸衍生物残基。

7. 根据权利要求1中所述的化学共轭物，其中所述的精神抑制药残基选自可降解精神抑制药残基和非典型精神抑制药残基。

8. 根据权利要求1中所述的化学共轭物，其中所述的精神抑制药残基选自氯丙嗪残基、奋乃静残基、氟奋乃静残基、氟喹吨残基、奋乃静醋酯残基、氟喹啶醇残基、苯吲哚酮残基、溴毗利多残基、氟哌利多残基、溴哌隆残基、匹莫齐特残基、哌西他嗪残基、阿米舒必利（amisulpride）残基、舒必利残基、氯嗅平残基、奎拉西酮残基、瑞莫必利残基、舒托必利残基、阿立必利残基、奈莫必利残基、氯嗅平残基、奥氯平残基、奎拉西酮残基、舍吲哚残基、喹硫平残基、氟西汀残基、氟伏沙明残基、地昔帕明残基、帕罗西汀残基、舍曲林残基、丙戊酸残基和苯妥英残基。

9. 根据权利要求1中所述的化学共轭物，其中所述的GABA促进剂残基选自(L)-巴氯芬残基、Y-氨基丁酸(GABA)残基、Y-羟基丁酸残基、Y-氨基乙酸残基、β-(4-氯苯)-Y-氨基丁酸残基、4-哌啶羧酸残基、哌啶-4-磺酸残基、3-氨基丙基亚磷酸残基、3-氨基丙基磷酸残基、3-(氨基丙基)甲基磷酸残基和3-(2-咪唑基)-4-氨基丁
酸残基。

10. 根据权利要求 1 中所述的化学共轭物，其中所述的抗增殖剂残基选自丁酸残基和 4-苯基丁酸残基。

11. 根据权利要求 1 中所述的化学共轭物，其中所述的有机酸残基具有通式:

\[-R\text{"C}(=\text{O})- \]

其中，

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，

其中 R₁ 为具有通式 Z-C(=O)O-CHR₂-R₃ 的残基，

其中，

Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；

R₂ 选自氢和含 1-10 个碳原子的烷基；和

R₃ 选自氢、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

12. 根据权利要求 11 中所述的化学共轭物，其中所述 R 为含 3-5 个碳原子的取代或未取代烷基。

13. 根据权利要求 1 中所述的化学共轭物，其中所述有机酸残基选自丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、视黄酸残基、软脂酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

14. 一种药物组合物，含有作为活性成分的权利要求 1 中所述的化学共轭物和可药用载体。

15. 根据权利要求 14 中所述的药物组合物，其包装在包装材料中，并且可通过在所述包装材料上或其中的印刷加以区分，用于治疗精神紊乱或疾病。

16. 根据权利要求 15 中所述的药物组合物，其中所述的精神紊乱或疾病选自精神分裂症、妄想症、儿童精神病、亨廷顿氏舞蹈病和吉姆斯·德拉图雷特氏综合征。
17. 根据权利要求 14 中所述的药物组合物，其包装在包材材料中，并且可通过在所述包装材料上或其中的印纹加入区分，用于治疗增强性紊乱或疾病。

18. 根据权利要求 17 中所述的药物组合物，其中所述的增强性紊乱或疾病选自脑肿瘤、脑转移瘤和外周肿瘤。

19. 根据权利要求 17 中所述的药物组合物，其中所述的增强性疾病为癌症。

20. 根据权利要求 19 中所述的药物组合物，其中所述的增强性疾病为多耐药性癌症。

21. 根据权利要求 14 中所述的药物组合物，其包装在包材材料中，并且可通过包装材料上或其中的印纹加以区分，在与化疗药联合和/或在化学敏感作用下有利益的医疗条件下用于化学敏感作用。

22. 根据权利要求 14 中所述的药物组合物，其中所述的第二化学部分选自 GABA 促进剂残基和抗增殖药残基。

23. 根据权利要求 14 中所述的药物组合物，其中所述的第二化学部分通过肽键与所述的第一化学部分共价连接，所述的肽键选自羧酸酯键、酰胺键和硫酯键。

24. 根据权利要求 14 中所述的药物组合物，其中所述的精神抑制药残基具有抗增殖活性。

25. 根据权利要求 14 中所述的药物组合物，其中所述的精神抑制药残基具有化学敏感活性。

26. 根据权利要求 24 中所述的药物组合物，其中所述的精神抑制药残基选自唑嗪残基和唑嗪衍生物残基。

27. 根据权利要求 14 中所述的药物组合物，其中所述的精神抑制药残基选自与典型精神抑制药残基和非典型精神抑制药残基。

28. 根据权利要求 14 中所述的药物组合物，其中所述的精神抑制药残基选自氯丙嗪残基、奋乃静残基、氯苯嗪残基、氯氯米嗪残基、氯丙嗪残基、氯氯米嗪残基、苯嗪嗪酮残基、溴嗪利多残基、氯哌利多残基、螺哌隆残基、匹莫齐特残基、哌西他嗪残基、阿米舒必利（amilsulpride）残基、舒必利残基、氯噻平残基、齐拉西酮残基、瑞莫必利残基、舒托必利残基、阿立必利残基、奈莫必利残基、氯氮平残基、奥氮平残基、齐拉西酮残基、舍吲哚残基、噻硫平残基、氯
西汀残基、氨伏沙明残基、地昔帕明残基、帕罗西汀残基、含曲林残基、丙戊酸残基和苯妥英残基。

29. 根据权利要求 22 中所述的药物组合物，其中所述的 GABA 促进剂残基选自 (±) 巴氯芬残基、γ - 氨基丁酸 (GABA) 残基、γ - 烷基丁酸残基、氨基乙酸残基、β - (4-氟苯) - γ - 氨基丁酸残基、4- 吡啶羧酸残基、 咖啶-4-磺酸残基、3-氨基丙基亚磷酸残基、3-氯基丙基磷酸残基、3-(氨基丙基) 甲基磷酸残基和 3-(2-咪唑基)-4-乙基丁酸残基。

30. 根据权利要求 22 中所述的药物组合物，其中所述的抗增殖剂残基选自丁酸残基和 4-苯基丁酸残基。

31. 根据权利要求 14 中所述的药物组合物，其中所述的有机酸残基具有通式：

\[-R-C(=0)-\]

其中，

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，

其中 R₁ 为具有通式 Z-C(=0)O-CHR₂-R₃ 的残基，

其中，

Z 选自单键，含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；

R₂ 选自氢和含 1-10 个碳原子的烷基；和

R₃ 选自氢，含 1-20 个碳原子的取代或未取代烃类残基，和含 1-20 个碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

32. 根据权利要求 31 中所述的药物组合物，其中所述 R 为含 3-5 个碳原子的取代或未取代烷基。

33. 根据权利要求 14 中所述的药物组合物，其中所述有机酸残基选自丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、视黄酸残基、舒林酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

34. 一种治疗患者精神紊乱或疾病的方法，该方法包括给予患者
者治疗有效量的权利要求1中的化学抗体物。

35. 根据权利要求34中所述的方法，其中所述的精神紊乱或疾病选自精神分裂症、妄想症、儿童精神病、亨延顿氏舞蹈病和吉姆斯-德拉图雷特氏综合征。

36. 根据权利要求34中所述的方法，其中所述的化学抗体物为腹部内给药。

37. 根据权利要求34中所述的方法，其中所述的化学抗体物为口服给药。

38. 根据权利要求34中所述的方法，其中所述的第二化学部分选自GABA促进剂残基和抗增殖药残基。

39. 根据权利要求34中所述的方法，其中所述的第二化学部分通过酯键与所述的第一化学部分共价连接，所述的酯键选自酰胺酯键、酰胺键和硫酯键。

40. 根据权利要求34中所述的方法，其中所述的精神抑制药残基具有抗增殖活性。

41. 根据权利要求34中所述的方法，其中所述的精神抑制药残基具有化学敏化活性。

42. 根据权利要求40中所述的方法，其中所述的精神抑制药残基选自咪唑烷衍生物残基。

43. 根据权利要求34中所述的方法，其中所述的精神抑制药残基选自典型精神抑制药残基和非典型精神抑制药残基。

44. 根据权利要求34中所述的方法，其中所述的精神抑制药残基选自氯丙嗪残基、奋乃静残基、氟奋乃静残基、氯丙嗪类残基、奋乃静酯残基、氟哌啶醇类残基、氯丙嗪类残基、氟氯米那和氯丙嗪类残基、非典型精神抑制药残基。

45. 根据权利要求38中所述的方法，其中所述的GABA促进剂残基选自(±)巴氯芬残基、γ-氨基丁酸(GABA)残基、γ-羟基丁酸残基、丙戊酸残基和苯妥英残基。
基、氨基氧乙酸残基、β-(4-溴苯)、γ-氨基丁酸残基、4-哌啶羧酸残基、嘧啶-4-磺酸残基、3-氨基丙基亚氨基酸残基、3-氨基丙基甲基胺酸残基、3-(氨基丙基)甲基胺酸残基和3-(2-咪唑基)-4-氨基丁酸残基。

46. 根据权利要求38中所述的方法，其中所述的抗增殖剂选自丁酸残基和4-苯基丁酸残基。

47. 根据权利要求34中所述的方法，其中所述的有机酸残基具有通式:

\[-R-C(=O)- \]

其中，

R 选自含1-20个碳原子的取代或未取代烃类残基，含1-20个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及R₁，

其中R₁为具有通式-Z-C(=O)-O-CHR₂-R₃的残基。

其中，

Z 选自单键，含1-20个碳原子的取代或未取代烃类残基，含1-20个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；

R₂选自氢和含1-10个碳原子的烷基；和

R₃选自氢、含1-20个碳原子的取代或未取代烃类残基、和含1-20个碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

48. 根据权利要求47中所述的方法，其中所述R为含3-5个碳原子的取代或未取代烷基。

49. 根据权利要求34中所述的方法，其中所述有机酸残基选自丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、视黄酸残基、硫代丙酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

50. 一种治疗或预防患者中增殖性紊乱或疾病的方法，所述方法包括给予患者治疗有效期的化学共轭物。

51. 根据权利要求50中所述的方法，其中所述的增殖性紊乱或疾病选自脑肿瘤、脑转移瘤和外周肿瘤。

52. 根据权利要求50中所述的方法，其中所述的增殖性疾病为
53. 根据权利要求 52 中所述的方法，其中所述的增殖性疾病为多耐药性癌症。

54. 根据权利要求 50 中所述的方法，其中所述的第二化学部分选自 GABA 促进剂残基和抗增殖药残基。

55. 根据权利要求 50 中所述的方法，其中所述的第二化学部分通过酯键与所述的第一化学部分共价连接，所述的酯键选自羧酸酯键、酰胺键和硫酯键。

56. 根据权利要求 50 中所述的方法，其中所述的精神抑制药残基具有抗增殖活性。

57. 根据权利要求 50 中所述的方法，其中所述的精神抑制药残基具有化学敏化活性。

58. 根据权利要求 56 中所述的方法，其中所述的精神抑制药残基选自吩噻嗪残基和吩噻嗪衍生物残基。

59. 根据权利要求 50 中所述的方法，其中所述的精神抑制药残基选自典型精神抑制药残基和非典型精神抑制药残基。

60. 根据权利要求 50 中所述的方法，其中所述的精神抑制药残基选自氯丙嗪残基、奋乃静残基、氟奋乃静残基、氯噻吨残基、奋乃静醋酰残基、氟哌啶醇残基、苯哌啶酮残基、溴哌利多残基、氟哌利多残基、螺噪隆残基、匹莫齐特残基、哌西他嗪残基、阿米舒必利（amisulpride）残基、舒必利残基、氯噻平残基、氟拉西酮残基、瑞莫必利残基、舒托必利残基、阿立必利残基、奈莫必利残基、氟氯平残基、氟塞平残基、氟拉西酮残基、舍吲哚残基、噻硫平残基、氟西汀残基、氟伏沙明残基、地昔帕明残基、帕罗西汀残基、舍曲林残基、丙戊酸残基和苯妥英残基。

61. 根据权利要求 54 中所述的方法，其中所述的 GABA 促进剂残基选自（±）巴氯芬残基、γ-氨苄丁酸（GABA）残基、γ-羟基丁酸残基、氮酮氧乙酸残基、β-（4-羟苯）-γ-氨基丁酸残基、4-哌啶羧酸残基、哌啶-4-磺酸残基、3-氨基丙基亚胺酸残基、3-氨基丙基磷酸残基、3-（氨基丙基）甲基磷酸残基和 3-（2-咪唑基）-4-氨基丁酸残基。

62. 根据权利要求 54 中所述的方法，其中所述的抗增殖剂残基
选自丁酸残基和 4-苯基丁酸残基。

63. 根据权利要求 50 中所述的方法，其中所述的有机酸残基具有通式:

- R-C(=O)-

其中,

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，
其中 R₁ 为具有通式 Z-C(=O)O-CHR₂-R₃ 的残基。

其中，

Z 选自单键，含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；
R₂ 选自氢和含 1-10 个碳原子的烷基；和
R₃ 选自氢、含 1-20 个碳原子的取代或未取代烃类残基，和含 1-20 个碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

64. 根据权利要求 63 中所述的方法，其中所述 R 为含 3-5 个碳原子的取代或未取代烷基。

65. 根据权利要求 50 中所述的方法，其中所述有机酸残基选自丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、硫黄酸残基、舒林酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

66. 一种化学敏化的方法，该方法包括该方法包括给予需要其的患者化疗治疗有效量的至少一种化疗药以及化学敏化有效量的权利要求 1 中的化学共轭物。

67. 根据权利要求 66 中所述的方法，其中所述患者患有癌症。

68. 根据权利要求 67 中所述的方法，其中所述患者有多重耐药癌症。

69. 根据权利要求 66 中所述的方法，其中所述的第二化学部分选自 GABA 促进剂残基和抗增殖药残基。

70. 根据权利要求 66 中所述的方法，其中所述的第二化学部分通过酯键与所述的第一化学部分共价连接，所述的酯键选自酰酸酯。
键、酰胺键和硫酯键。

71. 根据权利要求66中所述的方法，其中所述的精神抑制药残基具有抗增殖活性。

72. 根据权利要求66中所述的方法，其中所述的精神抑制药残基具有化学敏化活性。

73. 根据权利要求71中所述的方法，其中所述的精神抑制药残基选自噻嗪类和苯噻嗪衍生物残基。

74. 根据权利要求66中所述的方法，其中所述的精神抑制药残基选自典型精神抑制药残基和非典型精神抑制药残基。

75. 根据权利要求66中所述的方法，其中所述的精神抑制药残基选自氯丙嗪残基、奋乃静残基、氟奋乃静残基、氟氯噻嗪残基、奋乃静雌烷酸残基、氟氯喹酮残基、溴毗利多残基、氟氯利多残基、螺哌隆残基、匹莫齐特残基、哌西他嗪残基、阿米舒必利（amilsulpride）残基、舒必利残基、氟塞平残基、齐拉西酮残基、瑞莫必利残基、舒必利残基、阿立必利残基、奈莫必利残基、氯氮平残基、奥氮平残基、齐拉西酮残基、舍吲哚残基、喹硫平残基、氟西汀残基、氟伏沙明残基、地昔帕明残基、帕罗西汀残基、舍曲林残基、丙戊酸残基和苯妥英残基。

76. 根据权利要求69中所述的方法，其中所述的GABA促进剂残基选自（±）巴氯芬残基、γ-氨基丁酸（GABA）残基、γ-羟基丁酸残基、氨基乙酸残基、β-（4-氯苯）-γ-氨基丁酸残基、4-哌啶酸酸残基、哌啶-4-磺酸残基、3-氨基丙基亚砜酸残基、3-氨基丙基磺酸残基、3-（氨基丙基）甲基磺酸残基和3-（2-咪唑基）-4-氨基丁酸残基。

77. 根据权利要求69中所述的方法，其中所述的抗增殖剂残基选自丁酸残基和4-苯基丁酸残基。

78. 根据权利要求66中所述的方法，其中所述的有机酸残基具有通式：

\[-R-C(=O)\-

其中，

R选自含1-20个碳原子的取代或未取代表残基，含1-20个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代表残基以及
R₁，
其中 R₁ 为具有通式 -Z-C(=O)O-CHR₂-R₃ 的残基，
其中，
Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个
5 碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残
基；
R₂ 选自氢和含 1-10 个碳原子的烷基；和
R₃ 选自氢。含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个
碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

79．根据权利要求 78 中所述的方法，其中所述 R 为含 3-5 个碳
原子的取代或未取代烷基。

80．根据权利要求 66 中所述的方法，其中所述有机酸残基选自
丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、视黄酸残
基、舒林酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀
酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

81．一种合成权利要求 1 中的化学共轭物的方法，该方法包括：
将有机酸与精神抑制药反应，从而得到与精神抑制药残基共价连
接的有机酸残基。

82．根据权利要求 81 中所述的方法，其中所述的有机酸选自
GABA 促进剂残基和抗增殖药残基。

83．根据权利要求 82 中所述的方法，其中所述的有机酸为抗增
殖药，其中所述的有机酸残基与所述精神抑制药残基通过羧酸酯键共
价连接，在进行所述反应前，该方法还包括：将有机酸转化为其酰氯
衍生物。

