Office de la Propriete Canadian CA 2561089 A1 2005/10/06

Intellectuelle Intellectual Property
du Canada Office (21) 2 561 089
g,lnngaﬁfi‘:g:na " ml"j‘gtfy”%ya‘r’]‘; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2005/03/18 (51) CLInt./Int.Cl. GO6F 17/30(2006.01)

(87) Date publication PCT/PCT Publication Date: 2005/10/06 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2006/09/21 BRITISH TELECOMMUNICATIONS PUBLIC LIMITE

COMPANY, GB
(86) N° demande PCT/PCT Application No.: GB 2005/001051
(72) Inventeurs/Inventors:

(87) N° publication PCT/PCT Publication No.: 2005/093603 KEGEL, IAN CHRISTOPHER, GB;

(30) Priorité/Priority: 2004/03/26 (GB0406860.7) THORNE, JEREMY MICHAEL, GB;
RUSS, MARTIN, GB:

STEVENS, TIMOTHY SEAN, GB;
MORPHETT, JASON, GB

(74) Agent: PERRY + PARTNERS

(54) Titre : METADONNEES BASEES SUR LA PRELECTURE
(54) Title: METADATA BASED PREFETCHING

— o

closing
Match sequence

intraduction

h 4 m—
> ' - \ —5 2D
@ @ Team A Goal @ﬁ x 3 Goal 2
Team B Goal 1 Team B Goal 1 Aﬂemﬁt% (Z?[';;' oidh-u)
' ild- ith build-u
(with build-up) . Reaction k(wnt P)

A 'f e

Y A\ 0.13 0.15 0.39 ey 0.41 Team B Goa <

g Referae | eial Team B (with Penalty Decision)

. . Team B fans Team B Team A d save 1
Team B Team B o Whistle celehrating manager —— attempt 3 9 y
Lpass 15 pass 16 gaa % Blow 3) / | celebrating J - N
’ o2

))
paints
to penalty
spot

(57) Abréegée/Abstract:

A computer apparatus which uses a database (22) to offer persistent storage of metadata (36) describing the content of media files
(32). Metadata is used to create a personalised media article (48) from those media files. That metadata also indicates relationships
between those media files. In order to accelerate the creation of the personalised media article (48), media element metadata items
are stored In a cache. The usefulness of this cache I1s improved further by reading related media elements data from retrieved
metadata items (36), and then pre-fetching those items and placing them in the cache. Because the relatedness of the data items
means that the related data item Is more likely to be required Iin the near future, the caching method is more useful than known
caching methods. Furthermore, the improved usefulness of the cache Is achieved without placing constraints on where the data
items are placed In the persistent storage.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

CA 02561089 2006-09-21

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date (10) International Publication Number
6 October 2005 (06.10.2005) PCT WO 2005/093603 Al
(51) International Patent Classification’: GO6F 17/30 Close, Martlesham Heath, Ipswich, Suffolk IP5 3SN
(GB). STEVENS, Timothy, Sean [GB/GB]; 8 Melton
(21) International Application Number: Meadow Road, Woodbridge, Suffolk IP12 1SB (GB).
PCT/GB2005/001051 MORPHETT, Jason [GB/GB]; Valley View, 41 Holton

Road, Halesworth, Suffolk IP19 8HG (GB).

(22) International Filing Date: 18 March 2005 (18.03.2005)
(74) Agent: NASH, Roger, William; PP: C5A, BT Centre, 81

(25) Filing Language: English Newgate Street, London, Greater London EC1A 7AJ (GB).

(81) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

(30) Priority Data: CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FT,

0406860.7 26 March 2004 (26.03.2004) GB GB. GD. GE. GH. GM. HR. HU. ID. IL. IN. IS, JP. KE.

KG, KP, KR, KZ, 1L.C, LK, LR, LS, LT, LU, LV, MA, MD,

(71) Applicant (for all designated States except US): BRITISH MG. MK, MN, MW. MX. MZ. NA. NL. NO. NZ. OM. PG,

TELECOMMUNICATIONS PUBLIC LIMITED PH. PL. PT, RO. RU., SC. SD. SE. SG. SK. SL. SM. SY. TJ.

COMPANY |[GB/GB]; 81 Newgate Street, London, TM. TN. TR. TT, TZ. UA. UG. US. UZ. VC. VN, YU. ZA.
Greater London EC1A 7AJ (GB). 7M. ZW.

(72) Inventors; and (84) Designated States (unless otherwise indicated, for every

(75) Inventors/Applicants (for US only): KEGEL, Ilan, kind of regional protection available): ARIPO (BW, GH,

Christopher [GB/GB]; High Banks, 109 Ipswich Road, GM, KE, LS, MW, MZ., NA, SD, SL., SZ., TZ, UG, ZM,

Woodbridge, Suffolk IP124BY (GB). THORNE, Jeremy, /W), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

Michael [GB/GB]; 25 Nottidge Road, Ipswich, Suffolk European (AT, BE, BG, CH, CY, CZ, DE, DK, ELE, ES, F1,

IP4 2RJ (GB). RUSS, Martin [GB/GB]; 71 Farriers FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,

[Continued on next page]

(54) Title: METADATA BASED PREFETCHING

= s
Match closing
introduction sequence

| Kick Off Rest of Match

+ 4 \\ I :) '
@ @ | Team A Goal @ @
Tegm B Goal 1 Team B Goal 1 | Attempt 3 Team B Goal 2
{with build-up)) (with build-up) - (with build-up) |