84．根据权利要求 83 中所述的方法，其中所述反应在碱性条件
下进行。

85．根据权利要求 83 中所述的方法，其中所述的抗增殖剂选自
丁酸和 4-苯基丁酸。

86．根据权利要求 82 中所述的方法，其中所述的有机酸为抗增
殖药，其中所述的有机酸残基与所述精神抑制药残基通过硫酯键共价
连接，在进行所述反应前，该方法还包括：将精神抑制药转化为其硫
酯衍生物；和将有机酸转化为其酰氯衍生物。
87. 根据权利要求 86 中所述的方法，其中所述的抗增殖剂选自丁酸和 4-苯基丁酸。

88. 根据权利要求 82 中所述的方法，其中所述的有机酸为抗增殖药，其中所述的有机酸残基与所述精神抑制药残基通过酰胺键共价连接，在进行所述反应前，该方法还包括：将有机酸转化为其酰氯衍生物；和将精神抑制药转化为其胺类衍生物。

89. 根据权利要求 88 中所述的方法，其中所述反应在碱性条件下进行。

90. 根据权利要求 88 中所述的方法，其中所述的抗增殖剂选自丁酸和 4-苯基丁酸。

91. 根据权利要求 81 中所述的方法，其中所述的有机酸具有通式：

\[-R-C\left(=O\right)\text{OH}\]

其中，

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R_1；

其中 R_1 为具有通式-\(Z-C\left(=O\right)O-\text{CHR}_2\)-R_3 的残基，

其中，

Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；

R_1 选自氢和含 1-10 个碳原子的烷基；和

R_2 选自氢、含 1-20 个碳原子的取代或未取代烃类残基、和含 1-20 个碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基；

其中所述的有机酸残基与所述精神抑制药残基通过酰胺键共价连接，在进行所述反应前，该方法还包括：将有机酸转化为其酰氯衍生物。

92. 根据权利要求 91 中所述的方法，其中所述反应在碱性条件下进行。

93. 根据权利要求 91 中所述的化学共轭物，其中所述 R 为含 3-5 个碳原子的取代或未取代烷基。
94. 根据权利要求 81 中所述的方法，其中所述的有机酸具有通式:

\[-R-C(=O)-OH\]

其中，

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，

其中 R₁ 为具有通式-Z-C(=O)O-CHR₁-R₂ 的残基，

其中，

Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；

R₂ 选自氢和含 1-10 个碳原子的烷基；和

R₃ 选自氢、含 1-20 个碳原子的取代或未取代烃类残基、和含 1-20 个碳原子及至少一个选自氧、氮和硫的烷基的取代或未取代烷基；

其中所述的有机酸残基与所述精神抑制药残基通过硫酸键共价连接，在进行所述反应前，该方法还包括：将精神抑制药转化为其硫醇衍生物；和将有机酸转化为其酰氯衍生物。

95. 根据权利要求 94 中所述的化学共轭物，其中所述 R 为含 3-5 个碳原子的取代或未取代烷基。

96. 根据权利要求 81 中所述的方法，其中所述的有机酸具有通式:

\[-R-C(=O)-OH\]

其中，

R 选自含 1-20 个碳原子的取代或未取代烃类残基，含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，

其中 R₁ 为具有通式-Z-C(=O)O-CHR₁-R₂ 的残基，

其中，

Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；
R₁选取自烷烃和含 1-10 个碳原子的烷基，和
R₂选取自芳烃、含 1-20 个碳原子的取代或未取代烃类残基，和含 1-20 个
碳原子及至少一个选自氧、氢和硫的杂原子的取代或未取代烷基；
其中所述的有机酸残基与所述精神抑制药残基通过酰胺键共价连接，
在进行所述反应前，该方法还包括：将有机酸转化为其酰氯衍生物；
和将精神抑制药转化为其胺类衍生物。

97. 根据权利要求 96 中所述的方法，其中所述反应在碱性条件下
进行。

98. 根据权利要求 96 中所述的方法，其中所述 R 为含 3-5 个碳
原子的取代或未取代烷基。

99. 根据权利要求 82 中所述的方法，其中所述的有机酸为含游
离氨基基团的 GABA 促进剂，且该方法还包括：
在反应前将该游离氨基基团用保护基保护，以便通过与所述精神
抑制药残基共价连接的有机酸的氨基保护残基的反应得到；和
在得到与所述精神抑制药残基共价连接的有机酸的氨基保护残基
之后，除去保护基。

100. 根据权利要求 99 的方法，该方法还包括，在进行所述保护
和进行所述反应之前：将有机酸转化为其酰基咪唑化合物。

101. 根据权利要求 99 中所述的方法，其中所述的 GABA 促进剂
残基选自 (±) 巴氯芬残基、γ-氨基丁酸 (GABA) 残基、γ-羟基丁酸残
基、氨基氯乙酸残基、β- (4-氯苯) -γ-氨基丁酸残基、4-哌啶酸
酸残基、哌啶-4-磺酸残基、3-氨基丙基亚磺酸残基、3-氨基丙基酸
酸残基、3- (氨基丙基) 甲基氨基酸残基和 3- (2-咪唑基) -4-氨基丁酸残
基。

102. 根据权利要求 81 中所述的方法，其中所述的精神抑制药选
自吩噻嗪和吩噻嗪衍生物。

103. 根据权利要求 81 中所述的方法，其中所述的精神抑制药选
自典型精神抑制药和非典型精神抑制药。

104. 根据权利要求 81 中所述的方法，其中所述的精神抑制药选
自氯丙嗪、奋乃静、氯奋乃静、氯噻吨、奋乃静醋酸酯、氯哌啶醇、苯
哌隆醇、氯哌利多、氯哌利多、螺哌隆、匹莫齐特、哌西他嗪、阿米
舒必利 (amilsulpride) 、舒必利、氯噻平、齐拉西酮、瑞莫必利、
舒托必利、阿立必利、奈莫必利、氟氯平、奥氮平、齐拉西酮、舍吲哚、喹硫平、氟西汀、氟伏沙明、地昔帕明、帕罗西汀、舍曲林、丙戊酸和苯妥英。

105. 根据权利要求 81 中所述的方法，其中所述的有机酸选自丁酸、戊酸、4-苯基丁酸、4-氨基丁酸、视黄酸，舒林酸、乙酰水杨酸、布洛芬、丙二酸、琥珀酸、戊二酸、富马酸和邻苯二甲酸。
共轭的精神抑制药及其用途

背景技术

本发明涉及精神抑制药与有机酸的新的化学共轭物及其用途。更具体地，本发明涉及精神抑制药（其也可具有抗增殖活性和/或化学敏化活性）与为了减低由精神抑制药引起的副作用和/或为了产生抗增殖活性而选择的有机酸的化学共轭物，以及其在治疗精神性和/或增殖性紊乱和疾病中的用途和在化学敏化作用中的用途。本发明的新化学共轭物的特征在于，与现有技术中的精神抑制药相比，可使有剧的副作用最小。

神经安定药、也称之为精神抑制药或安定药、为经典的精神抑制药，其可广泛用于治疗中枢神经系统的精神疾病和紊乱，例如精神分裂症。神经安定药的精神抑制效力归因于其对抗/阻断中枢多巴胺受体的能力。已知神经安定药为典型的精神抑制药，其包括例如麻醉酸类、其中为脂肪族化合物（例如氯丙嗪）、哌啶类（例如硫利哒嗪）和哌嗪类（例如氯氨酮）；丁酰苯（例如氟哌啶醇）；噻吩（例如三氟噻吩）；氯化吲哚（例如吗啡酮）；二苯氧氮平类（例如洛沙平）和二苯哌嗪类（例如匹莫齐特）。

然而，给予目前可得的神经安定药经常伴随有有害的副作用。在本领域众所周知的是，神经安定药可引起锥体外系症状，所述症状包括强直、震颤、运动过缓（运动缓慢）、智力迟钝（思维缓慢）、以及迟发性运动紊乱、急性张力紊乱反应和静坐不能。实际上，约5%用神经安定药长期治疗的患者在一年后出现迟发性运动紊乱的病状。

一类不同的精神抑制药包括非典型精神抑制药。非典型精神抑制药具有结合受体的性质，包括除结合多巴胺D2受体外还可结合中枢5-羟色胺2受体（5-HT2）。非典型精神抑制药包括例如氯氮平、奥氮平和利哌利酮，并且通常以较高的抗5-羟色胺活性及相对较低的多巴胺D2受体亲和力为特征。已知一些非典型精神抑制药如氯氮平还可对抗粘连的胆碱能受体和组胺能受体。

与神经安定药不同，非典型精神抑制药可最大限度地引起锥体外系症状，并且因此很少引起迟发性运动紊乱、静坐不能或急性张力素
乱反应。然而，给予非典型精神抑制药会涉及其它副作用，例如体重增加、情绪紊乱、性功能紊乱、镇静作用、体位性高血压、唾液过多、癫痫发作阈值降低，以及尤其是粒细胞缺乏症。

与典型和非典型精神抑制药两者、此处也称之为精神抑制药有关的严重副作用极大地限制了它们的应用，并且已经作出很大努力来开发没有这些副作用的精神抑制药。

美国专利 No. 6,197,764 公开了氯氮平（非典型精神抑制药）与含 12-26 个碳原子、优选 16-22 个碳原子的脂肪酸的化学共轭物。这些共轭物的特征在于其治疗效力扩大，这使得给予较低剂量的化学共轭物而产生精神抑制的治疗效果，且因此降低出现严重副作用的机会成为可能。因此这些共轭物是有益的，并且优于非共轭的非典型精神抑制药。然而美国专利 No. 6,197,764 没有公开含其它精神抑制药的有益共轭，并且还局限于含长链脂肪酸的共轭物。应当提到的是，其它精神抑制药，主要是神经安定药与长链脂肪酸的酯共轭物在本领域是众所周知的。然而，该共轭物主要致力于促进药物渗透入脑，而不能主动地减少或防止副作用。

美国专利 No. 3,966,930 公开了氯取代的吩噻嗪衍生物，其具有显著的精神抑制性质，且不期望的副作用的程度相对较低。然而，虽然美国专利 No. 3,966,930 请求保护的氯取代吩噻嗪衍生物有些包含其链含 1-17 个碳原子的酰基基团，但是实验数据局限于仅含来自于草酸或马来酸（即分别含 2 和 4 个碳原子的有机酸）的酰基基团的吩噻嗪衍生物。与其它已知神经安定药相比，所公开的吩噻嗪衍生物的治疗效力较长，因此其特征在于所引起的副作用的程度相对较低。这些化合物延长的治疗效力主要归因于吩噻嗪的取代基（例如氯和三氟甲基），而吩噻嗪与有机酸的共轭主要致力于使其药物制剂易于制得。

关于锥体外系症状的出现是精神抑制药、主要是神经安定药治疗的结果的最新研究已经暗示了涉及多巴胺能受体 D1 和 D2 失调的机理，其还伴随有脑内 γ-氨基丁酸 (GABA) 体系的活性降低。

GABA 为脑内重要的抑制性神经递质，其已知可影响情绪稳定药、抗焦虑药以及肌肉松弛药的活性，并且还知与一些中枢神经系统紊乱和疾病有关。关于锥体外系症状的最新研究表明，GABA 促进剂还可用于减少神经安定药引起的副作用，因此具有额外的治疗潜能。
以前的研究已经表明，GABA 促进剂可干扰其它脑神经递质，具体是干扰多巴胺体系。因此，发现 GABA 促进剂可对抗神经安定药引起的多巴胺受体敏感性增强，并且由此能改善神经安定药引起的运动紊乱[1]。此外，还发现一些已知的直接 GABA 促进剂（例如西草和 SL76002）可产生对氧皮醇醇引起的强直性昏厥的双相效应，即较低剂量的促进剂抑制剂性强直性昏厥行为，而高剂量的促进剂使氧皮醇醇醇引起的强直性昏厥成为可能。已经报道了 GABA 促进剂还可引起抗惊厥活性的其它研究。

由于 GABA 促进剂含有亲水性官能团（例如游离羧酸基团和游离氨基基团）且因此不易于穿过血脑屏障（BBB），其应用受到了限制。然而，发现含脂肪氨基酸或胺的化合物的化学共轭物基本上可使其易于穿过血脑屏障（BBB）[3]。

确实，美国专利 No. 3,947,579、3,978,216、4,084,000、4,129,652 和 4,138,484 公开了已知可穿过血脑屏障的类 GABA 化合物（与 GABA 药理学相关的化合物），例如 γ-羟基丁内酯、γ-羟基丁酸盐、氨基氧乙酸、5-乙基-5-苯基-2-吡啶酮、1-羟基-3-氨基-2-吡啶酮和 β-(4-氯苯)-γ-氨基丁酸，当其与神经安定药共同给药时，允许使用多少较低剂量的神经安定药，以获得与使用较高剂量的神经安定药且不给予这些类 GABA 化合物所获得的精神抑制效力相同的效力，并且同时多少可减少锥体外系的副作用。尽管使用了较低剂量的神经安定药，据说仍可获得相同的精神抑制效力，因为类 GABA 化合物据说使共同给药的精神抑制药的精神抑制活性成为可能。

最新研究表明，一些神经安定药、具体是吩噻嗪类、在不同细胞系中还表现出强有力的抗增殖活性，例如神经元细胞、神经胶质细胞、黑色素瘤细胞、乳腺细胞、结肠细胞、前列腺细胞、淋巴瘤和非白血性白血病、以及人初期角膜细胞[4]。国立癌症研究所 (NCI) 检测了已知对钠调节蛋白起特定抑制作用的“新的部分芥子化型吩噻嗪 (new half mustard type phenothiazines)”。在 60 种不同人癌症细胞系的体外筛选中观察了吩噻嗪的抗增殖活性。一些吩噻嗪类化合物在动物模型中还表现出对肿瘤生长显著的抑制作用。这些发现与神经安定药治疗中精神分裂患者的癌症发生率与一般人群低是一致的。

WO02/43652 教导了各种典型和非典型精神兴奋药在治疗增殖性疾
病中的用途，其在此处全文引入作为参考。具体地，WO 02/43652 教
导，循环节精神兴奋药可有效用于治疗各种肿瘤，包括神经胶质瘤、
黑色素瘤、结肠癌、肺癌和前列腺癌，以及有效用于治疗多向性抗药
(MDR) 瘤细胞，例如 B16 黑色素瘤细胞 (已知耐多柔比星和秋水仙碱) 和成
神经细胞瘤 (SH-SY5T，耐 5-FU 和多柔比星)。而且，除了教导精神兴
奋药在 MDR 瘤症治疗中的活性外，WO 02/43652 还教导了精神兴奋药
作为化学敏化剂，即可有效敏化癌细胞，尤其是 MDR 瘤细胞的化合物
用作细胞毒类药物的用途。

然而，虽然 WO 02/43652 中的教导，具体是关于精神兴奋药在治
疗 MDR 瘤症中的抗增殖活性和化学敏化活性的教导是有益的，但是这
些精神兴奋药的应用由于其所引起的有害副作用而受到较大限制。

也已知 GABA 为其衍生物的丁酸 (BA) 和 4-苯基丁酸 (PBA) 在体外光
谱肿瘤细胞中可作为分化剂 (differentiating agent) 和抗增殖剂
起作用 [5]。也已知丁酸和 4-苯基丁酸两者均为 pleotropic agents，
其最显著的活性之一是能可逆地增加核内组蛋白的乙酰化水平，其导
致染色质释放和转录活性变化 [6]。可以假定，该作用机理还与丁酸
和 4-苯基丁酸的抗增殖活性有关。

因此，现有技术教导了典型和非典型精神抑制药在治疗精神分裂
症和有关的中枢神经系统精神紊乱和疾病中的用途，以及教导了在治
疗增殖性紊乱和疾病、如恶性和良性肿瘤以及 MDR 瘤症中作为抗增殖
剂和化学敏化剂的用途。现有技术还教导了 GABA 促进剂 (包括 GABA
本身) 作为减少神经安定药引起的副作用的可能药物的用途和丁酸及
其衍生物作为抗增殖剂的用途。

然而，仍然公认地需要有一种以改善治疗活性和减少副作用为特
征的精神抑制药，其也可作为抗增殖剂和化学敏化剂，这也是非常有
利的。

发明简述

根据本发明，提供了(i)精神抑制药与为了减少由精神抑制药引
起的副作用和/或产生抗增殖活性而选择的有机酸的化学共轭物；(ii)
精神抑制药与 GABA 促进剂 (包括 GABA 本身) 的化学共轭物；(iii)精
神抑制药与抗增殖剂的化学共轭物；(iv)合成它们的方法；(v)其在
治疗和/或预防精神紊乱和疾病而减少常规精神抑制药物的副作用中
的用途；(v) 其在治疗和/或预防增殖性紊乱和疾病中的用途；(vi) 其作为化学敏化剂的用途。

此处表明，精神抑制药的化学共轭物的特征在于：副作用(例如锥体外系症状)减至最少，精神抑制治疗活性和抗增殖活性增强，化学敏化作用。此处还表明，与其源化合物相比，在其治疗效力和最小化副作用方面，该化学共轭物还出人意料地具有协同效果。

因此，根据本发明的一个方面，提供了含有与第二化学部分共价连接的第一化学部分的化学共轭物，其中第一化学部分为精神抑制药残基，第二化学部分为为了减少当精神抑制药本身给药而引起的副作用和/或为了产生抗增殖活性而选择的有机酸残基。

根据本发明的另一方面，提供了含有作为活性成分的本发明的化学共轭物和可药用载体的药物组合物。

本发明的药物组合物优选包装在包装材料中，并且可通过包装材料上或其中的印刷加以区分，用于治疗精神紊乱或疾病，用于治疗增殖性紊乱或疾病，和/或在与化疗药联合和/或在化学敏化作用是有利的医疗条件下用于化学敏化作用。