_ Reaction Y. ﬂ_\ /
s _b)
0. ‘!i
@ Team B Goal 2
Team A (with Penalty Decision)
foul 2

0.39
Team A
| i TeamA goal
manager carner 2 attempt 3
\ce!ebrau% .
Referee
points
to penalty Team B
spot goal 2

Team B

' 0.12
D[HED i

Team B Team B Team 8 Whistie
pass 15 pass 16 geal 1 K Blow 3

Team B fans
celgbrating

O~

(57) Abstract: A computer apparatus which uses a database (22) to offer persistent storage of metadata (36) describing the content
W) of media files (32). Metadata is used to create a personalised media article (48) from those media files. That metadata also indicates
& relationships between those media files. In order to accelerate the creation of the personalised media article (48), media element
& metadata items are stored in a cache. The usefulness of this cache is improved further by reading related media elements data from
N retrieved metadata items (36), and then pre-fetching those items and placing them in the cache. Because the relatedness of the data
items means that the related data item is more likely to be required in the near future, the caching method is more useful than known
caching methods. Furthermore, the improved usefulness of the cache is achieved without placing constraints on where the data items
are placed in the persistent storage.

/093603 A1 0L V1! AT TR 000 PN A R A

CA 02561089 2006-09-21

WO 2005/093603 A1 JHILHVA!H FAR A0 AO R 11 0 AR 00 R

SE, SI, SK, TR), OAPI (BF, B, CF, CG, CI, CM, GA, GN, For two-letter codes and other abbreviations, refer to the "Guid-
GQ, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-

Published: ning of each regular issue of the PCT Gagzette.

— with international search report

10

15

20

25

30

CA 02561089 2006-09-21
WO 2005/093603 PCT/GB2005/001051

METADATA BASED PREFETCHING

The presenf invention relates to computer apparatus. It has particular utility in relation to

- computer apparatus used in retrieving information from databases.

A database is normally provided using a computer having a large amount of data items

stored in persistent memory. The apparatus includes database management software
which is executable to receive a query from an application program setting out criteria for
the selection of data items from the database. Execution of the database management

software will fransfer the selected data to volatile memory on the computer running the
application program.

Today, databases are often accessed via a communications network. For example, BT's

directory enquiries database is available at http://www.bt.com/directory-enquiries.

The time taken to obtain a response to a query therefore depends on two factors - the
time taken to identify those data items which satisfy the query, and the time taken to

transfer data items to the volatile memory of the computer on which the relevant
application program is running.

One way of reducing the time taken to obtain a response to a query is to cluster similar
data items in a contiguous region of memory in the database, and then send the contents
of that region of memory to a client computer in response to a query which selects a data
item containing within that region. Any subsequent reference ‘.to a data item contained
within the region can then be satisfied from the local memory. This is-a feature of
databases that operate on a so-called 'page-server' basis. An example of such a
database is ObjectStore provided by Excelon Corporation (details of ObjectStore can be
found in C. Lamb, G. Landis, J. Orestein, and D. Weinreb. The ObjectStore database

system. Communications of the ACM, 34(10):50--63, October 1991 and International
Patent Application WO 00/57276).

Another technique for reducing the average time taken to respond to a query is to store
queries and their resuits in the local memory. It is found that users often repeat queries,

and this enables a repeat query to be answered from local memory - thereby saving the

10

15

20

25

30

35

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

time that would otherwise be spent in selected data items which meet the query and also

the time spent in moving those data items to the local memory.

Yet another technique is to predict, on the basis of data about earlier queries, those
queries that the user might be about to enter. This approach is seen, for example, in "A
Personal Assistant for Web Database Caching" Beat Signer, Antonia Erni, Moira C. Norrie

In the proceedings of the Conference on Advanced Information Systems Engineering
(2000).

According to a first aspect of the present invention, there is provided computer épparatus
having:

1) one or more data processors;

Il) persistent storage means connectable to said one or more data processors,
said persistent storage means storing a plurality of data items, one or more of said data

items containing reference(s) to one or more other data items whose content Is
semantically-related to said data items;

il) volatile memory means, connectable to said one or more data processors, for
storing one or more of said data items:;

i) database management system software executable by said one or more data

processors to respond to a query by passing data items meéting one or more criteria

specified in said query from said persistent storage means to said volatile memory means;

IV) querying code executable by said one or more data processors to pass a
query to sald database management system software;

V) pre-fetching code executable by said one or more data processors to:

a) analyse response data items provided in response to said query to find related
data items semantically-related to said response data items; and

b) automatically generate another query for said semantically-related data items.

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

25

30

35

By selecting data items in response to a request for transfer from a persistent memory to
a cache memory and then selecting further data items according to relationship data

which forms part of the earlier selected data items, and moving the further data items to

the cache memory as well, the response time to subsequent related requests is reduced.

According to a second aspect of the present invention, there is provided a method of

operating computer apparatus comprising a processor and first and second data stores
accessible to said processor, access by said processor to data held in said first store

being quicker than access to said second store, said method comprising the steps of:

storing a plurality of data items in said second data store, together with relationship data
indicating relationships between said data items: and

executing a process on said processor to:

) fetch one or more data items from said second store together with relationship data

Inaicating one or more related data items semantically related to said fetched data item;

i) responsive to receipt of said relationship data, fetch one or more of said semantically

related data items from said second memory to said first memory; and

iii) check, on subsequent requests for a data item, whether said requested data item is

present in said first store and read said data item from said first store if found.