根据本发明的另一方面，提供了一种治疗患者精神紊乱或疾病的方法，该方法包括给予患者治疗有效量的本发明的化学共轭物。

根据如下所述的本发明优选实施方案的另一特征，所述的精神紊乱或疾病选自精神分裂症、妄想症、儿童精神病、亨延顿氏舞蹈病和吉斯 - 德拉图 - 劳特氏综合征。

根据本发明的另一方面，还提供了一种治疗或预防患者中增殖性紊乱或疾病的方法，该方法包括给予患者治疗有效量的本发明的化学共轭物。

根据如下所述的本发明优选实施方案的另一特征，增殖性紊乱或疾病选自脑肿瘤、脑转移瘤和外周肿瘤。

根据所述优选实施方案的另一特征，增殖性疾病为癌症，例如多重耐药癌症。

根据本发明的另一方面，还提供了化学敏化方法。该方法包括给予需要其的患者化学治疗有效量的一种或多种化疗药以及化学敏化有效量的本发明的化学共轭物。

根据如下所述的本发明优选实施方案的另一特征，患者患有癌
症，如多重耐药癌症。

根据如下所述的本发明优选实施方案的另一特征，第二化学部分通过酯键与第一化学部分共价连接，所述的酯键选自羧酸酯键、酰胺键和硫酯键。

根据所述优选实施方案的另一特征，第二化学部分选自抗增殖药残基和GABA促进剂残基。

根据所述优选实施方案的另一特征，精神抑制药残基具有抗增殖活性。

根据所述优选实施方案的另一特征，精神抑制药残基具有化学敏化活性。

根据所述优选实施方案的另一特征，精神抑制药残基选自吩噻嗪残基和吩噻嗪衍生物残基。

根据所述优选实施方案的另一特征，精神抑制药残基选自典型精神抑制药残基和非典型精神抑制药残基。

根据所述优选实施方案的另一特征，精神抑制药残基选自氯丙嗪残基、奋乃静残基、氯奋乃静残基、氟氮丙嗪残基、奋乃静醋酸酯残基、氯氮平醇基残基、苯哌唑酮残基、溴哌利多残基、氟哌利多残基、螺哌隆残基、匹莫齐特残基、哌西他噪残基、阿米舒必利（amilsulpride）残基、舒必利残基、氟哌平残基、齐拉西酮残基、瑞莫必利残基、舒必利残基、阿立必利残基、奈莫必利残基、氯氮平残基、奥氮平残基、齐拉西酮残基、舍吲哚残基、噻硫平残基、氟西汀残基、氟伏沙明残基、地昔帕明残基、帕罗西汀残基、舍曲林残基、丙戊酸残基和苯妥英残基。

根据所述优选实施方案的另一特征，GABA促进剂残基选自(±)巴氯芬残基、γ-氨丁酸(GABA)残基、γ-羟基丁酸残基、氨基氧乙酸残基、β-(4-氯苯)-γ-氨丁酸残基、4-哌啶酸残基、哌啶-4-磺酸残基、3-氨基丙基亚精酸残基、3-氨基丙基篇酸残基、3-(氨基丙基)甲基篇酸残基和3-(2-咪唑基)-4-氨基丁酸残基。

根据所述优选实施方案的另一特征，抗增殖剂残基选自丁酸残基和4-苯基丁酸残基。

根据所述优选实施方案的另一特征，有机酸残基具有通式-R-C(=O)-，其中R选自含1-20个碳原子的取代或未取代烃基残基，含1-
20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基以及 R₁，其中 R₁ 为具有通式 \(-\text{Z}-\text{C}(-\text{O})-_0^-\text{CHR}_2^-\text{R}_3^\) 的残基，其中 Z 选自单键、含 1-20 个碳原子的取代或未取代烃类残基、含 1-20 个碳原子和至少一个选自氧、氮和硫的杂原子的取代或未取代烃类残基；R₂ 选自氢和含 1-10 个碳原子的烷基；R₃ 选自氢、含 1-20 个碳原子的取代或未取代烃类残基、和含 1-20 个碳原子及至少一个选自氧、氮和硫的杂原子的取代或未取代烷基。

根据所述优选实施方案中的另一特征，R 为含 3-5 个碳原子的取代或未取代烷基。

根据所述优选实施方案中的另一特征，有机酸残基选自丁酸残基、戊酸残基、4-苯基丁酸残基、4-氨基丁酸残基、视黄酸残基、舒林酸残基、乙酰水杨酸残基、布洛芬残基、丙二酸残基、琥珀酸残基、戊二酸残基、富马酸残基和邻苯二甲酸残基。

根据本发明的另一方面，还提供了合成本发明的化学共轭物的方法。该方法包括将有机酸与精神抑制药反应，从而得到与精神抑制药残基共价连接的有机酸残基。

根据如下所述的本发明优选实施方案的另一方面，有机酸残基与精神抑制药通过酰胺酯键共价连接，并且该方法还包括在反应前将有机酸转化为其酰氯衍生物。

根据所述优选实施方案的另一特征，有机酸残基通过酰胺键与精神抑制药残基共价连接，并且该方法还包括在反应前将有机酸转化为其酰氯衍生物和将精神抑制药转化为其酰胺衍生物。根据所述优选实施方案的另一特征，有机酸残基通过酰胺键与精神抑制药残基共价连接，并且该方法还包括在反应前将有机酸转化为其酰氯衍生物和将精神抑制药转化为其酰胺衍生物。上述方法中所用的有机酸和精神抑制药优选来自于上述本发明的有机酸残基和精神抑制药残基。

当有机酸为含游离氨基基团的 CABA 促进剂时，该方法还包括在反应前将该游离氨基基团用保护基保护，以便通过与精神抑制药共价连接的有机酸的氨基保护残基的反应和得到与精神抑制药残基共价连接的有机酸的氨基保护残基之后除去保护基而得到。优选地，该方法还包括在反应前将有机酸转化为其酰基咪唑化合物。

本发明通过提供一种新的和有效的精神抑制药化学共轭物而成功
地克服了目前已知构型的缺点，该共轭物在治疗和预防精神性和/或增殖性紊乱和疾病以及用作化学敏感剂中可最小限度地引起有害的副作用。

附图简述

此处仅通过实施例，并参考附图描述本发明。现在具体参考详细附图，应当强调的是，细部以实施例的方式给出，并且仅用于解释本发明优选实施方案的讨论，并且出于假定其确信为最有用的和易于理解本发明原则和概念方面的说明的原因而给出。在此方面，没有试图写出比原则性理解本发明所必需的细节更详细的本发明的结构细节。实际中可以具体化带有使本领域技术人员清楚本发明的多种形式的附图的说明。

附图中：

附图 1a 和 1b 显示了通过构效关系 (SAR) 研究得到的条形图和曲线图，其表示了在腹膜内注射 5mg/Kg 体重奋乃静和等摩尔剂量的其化学共轭物的大鼠中，奋乃静及其根据本发明的化学共轭物 (AN 167, AN168 和 AN 130) 对总强直性昏厥 (图 1a) 和对催乳素血中浓度 (图 1b) 的影响。

附图 2 为表示在用 5mg/Kg 奋乃静及其等摩尔剂量的根据本发明的化学共轭物治疗的大鼠中总强直性昏厥的条形图 (SAR 研究)；

附图 3a 和 3b 的条形图和曲线图表示了奋乃静 (5 mg/Kg)、氟奋乃静 (7.5 mg/Kg) 及它们根据本发明的化学共轭物 (AN 167, AN 168, AN 180 和 AN 187)（等摩尔剂量给予）对大鼠总强直性昏厥的影响 (图 3a) 以及奋乃静、氟奋乃静及它们的 GABA 化学共轭物 AN168 和 AN 187 对大鼠催乳素血中浓度的影响 (图 3b)。

附图 4a-b 为表示大鼠中强直性昏厥时间过程的比较曲线图，所述强直性昏厥由奋乃静及其根据本发明的化学共轭物 (图 4a) 和氟奋乃静及其及其根据本发明的化学共轭物 (图 4b) 引起；

附图 5a 和 5b 的条形图和比较曲线图表示了本发明的奋乃静与 GABA (化合物 AN168) 化学共轭物以及等摩尔量苯乃静与 GABA 的混合物对大鼠强直性昏厥的影响；

附图 6 为表示本发明的化学共轭物 AN167 和 AN 168 对大鼠强直性昏厥影响的条形图（四个独立试验的平均值）；
附图 7a 和 7b 的条形图表示了化学共轭物 AN168、等剂量奋乃静和等剂量奋乃静和 GABA 的混合物对大鼠强直性昏迷的影响，以 2 分钟内达到靶点的动物百分数（图 7a）和动物达到靶点所需的时间（图 7b）测定；

附图 8a 和 8b 的比较曲线图表示口服给予奋乃静及其化学共轭物 AN168 对大鼠强直性昏迷的影响，以“钢琴”测试测定（图 8b 给出了在图 8a 所示试验 3 个月后进行的试验中得到的数据）；

附图 9a 和 9b 的条形图表示了大鼠中口服给予不同浓度的奋乃静及其化学共轭物 AN168 引起的总强直性昏迷，以“钢琴”测试测定（图 9b 给出了在图 9a 所示试验 3 个月后进行的试验中得到的数据）；

附图 10a 和 10b 的比较曲线图表示了口服给予不同浓度的奋乃静及其化学共轭物 AN168 对大鼠强直性昏迷时间过程的影响（图 10a）和对总强直性昏迷的影响（图 10b），以 24 小时内的“钢琴”测试测定；

附图 11 为表示口服给予不同浓度的奋乃静和 AN168 对大鼠总强直性昏迷影响的条形图，以“壁”测试测定；

附图 12 给出了表示口服给予奋乃静和 AN168 对大鼠催乳素血中浓度影响的比较曲线图；

附图 13 给出了表示奋乃静及其根据本发明的化学共轭物 AN130、AN167 和 AN168 对 B16 爪黑色素瘤细胞影响的比较曲线图；

附图 14 给出了表示奋乃静、AN168、GABA 和长春新碱和顺铂对 C6 大鼠神经胶质瘤细胞存活能力影响的比较曲线图；

附图 15 给出了表示奋乃静、AN168、地塞米松对 Jurkat T 淋巴瘤细胞存活能力影响的比较曲线图；

附图 16 给出了表示不同浓度的奋乃静和 AN168 对用 30μM 长春新碱处理的 C6 大鼠神经胶质瘤细胞存活能力影响的条形图；

附图 17 为表示顺铂（5-50μM）和顺铂（5-50μM）与 AN168 的联合对 C6 大鼠神经胶质瘤细胞存活能力影响的条形图；

附图 18 为表示奋乃静、AN168 和顺铂对 C6 大鼠神经胶质瘤细胞 DNA 片段影响的条形图；

附图 19 为表示奋乃静及其化学共轭物 AN130、AN167 和 AN168 对正常脑细胞影响（IC50）的条形图；
附图 20 为表示等摩尔剂量奋乃静和 AN168 对肌细胞影响的条形图；和
附件 21 为表示在腹膜注射奋乃静和本发明的 AN167 化合物的大鼠死亡率时间过程的比较曲线图。

发明详述

本发明为与有机酸共价连接的精神抑郁机化学共轭物，其制备方法，以及其在治疗精神紊乱和疾病（例如但不限于精神分裂症）和增殖性紊乱和疾病（例如但不限于脑肿瘤、脑转移瘤、外周肿瘤、MDR 瘤症和其它增殖性疾病）中以及作为化学敏化剂中的用途。

本发明的化学共轭物的原则和操作可参考附图及相应的说明而更好地理解。

在详细解释本发明的至少一个实施方案之前，应当理解的是，本发明的申请不局限于下述说明中给出组分的详细结构和排列，或者由实施例解释。本发明可包括其它实施方案，或者能以多种方式实施或完成。同样应当理解的是，此处所用的词组和术语是为了说明本发明而不应当看作是对本发明的限制。

当考虑到本发明，可以假定共价耦合了精神抑郁药（其也可具有抗增殖活性和/或化学敏化活性）与 GABA 促进剂或抗增殖剂的化学共轭物可表现出与最小的有害副作用有关的高度精神抑郁活性和/或抗增殖治疗活性以及化学敏化活性。

该假定的根本基础如下：精神紊乱和疾病如精神分裂症可用多种类型的精神抑郁药治疗，所述药物可分为典型精神抑郁药、如神经安定药和非典型精神抑郁药。然而，给予精神抑郁药一般伴随有短期和长期的有害副作用，例如锥体外系症状（主要由典型精神抑郁药引起）和粒细胞缺乏症（主要由非典型精神抑郁药引起）。出现这些有害的副作用，尤其是锥体外系症状，可归因于多巴胺能 D1 和 D2 受体中引起的失调和脑内 GABA 体系活性的降低。

因此，可以猜测，将精神抑郁药与 GABA 促进剂共价耦联可生成具有精神抑郁活性且副作用最小的化学共轭物。

特别地，可以假定精神抑郁药与 GABA 促进剂的耦联在此方面是非常有利的，既具有精神抑郁活性且增加 GABA 活性的化合物。
已知 GABA 体系活性的增加可减少由精神抑制药引起的副作用，并且还可具有与 GABA 体系有关的其他治疗优点（例如情绪稳定和放松）。所述的 GABA 体系活性的增加目前可通过给予 GABA 促进剂或 GABA 化合物得到。已知 GABA 还可拮抗由精神抑制药引起的多巴胺受体敏感性增强。然而，某种 GABA 促进剂的给予受其亲水性质的限制。

因此，还可假定，通过共价偶联精神抑制药和 GABA 促进剂而得的化学共轭物的特征在于：(i) 由精神抑制药部分和 GABA 促进剂部分两者引起协同精神抑制活性和增加 GABA 活性；(ii) 精神抑制药引起的副作用减少；(iii) 与原化合物相比，偶合的精神抑制药与 GABA 促进剂穿过血脑屏障的药动学性质改善；和(iv) 对脑部多巴胺受体较高的亲和力，其从而可提高精神抑制活性。

此外，在现有技术中已知一些精神抑制药、具体是神经安定药如氯噻嗪等为有效的抗增殖剂，并且当与化疗药联合使用时还可用作化学敏化剂。因此，还可假定，将精神抑制药和具有抗增殖活性的化学部分共价偶合的化学共轭物具有更高的抗增殖活性和/或化学敏化活性。在治疗增殖性紊乱和疾病、尤其是在脑部的增殖性紊乱和疾病时，该化学共轭物是非常有利的，其归因于精神抑制药衍生物对脑部受体的亲和力以及其改善的脑部药动学性质。

当实际应用本发明时，如上述实施例中所另外解释的，发现将精神抑制药和为了减少由精神抑制药引起的副作用而选择的化学部分、如 GABA 促进剂、或为了产生精神抑制活性而选择的化学部分共价偶联，可生成具有上述协同作用的化学共轭物：(i) 有害副作用最小；(ii) 高度精神抑制活性；(iii) 高度抗增殖活性；(iv) 高度化学敏化活性；和(iv) 毒性降低，所有这些特征与已知的精神抑制药相比，包括 GABA 促进剂的化学共轭物还以协同的精神抑制活性和 GABA 诱导活性为特征。

因此，根据本发明，化学共轭物可用于治疗精神紊乱或疾病，以及作为抗增殖剂和/或作为化学敏化剂用于增殖性紊乱和疾病。根据本发明，用于治疗精神性和/或增殖性紊乱和疾病的每种化学共轭物包括与第二化学部分共价连接的第一化学部分。第一化学部分是精神抑制药残基，而第二化学部分是为了减少当给予精神抑制药本身时而
引起的副作用和/或为了产生抗增殖活性而选择的有机酸。

如此处所用的，术语“化学部分”指来源于化学化合物的残基，该残基保持其功能。

术语“残基”此处指与其它分子共价连接的分子主要部分，如本领域普遍接受的。

因此，术语“精神抑制药残基”指与其它化学部分共价连接的精神抑制药主要部分，该术语如上定义。

本发明的精神抑制药残基来源于典型精神抑制药或非典型精神抑制药，包括例如氯丙嗪残基、奋乃静残基、氟奋乃静残基、氯噻吨残基、奋乃静醇酯残基、苯哌利多残基、溴哌利多残基、氟哌利多残基、螺哌隆残基、匹莫齐特残基、哌西他嗪残基、阿米舒必利（amilsulpride）残基、舒必利残基、氯噻平残基、齐拉西酮残基、瑞莫必利残基、舒必利利残基、阿立必利残基、奈莫必利残基、氟氯平残基、奥氮平残基、齐拉西酮残基、舍吲哚残基、喹硫平残基、氟西汀残基、氟伏沙明残基、地昔帕明残基、帕罗西汀残基、舍曲林残基、丙戊酸残基和苯妥英残基。

根据本发明的优选实施方案，精神抑制药残基还可具有抗增殖活性。该双功能精神抑制药包括例如吩噻嗪及其衍生物。

根据本发明的另一优选实施方案，精神抑制药残基还可具有化学敏化活性。该双功能精神抑制药包括例如吩噻嗪及其衍生物。

如上所指出的，根据本发明，精神抑制药与第二化学部分、即有机酸残基共价耦联。

如此处所用的短语“有机酸残基”指来源于含游离羧酸基团的有机酸的残基，所述残基如本文定义。

术语“游离羧酸基团”包括其质子化、离子化或盐状态的“-C(=O)OH”基团。

根据本发明，或者为了减少当精神抑制药单独给药时引起的副作
用，或者为了产生抗增殖活性，选择有机酸残基。根据本发明，有机酸残基可以例如是具有同时-R-C(=O)-的残基，其中R可例如是含1-20个碳原子的烃类残基。