A given data item often represents, or represents characteristics of, a real or imagined
entity. A further data item semantically related to that given data item represents, or

represents characteristics of, a real or imagined entity which is related to the real or
imagined entity represented by that given data item.

By way of example only, specific embodiments of the present invention will now be
described with reference to the accompanying Figures in which:

Figure 1 Is a schematic illustration of a media content distribution system according to a
first embodiment of the present invention:

10

15

20

29

30

35

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

4

Figure 2 shows the architecture of the software run onL the computers shown in Figure 1;
Figure 3 shows metadata associated with a file;

Figure 4 shows an object-oriented database schema used in the first embodiment;
Figure 5 is a hierarchical representation of the relationship data entered by the editor;
Figure 6 shows template data generated using a template creation tool;

Figure 7 is a flow chart showing the operation of the template populator component of the

first embodiment of the present invention - Figure 8 shows some of the steps of Figure 7
in more detail;

Figure 9 shows media objects selected in response to a primary query;
Figure 10 shows media objects selected in response to a secondary query;

Figure 11 shows a tree whose leaves are the media objects selected in response to the
primary query;and

Figure 12 shows an edit decision list as might be produced by the template populator -
module.

Figure 1 shows two personal computers 10, 12 each of which comprises weli-known
hardware components connected together in a conventional manner. The well-known
hardware components comprise a central processing unit, volatile memory - in this case,
random access memory - read-only memory, a hard disk and input/oUtput devices. The
hardware components are interconnected via one or more data and address buses. The
input/output devices comprise a monitor, a keyboard, a mouse, a CD ROM drive and a

network card. The network card is connected to a server computer 16 by the public
Internet 14.

The server computer 16 has a similar architecture to the personal computers 10, 12, but is

provided with a faster processor and a much greater amount of persistent storage. This

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

29

30

35

5

storage takes the form of a Redundant Array of Inexpensive Disks (RAID) 18. The RAID
stores a collection of media files 20.

The server computer 16 has ObjectStore database server and ObjectStore Application
Programmer Interface (API) software from CD1 installed upon it. Such software is
available from Excelon Corporation of 25 Mall Road, Burlington, MA, U.S.A. In addition,
an ObjectStore client program which makes use of the AP| éoftware, and which includes a
template populator module, and an Remote Procedure Call (RPC) server module is
installed from CD2 onto server computer 16. Included with the ObjectStore client program
IS code supplied by Excelon corporation which carries out much of ithe processing
required in handling a query, the server program merely providing pages (4K blocks of
memory) when requested {o do so by the ObjectStore client program. A third compact
disc'CD3 provides a media mark-up tool program which is also installed on the server
computer 16. The media mark-up tool program and the template populator program are

described in the applicant's earlier International Patent application GB2003/003976, which
is hereby incorporated herein by reference.

Each of the personal computers has a template creation tool program, | content
synthesiser, and RPC client program from CD4 installed upon it. The template creation
program and the content synthesiser are described in the applicant's co-pending
International Patent application GB2003/003976. An RPC client program can easily be
provided by a person skilled in the art. The structure and operation and interoperations of
these programs will now be deﬂsoribed with reference to Figure 2.

The media mark-up fool 30 provides an interface for an editor to update the content store
20 and the database 22. In practice it is envisaged that an editor using the present
embodiment will have access to media elements 32 generated by other editors, rushes
from various sources, sections of prepared programmes, still photographs and various
bther pieces of media (all represented in electronic form) at his disposal. These media
elements are stored in an appropriate directory structure in the content store 20. Each

directory is known as a 'bin' in the art — a reference to the labelled bins in which rolls of
film relating to a particular project are stored.

However, for the purposes of the present description, it is assumed that the editor begins

only with a file that includes an electronic representation of unedited film recorded at a

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

25

30

6

football match and introduction sequences for a football programme etc. An unedited
piece of film is known as a 'rush' in the art.

Using the media mark-up tool 30, the editor might select various sections of the rush and
store each as a media element in a shorter file in a directory in the content store 20.

The media mark-up tool 30 also provides a tool enabling the editor to generate or edit
metadata 36 for media elements stored in the content store 20. The mark-up tool program
30 uses the ObjectStore server database software 34 to store a metadata item 36 for
each media file 32 as part of the ObjectStore database 22 held in the RAID 18.

The media mark-up tool 30 has been described here in order to put the present
embodiment in the context of a larger media article creation and delivery system. It is to
be understood however, that alternative embodiments of the present invention could be
provided in which an existing media article metadata database and content store is used,

without providing an editor with a capability to add to the database - i.e without requiring
the provision of CD3 in the present example.

The ObjectStore Client program on CD2 includes a definition of a database schema 36
which will be described in more detail below with reference to Figure 4. It also includes a
template populator program 38 which receives template data 40 from a client computer
10,12 and processes it to generate an Edit Decision List 42 for return to the client
computer 10,12. The operation of the témplate populator program 38 will be discussed in
more detail below with reference to Figures 7 and 8. Also included in the ObjectStore
client program is an RPC Server 39 which enables communication of the template data 40
and the Edit Decision List 42 between the server computer 16 and a client computer
(10,12 for example).

The template creation tool 44, installed on the client computer 10,12 from CD4, is used to
create the template data 44. The content synthesiser tool 46 installed from the same CD4
Is used to fetch the media elements 32 listed in the Edit Decision List 42 from the content
store 20 and to combine them in order to generate a media article 48, based on the
template data 40 to a user 50. Communication between the server computer 16 and the
client computers 10,12 takes place using the RPC Client 52.