如此处所用的术语"烃类"指包括碳原子和氢原子共价连接的链作为其基本骨架的有机化合物。

因此，本发明的烃类残基可以是烷基或环烷基。

如此处所用的术语"烷基"指含直链和支链基团的脂肪烃。优选烷基基团含1-20个碳原子。

无论何时此处提到数目范围，例如“1-20”，其指当为烷基基团时，该基团可含1个碳原子、2个碳原子、3个碳原子等等，直到含20个碳原子。更优选的，烷基为含1至10个碳原子的中等大小的烷基。更优选的，烷基含3至5个碳原子。

如此处所用的术语"环烷基"包括全碳的单环或稠环（即共享相邻碳原子对的环）基团，其中一个或多个环不含有完全共轭的π电子体系。环烷基基团非限制性的实例包括环丙烷、环丁烷、环戊烷、环戊烯、环己烷、环己二烯、环庚烷、环庚三烯和金刚烷。

根据本发明，烃类残基可以是直链或支链的。烃类残基还可以是饱和或未饱和的。当烃类残基为未饱和的时，其碳链中可包括双键或三键。未饱和的烃类残基还可包括芳基。

如此处所用的“芳基”基团指全碳单环或稠环的多环（即共享相邻碳原子对的环）基团有完全共轭的π电子体系。芳基基团非限制性的实例包括苯基、萘基和蒽基。

烃类残基还可以是取代的或未取代的。当为取代的时，取代基可例如是烷基、环烷基、芳基、杂芳基、杂脂肪烃、烃基、烷氧基、芳氧基、氟基、卤素、氧代、酰氨基和氨基。

“杂芳基”基团指环中含一个或多个原子、如例如氮、氧和硫的单环或稠环基团（即共享相邻碳原子对的环），并且另外含有完全共轭的π电子体系。杂芳基基团非限制性的实例包括吡咯、呋喃、噻吩、咪唑、恶唑、噻唑、吡唑、嘧啶、噻唑、异噻唑和嘌呤。杂芳基基团可以是取代或未取代的。当为未取代的时，取代基基团可以例如是烷基、环烷基、烃基、烷氧基、芳氧基、氟基、卤素、氧代、酰氨基和氨基。
“杂脂肪基”基团指环中含一个或多个原子如氮、氧和硫的单环或稠环基团。该环也可含有一个或多个双键。此外，该环不含有完全共轭的π电子体系。杂脂肪基可以是取代或未取代的。当为取代的时，取代基基团可以例如是烷基、环烷基、芳基、杂芳基、卤素、三卤素甲基、羟基、烷氧基、芳氧基、氰基、氧代、酰氧基和氨基。
“烃基”基团指-OH基团。
“烷氧基”基团指如此处定义的-O-烷基和-O-环烷基两者。
“芳基”基团指如此处定义的-O-芳基和-O-杂芳基两者。
“氧代”基团指-C(=O)-基团，其中R'例如可以是烷基、环烷基或芳基。
“卤素”基团指氟、氯、溴或碘。
“三卤素甲基”基团指-CX₃基团，其中X为如此处定义的卤素基团。
“氨基”基团指-NH₂基团。

酰氨基基团指-C(=O)NR₁R₂基团，其中R₁和R₂可例如是氢、烷基、环烷基和芳基。

根据本发明，烃类残基还可包括分布在其链中的一个或多个杂原子，杂原子例如是氧、氮和/或硫。
烃类残基还可以是具有通式-Z-C(=O)O-CHR₂-R₃的残基，其中Z例如可以是单键或如上所述的取代或未取代烃类残基；R₂例如可以是氢或含1-10个碳原子的烷基残基；R₃例如可以是氢或如上定义的烃类残基。

因此，由其能得到本发明的有机酸残基的有机酸的代表性实例包括乙二酸、丙二酸、琥珀酸、戊二酸、马来酸、富马酸、邻苯二甲酸、异邻苯二甲酸、四邻苯二甲酸、丁酸、4-苯基丁酸、4-氨基丁酸(GABA)、戊酸、丙酸、视黄酸、乙酰水杨酸和布洛芬。

根据本发明目前最优选的实施方案，化学共轭物的第二化学部分为GABA促进剂残基。

如此处所用的短语“GABA促进剂残基”指GABA促进剂的残基，该术语如上定义，而术语“GABA促进剂”描述了能活化脑内GABA体系并且因此与GABA药理学相关的化合物。术语“GABA促进剂”因此可理解为包括GABA本身，而术语“GABA促进剂残基”因此可理解为
包括GABA本身的残基。

因此，根据本发明，GABA促进剂残基除了GABA（γ-氨基丁酸）残基本身外，还包括其它能与精神抑制药共价键联的GABA促进剂的残基。

该GABA促进剂残基的实例包括（±）巴氯芬残基、六氢异烟酸残基、γ-羟基丁酸残基、氨基氧乙酸残基、β-（4-氟苯）γ-氨基丁酸残基、喹啶-4-磺酸残基、3-氨基丙基亚胺酸残基、3-氨基丙基亚胺酸残基、3-（氨基丙基）甲基嘌呤酸残基和3-（2-咪唑基）-4-氨基丁酸残基。

根据本发明优选的另一实施例，本发明的化学共轭物中的第二化学部分为抗增殖剂残基。

如此处所用的术语“抗增殖剂残基”指以抗增殖活性为特征的化合物的残基，所述残基如上定义。

根据本发明的优选实施例，抗增殖剂为丁酸或4-苯基丁酸。已知这些化合物可产生抗癌活性，并且还以GABA为其衍生物的化合物为特征，并因此还可作为GABA模拟药起作用。

因此，本发明的化学共轭物的第二化学部分包括有机酸残基，所述的有机酸残基优选为GABA促进剂残基或抗增殖剂残基，这些术语如上定义且如上举例。

本发明化学共轭物的第二化学部分优选通过酯键与第一化学部分共价连接。酯键可以是羧酸酯键、酰胺键或硫酯键。

如此处所用的短语“羧酸酯键”包括“-O-C(=O)-”键。

短语“酰胺键”包括“-SH-C(=O)-”键。

已知该酯键可被脑源酶水解（hydrolizable），例如酯酶和酰胺酶，因此可假定并进一步通过此描述的实验结果（例如见附图5a-b）证明：本发明的化学共轭物可作为在脑内代谢的前药起作用，并且因此可同时释放精神抑制药与有机酸，因此，而使精神抑制药与有机酸具有有利的共同药动学性质。

该方法具有很大的优点，因为其提供了(i)精神抑制药与有机酸同时作用，其协同地减少了由药物引起的副作用并具有两部分的双重功能；(ii)前药与多巴胺能受体的亲和力较高，其导致对脑增殖性疾病具有较高的协同精神抑制活性和较高的协同抗增殖活性；和
(iii) 两个化学部分的脑穿透性改善。

另一方面，本发明还提供了一种合成如上所述的化学共轭物的方法。该方法通常通过将有机酸与精神抑制药反应，以获得与精神抑制药残基共价连接的有机酸残基而完成。

其中，术语“有机酸的残基”和“精神抑制药的残基”分别与术语“有机酸残基”和“精神抑制药残基”等同，如这些术语在上文中定义的。对熟练技术人员显而易见的是，将有机酸与精神抑制药反应，从而在它们之间形成共价连接，生成包括有机酸残基和精神抑制药残基的终产品。

因此，在本发明该方面的方法中反应的有机酸包括任何与如上所述的有机酸残基相应的化合物，并此因此可包括如上所述的有机酸残基来源于其的所有有机酸。

例如，可用于本发明该方面内容中的有机酸包括与如上所述优选的GABA促进剂残基相应的GABA促进剂。同样的，有机酸可包括抗增殖剂，如丁酸和4-苯基丁酸等，其与如上所述的抗增殖剂残基相对应。

同样的，与在本发明该方面的方法中反应的精神抑制药与如上所述的任意精神抑制药残基相对应。

如上所述的合成本发明的化学共轭物的方法还可根据所用有机酸的类型和/或有机酸残基与精神抑制药残基之间的共价连接的类型而进行。

如上所详细讨论的，本发明优选的有机酸例如包括，抗增殖剂如丁酸及其衍生物，具有通式R-C(-O)-OH(与有机酸残基R-C(-O)-0相应)的有机酸等等。这些优选的有机酸大多数不包括游离氨基团，并且因此不需要其它操作而用于本发明的合成。

如上所另外详细讨论的，在本发明的化学共轭物中，有机酸残基和精神抑制药残基通过酯键共价连接，所述的酯键为羧酸酯键、硫酯键或酰胺键，如这些术语在上文中所定义的。

当残基通过羧酸酯键共价连接时，合成本发明的化学共轭物的方法优选通过首先将有机酸转化为其相应的酰氧衍生物、从而活化有机酸的方式进行。接着按照所熟知的亲核加成反应，将酰氧衍生物与通常含有游离羟基的精神抑制药反应，以得到含有通过羧酸酯键与精神抑制药残基共价连接的有机酸残基的预期化学共轭物。该反应优选在
碱性条件下进行，以活化精神抑制药和/或中和以其盐酸盐形式存在的化合物。然而，有机酸和/或精神抑制药可通过其它任意已知的方法活化。

当残基通过硫酯键共价连接时，合成本发明的化学共轭物的方法优选通过将精神抑制药转化为其相应的硫醇衍生物和将有机酸转化为其酰氯衍生物或其任意的其它活化衍生物来进行。接着通过熟知的方法将硫醇化合物与活化的有机酸反应，以得到含通过硫酯键与精神抑制药残基共价连接的有机酸残基的预期化学共轭物。应当注意的是，一些目前已知的精神抑制药含有游离的硫醇基团，并且因此该化合物可直接与有机酸的酰氯衍生物反应。不含游离硫醇基团的精神抑制药易于通过本领域熟知的方法反应，从而得到其酰氯衍生物。

当残基通过酰胺键共价连接时，合成本发明的化学共轭物的方法优选首先将有机酸转化为其相应的酰氯衍生物以活化有机酸和还通过将精神抑制药转化为其酰胺衍生物来进行。接着通过熟知的亲核加成反应或其它任意已知的生成酰胺键的方法将酰氯衍生物与精神抑制药的氨基基团反应，以得到含通过酰胺键与精神抑制药残基共价连接的有机酸残基的预期化学共轭物。应当注意的是，一些目前已知的精神抑制药含有游离的氨基基团，并且因此该化合物可直接与有机酸的酰氯衍生物反应。不含游离氨基基团的精神抑制药易于通过本领域熟知的方法反应，从而得到其酰胺衍生物。

当有机酸不含有游离氨基基团时，上述方法特别有效。然而，当有机酸中含有有机氨基基团时，例如为 GABA 促进剂时，在上述与精神抑制药的反应中，氨基基团应当被保护起来。由于游离氨基基团是具有相对化学活性，因此会迅速地参与反应的基团，因此需要将游离氨基基团进行保护。

因此，合成含具有游离氨基基团的 GABA 促进剂残基的化学共轭物的优选方法优选首先通过将游离氨基基团进行保护而进行。保护氨基基团可通过将有机酸与已知的保护基反应而进行，所述的保护基例如而不限制于叔丁氧羰基 (Boc) 和苯氧羰基 (Cbz)，接着将氨基保护的有机酸与精神抑制药反应，从而得到与精神抑制药残基共价连接的氨基保护的有机酸残基。接着除去保护基。此外还优选将氨基包含的有机酸转化为其酰基化衍生物，从而在与精神抑制药反应前将有
机酸活化。

根据本发明还提供了含本发明的化学共轭物作为活性成分的药物组合物。

此处所用的“药物组合物”指一种或多种此处描述的化学共轭物以及其它化学组分如可药用载体和赋形剂的制剂。药物组合物的目的是为了使化合物易于对患者给药。

下文中，术语“可药用载体”指对患者不引起显著刺激、不消除所给化合物的生物活性和性质的载体或稀释剂。所述载体非限制性的实例为丙二醇、盐水、有机溶剂与水的乳剂和混合物。

此处术语“赋形剂”指加入药物组合物中、使化合物易于给药的惰性物质。赋形剂非限制性的实例包括碳酸钙、磷酸钙、各种糖和淀粉类型、纤维素衍生物、明胶、植物油和聚乙二醇。

根据本发明的优选实施方案，药物载体为乳酸水溶液。

在此方面，应当指出的是，根据优选实施方案，本发明的化学共轭物易溶于含水介质中，并且因此易于制备。该易于制备的性质使本发明的化学共轭物对已知的精神抑制药酯共轭物而言，具有额外的优点，前述已知精神抑制药酯共轭物通常含有长链脂肪酸且因此不溶于水性介质，因而以油性制剂给药。

制备和给予药物的技术可在“Remington’s Pharmaceutical Sciences (Remington’s 制药科学)” Mack Publishing Co., Easton, PA, 最新版本中找到，其此处引入作为参考。

适宜的给药途径例如包括口服，直肠，透粘膜，透皮，肠内或非胃肠道转运，包括肌内、皮下、静脉注射和腹内注射、直接心室内注射、静脉注射、腹膜内注射、鼻内或眼球内注射。本发明的药物组合可通过本领域众所周知的方法制备，例如通过常规的混合、溶解、制粒、糖包衣、研磨、乳化、胶囊、囊入或冷冻干燥方法制备。

用于本发明的药物组合物可通过常规方法、使用一种或多种含赋形剂和辅助剂的可药用载体来制备，所述的可药用载体可使活性化合物易于加工成可药用制剂。适当的制剂取决于所选择的给药途径。

对于注射液，本发明的化学共轭物可制成水性溶液，优选为可生物兼容的缓冲液，如 Hank’s 溶液、Ringer’s 溶液、或含或不含有机溶剂如丙二醇、聚乙二醇的生理盐水缓冲液。对于透粘膜给药，可在
制剂中使用渗透促进剂。该渗透促进剂在本领域通常是已知的。

对于口服给药，所述化学共轭物可通过将活性化合物与本领域熟知的可药用载体联合来制备。该载体可使本发明的共轭物制成对患者口服给药的片剂、硬基、糖衣片、胶囊、液体、凝胶、糖浆、膏剂、悬浮液等等。用于口服的药物组合物可通过如下制备：使用固体赋形剂，可先将所得混合物研磨，如果需要的话，加入适宜的辅助剂，之后加工颗粒结合物，得到片剂或糖衣片芯。适宜的赋形剂是填充剂，例如糖，包括乳糖、蔗糖、甘露醇或山梨醇；纤维素产品，如例如玉米淀粉、小麦淀粉、米淀粉、马铃薯淀粉、明胶、西黄蓍胶、甲基纤维素、羟丙甲纤维素、羧甲基纤维素钠和/或可生物兼容的聚合物如聚乙烯吡咯烷酮（PVP）。如果希望的话，可加入分散剂，例如交联聚乙烯吡咯烷酮、琼脂、海藻酸或其盐如海藻酸钠。

糖衣片芯有适宜的包衣。为此目的，可使用浓缩的糖溶液，其可任意的含有阿拉伯胶、滑石粉、聚乙烯吡咯烷酮、carbopol gel、聚乙二醇、二氧化钛、涂溶液和适宜的有机溶剂或溶剂混合物。片或糖衣片包衣液中可加入染料或色素，以区分或赋予活性化合物不同剂量。联合以特征。

可口服使用的药物组合物包括由明胶制成的推入配合胶囊和由明胶和增塑剂如丙三醇或山梨醇制成的密封软胶囊。推入配合胶囊可含有与填充剂如乳糖、粘合剂如淀粉、润滑剂如滑石粉或硬脂酸镁和任选稳定剂混合的活性成分。软胶囊中，活性成分可溶解或悬浮于适宜液体中，如脂肪油、液体石蜡或液体聚乙二醇。此外还可加入稳定剂。所有用于口服给药的制剂应当是适于所选择给药途径的剂型。

对于口腔给药，组合物可以是以常规方法制成的片或锭的形式。

对于吸入给药，用于本发明的化学共轭物可以以下方式方便地转运：使用适宜的抛射剂如二氟二氯甲烷、三氯氟甲烷、二氯二氟乙烷或二氧化碳从压缩罐或雾化罐中喷射出气溶胶喷雾。当为加压气溶胶时，单位剂量可通过转运定量剂量的阅来确定。胶囊和药液桶、如用于吸入器或吹入器的明胶胶囊和药液桶可制成含化合物和适宜粉末基质如乳糖或淀粉的粉末混合物。

此处描述的化学共轭物可制成用于非胃肠道给药的方式，例如通过推注或输注给药。注射用制剂可以是单位剂量形式，例如在安瓿或
多剂量容器，任选加入防腐剂。组合物可以是悬浮液、溶液或油性或其他性介质中的乳剂，还可含有制药组分，如助悬剂、稳定剂和/或分散剂。

用于非胃肠道给药的药物组合物包括含水溶性形式的活性化合物的水溶液。此外，可将活性化合物的悬浮液制成适宜的油性注射悬浮液。适宜的亲脂性溶剂载体包括脂肪油如芝麻油，或者合成脂肪酸酯，如油酸乙酯、甘油三酯或脂质体。水性注射悬浮液可含有能增加悬浮液粘度的物质，如羧甲基纤维素钠、山梨醇或右旋糖酐。悬浮液可选还含有适宜的稳定剂或能增加共轭物溶解度，从而能制备高浓度溶液的物质。

可选择地，活性成分使用前可使用与适宜载体、例如无菌无热原的水、组成组分的粉末形式。

本发明的化学共轭物也可使用如常规栓剂基质，如可可脂或其它甘油酯制成直肠组合物，如栓剂或保留灌肠。

此处描述的药物组合物也含有适宜的固态凝胶相载体或赋形剂。该载体或赋形剂的实例包括但不限于碳酸钙、磷酸钙、各种糖、淀粉、纤维素衍生物、明胶和聚合物如聚乙二醇。

适合用于本发明上下文中的药物组合物包括含有有效量的活性成分、以达到预期目的组合物。更具体的，药物有效量指化学共轭物能有效防止、缓和或改善疾病症状或延长所治疗患者生命的量。

确定治疗有效量是在本领域技术人员能力范围内的，特别是参考此处详细公开的内容。

对于本发明的方法中所用的任意化学共轭物，治疗有效量或剂量最初可从细胞培养物和/或动物的活性分析中估计。例如，剂量可制成在动物模型中可达到包括通过活性分析测定的 IC50（例如达到半数抑制增殖活性的测试化合物的浓度）在内的循环浓度范围的量。该信息可用于更精确地测定在人中的有用剂量。

此处描述的化学共轭物的毒性和治疗效果可在实验动物中通过标准药学方法来测定，例如通过测定目标化合物的 IC50 和 LD50（测试动物50%致死的剂量）来测定。从这些活性分析和动物研究中得到的数据可用于确定对人的剂量范围。

剂量可根据所用剂型和所采用的给药途径而变化。可由私人医师
根据患者的状况选择正确的制剂、给药途径和剂量。（例如参见 Fingl 等人，1975，“The Pharmacological Basis of Therapeutica（治疗的药理学基础）”第一篇，第一页）。

可根据个体调节剂量和给药间隔，以得到活性部分足以维持精神抑制和/或抗增殖效应的血浆浓度，术语称之为最低有效浓度 (MEC)。每种制剂的 MEC 可能不同，但可根据体外和/或体内数据估计，例如达到 50% - 90% 抑制某种细胞增殖所需的浓度可使用此处所述的分析确定。达到 GEC 所需的剂量取决于个体的性质和给药途径。HPLC 分析或生物分析法可用于检测血浆浓度。

给药间隔也可使用 MEC 值来确定。制剂应当按照能维持血浆浓度在 10% - 90% 的时间，优选为 30% - 90%、最优先 50% - 90% 内，高于 MEC 的方案给药。

根据所治疗病情的严重程度和反应性，也应是在长达几天至几个星期或直到治愈或疾病状态消除的治疗过程中，单次给予上述缓释组词物。

当然，给药与组词物的量可根据所治疗患者、痛苦的严重程度、给药方式、处方医师的判断等而变化。

如果希望的话，本发明的组合物可放在包装或配药装置中，如 FDA 认可的成套包装中，所述的包装或配药装置可含一种或多种含活性成分的单位剂量形式。包装例如可含有金属或塑料薄片，如透明包装。包装或配药装置中还可有给药说明。包装或配药装置中也可有与政府代理商规定的药房发出的容器形式、药物的使用或销售有关的注意事项，该注意事项可反映代理商对组合物形式或对人或兽用给药的认可。该事项例如是贴美国食品药品监督管理局对处方药用认可的标签，或者是认可的产品插页。也可制备含有本发明的化学共轭物的组合物，放于适宜容器中并标记出所治疗的适应症，其中本发明的化学共轭物与相容的药物载体一起制备。标签上适用的适应症包括例如治疗精神分裂症、妄想症、儿童精神病、亨延顿氏舞蹈病和吉罗氏·德・拉图雷特氏综合征、脑增殖性疾病和 MDR 癌症和化学敏化作用，如这些术语在上文中定义的。

因此，根据本发明的优选实施方案，该药物组合物可包装在包装材料中，并且可通过包装材料上或其中的印刷加以区分，用于治疗精
神紊乱或疾病，用于治疗脑或外周增殖性紊乱或疾病，用于治疗如MDR 病症，和/或在与化疗药联合和/或在化学敏化作用是有的医疗条件下用于化学敏化作用。

根据本发明，还提供了在患者（例如人）中治疗或预防精神紊乱或疾病的方法。该方法通过给予所治疗患者治疗有效量的一种或多种本发明的化学共轭物来进行。

此处所用的术语“方法”指完成给定任务的方式、方法、技术和过程，包括但不限于已知的或化学、药动学、生物学、生物化学和医学领域的从业者易于从已知的方式、方法、技术和过程中得到的方式、方法、技术和过程。

此处，术语“治疗”包括消除、基本上抑制、减缓或逆转疾病的进展和发展、基本上改善疾病的临床症状或基本上预防疾病临床症状的出现。

此处所用的短语“精神紊乱或疾病”指由于中枢神经系统受损而以精神状态为特征的紊乱或疾病。可用本发明的化学共轭物治疗的精神紊乱或进步的实例包括但不限于精神分裂症、妄想症、儿童精神病、亨廷顿氏舞蹈病和吉累斯·德拉图雷特氏综合征。

此处所用的术语“给药”指将本发明的化学共轭物转运到受精神紊乱或疾病影响的脑部区域或部位的方法。

本发明的化学共轭物可通过腹膜内给药。更优选地，可口服给药。

术语“患者”指动物，主要是指具有血脑屏障的哺乳动物，包括人。

术语“治疗有效量”指所给予的化学共轭物能一定程度地缓和所治疗精神紊乱或疾病的一种或多种症状的量。

根据本发明的方法，治疗有效量优选为 1mg/kg 体重至 50 mg/kg 体重，更优选为 2mg/kg 体重至 30 mg/kg，更优选为 2mg/kg 体重至 20 mg/kg，最优选为 2mg/kg 体重至 10 mg/kg。

因此本发明涉及具有精神抑制活性的化学共轭物。由于其具有增强的精神抑制活性且由此引起的副作用最小为特征，本发明的化学共轭物具有很高的优越性。

此处所用的术语“副作用”指对患者给予某种药物而出现的有害症状。所述症状例如包括锥体束外症状，如上述详细描述的，并且一般与给予精神抑制药有关。
根据本发明，还提供了治疗或预防患者（例如人）中增殖性紊乱或疾病的方法。该方法通过给予所治疗患者治疗有效量的一种或多种本发明的化学共轭物而进行。

如此处所用的术语“增殖性紊乱或疾病”指以细胞增殖为特征的紊乱或疾病。可通过本发明预防或治疗的细胞增殖病情例如包括恶性肿瘤如癌症和良性肿瘤。

如此处所用的术语“癌症”指各种类型的恶性赘生物，其中大多数可侵入周围组织，并且可转移至不同位点，如 Stedman’s medical dictionary 第 25 版（Hensyl ed. 1990）中定义的。可用本发明的化学共轭物治疗的癌症的实例包括但不限于脑癌和皮肤癌。这些癌症还可细分，例如，脑癌包括多形性恶性胶质瘤、多形性成胶质细胞瘤、星形细胞瘤、室管膜瘤（ependymoma）、间胶质瘤、成神经管细胞瘤、脑（脊）膜瘤、肉瘤、成血管细胞瘤、松果腺薄壁组织（pineal parenchymal）。同样，皮肤癌也包括黑素瘤和 Kaposi 肉瘤。其它可用于本发明的化学共轭物治疗的癌症疾病包括乳头状瘤、胚神经胶质瘤（blastoglioma）、卵巢癌、前列腺癌、鳞状上皮细胞癌、星形细胞瘤、头癌、颈癌、膀胱癌、乳腺癌、肺癌、结肠直肠癌、甲状腺癌、胰腺癌、胃癌、肝细胞癌、非白血性白血病、淋巴瘤、何杰金氏淋巴瘤、伯基特淋巴瘤。其它非癌性增殖性疾病也可用本发明的化学共轭物治疗。该非癌性增殖性疾病包括例如狭窄、再狭窄、支架狭窄、血管移植再狭窄、关节炎、风湿性关节炎、糖尿病性视网膜病、血管生成、肺纤维化、肝硬化、动脉粥样硬化、肾小球性肾炎、糖尿病性肾炎、凝血性血管病综合症和移植排斥反应。

如下述实施例部分所证明的，本发明的化学共轭物对广谱癌症细胞，包括 NDR 癌症细胞具有高的和有力的抗增殖活性。

如下述实施例部分所另外证明的，当本发明的化学共轭物与各种化疗药联用时，还表现出化学敏化活性。

因此，根据本发明还提供了化学敏化活性的方法，如该术语在上述文中所定义的。该方法通过给予患者治疗有效量的一种或多种化疗药和化学敏化有效量的本发明的化学共轭物来进行。

如此处所用的，短语“化学敏化有效量”指当有治疗量化疗药存在时足以产生可测定的化学敏化作用的量。
当患者患有MDR癌症、例如但不限于肿瘤、结肠癌、肺癌或肉瘤时，该方法特别有效。根据本发明，化疗药如可以是下述之一：烷化剂，如氮芥、乙撑亚胺、安乃近、烷基磺酸盐、亚硝脲、三氯烯；代谢药物，如叶酸类似生物、嘧啶类似物和嘌呤类似物；天然产物，如长春花碱、鬼臼乙叉替、抗生素、酶、紫杉醇、生物应答调节剂；各种药物如碱金属、蒽二酮（anthracenedione）、蒽环类抗生素、取代脲、甲基衍生物或肾上腺皮质抑制剂；或激素或拮抗剂，如肾上腺皮质类固醇、黄体酮、雌激素、抗雄激素药、雄激素、抗雄激素药或促性激素释放激素类似物。化疗药优选为氮芥、鬼臼乙叉替、抗生素或铂配合物。优选的化疗药为顺铂和长春新碱（vincristine）。

因此，本发明教导了精神抑制药的新的化学共轭物，其与相应的非共轭精神抑制药相比，可产生较高的抗增殖活性，且副作用基本上较少、毒性较低。这些新的共轭物还表现出抗增殖活性和化学敏感性，因此可作为以减少副作用、毒性降低和对脑细胞有较高亲和力为特征的前药、或者作为与化疗药联用的化学敏感化剂而有利地用于治疗增殖疾病。

通过下述非限制性实施例的解释，本发明的其它目的、优点和新特征对本领域普通技术人员来说是显而易见的。另外，如上所述和下述权利要求部分请求保护的本发明的多个实施方案和方面可从下述实施例得到实验支持。

实施例

参考下述实施例，所述实施例与上述说明一起非限制性地解释本发明。

化学合成及分析

本发明的示范化学共轭物如下合成：将神经安定药磷酸盐和氯化

第 39 页
离出）在 5-10ml 二甲基酰胺（DMF）的混合物于室温、氮气氛围下搅
动 24 小时。接着将混合物于乙酸乙酯和水中分配。之后有机层用 5％
NaHCO₃ 和盐水冲洗，MgSO₄ 干燥，过滤，蒸干，得到预期产品。

4-苯基丁酸吩噻嗪酮（AN130）的合成：将吩噻嗪和 4-苯基丁酰
氯（4-苯基丁酸的酰氯）如上所述进行反应。所得残基粗品用 1：10
的甲醇：乙酸乙酯的混合物作为洗脱液、通过硅胶色谱柱纯化，得到
黄色油状产品（产率 78％）。

H-NMR (CDCl₃): δ = 1.94 (quint, J = 6 Hz, 4H, CO₂CH₂CH₂,
ArNCH₂CH₂), 2.32 (t, J = 6 Hz, 2H, CO₂CH₂), 2.64 (m, 12H, six NCH₂), 3.93
(t, J = 5.6 Hz, 2H, ArNCH₂), 4.17 (t, J = 5.3 Hz, 2H, NCH₂CH₂O), 6.82-7.30
(m, 12H, Ar, Ph) ppm.

C-NMR (CDCl₃): δ = 23.25 (CH₂CH₂CO₂), 26.46 (ArNCH₂CH₂),
33.56 (CH₂Ph), 35.06 (CH₂CO₂), 45.10 (ArNCH₂), 52.23 (two NCH₂), 52.72
(two NCH₂), 55.25 (ArNCH₂CH₂CH₂), 57.04 (NCH₂CH₂O), 61.32
(NCH₂CH₂O), 116.00 (C₁, C₁₀), 122.51 (C₃), 123.15 (C₈), 123.86 (CH₂C(CH₂)₂,
125.13 (C₁), 126.02 (p-Ph), 127.56 (C₈), 127.63 (C₃), 128.01 (o-Ph), 128.41 (m-
Ph), 128.49 (C₄), 173.33 (CO₂) ppm.

MS (Cl, i-Bu): m/z (%) = 550 (MH⁺, 1.7).

丁酸吩噻嗪酮（AN167）的合成：将吩噻嗪和丁酰氯（丁酸的酰
氯）如上所述进行反应。得到黄色油状产品（产率 74％），不需要另
外纯化可直接使用。

H-NMR (CDCl₃): δ = 0.93 (t, J = 7.36 Hz, 3H, Me), 1.63 (sext, J = 7.44
Hz, 2H, CH₃Me), 1.95 (quint, J = 6.7 Hz, 2H, ArNCH₂CH₂), 2.27 (t, J = 7.46
Hz, 2H, CO₂CH₂), 2.43 (m, 10H, five NCH₂), 2.57 (t, J = 5.96 Hz, 2H,
NCH₂CH₂O), 3.66 (t, J = 5.96 Hz, 2H, ArNCH₂), 4.18 (t, J = 5.9 Hz, 2H, NCH₂CH₂O), 6.66 (m, 7H, Ar) ppm.

¹³C-NMR (CDCl₃): δ = 13.54 (CH₃CH₂), 18.29 (MeCH₂), 24.06 (ArNCH₂CH₂), 36.03 (CH₂CO₂), 45.15 (ArNCH₂), 53.09 (two NCH₂), 53.23 (two NCH₂), 55.30 (ArNCH₂CH₂CH₂), 56.51 (NCH₂CH₂O), 61.48 (NCH₂CH₂O), 115.64 (C₁, C₁₀), 122.02 (C₃), 122.69 (C₆), 123.27 (C₃), 124.52 (C₀), 127.23 (C₇), 127.29 (C₉), 127.68 (C₄), 133.00 (C₂), 144.32 (C₁₂), 146.29 (C₁₁), 173.37 (CO₂) ppm.

MS (CI, NH₃): m/z (%) = 473 (M⁺, 100), 474 (M + H⁺, 82.64).

丙酸吩噻嗪酯（AN170）的合成：将吩噻嗪和丙酰氯（丙酸的酰氯）如上所述进行反应。得到黄色油状产品（产率 85%），不需要另外纯化可直接使用。

¹H-NMR (CDCl₃): δ = 1.12 (t, J = 7.53 Hz, 3H, Me), 1.95 (quint, J = 6.8 Hz, 2H, ArNCH₂CH₂), 2.32 (q, J = 7.57 Hz, 2H, CO₂CH₂), 2.51 (m, 10H, five NCH₂), 2.61 (t, J = 5.95 Hz, 2H, NCH₂CH₂O), 3.89 (t, J = 6.8 Hz, 2H, ArNCH₂), 4.16 (t, J = 9.92 Hz, 2H, NCH₂CH₂O), 6.98 (m, 7H, Ar) ppm.

¹³C-NMR (CDCl₃): δ = 9.01 (CH₃), 24.08 (ArNCH₂CH₂), 27.44 (CH₂CO₂), 45.18 (ArNCH₂), 53.09 (two NCH₂), 53.26 (two NCH₂), 55.32 (ArNCH₂CH₂CH₂), 56.50 (NCH₂CH₂O), 61.63 (NCH₂CH₂O), 115.67 (C₁, C₁₀), 122.05 (C₃), 122.72 (C₆), 123.30 (C₃), 124.56 (C₀), 127.26 (C₇), 127.53 (C₉), 127.71 (C₄), 133.03 (C₂), 144.35 (C₁₂), 146.32 (C₁₁), 174.24 (CO₂) ppm.

MS (CI, NH₃): m/z (%) = 459 (M⁺, 100), 458 (M, 47.63).

戊酸吩噻嗪酯（AN178）的合成：将吩噻嗪和戊酰氯（戊酸的酰氯）如上所述进行反应。所得残基粗品用 7: 4 的乙酸乙酯: 乙烷的混合物作为洗脱液、通过硅胶色谱柱纯化。得到浅黄色油状产品（产率 75%）。
1H-NMR (CDCl$_3$): $\delta = 0.86$ (t, $J = 7.23$ Hz, 3H, Me), 1.29 (sext, $J = 6.97$ Hz, 2H, CH$_2$Me), 1.56 (quint, $J = 7.09$ Hz, 2H, CH$_2$CH$_2$CO$_2$), 1.87 (quint, $J = 6.79$ Hz, 2H, ArNCH$_2$CH$_2$), 2.26 (t, $J = 7.64$ Hz, 2H, CH$_2$CO$_2$), 2.37 (m, 10H, five NCH$_2$), 2.54 (t, $J = 5.93$ Hz, 2H, ArNCH$_2$), 4.14 (t, $J = 5.95$ Hz, 2H, NCH$_2$CH$_2$O), 6.53-7.14 (m, 7H, Ar) ppm.