CA 02561089 2006-09-21
WO 2005/093603 PCT/GB2005/001051

v

The information included in a Media Object (a software object forming a component of the

database 22) is shown in Figure 2.

To enter this information, having selected one of the media elements, the editor eniers
5 metadata to be associated with that media element in two stages. In a first stage, the

editor can double-click on one of the pictures to bring up a form onto which the values of

the parameters included within the schema can be entered.

An example of the metadata generated in the first stage is shown in the second to twelfth

10 row of Figure 2 (the information in the first row having been generated when the editor

gave a media element identifier to the file).

it will be realised that the metadata is arranged in accordance with a structured data
model. In each row, the entry at the rightmost column represents the value of a property
15 which is input by the user. The structured data model may provide that a plurality of
properties should be labelled as members of a unit at a first level of aggregation — here
referred to as a set of properties (column second from the left in those rows which have
four columns). The structured data model may also provide that a plurality of sets should
be labelled as members of a unit at a second level of aggregation — here referred to as a
20 superset of properties (leftmost column in those rows which have three or four columns).
Those skilled in the art will realise that further levels of aggregation might be provided.

The hierarchical arrangement is influenced by the Multimedia Content Description
Interface mentioned above. The intention is not to enforce usage of a complete data
25 model across all possible applications, but to enable re-use of content within the subject
domain of a production company or a specific set of projects (eg. wildlife documentaries).
The data model provided is intended to provide a maximal set of elements and an

interface which assists their use and the vocabularies which can be applied to them.

30 The metadata includes a variable number of parameters (but must nevertheless conform
with the predetermined structured data model). In the example, shown in Figure 2, the

editor, has entered values for 18 properties. These include:

10

15

20

25

30

39

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

i) Media Element ID - this identifies the media element — in the present example, the

editor has given it a numerical value of 0.xx, where xx reflects the position of the media
element within the original rush;

This is followed by a 'Media' superset which comprises two properties and a 'Position’ set
of properties. The two properties are:

i) URI — the Universal Resource ldentifier of the file which contains the media element;
iii) Format — this gives an indication of the format of the data making up the file;

The 'Position’ set contains two properties as follows:

iv) In — an indication of the time elapsed since the start of the rush at the start of the media
element;

v) Out - an indication of the time elapsed since the start of the rush at the start of the
media element;

The 'Media' superset is followed by a superset of four 'structural’ properties. That
superset begins with

vi) Description — a description of the content of the file;

which are followed by another set (called 'Event’) whicH contains three properties:
vii) Nature — the type of event that is seen in the video sequence recorded in this file;
viii) Performer — the person performing the principal action of the event;

iX) Recipient — the person subject 'to the principal action of the évent;

These properties are followed by a domain-specific superset of properties which, in this

example, are only sensibly applied to media elements which relate {o material obtained
from two-sided sporting events:

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

25

30

35

\

The first two properties belong to a set (called "Teams'") of two properties:

X) Home Team - the name of the team playing on their home ground during the football
match featured in the original rush;

Xi) Away Team - the name of the other football team in the football match featured in the
original rush;

This set is followed by the two properties:

- xii) Performer Allegiance - the side (if any) to which the performér owes allegiance;

xiii) Recipient Allegiance - the side (if any) to which the recipient owes allegiance;

These two properties are followed by a set (named 'conceptual) containing two
properties: |

xiv) Interest Value — this value, between 0 and 1 indicates how significant the editor
considers this media element to be: and

xv) Rating — this value indicates the suitability of the media element for showing to people

based on an age criterion - in a similar way to the classification given to films.

The second stage of the metadata creation which generates one or more 'Relationship’
properties is described in detail in the applicant's earlier international patent application
GB2003/0038976. The user is provided with a graphical user interface, allowing him to
indicate relationship properties between media elements by moving and clicking on icons
representing those media elements on the screen 18 of the PC (Figure 1).

One type of relationship that the editor may indicate is that of sequence. An editor might
wish to indicate a sequentfal relationship of this nature where he feels that the media
elements should be shown in the indicated order (if more than one of the media elements
are selected in response to a query made to the ObjectStore database management

system). Media elements showing gardening at different times of year, for example, might

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

29

30

35

10

be arranged into a sequence so that an element representing the garden in spring
precedes an element representing the garden in summer and so on.

On creation of a sequence in this way, a sequence object is created in the object-oriented

database as a container object containing pointers to the media objects associated with
the media elements included within the sequence. As will be seen below, it is possible to
generate a seqhence which itself includes sequences. This hierarchical property is
reflected in the first number in the identifier attributed to the sequence. Where the
sequence includes only individual media elements, then the sequence identifier is of the

form 1.x where X is simply incremented at each time a new sequence or group (explained
below) at the first level of the hierarchy is formed.

The media object (i.e. metadata) associated with each media element in the sequence
has the position of the media element within that sequence added to it. An example of the

sequence position metadata can be seen in the penultimate row of Figure 2.

Another type of relationship an editor may wish to indicate between media elements s
that of membership of a group. An editor might do this where he wishes to indicate that if
a plurality of the media elements in the group are selected, then they should be shown
together. This action creates a group object, a container object which contains pointers to
the media objects associated with the media elements within the group. Group objects
are also stored within the object-oriented database 22.

Object-oriented programming involves the writing of classes -(user-defined data types
which have methods as well as data members within them). Programs then create and

manipulate instances of those classes in order to do their work when executed on a
computer.

Similarly, object-oriented databases hold instances of object classes which have both data

members (such as the metadata seen in Figure 2) and methods allowing queries to be
made on those data members.

In object-oriented programming, a programmer can build hierarchy of object classes. In
such a hierarchy an object class inherits the data members and methods of the parent

object class. In writing new classes, it is possible to change the implementation of the

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

11

methods (this is known as overriding the parent object method), or to add to the inherited
data members or methods of the parent object class. This is one way in which object-

oriented programming promotes code re-use.

5 Aside from inheritance, another way in which object-oriented programming promotes code

10

15

20

29

30

re-use is known as composition. In this case, an object class can be written to include
objects of another type as data members. |

It is possible for a programmer to define an abstract class. If a class is declared to be
abstract by the programmer, then it is not possible to create instances of 6bjects of that

class. it is only used as a way of ensuring that any sub-classes written by a programmer
do have all the data members and methods of the abstract parent class.

Similar concepts are used in object-oriented databases such as ObjectStore. - Figure 3

shows an object hierarchy used in a first embodiment of the present invention.

All objects Iin the database inherit data members and methods from the base class

SmartObject. This ensures that all objects to be stored in the database have certain
attributes which enable them to be persistent (i.e. stored in the ObjectStore database).
Additionally, the inheritance from SmartObject ensures that other methods (such as the
ability to interrogate an object to find its type, or to ask it to render itself in eXtensible

Markup Language (XML)), which are useful throughout the database are present in all
objects stored within the database.

MediaController is the ‘root’ object in the database (modelled as a singleton pattern - i.e.
there is only ever one instance of an object of this class). It has a collection of MediaBin
objects within its data members (an example of composition).

The MediaController collection class (a C++ template) has functions that enable queries in
the form of expressions to be made on it. For example, an instance of a MediaController
object (that instance being called binList in this example) can be queried like:

MediaController::binList->query(“MediaObject*”, “m objId32 &% 2 =
0/1)) |

10

15

20

25

30

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

12

This query results in a call to a query method forming a part of all MediaController objects
(including binList) which returns the result of the query. In the above example a collection
of MediaObject pointers with even object ID’s would be returned.

MediaBin objects can hold other MediaBin objects within them in a directory-like
hierarchical structure. So for example, a ‘WorldCup’ MediaBin may hold a MediaBin

within it called ‘EnglandSweden’. Equally, the ‘EnglandSweden’ MediaBin will hold
clustered MediaObjects from the England Sweden World Cup game.

The MediaBin object class also has a collection of SemanticObjects. SemanticObject is

an abstract class. The MediaObject, MORelationship, MOGroup and MOSequence

classes are all' sub-classes of the abstract SemanticObject class (an example of

inheritance). MediaObject is the object which contains the metadata like that seen In
Figure 2.

MORelationship is an intermediate abstract class with MOGroup and MOSequence
inheriting from it. 1 :

SemanticObjects (and, by inheritance, MediaObjects) have a data member (called

parentRelationship) which is a pointer to an MORelationship object. MediaObjects with no
parent relationship (called ‘root objects’) have this Member set to NULL.

MORelationship objects have some public abstract methods which are overloaded in the
two MORelationship subclasses, MOGroup and MOSequence, these are:
|

public
virtual BOOL insertObject(SmartObject* _data) = 0,
virtual BOOL removeQbject(SmartObject* _ptr) = 0;
virtual BOOL contains(SmartObject* _ptr) = 0;

protected
virtual BOOL insertObject(SmartObject* _data, Coll<SmartObject*>" _col),
virtual BOOL removeObject(SmartObject* _ptr, Coll<SmartObject™>* _col),
virtual BOOL contains(SmartObject* _ptr, Coll<SmartObject*>* _col),

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

29

30

35

13

MOGroup overloads these public methods and calls the MORelationship protected

methods pasﬂsing in a Coll object (an unordered collection). :MOSequence overloads the
same methods and calls the protected methods with a List object (as an ordered

collection, inherited from Coll).

Furthermore, MOSequence also provides additibnal public methods in the form of
insertFirst, insertlLast, insertObjectBefore and insertObjectAfter to insert objects at

predefined points in a sequence of semantically related objects.

As mentioned, MORelationship objects can hold collections of SmartObjects. However,
the TYPE's of SmértObjeot held by MORelationship objects are restricted (e.g. MediaBins
are not held by MORelationship objects). The SmartObject types held are restricted to the
children of SemanticObject: (i) MOGroup; (ii) MOSequence and (iii) MediaObject.

Upon insertion into an MORelationship object, a check is made by calling getType
(inherited and overloaded from SmartObject by each derived class) on the incoming

object to validate its TYPE. Assuming it is valid, the object is added to the collection (or

list) and Its parentRelationship attribute set to be the MORelationship to which it has just
been added.

The Boolean value returned by the insertion and removal objects indicates whether the

insertion or removal was successfully carried out.

With the above methods, an editor is able to: generate MOéroup and MOSequence
objects which contain lists of pointers to MediaObjects. Figure 4 shows the relationships
entered by the editor in hierarchical form. Note that the editor-generated hierarchy shown
in Figure 4 Is unrelated to the database schema hierarchy seen in Figure 3. It would not
be practicable to change the database schema every time an editor changed his or her

arrangement of a number of media elements. Instead the linkages seen in Figure 4 are
stored in as data members of MOGroup and MOSequence objects.