13C-NMR (CDCl$_3$): $\delta = 13.51$ (CH$_3$CH$_2$), 22.02 (CH$_2$Me), 23.89 (CH$_2$CH$_2$Me), 26.82 (ArNCH$_2$CH$_2$), 33.80 (CH$_2$CO$_2$), 45.07 (ArNCH$_2$), 53.00 (two NCH$_2$), 53.16 (two NCH$_2$), 55.09 (ArNCH$_2$CH$_2$CH$_2$), 56.46 (NCH$_2$CH$_2$O), 61.42 (NCH$_2$CH$_2$O), 111.68 (q, $J = 3.77$ Hz, C$_1$), 115.73 (C$_{10}$), 118.74 (q, $J = 3.77$ Hz, C$_3$), 122.85 (C$_8$), 123.77 (C$_6$), 124.02 (q, $J = 272$ Hz, CF$_3$), 127.20 (C$_7$), 127.29 (C$_9$), 127.42 (C$_4$), 129.34 (q, $J = 32$ Hz, C$_2$), 129.69 (C$_5$), 144.08 (C$_{11}$), 145.51 (C$_{12}$), 173.45 (CO$_2$) ppm.

MS (CI/NH$_3$): m/z (%) = 522 (MH$^+$, 100).

丙酸氨奋乃静酯（AN179）的合成：将氨奋乃静和丙酰氯（丙酸的酰氯）如上所述进行反应，得到浅黄色油状产品（产率95%），不需要另外纯化可直接使用。

1H-NMR (CDCl$_3$): $\delta = 1.12$ (t, $J = 7.55$ Hz, 3H, Me), 1.91 (quint, $J = 7.18$ Hz, 2H, ArNCH$_2$CH$_2$), 2.32 (q, $J = 7.56$ Hz, 2II, CO$_2$CH$_2$), 2.45 (m, 10H, five NCH$_2$), 2.59 (t, $J = 5.92$ Hz, 2H, NCH$_2$CH$_2$O), 3.93 (t, $J = 7.12$ Hz, 2H, ArNCH$_2$), 4.17 (t, $J = 5.95$ Hz, 2H, NCH$_2$CH$_2$O), 6.67-7.14 (m, 7H, Ar).

13C-NMR (CDCl$_3$): $\delta = 8.91$ (Me), 23.87 (ArNCH$_2$CH$_2$), 27.33 (CH$_2$CO$_2$), 45.05 (ArNCH$_2$), 52.98 (two NCH$_2$), 53.17 (two NCH$_2$), 55.07 (ArNCH$_2$CH$_2$CH$_2$), 56.42 (NCH$_2$CH$_2$O), 61.54 (NCH$_2$CH$_2$O), 111.65 (q, $J = 3$ Hz, C$_1$), 115.71 (C$_{10}$), 118.73 (q, $J = 3.77$ Hz, C$_3$), 122.84 (C$_8$), 123.73 (C$_6$), 123.99 (q, $J = 272$ Hz, CF$_3$), 127.18 (C$_7$), 127.27 (C$_9$), 127.41 (C$_4$), 129.30 (q, $J = 32$ Hz, C$_2$), 129.65 (C$_5$), 144.05 (C$_{11}$), 145.48 (C$_{12}$), 174.10 (CO$_2$).

MS (CI/NH$_3$): m/z (%) = 494 (MH$^+$, 100).
丁酸氯芬乃静酯 (AN180) 的合成：将氯芬乃静和丁酰氯（丙酸的酰氯）如上所述进行反应，得到浅黄色油状产品（产率 97%），不需要另外纯化可直接使用。

1H-NMR (CDCl$_3$): $\delta = 0.93$ (t, $J = 7.4$ Hz, 3H, Me), 1.32 (sext, $J = 7.4$ Hz, 2H, CH$_2$Me), 1.92 (quint, $J = 7.18$ Hz, 2H, Ar NCH$_2$CH$_2$), 2.27 (t, $J = 7.4$ Hz, 2H, CO$_2$CH$_2$), 2.45 (m, 10H, five NCH$_2$), 2.58 (t, $J = 5.9$ Hz, 2H, NCH$_2$CH$_2$O), 3.93 (t, $J = 7.2$ Hz, 2H, ArNCH$_2$), 4.17 (t, $J = 5.98$ Hz, 2H, NCH$_2$CH$_2$O), 6.67-7.13 (m, 7H, Ar) ppm.

13C-NMR (CDCl$_3$): $\delta = 13.42$ (CH$_3$CH$_2$), 18.20 (MeCH$_2$), 23.85 (ArNCH$_2$CH$_2$), 35.92 (CH$_2$CO$_2$), 45.02 (ArNCH$_2$), 52.97 (two NCH$_2$), 53.14 (two NCH$_2$), 55.04 (ArNCH$_2$CH$_2$CH$_2$), 56.43 (NCH$_2$CH$_2$O), 61.39 (NCH$_2$CH$_2$O), 111.62 (q, $J = 3$ Hz, C$_1$), 115.68 (C$_{10}$), 118.68 (q, $J = 3.77$ Hz, C$_3$), 122.80 (C$_8$), 123.70 (C$_9$), 123.98 (q, $J = 272$ Hz, CF$_2$), 127.15 (C$_7$), 127.24 (C$_9$), 127.38 (C$_9$), 129.27 (q, $J = 32$ Hz, C$_2$), 129.62 (C$_3$), 144.03 (C$_{11}$), 145.46 (C$_{12}$), 173.23 (CO$_2$) ppm.

MS (CI/CH$_4$): m/z (%) = 507.18 (M$^+$, 75.3), 508.18 (MH$^+$, 57.57), 419.13 (M-C$_4$H$_8$O$_2$, 82).

戊酸氯芬乃静酯 (AN181) 的合成：将氯芬乃静和戊酰氯（戊酸的酰氯）如上所述进行反应，所得残基粗品用 7: 4 的乙酸乙酯：己烷的混合物作为洗脱液，通过硅胶色谱柱纯化，得到浅黄色油状产品（产率 75%）。

1H-NMR (CDCl$_3$): $\delta = 0.86$ (t, $J = 7.23$ Hz, 3H, Me), 1.29 (sext, $J = 6.97$ Hz, 2H, CH$_2$Me), 1.56 (quint, $J = 7.09$ Hz, 2H, CH$_2$CH$_2$CO$_2$), 1.87 (quint, $J = 6.79$ Hz, 2H, ArNCH$_2$CH$_2$), 2.26 (t, $J=7.64$ Hz, 2H, CH$_2$CO$_2$), 2.37 (m, 10H, five NCH$_2$), 2.54 (t, $J = 5.93$ Hz, 2H, ArNCH$_2$), 4.14 (t, $J = 5.95$ Hz, 2H, NCH$_2$CH$_2$O), 6.53-7.14 (m, 7H, Ar).
由吲哚嗪或氟烷乃静以及氨基有机酸制备的化学共轭物的合成——一般方法：将 N-保护的氨基酸 (1 当量) 和烷基二噁唑 (CDI) (1.1 当量) 在 5~10ml DMF 中的混合物于氮气氛围下搅拌 1 小时。之后加入吲哚嗪或氟烷乃静 (1 当量)，该混合物于 90℃、氮气氛围下搅拌 24 小时，将所得浆液蒸发，于乙酸乙酯和水中分配。将水相用乙酸乙酯萃取两次，合并有机相，并用 NaHCO₃ 洗涤两次，盐水冲洗两次，MgSO₄ 干燥，过滤，蒸发，得到浅黄色油状的 N-保护产品。

N-保护基从产品中如下除去：将 4N HCl 在乙酸乙酯中的溶液逐滴加入 N-保护产品在乙酸乙酯中的溶液中。该混合物于室温下搅拌 2 小时。之后蒸发溶剂，残余物于高真空中另外干燥。将所得三盐酸盐形式的产品在甲醇/乙醚混合物中重结晶，过滤干燥。

N-boc-4-氨基丁酸吲哚嗪酯的合成：将吲哚嗪与 N-t-boc-GABA (N-t-boc-保护的 4-氨基丁酸) 如上所述进行反应。所得粗产品用 20:1 的乙酸乙酯：乙醇的混合物作为洗脱液，通过硅胶色谱柱纯化。得到浅黄色油状产品（产率 63%）。

\[^{1}H-\text{NMR} \text{ (CDCl}_{3}) \text{: } \delta = 1.43 \text{ (s, 9H, } t-Bu) \text{, 1.82 (quint, } J = 7.18 \text{ Hz, 2H, } CH_{2}CH_{2}NHBOc \text{), 1.90 (quint, } J = 7.18 \text{ Hz, 2H, ArNCH}_{2}CH_{2}) \text{, 2.35 (t, } J = 8.97 \text{ Hz, 2H, } CO_{2}CH_{2} \text{), 2.42 (m, 10H, five } NCH_{2} \text{), 2.60 (t, } J = 5.98 \text{ Hz, 2H, } NCH_{2}CH_{2}O \text{), 3.16 (q, } J = 6.85 \text{ Hz, 2H, } CH_{2}NHBOc \text{), 3.84 (t, } J = 7.2 \text{ Hz, 2H,}}\]
ArNCH₂), 4.18 (t, J = 5.98 Hz, 2H, NCH₂CH₂O), 5.10 (bs, 1H, NH), 6.83 (m, 7H, Ar) ppm.

¹³C-NMR (CDCl₃): δ = 23.92 (CH₂CH₂NHBoc), 24.98 (ArNCH₂CH₂), 28.21 (t-Bu), 39.50 (CH₂CO₂), 45.05 (ArNCH₂), 52.89 (two NCH₂), 53.03 (two NCH₂), 55.15 (ArNCH₂CH₂CH₂), 56.34 (NCH₂CH₂O), 60.13 (CH₂NHBoc), 61.29 (NCH₂CH₂O), 78.80 (CMe₃), 115.60 (C₁, C₁₀), 121.96 (C₃), 122.65 (C₈), 123.22 (C₅), 124.45 (C₆), 127.21 (C₇, C₄), 127.62 (C₉), 132.93 (C₂), 144.23 (C₁₂), 146.23 (C₁₁), 155.79 (NCO₂), 172.92 (CO₂) ppm.

N-boc-4-氨基丁酸氨奋乃静酯的合成：将氨奋乃静与 N-t-boc-GABA (N-t-boc-保护的 4-氨基丁酸) 如上所述进行反应。所得粗产品用 20:1 的乙酸乙酯：乙醇的混合物作为洗脱液，通过硅胶色谱柱纯化。得到浅黄色油状产品（产率 75%）。

¹H-NMR (CDCl₃): δ = 1.49 (s, 9H, t-Bu), 1.77 (quint, J = 6.38 Hz, 2H, CH₂CH₂NHBoc), 1.90 (quint, J = 6.96 Hz, 2H, ArNCH₂CH₂), 2.35 (t, J = 6.38 Hz, 2H, CO₂CH₂), 2.45 (m, 10H, five NCH₂), 2.58 (t, J = 5.8 Hz, 2H, NCH₂CH₂O), 3.14 (q, J = 5.8 Hz, 2H, CH₂NHBoc), 3.94 (t, J = 6.38 Hz, 2H, ArNCH₂), 4.2 (t, J = 5.8 Hz, 2H, NCH₂CH₂O), 4.92 (bs, 1H, NH), 6.8-7.2 (m, 7H, Ar) ppm.

¹³C-NMR (CDCl₃): δ = 23.88 (CH₂CH₂NHBoc), 25.07 (ArNCH₂CH₂), 28.28 (t-Bu), 39.60 (CH₂CO₂), 45.13 (ArNCH₂), 52.94 (two NCH₂), 53.04 (two NCH₂), 55.13 (ArNCH₂CH₂CH₂), 56.43 (NCH₂CH₂O), 60.22 (CH₂NHBoc), 61.36 (NCH₂CH₂O), 78.92 (CMe₃), 111.77 (q, J = 3 Hz, C₁), 115.82 (C₁₀), 118.85 (q, J = 3.77 Hz, C₃), 122.97 (C₈), 123.91 (C₆), 124.05 (q, J = 272 Hz, CF₃), 127.30 (C₇), 127.39 (C₉), 127.52 (C₄), 129.42 (q, J = 3 Hz, C₂), 129.82 (C₃), 144.12 (C₁₁), 145.58 (C₁₂), 155.82 (NCO₂), 173.01 (CO₂) ppm.

4-氨基丁酸吲哚美辛三盐酸盐的合成（AN168）：将如上所述制得的 N-boc-4-氨基丁酸吲哚美辛与如上所述的 HCl 反应，得到粘稠半固体油状的三盐酸盐形式的产品（定量产率）。

45
1H-NMR (CDCl$_3$): $\delta = 1.93$ (quint, $J = 7.14$ Hz, 2H, CH$_2$CH$_2$NH$_2$), 2.23 (m, 2H, ArNCH$_2$CH$_2$), 2.61 (t, $J = 7.14$ Hz, 2H, CO$_2$CH$_2$), 3.01 (m, 2H, CH$_2$NH$_2$), 3.33 (m, 2H, ArNCH$_2$CH$_2$CH$_2$), 3.48-3.87 (m, 10H, five NCH$_2$), 4.10 (t, $J = 6.4$ Hz, 2H, NCH$_2$CH$_2$O), 4.48 (m, 2H, ArNCH$_2$), 7.7-3.1 (m, 7H, Ar) ppm.

13C-NMR (CDCl$_3$): $\delta = 22.34$ (CH$_2$CH$_2$NH$_2$), 22.93 (ArNCH$_2$CH$_2$), 31.11 (CH$_2$CO$_2$), 39.56 (CH$_2$NH$_2$), 44.76 (ArNCH$_2$), 49.42 (two NCH$_2$), 49.61 (two NCH$_2$), 55.29 (ArCH$_2$CH$_2$CH$_2$), 56.08 (NCH$_2$CH$_2$O), 58.64 (NCH$_2$CH$_2$O), 116.69 (C$_{10}$), 117.20 (C$_{1}$), 123.49 (C$_{3}$), 124.19 (C$_{6}$), 125.44 (C$_{3}$), 126.42 (C$_{6}$), 128.20 (C$_{7}$), 128.56 (C$_{9}$), 128.80 (C$_{3}$), 134.23 (C$_{2}$), 144.97 (C$_{12}$), 147.37 (C$_{11}$), 173.04 (CO$_2$) ppm.

MS (Cl/CH$_4$): m/z (%) = 403.09 (MH$^+$-C$_4$H$_7$NO, 100), 489.18 (MH$^+$, 1.7).

4-氨基丁酸氯乙基酯三盐酸盐的合成（AN187）：如上所述，将N-boc-4-氨基丁酸氯乙基酯与HCl反应，得到白色固体产品（产率75%）。

1H-NMR (CDCl$_3$): $\delta = 1.93$ (quint, $J = 7.25$ Hz, 2H, CH$_2$CH$_2$NH$_2$), 2.29 (quint, $J = 5.42$ Hz, 2H, ArNCH$_2$CH$_2$), 2.49 (t, $J = 7.14$ Hz, 2H, CO$_2$CH$_2$), 2.99 (t, $J = 7.54$ Hz, 2H, CH$_2$NH$_2$), 3.39 (t, $J = 4.87$ Hz, 2H, ArNCH$_2$CH$_2$CH$_2$), 3.40 (t, $J = 5.42$ Hz, 2H, NCH$_2$CH$_2$N), 3.4-4.0 (m, 8H, four NCH$_2$), 3.91 (m, 2H, NCH$_2$CH$_2$O), 4.18 (t, $J = 6.12$ Hz, 2H, ArNCH$_2$), 7.02-7.33 (m, 7H, Ar) ppm.

13C-NMR (CDCl$_3$): $\delta = 22.76$ (ArNCH$_2$CH$_2$), 23.36 (CH$_2$CH$_2$NH$_2$), 31.49 (CH$_2$CO$_2$), 39.96 (CH$_2$NH$_2$), 45.21 (ArNCH$_2$), 49.57 (two NCH$_2$), 50.02 (two NCH$_2$), 55.72 (ArNCH$_2$CH$_2$CH$_2$), 56.48 (NCH$_2$CH$_2$O), 58.99 (NCH$_2$CH$_2$O), 113.41 (q, $J = 3.77$ Hz, C$_{1}$), 117.80 (C$_{10}$), 120.70 (q, $J = 3.77$ Hz, C$_{3}$), 124.89 (C$_{5}$), 126.24 (C$_{8}$), 125.59 (q, $J = 272$ Hz, CF$_3$), 128.75 (C$_{7}$), 128.97 (C$_{9}$), 129.25 (C$_{4}$), 130.96 (q, $J = 32$ Hz, C$_{2}$), 132.51 (C$_{5}$), 145.12 (C$_{11}$), 147.25 (C$_{12}$), 173.48 (CO$_2$) ppm.