In the editor-generated hierafchy, MediaObjects are seen at the 'leaves' of the tree
structure. Many of the MediaObjects (e.g. 0.13, 0.14, 0.15) are arranged into groups (e.g.
1.2) - shown as rectangles having arrows beneath them pointing to the MediaObjects

which belong to them. Sequences are portrayed similarly, save for having an arrow in the

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

25

30

35

14

top left-hand corner of the rectangle. Groups and Sequences can themselves be
members of higher-level Groups and Sequences.

The template creation tool code which Is installed from CD4 onto the client computers

10,12 executes to provide an interface for a user to specify the desired characteristics of a
media article — thus creating template data 40.

Like a media object, a template object for use in the present embodiment conforms to a |
comprehensive predefined data model. As can be seen from Figure 6, this predefined
data model includes a title field, and a plurality of sections. Each section is a set
cdmprising a name field, a query field, and, optionally, a constraint field. When run, the
template creation program controls the client computer 10,12 to prompt the user to enter a
name for the template and to indicate the section structure (top-level sections may
themselves contain sections). The user indicates the section structure using a graphical
user interface component similar to the Folder List provided in Microsoft Windows

Explorer for example. In the example given in Figure 8, the template has a flat structure
of three sections.

The user uses this graphical user interface to enter query strings for each of the sections.

The query string for the middle section in Figure 6 indicates that candidate media objects

to fill this slot in the template must have Michael Owen as a named actor.

The user may also enter one or more constraints for those sections where he wishes tol
place some constraint on the media elements represented by the media objects retrieved
from the database in response to the query. Constraints are intended to restrict the way
in which media objects_are assembled by the template populator. Possible examples of
constraints include tirhe (e.g. this section must be 5 minutes long), space (e.g. this

presentation must be viewed on a 640 * 480 pixel display), or number (there must be five

news items in the 'headlines' section of a news programme).

Once the user indicates that the template is complete, the client computer 10,12 sends
the template data 40 (using the RPC client and server 39,52) to the server computer 16.

The template data 40 is then passed to the template populator program 38 which operates
as indicated in Figure 7. .f

10

15

20

29

30

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

15

As explained above the template populator module 38 provides a process for

~ automatically assembling an edit decision list 42 in preparation for the synthesis of a set of

media objects into a personalised media article 48 for a consumer 50. On starting, the

template populator 38 takes as its inputs a specific template (e.g. Figure 6) and an

indicator of a store of media objects (in the present case, an indication of the location of
the object-oriented database 22).

The template populator then identifies the first section of the template (Figure 6) and
iterates through the template's hierarchical structure. .

Each iteration (Figure 7) i'nvolves the next section in the template being found, any query
in that section being translated to an ObjectStore query (step 60), executed by the

ObjectStore server and client programs (step 62) to return a set of pointers (references) {o

relevant media objects. The returned references are then used to issue a further

ObijectStore query for media objects which are semantically-related to the media objects
pointed to by the received references (step 63). Thereafter, various steps (64, 68, 72) are
carried out to produce the part of the Edit Decision List 42 corresponding to the section of

the template being worked on in the current iteration of the template populator program.

The second iteration which relates to the section named 'Main' in Figure 6 will now be
described. The iteration begins (step 62) with the carrying out of the query contained with

the section. The query within the second section requests all MediaObjects mentioning
Michael Owen as a named actor discussed above. "

Figure 8 shows the processing involved in the steps (Figure 7: 62,63) of issuing and
answering the primary and secondary query in more detail. In step 705, an ObjectStore

query - in this example similar to the one below - would be carried out over a MediaBin
cailed binList:

binList->query(*MediaObject*”,
‘m_mediaObjects|:

m_actorList[:strcmp(data,”"Michael Owen”) == Q:].]").

10

15

20

29

30

35

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

16

This returns, to the template populator program 38 a collection of references to
MediaObjects in which “Michael Owen” is a named actor.

Step 707 indicates that ObjectStore database server 34 and ObjectStore client program

(36, 38, 39) interoperate in such a way as to bring pages (4K units of memory) accessed
as the ObjectStore database server answers the query, from the RAID 18 to the volatile

memory (RAM) 17 of the server computer. Even when any index present in the database

is used in answering the query, this will result in the pages which contain the Media
Objects which satisfy the query being brought into the volatile memory 17.

In more detail, the ObjectStore client program uses ’ihe virtual memory (page-swapping)
code provided by modern operating systems (in the present example, it is assumed that
the server computer 16 is running a suitable operating system program such as Windows
NT), in order to handle references which point to objects on pages which have not yet
been transferred to the volatile memory 17 of the server computer 16 from the RAID 18.
Those skilled in the art will realise that this situation .is similar to that used in page-
swapping systems where pages of memory are transferred between the hard disk of a PC
aﬁd the volatile memory of that PC. Virtual merﬁory is used where the combined size of a
program, data and stack is greater than the available physical memory. Where the pages
on which referenced objects reside are already in the volatile memory 17 of the server
computer 186, following the pointers is straightforward matter for the ObjectStore client
program, however where the relevant page has not yet been transferred to the volatile
memory 17 of the server computer, the virtual memory code issues a memory fault. The

ObijectStore client code responds to the memory fauit by req[:esting the relevant page
from the ObjectStore database server 34.

Thus, the above-mentioned article about ObjectStore states: "ObjectStore maintains a
client cache, a pool of database pages that have recently been used, in the virtual
memory of the client host. When the application signals a memory fauit, ObjectStore
determines whether the page being accessed is in the client cache. If not, it asks the
ObjectStore server to transmit the page to the client, and puts the page into the client
cache. Then, the page of the client cache is mapped into virtual address space [of the

client host], so that the application can access it. Finally, the faulting instruction Is
restarted, and the application continues.”

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

20

30

39

17

Although the above paragraph refers to a situation where the ObjectStore client program
IS running on a client computer different from the server computer where the database is
stored, the same advantage is seen in a situation where the ObjectStore database server
and ObjectStore client program are running on the same computer (as is the case in the
present embodiment) - the client program (36,38,39) will resolve a query more quickly if
one or more of the Media Objects it must access in order to answer the query are within

pages held in a cache within that part of the memory 17 allotted to the client program.

The defauit size of the cache is 8MB - however this may be altered by the administrator of
the server computer 17.

The answering of the query issued in step 705 might result in the selection of the
MediaObjects outlined in bold in Figure 9, for example. Each of those media objects will
be held in the cache - i.e. in the volatile memory 17 of the server computer 16.

References o those objects are passed to the template populator program 38.

In step 711, a further query is made for MediaObjects which have the same parent as
each of the MediaObjects returned in response to the first query, (through the
parentRelationship and MORelationship data members of each of the selected
MediaObjects). The effect of constructing this second (and any subsequent) set of

semantic queries is to transfer ‘related’ objects from the RAID 18 into the volatile memory

- 17 of the server computer 16.

This secondary query might result in the selection of the MediaObjects outlined in bold in
Figure 10, for example. Again, the pages containing those media objects are transferred
from the RAID 18 to the volatile memory 17 (step 715) and references {o those media
objects are provided to the template populator code (step 717).

Returning to Figure 7, in step 64, a tree is constructed which includes the media objects
selected in response to the first query as its 'leaves'. This construction takes place as
follows: The parent object of the first selected. media object is retrieved followed by its
parent object and so forth until an object is reached which has no parent object associated
with it. At thfs point, a single linked list from the leaf object to the top-level container has
been reconstructed. Another selected leaf object is examined (if more than one object is

selected as a result of the query), and the ancestry of that leaf object is followed until

either an object is retrieved that already exists in the linked list representing the ancestry

10

15

20

25

30

39

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

18

of the first object or another top-level container is encountered. Repeating this process for

all the other objects in the selection reconstructs the minimal tree containing those
objects. | |

The minimal tree might then be as shown in Figure 11, for example.

The building of the tree (steps 62 to 64) is followed by sorting (step 68) of the objects
within the tree.

The sorting (step 68) takes account of the sequence information entered by the user. The
is done by using the known 'Quicksort' algorithm to place the nodes of the tree in the
correct order as identified by the sequence position metadata associated with the object.

This is done starting at the top of the tree and then moving towards the Ieaves (i.e. the
media objects) of the tree.

The template populator then evaluates any constraints and updates the tree accordingly
(step 72). To evaluate a time constraint, the duration of each media object included within
the tree is calculated by subtracting the 'Out’ property from the 'In' property, and these
durations are added together to reach an actual duration. If this duration is found to be
greater than the target duration, then media objects are removed from the tree. If this
duration is less than the target duration, then media objects are added to the tree.

Where the actual duration is less than the target duration, MediaObjects which belong to
the same sequence as any of the MediaObjects selected in response to the first query are
selected - they are then appended to the selected MediaObjects in order of closeness in
sequence, and order of duration. A new tree for the current section is then created in the

same way as the original tree. This process is repeated until the actual duration is greater
than the target duration.

It will be appreciated that this step will be slightly quicker than might otherwise be the

case, since this MediaObject was brought into volatile memory 17 on the issuance of the
secondary query in step 715.

When all sections have been populated with media object metadata and sequenced In

accordance with the queries and constraints provided, the template populator outputs

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051

10

15

20

293

30

19

(step 78) the edit decision list (Figure 12) by concatenating the media elements found at
the leaves of the trees generated in the three iterations of the loop.

The edit decision list (Figure 12) produded by the template populator program module (46)
is passed to the content synthesiser module (48) in the PC. In the present example, the
content synthesiser module outputs one scene after another In a streamed video
presentation or concatenates the scenes together in order to produce a programme file. It
will. of course, be realised that a user will wish to be provided with an automatically

generated programme after as short a delay as possible.

It will be seen that the present embodiment goes some way towards achieving this by
storing relationship data in the database which indicates relationships between objects In
the database. By analysing the relationship data, secondary objects related to primary
objects returned in response a query can be identified and brought into a cache.

Subsequent queries (which are likely to require access to the secondary objects in order
to be resolved) are then speeded up.