MS (Cl/CH$_4$): m/z (%) = 523 (MH$^+$, 0.5), 280 (M-C$_{14}$H$_9$NF$_3$S, 100).
下述表 1 显示了通过上述方法合成的化学共轭物。

表 1

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AN-130</td>
<td>4-苯基丁酸嗜睡酸酯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{13}H_{26}ClN_4O_2S</td>
<td>550.16</td>
</tr>
<tr>
<td>AN-167</td>
<td>丁酸嗜睡酸酯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{12}H_{24}ClN_4O_2S</td>
<td>474.06</td>
</tr>
<tr>
<td>AN-168</td>
<td>4-氯丁酸嗜睡酸酯三盐酸盐</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{25}H_{33}ClN_4O_2S·3HCl</td>
<td>598.46</td>
</tr>
<tr>
<td>AN-177</td>
<td>丙酸嗜睡酸酯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{24}H_{30}ClN_4O_2S</td>
<td>460.03</td>
</tr>
<tr>
<td>AN-178</td>
<td>戊酸嗜睡酸酯</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{24}H_{34}ClN_4O_2S</td>
<td>488.09</td>
</tr>
</tbody>
</table>
化学结构

<table>
<thead>
<tr>
<th>编号</th>
<th>化学名称</th>
<th>化学式</th>
<th>分子量</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN-180</td>
<td>丁酸氟奈乃酯</td>
<td>C_{28}H_{32}F_{3}N_{3}O_{2}S</td>
<td>507.61</td>
</tr>
<tr>
<td>AN-179</td>
<td>丙酸氟奈乃酯</td>
<td>C_{25}H_{35}F_{3}N_{3}O_{2}S</td>
<td>493.59</td>
</tr>
<tr>
<td>AN-181</td>
<td>戊酸氟奈乃酯</td>
<td>C_{27}H_{38}F_{3}N_{3}O_{2}S</td>
<td>521.64</td>
</tr>
<tr>
<td>AN-187</td>
<td>4-氨基丁酸氟奈酯三盐酸盐</td>
<td>C_{28}H_{33}F_{3}N_{4}O_{2}S·3HCl</td>
<td>632.01</td>
</tr>
</tbody>
</table>

材料和试验方法

细胞系：本研究中使用人前列腺癌（PC-3）、人结肠癌（HT-29）、鼠黑色素瘤（B-16）及其耐药的亚克隆（B-16 MDR）、小鼠纤维母细胞（3T3）、髓样白血病（HL 60）及其耐药的亚克隆（HL 60 M2）、子宫内膜细胞系（MES SA）及其耐药的亚克隆（MESDX5）、Jurkat T 淋巴瘤和单核细胞白血病（U-937）。
大鼠纤维母细胞的原始培养物通过已知方法从新生大鼠中得到
[7]。

神经元细胞和神经胶质细胞从 ICR 妊娠（14-15 日）小鼠的胚胎
脑髓中制备。分离出脑髓并在 Leibowitch L-15 基质 (Beth Aemek),
75 ug/ml 的庆大霉素与 0.2 mM 谷酰胺的混合物中使之匀浆化。在聚-
D-赖氨酸处理的 96 孔微量滴定板上以 300-500K/孔进行细胞接种。48
小时后，将 5-氟脱氧尿苷 (UFDR) 和尿苷加入滴定板的一半孔中，得
到所选的神经元培养物。未经处理的培养物包括神经元细胞与神经胶
质细胞的混合物。细胞在含 10%FCS (胎牛血清) 和 2mM 谷氨酰胺的 RPMI
或 DMEM 培养基中生长，丙于 37°C、潮湿 5%CO₂ 中进行孵育。

大鼠肌细胞培养物从 1-2 日龄的新生 Wistar 系大鼠 (Harlan) 中
制备得到。使用 30 只新生大鼠从而得到 2.5-3.0×10⁷ 个肌细胞。为
此目的，将心脏分离，并于室温下用 RDB™(从无花果树提取物分离
得到的蛋白水解酶) 进行酶催化组织解离。该方案重复 5 次，直到细
胞完全分散。为了减少非肌细胞，将分散的细胞以 3×10⁶/ml 预设于培
养瓶中的 DMEM 培养基中，培养 45min，接着转移至聚胺覆盖的微量滴
定板中培养 24 小时。之后在培养物中加入细胞毒素剂 ARO-C，藉此除
去分裂细胞而仅留下未分裂肌细胞。将肌细胞孵育 4 天后进行显微镜
观察。

癌细胞和正常细胞的增殖：中性红分析法 [8] 或测定 DNA 含量的
荧光分析法 [9] 测定增殖。中性红分析法中，中性红被溶酶体吸收因
而使活细胞染色。通过比色法 (550nm 处 SLISA 测定) 进行定量分析。
荧光分析法中，以 alamar blue 作为氧化还原指示剂。于激发波长为
544nm 和发射波长为 590nm 时测定 alamar blue 荧光 (FLUOstar BMGLab
Technologies, 奥芬堡, 德国)。

细胞凋亡与 DNA 断裂：通过流式细胞检测分析对 propidium iodide
染色细胞的细胞核断裂进行研究。该分析通过使用配置有激发波长为
480nm 的氩离子激光和偶极子识别模块 (DDM) 的 FACS 扫描 (Becton
Dickinson, Mountain View, CA) 进行。使用 Lysis II (Becton Dickinson)
软件进行数据采集。根据 Nicolletti 标准等对凋亡细胞核的变化进
行评价。

化学敏化作用：体外测定了奋乃静及其化学共轭物 AN 168 的化
学敏化作用。使用不同浓度的奋乃静或 AN 168 与化疗药对 C6 大鼠神
经胶质瘤细胞或 Jurkat T 激性瘤细胞共同给药。如上所述测定经下
述处理后的细胞生存能力和/或 DNA 断裂：化疗药、奋乃静、AN 168、
化疗药与奋乃静的联合、或者化疗药与 AN 168 的联合。

动物：健康成年雄性大鼠（150-230 克）购自 Harlan (以色列)。
将动物分为 2-5 只/笼，实验前于动物房的控制条件下饲养一周。该
实验用未经实验的大鼠采用双盲法进行。每个实验中检测各个治疗组
（每组约 5-10 只大鼠）。

从 Harlan (以色列) 购得健康成年雄性或雌性小鼠。实验前于控
制条件下饲养 4-7 天，以双盲法进行实验。每个实验中检测各个治疗
组（每组约 10 只小鼠）。

大鼠的强直性昏厥：由典型的神经安定药引起的锥体外系症状的临
床表现可通过经神经安定治疗的大鼠的固有强直性昏厥行为来评价。
强直性昏厥可通过下述两种方法确定：(i) 测定挂在笼壁上的大鼠移
动其下腿到达水平面所需的时间（墙壁测试法）；和 (ii) 将大鼠放在
水平面上，其前肢靠在扁平杆上（5.5cm 高），类似演奏钢琴的姿势。
测定大鼠下来并到达水平面所需的时间（钢琴测试法）。追踪观测的
最长时间为两分钟，每只动物每小时逐一进行该实验。这些实验可用于
评价中枢多巴胺（DA）的阻断活性，并且是神经抑制药引起的锥体
外系症状的适用标准[10]。测定奋乃静、氯奋乃静、AN167、AN168、
AN177、AN178、AN180 和 AN187 引起的总强直性昏厥及其时间过程（见
上述表 1），比较不同的化合物和不同的条件。通常，对动物腹腔内注
射下述药物：5 mg/Kg 的剂药物奋乃静和 7.5mg/Kg 的氯奋乃静，以及
等摩尔剂量的苯丙胺中其相关的化学共轭物，所述药物溶于 1%乳酸
中。在不同的测定中，对动物口服给予溶于 1%乳酸中的 AN168 和奋乃
静。

小鼠的强直性昏厥：经神经安定药治疗的小鼠中其固有强直性昏
厥行为以两种不同的实验测定。

第一种方法中，将成年雄性小鼠分组，每组用奋乃静 (1.5 mg/kg,
9 只小鼠)、奋乃静和等摩尔剂量 GABA 的混合物 (7 只小鼠)、等摩尔
剂量 AN-168 (8 只小鼠) 处理或者不经过处理 (对照组，6 只小鼠)。
使用上述装置测定强直性昏厥：两个笼子，之间由一连接杆连接。给
药1小时、2小时、3小时后，将小鼠悬挂在连接杆中间，监测2分钟内到达靶点的小鼠百分数。

第二种方法中，将健康雌性小鼠分组，每组用2.5 mg/kg 奥乃静（6只小鼠）、奥乃静和等摩尔剂量GABA的混合物（6只小鼠）、等摩尔剂量AN-168（7只小鼠）处理或者不经过处理（对照组，7只小鼠）。使用上述装置测定强直性昏厥。将小鼠悬挂在连接杆中间，测定小鼠到达靶点所需的时间。

催乳素的分泌：典型神经安定药可引起催乳素血症，所述的催乳素血症通常与乳溢、性腺受损以及性功能障碍有关[11]。因此，腹膜内或口服给予已知的神经安定药及其本发明的化学共轭后，测定循环中催乳素血浆浓度可作为所给予药物精神抑制活性的一项灵敏的生化指标。因此，将大鼠用乙醚麻醉后眼眶取血，用Millennia、即鼠催乳素酶免疫分析试剂盒（DPC，USA）进行该分析。

行为标准：观察经本发明的化学共轭处理的动物的镇静状态，评分如下所述（表2）。各治疗组中动物的镇静和活动程度以分数0-3来评价，其中0代表活跃且活动的动物，1分代表安静且活动的动物，2分代表安静但不动的动物，3分代表完全共济失调且无警觉性的动物。经治疗的动物的行为可用于估计所测试的神经安定药对及其化学共轭的精神抑制效力，以及由此引起的锥体外系症状的严重程度。

毒性：体外毒性通过下述方法测定：测定所测试化合物（已知的神经安定药或本发明的化学共轭）对来源于新生小鼠脑部的神经元、完整脑神经元和神经胶质细胞的原始培养物的影响。也可使用大鼠肌细胞来确定奥乃静及其化学共轭AN168的体外毒性。体内急性毒性通过单次腹腔内给予推注剂量的药物的2月龄的小鼠来评价，所述的体内急性毒性以LD₅₀来确定。

实验结果

奥乃静及其化学共轭的诱发强直性昏厥性质和精神抑制活性：对成年雄性Wistar大鼠（体重150-200克）、每笼5只、以5mg/kg剂量腹腔内注射给予溶于1%乳酸中的奥乃静及其等摩尔浓度的化学共轭物AN130、AN167和AN168，从而测得上述化合物的诱发强直性
昏厥性质和精神抑制活性，并且通过上述“壁”测试法来确定。对照
组仅给予载体（乳酸）。追踪观察 2 小时内所述处理对强直性昏厥和
催乳素分泌两者的效应，结果如图 1a 和 1b 中所示。

图 1a 显示了给药后 0、60 和 120 分钟时、每个时间点重复测定
3 次所引起的强直性昏厥的数据之和。每列为 5 只动物的平均值。总
时间以奋乃静为标准（例如 100%）。所得数据表明，用奋乃静和 AN 120
处理可引起强直性昏厥，而 AN 167 和 AN 168 根本不引起强直性昏厥。

图 1b 显示了处理后 0、60 和 120 分钟时所测定的催乳素血中浓
度，其表示在每个时间点的 3 次测定之和。催乳素血中浓度可作为这
些化合物精神抑制活性的一项生化指标。所得数据表明，当用奋乃静、
AN 130、AN 167 和 AN168 处理后，动物的催乳素血中浓度的曲线上
各点的曲线在 60 分钟时达到峰值，之后下降。用化学共轭物 AN
130、AN 167 和 AN168 处理的动物在每个时间点的催乳素血中浓度与
奋乃静相似，表明这些化学共轭物的精神抑制活性与其源药物奋乃静
是相似的。在仅用载体（1%乳酸）处理的对照组中，催乳素的浓度没
有变化。

SAR（构效关系）研究：对奋乃静及其同样的化学共轭物进行 SAR
研究。如上所述测定所引起的强直性昏厥，并通过“壁”测试法确定。
结果如图 2 所示。发现奋乃静与 GABA 的共轭物、即 AN 168 最有效，
其使所引起的强直性昏厥的下降几乎最强，之后是含戊酸酯的共轭物
AN178、含丙酸酯的共轭物 AN177 和含丁酸酯的共轭物 AN167。该实验
表明，与给予奋乃静本身所引起的诱因性强直性昏厥相比，用其化学
共轭物后引起的诱因性强直性昏厥显著下降。

由奋乃静、氯奋乃静及含其的化学共轭物引起的强直性昏厥和动
物行为：给予奋乃静、氯奋乃静及其含丁酸和含 GABA 的化学共轭物（AN
167、AN 168、AN 180 和 AN 187，见表 1）后，检测由其引起的总强
直性昏厥、该诱因性强直性昏厥的时间过程以及动物行为。腹膜内注
射 5 mg/Kg 的奋乃静、等摩尔浓度的 AN 167 和 AN 168，7.5 mg/Kg
氯奋乃静、等摩尔浓度的 AN 180 和 AN 187 后进行测定。所述强直
性昏厥通过“壁”测试法确定。

图 3a 表示了由测试化合物引起的总强直性昏厥。所得数据为给
后 0, 30, 60, 90, 120, 180, 240 和 420 分钟时测定的数据之和，
总时间以奋乃静和氯 condemned 升高标准化（= 100%）。
含丁酸酯的化学多功能物 AN 167 和 AN 180 能显著地降低强直性昏迷。
奋乃静合 GABA 的共同物 AN168 能完全消除强直性昏迷，而氯奋乃静合 GABA 的共同物 AN187
也能显著降低强直性昏迷。

图 3b 显示了给予奋乃静、其 GABA 共轭物 AN168、氯奋乃静、其 GABA 共轭物 AN187 后于 0, 60 和 120 分钟时所测定的催乳素血中浓度。
所得数据表明，当用奋乃静、氯奋乃静或者它们的 GABA 化学共轭物
处理后，动物的催乳素血中浓度的曲线是相同的，所述曲线在 60 分
钟时达到峰值，之后下降。用 AN 168 和 AN 187 处理的动物在每个时
间点的催乳素血中浓度分别与奋乃静和氯奋乃静相似。

图 4a 表示了由奋乃静及其化学共轭物引起的强直性昏迷历时 7
小时的时间过程。由奋乃静引起的强直性昏迷在 2 小时时达到峰值，
之后减弱。与奋乃静相比，含丁酸酯的共轭物 AN167 所引起的强直性
昏迷较弱，而由其含 GABA 的共轭物 AN168 处理的动物在整个 7 小时
的研究过程中没有出现强直性昏迷。

图 4b 表示了由氯奋乃静及其化学共轭物引起的强直性昏迷历时 7
小时的时间过程。用氯奋乃静处理的动物在所测定的 7 小时内出现强
直性昏迷，而用 AN 180 和 AN 187 处理的动物引起的强直性昏迷则
较弱。AN 180 所引起的的强直性昏迷在测试期间是上下波动的，而由
AN 187 引起的强直性昏迷经 7 小时后完全消除。该研究中的所有实验
动物在 24 小时后其强直性昏迷均消除。

测试化合物对动物行为的影响可通过如上所述的、对处理后动物
的镇静和活动程度的评估来确定，以 0-3 分评价。0 代表活跃且活动
的动物，1 分代表安静且活动的动物，2 分代表安静但不动的动物，3
分代表完全共济失调且无警觉性的动物。所得分数由下述表 2 概述
其证明，与已知药物相比，该化学共轭物对动物行为的影响较小。
表 2

<table>
<thead>
<tr>
<th></th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
<th>120 min</th>
<th>180 min</th>
<th>240 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>奋乃静</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AN-167</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AN-168</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>非奋乃静</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>AN-180</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AN-187</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

由 AN 168 和奋乃静与 GABA 的混合物引起的大鼠诱因性强直性昏厥: 将 AN 168、即奋乃静的 GABA 共轭物对大鼠中引起强直性昏厥的影响与其源药物——非共轭的奋乃静和 GABA 的混合物引起的强直性昏厥进行比较。腹膜内注射共轭物或所述混合物后于 60、90 和 120 分钟时测定强直性昏厥，通过“壁”测试法确定。

图 5a 显示了各种治疗引起的总强直性昏厥的数据。用 AN 168 处理的动物组表现出非常低的强直性昏厥，而用奋乃静与 GABA 的混合物处理的动物组的强直性昏厥较高。

图 5b 显示了两种治疗后强直性昏厥的时间过程，其证明，用 AN 168 处理的动物中强直性昏厥减弱，所述的强直性昏厥在 120 分钟后消失。

AN 167 和 AN 168 引起的大鼠强直性昏厥：测试了 AN 167 和 AN 168 在 4 个独立实验中引起的总强直性昏厥，并将其与在相同实验条件下由奋乃静引起的强直性昏厥进行了比较。

图 6 显示了给予等摩尔剂量 AN 167 和 AN 168 后引起的总强直性昏厥，以占奋乃静引起的强直性昏厥的百分数表示。虽然与奋乃静相比，AN 167 引起的强直性昏厥较弱，然而 AN 168 几乎没有引起强直性昏厥现象。

奋乃静、奋乃静与 GABA 的混合物和 AN 168 所引起的小鼠强直性昏厥：将 AN 168、即奋乃静的 GABA 共轭物对小鼠中引起的强直性昏厥的影响与由奋乃静单独和由其源药物——非共轭的奋乃静和 GABA 的混合物引起的强直性昏厥进行比较。腹膜内注射后于 60、90
和 120 分钟时测定强直性昏厥，并通过上述方法确定。

图 7a 显示了由各种治疗引起的强直性昏厥的数据，以术语 2 分钟内到达靶点的动物百分数表示。用 AN 168 处理的实验组动物呈现出基本上较低的失能，而仅用奋乃静和用奋乃静与 GABA 的混合物处理的实验组动物则表现出较高的强直性昏厥。

图 7b 显示了上述治疗 2 和 3 小时后，由各种治疗引起的强直性昏厥的数据，以术语动物到达靶点所需时间表示。用 AN 168 处理的实验组动物到达靶点的速度明显快于仅用奋乃静和用奋乃静与 GABA 的混合物处理的实验组动物。

口服奋乃静及其 GABA 共轭物 AN 168 所引起的诱因性强直性昏厥、动物行为和精神抑制活性：因为发现当奋乃静与 GABA 的化学共轭物即 AN 168 腹腔内注射时为目前最有效的化学共轭物，为了确定该化学共轭物的口服效力，进行与奋乃静比较的其它比较实验。为此目的，对小鼠口服单独给予 AN168 或奋乃静后，如上所述测定其所引起的强直性昏厥，催乳素血中浓度和动物行为。将动物分为每笼 5 只，口服给予溶于 1% 乳酸中的奋乃静或 AN168。对照动物仅给予载体（乳酸）。

口服给予不同浓度的 AN 168 和奋乃静所引起的强直性昏厥可通过上述的“壁”测试法和“钢琴”测试法进行测定。口服给予 2.5, 5, 10 和 20 mg/kg 的奋乃静和相应等摩尔剂量 3.5, 7, 14 和 28 mg/kg 的 AN 168 后，测定了 4～24 小时的强直性昏厥的时间过程。总强直性昏厥表示在 4～24 小时追踪观察中每个治疗组的强直性昏厥平均值的总和。

图 8a 显示了给予不同处理后强直性昏厥的时间过程，以“钢琴”测试法测定 4～6 个小时，其证明了各种浓度的 AN 168 均可降低强直性昏厥行为。统计学表明，与等摩尔剂量的奋乃静相比，低剂量和中剂量（14 和 28 mg/kg）的 AN 168 可显著降低强直性昏厥（p < 0.05）。当化学共轭物的剂量较高（14 与 28 mg/kg）时，所检测到的强直性昏厥始终高于奋乃静所检测到的症状，虽然它们之间差别不大。虽然可以假定，由药物和较高剂量化学共轭物引起的强直性昏厥之间差异较小确实只是估计。出于实际考虑，限制所测定的最大强制性昏厥信号为 120 秒。然而在实际中，可以估计，由奋乃静引起的最大强直性
昏厥信号高于由化学共轭物所给促的信号。该估计还可从以下得到支持：高剂量时，AN 168 与奋乃静在由“壁”测试法确定的强力性昏厥和下文所述的镇静评分方面的差异是较大和重要的。而且，所进行的实验也表明，仅仅以中等和较高剂量奋乃静(10 和 20 mg/kg)处理的动物中观察到肌强直和呼吸急促，而在以其等摩尔剂量的化学共轭物处理的动物中没有观察到这些症状。

图 8b 显示了各种治疗后强直性昏厥的时间过程，在图 8a 所示试验 3 个月后进行的独立试验中以“钢琴”测试法测得 4-6 小时。所得数据表明，与前述实验相比，高剂量 AN 168 (14 和 28 mg/kg) 引起较强的强直性昏厥。NMR 分光光检测显示，出现有缓慢分解，并因此使化学共轭物的特性受到影响，所述的缓慢分解可能是由于水解引起。这些发现表明，该化合物应当储存于封口瓶中，临用前打开。在方面应当注意的是，与之相似的氯苯灭酸化学共轭物 AN 187 不易吸潮，因此长期储存也不会出现分解。

图 9a 和 9b 显示了口服给予 5、10 和 20 mg/kg 奋乃静及其相应的等摩尔剂量 7、14 与 28 mg/kg 的 AN-168 所引起的、4-6 小时中所观察到的强直性昏厥。图 9b 给出了在图 9a 所示试验 3 个月后进行的试验中得到的数据。虽然根据图 9b 中所给出的数据，与奋乃静相比，由 AN 168 引起的强直性昏厥行为的减弱不明显，但也能清楚看出，由 AN 168 引起的强直性昏厥总是低于由奋乃静引起的强直性昏厥。

图 10a 和图 10b 显示了各种处理后强直性昏厥的时间过程（图 10a）和总强直性昏厥（图 10b），其通过“钢琴”测试法测得。所得数据证明，所有处理组在处理 5-6 小时后，奋乃静和 AN 168 的强直性昏厥效应均达到最大值，处理 24 小时后强直性昏厥减弱。这些数据与对患者给予奋乃静（每日 1 次）后观察到的临床时间过程成线性关系。

图 11 显示了各种治疗后的总强直性昏厥，通过“壁”测试法测得，其清楚地说明用 AN 168 的各测试剂量处理后强直性昏厥症状几乎消失。

口服给予化学共轭物 AN 168 对动物行为的影响可通过如上所述的、口服给予各种浓度 AN168 和奋乃静后评估动物的镇静和活性程度
来确定，以 0-3 分评价。所得分数在下述表 3 中给出概述，其证明，与奋乃静相比，该化学共轭物对动物行为的影响较小。

表 3

<table>
<thead>
<tr>
<th>治疗</th>
<th>剂量 (mg/kg)</th>
<th>镇静评分</th>
</tr>
</thead>
<tbody>
<tr>
<td>奋乃静</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>奋乃静</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>奋乃静</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>奋乃静</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>AN 168</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>AN 168</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>AN 168</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>AN 168</td>
<td>3.5</td>
<td>0</td>
</tr>
<tr>
<td>对照</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

作为口服给予的化合物的多巴胺能活性的一项指标，在如上所述给予各种治疗后于 0, 90 和 180 分钟时测定催乳素血中浓度。所得数据在图 12 中概括给出，其表明在用奋乃静和 AN 168 处理的动物中催乳素血中浓度的曲线相似，在低剂量和中剂量时，用 AN 168 处理的动物在各时间点的催乳素血中浓度与奋乃静相似，而在更高剂量时，用 AN 168 处理的动物的催乳素血中浓度比用奋乃静处理的动物高得多。

这些结果证明当 AN 168 以低剂量（如 3.5 和 7 mg/kg）口服给药时是非常有效的，因此与临床应用相关。此处还表明，低剂量 AN 168 引起的锥体外系症状最小，因此其对黑质纹状体途径几乎没有拮抗活性。

抗增殖活性：通过使用正常细胞和变异细胞进行（通常多于 1 个独立实验）的增殖实验，测定了奋乃静及其化学共轭物 AN 167、AN 168 和 AN 177，氟奋乃静及其化学共轭物 AN 179、AN 180、AN 181 和 AN 187，丁酸 (BA)，4-苯丁酸 (PBA)，GABA 的抗增殖活性。细胞次代培养，并
且将测试化合物以浓度递增的方式加入其中。通过对细胞存活百分数线性回归测得 IC₅₀ 值。测试化合物对不同测试细胞系的 IC₅₀ 在下述表 4 和表 5 概述给出。

表 4

<table>
<thead>
<tr>
<th>药物</th>
<th>B16 MDR</th>
<th>B16</th>
<th>HT-29</th>
<th>PC-3</th>
<th>3T3</th>
<th>正常鼠成纤维细胞</th>
</tr>
</thead>
<tbody>
<tr>
<td>奋乃静</td>
<td>18.45±5.4 n=3*</td>
<td>12.5±1.29 n=4</td>
<td>8.85±2.7 n=4</td>
<td>23.1±2.3 n=2</td>
<td>26.6</td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>8000±546 n=3</td>
<td>1300±113 n=3</td>
<td>7170±2034 n=4</td>
<td></td>
<td>5540</td>
<td></td>
</tr>
<tr>
<td>GABA</td>
<td>>20000 n=3</td>
<td>>20000 n=3</td>
<td>>20000 n=3</td>
<td></td>
<td></td>
<td>>20000</td>
</tr>
<tr>
<td>AN-167</td>
<td>41.5±1.8 n=3</td>
<td>17.3±4.5 n=5</td>
<td>13.3±2.4 n=4</td>
<td>49.1</td>
<td>21.7</td>
<td>31.64</td>
</tr>
<tr>
<td>AN-168</td>
<td>23±16 n=3</td>
<td>26.8±1.8 n=3</td>
<td>23.1±9 n=3</td>
<td>45.5</td>
<td>25</td>
<td>45.8</td>
</tr>
<tr>
<td>AN-130</td>
<td>58</td>
<td>36.5±8.1 n=5</td>
<td>17.27±3.07 n=5</td>
<td>52.9±28.7 n=3</td>
<td>41.9±16.8 n=2</td>
<td></td>
</tr>
<tr>
<td>AN-177</td>
<td></td>
<td></td>
<td>25.8</td>
<td></td>
<td></td>
<td>24.6</td>
</tr>
<tr>
<td>AN-178</td>
<td></td>
<td></td>
<td>11.5</td>
<td></td>
<td></td>
<td>18.6</td>
</tr>
</tbody>
</table>

* 独立实验数目。
表 5

<table>
<thead>
<tr>
<th>药物</th>
<th>细胞</th>
<th>HL 60</th>
<th>HL 60 MX2 (MDR)</th>
<th>MES SA</th>
<th>MES SA DX5 (MDR)</th>
<th>JURKAT</th>
<th>U-937</th>
</tr>
</thead>
<tbody>
<tr>
<td>奋乃静</td>
<td></td>
<td>19.76</td>
<td>22.55</td>
<td>15.31</td>
<td>16.24</td>
<td>11.34</td>
<td>21.30</td>
</tr>
<tr>
<td>AN 167</td>
<td></td>
<td>17.29</td>
<td>19.86</td>
<td>17.23</td>
<td>20.90</td>
<td>11.40</td>
<td>23.28</td>
</tr>
<tr>
<td>AN 168</td>
<td></td>
<td>15.14</td>
<td>18.36</td>
<td>18.20</td>
<td>17.16</td>
<td>11.35</td>
<td>14.23</td>
</tr>
<tr>
<td>AN 177</td>
<td></td>
<td>15.13</td>
<td>17.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>氟奋乃静</td>
<td></td>
<td>20.94</td>
<td>21.77</td>
<td>14.79</td>
<td>13.74</td>
<td>14.30</td>
<td>21.51</td>
</tr>
<tr>
<td>AN 179</td>
<td></td>
<td>18.25</td>
<td>21.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN 180</td>
<td></td>
<td>19.00</td>
<td>18.76</td>
<td>11.96</td>
<td>12.74</td>
<td>10.43</td>
<td>12.25</td>
</tr>
<tr>
<td>AN 181</td>
<td></td>
<td>14.79</td>
<td>16.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AN-187</td>
<td></td>
<td>18.57</td>
<td>17.10</td>
<td>14.37</td>
<td>9.47</td>
<td>10.31</td>
<td>18.86</td>
</tr>
</tbody>
</table>

实验结果表明，虽然 GABA 本身没有表现出明显的抗增殖活性 ($IC_{50}>20$ mM)，BA (IC_{50} 为 1-8 mM) 和 PBA (IC_{50} 为 2-12 mM，未给出数据) 具有显著但还是相对较低的抗增殖活性，但是其相应的奋乃静和氟奋乃静共轭物具有明显较高的活性 (IC_{50} 为 8-60 mM)。

这些结果还表明，本发明的化学共轭物对广泛的细胞系均具有多方面的抗增殖活性，所述的细胞系包括多耐药性 (MDR) 细胞，例如 HL 60 MX2、B-16 MDR 亚克隆和 MES SA DX5。

图 13 显示了在代表性实验中所得的结果，其测定了奋乃静及其化学共轭物对 B16 鼠黑色素瘤细胞增殖的影响。发现 AN 167 和 AN 168 作为抗增殖剂具有一定的活性。
测定奋乃静、GABA 及其化学共轭物 AN 168 的细胞毒性效应，并
且与已知化疗药顺铂和长春新碱（Vincistine）对鼠胶质瘤细胞 C6
的细胞毒性效应进行了比较。将细胞次代培养，并且将测试化合物浓
度递增地加入其中，至 100µM。通过如上所述的中性红法测定细胞处
理 24 小时后的存活率，结果如图 14 中指出。如上所述测定奋乃静和
AN 168 的 IC₅₀ 值，分别为 19.2µM 和 24.2µM。

如图 14 中所示，所得数据证明，本发明的化学共轭物与已知的
代表性化疗药相比，其抗增殖活性更高。已知 C6 胶质瘤细胞为 MDR
细胞，事实上，发现已知的化疗药对其抗增殖活性较低。与之相反，
发现 AN 168 可产生较强的抗增殖活性，在较低浓度（约 20µM）即基本
上能引起细胞死亡。

图 15 给出了用奋乃静、AN 168 和地塞米松浓度递增地用于处理
Jurkat T 淋巴瘤细胞所得到的数据。该结果以通过 alamar blue 法测
定的细胞存活率为指标，其表明与地塞米松相比，AN168 和奋乃静的细
胞毒性较强。奋乃静和 AN 168 的 IC₅₀ 分别是 16µM 和 19µM。

还应当注意的是，虽然奋乃静、氟奋乃静及其化学共轭物的抗增
殖活性大致是相同程度的，但本发明的化学共轭物的临床应用高度优于
神经安定药的临床应用，因为给予化学共轭物几乎可完全避免副作
用。

奋乃静或 AN 168 与化疗药共同给药的化学敏化效应：将 5、10
和 15µM 奋乃静与等摩尔剂量的化学共轭物 AN 168 与不同浓度的已
知化疗药如长春新碱（vincistine）、顺铂和地塞米松共同给予，从而
测得其化学敏化效应。按照上文方法部分所述的方法、在这些联合
E 治疗后测定细胞存活率和/or DNA 断裂，并将其与仅使用化疗药治疗
所得的结果进行比较。

图 16 给出了用长春新碱（vincistine）（30µM）、奋乃静、AN 168 及
其联合处理大鼠 C6 胶质瘤细胞系（MDR 细胞）24 小时后所得的数据。
该结果清楚地证明 AN1168 的化学敏化作用，所述的 AN168 当与化疗
药共同给药时，与仅单独给药时该药物的细胞毒性效应相比，可基本
上增强其细胞毒性效率，甚至是在较低浓度（例如 5µM）的化学共轭
物时亦是如此。

图 17 给出了用浓度为 5µM-50µM 的不同浓度的顺铂以及顺铂与 10
和 15μM AN 168 的联合处理鼠 C6 胶质瘤细胞系 (MDR 细胞) 后所得的数据。该结果以通过中性红法测定的细胞存活力给出，其清楚表明，虽然所有测试浓度的顺铂对癌细胞完全无效，但顺铂与 AN 168 的联合治疗使该细胞对化疗敏感。

图 18 给出了用顺铂 (30μM)、奋乃静 (25 和 50μM)、AN 168 (25 和 50μM) 以及顺铂 (30μM) 与 AN 168 (50μM) 的联合处理鼠 C6 胶质瘤细胞后所得到的 DNA 断裂数据，与未处理细胞比较。所述 DNA 断裂通过如上所述的 propidium iodide 流式细胞检测分析法进行测定。该结果表明虽然仅使用顺铂对 DNA 断裂没有影响，然而奋乃静和 AN 168 两者均使 DNA 断裂显著增加。这些结果表明，本发明的化学共轭物的化学敏化作用来自于其活性。

毒性：来源与新生小鼠脑部的神经元细胞原始培养物和神经元细胞与神经胶质细胞混合物的原始培养物来测定奋乃静、AN 167、AN 168 的体外毒性。所述细胞培养物用测试化合物处理 24 小时，之后通过中性红比色法测定细胞的存活力。这些测试中所得的 IC_{50} 值表明，奋乃静和 AN 167 具有相似的毒性，而 AN 168 对正常脑细胞的毒性明显降低。如图 19 中所显示的。还在培养鼠肌细胞上测定了奋乃静和 AN 168 的体外毒性。图 20 给出了在用不同浓度的奋乃静或 AN 168 处理后，按上述方法测定的细胞存活力。所得数据表明，AN 168 在所有浓度都不会使细胞存活力降低，而奋乃静在高浓度时使细胞存活力降低 20%。

对小鼠腹膜内给予单剂量奋乃静和 AN1167 后，评价其体内毒性。奋乃静和 AN 167 治疗两周后所测定的 LD_{50} 分别为 109 mg/kg 和 120 mg/kg。除了 AN 167 的毒性比奋乃静低之外，由该化学共轭物引起的死亡率被延迟，如图 21 所示。

上述实验结果证明了本发明的化学共轭物在产生精神抑制活性、抗增殖活性和化学敏化活性方面高且有利的效力，所述的化学共轭物对正常细胞毒性最小，副作用最小。

可以理解的是，本发明的某些特性也可在单个实施方案中联合给出，所述特征为了清楚在单个实施方案内容中已有描述。反之，本发明的各个特性也可单独给出或以任意适宜的分组联合给出，所述特征为了清楚在单个实施方案内容中已有描述。
虽然已经结合其具体实施方案描述了本发明，显然多种替换、修改和变形对本领域技术人员来说是显而易见的。相应地，意欲包括所有落在后面权利要求的精髓和较宽范围内的替换、修改和变形。本说明书中提到的所有出版物、专利和专利申请此处均全文引入说明书作为参考，如果特别和单独提到每篇独立的出版物、专利或专利申请此处引入作为参考，同样是全文引入。另外，不应当将本申请中任何参考文献的引文或确证逐字分析为该参考文献可作为本发明的现有技术得到的认可。
以数字引人的参考文献
（文中引人的其它文献）

6. Wolffe A. Transcriptional control (转录控制). Sinful

12. a) Yale LH, Sowinski FA, Bernstein J. trifluoromethylphenothiazines (三氟甲基吩噻嗪). US 3,227,708,

图 2
图 5a

图 5b
图 8a

图 8b
图 15

图 16

*p<0.01 VS EQUIMOLAR AN / PER
图 17

图 18