The present invention may be embodied in many different ways. For example, the
embodiment described above may be altered in one or more of the ways listed below to

provide an alternative embodiment of the present invention (this list is by no means
exhaustive):

) althéugh the first embodiment shows personal computers connected to the server by the
Internet, other embodiments of the invention could use set-top boxes instead of the
computers, the resulting video being shown on an associated television set. It is also
possible to use televisions having the functionality of such a set-top box built in. Instead

of the Internet, other networks such as cable television networks, satellite or terrestrial
wireless networks could be used:

i) the constraints section in the template might be variable by the user — for example, a
user could be provided with a graphical user interface in which he can select the duration

of the media article he wishes to see. A corresponding value can then be added to the
template object by the template populator program;

CA 02561089 2006-09-21
WO 2005/093603 PCT/GB2005/001051

20

iii) an object-oriented database is used in the above embodiment - other embodiments of
the present invention could use a relational database. In such embodiments, the
relationship data indicating semantically related data items could be stored in a separate
table, the connections between records in the database andw a record in another table
5 listing one or more semantically-related data items being made using primary and
secondary keys to indicate the association between the two tables. In such a case, the

metadata shown in Figure 3 could be stored as one or more records in respective tables;

iv) in the above embodiment, the ObjectStore client prdgram runs on the server computer.

10 In alternative embodiments, the ObjectStore client could be run on the client computers
: instead. In that case, the caching would be even more beneficial since the taken to send
a request and response across the Internet would be saved each time a relevant data

item was found in the memory of the client computer.

10

15

20

25

30

35

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
21
CLAIMS
1. Computer apparatus having:
) one or more data processors:

i) persistent storage means connectable to said one or more data processors.

sald persistent storage means storing a plurality of data items, one or more of said data
items containing reference(s) to one or more other data items:

Il) volatile memory means, connectable to said one or more data processors, for
storing one or more of said data items:;

i) database management system software executable by said one or more data

processors to respond to a query by passing data items meeting one or more criteria

specified in said query from said persistent storage means to said volatile memory means;

V) querying’ code executable by said one or more data processors to pass a
query to said database management system software:

v) pre-fetching code executable by said one or more data processors to:

a) analyse response data items provided in response to said query to find related
data items related to said response data items; and '

b) automatically generate another query for said related data items.

2. Computer apparatus according to claim 1 wherein each of said data items
contains metadata about a media file, said metadata including said reference(s), each of
which reference(s) refers, directly or indirectly, to a related metadata data item whose

metadata is about a media file whose content is semantically-related to the content of the
first media file.

3. Computer apparatus according to claim 1 or 2 comprising a client computer and a
server computer, each having at least one of said processors, said server computer

10

15

20

25

30

35

WO 2005/093603

CA 02561089 2006-09-21

PCT/GB2005/001051

22

having control over said persistent memory and said client computer having control over

~ said volatile memory.

4. - Computer apparatus according to claim 3 wherein said data items are transferred
in the form of pages of memory.

D. Com;puter apparatus according to claim 3 or 4 in which said server computer

resolves said query and sends the selected data items to said client computer.

6. Computer apparatus according to claim 3 or 4 in which said server computer

sends said data items to said client computer and said client computer resolves said
query.

7. Computer apparatus according to any preceding claim wherein said data items
are software objects.

8. A method of operating computer apparatus cdmprising a processor and first and

second data stores accessible to said processor, access by said processor to data held in

said first store being quicker than access to said second store, said method comprising
the steps of:

storing a plurality of data items in said second data store, together with relationship data
indicating relationships between said data items; and

executing a process on said processor to:

) fetch one or more data items from said second store together with relationship data

indicating one or more related data items semantically related to said fetched data item;

i) responsive to receipt of said relationship data, fetch one or more of said semantically

related data items from said second memory to said first memory; and

iii) check, on subsequent requests for a data item, whether said requested data item is
present in said first store and read said data item from said first store if found.

CA 02561089 2006-09-21
WO 2005/093603 PCT/GB2005/001051

23

9. A method according to claim 8.in which said data items comprise an identifier of a

media file and metadata representing what is portrayed by said identified media file.

10. A method according to claim 8 in which said second store holds a database. '

WO 2005/093603

CA 02561089 2006-09-21

1/12

T
o

[20

| Content Store | / 18
. " 22

‘ Database i

=
== CDb3
—=—__ CD2
- CD1

PCT/GB2005/001051

Figure 1

12

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
2/12

| MEDIA MARK-UP TOOL

36 |ObjectStore Dtabase Server 2

MEDIA ELEMENT o
METADATA
. 2/’ 20
ObjectStore DATABASE | | CONTENT STORE

SR T—

34
ObjectStore Database Server q/—

i P A g

Application Programmer Interface 36

{
1 o

SCREMA > ObjectStore Client

TEMPLATE POPULATOR 23

RPC Server

T 42
39 " EDIT

DECISION Server Computer
LIST

el Sy aw® wapb YEr WS ey Yawr A et wid w8
iy aie -t Ay — Yam ey b b B EED WD wnty Sl WD WA GEE GNP A AN WL YA BN A A WA ep AL G B A W el e e it S e N Yy Sy wmmt Vend At A Aan WS ey Wy avh SEr W Wiy wEr amb Ve wnd wmb Aved PN GEP WY WA A A e A = AR b (S —
= - et A i

RPC Client

TEMPLATE
CREATION
TOOL

CONTENT
SYNTHESISER

Shlp—.

— oL]__

44 46

Figure 2

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
3/12
Media 0.53
Element 1D
Media UR| file://c:/media/AvB/0.53.avi
| Format windowsmedia
Position In 65.05
Out 65:35
Structural | Description | Team B Goal 2
Event __TWWWMI
| Performer ‘Paulo |
Di
| ' Canio |
| Recipient Fabien
: - ' Barthez
- I R R
Domain Teams Home | Team A Jq
Specific Team |
Away | Team B
Team
Performer I Team A
Allegiance |
Recipient | Team B
Allegiance |
Conceptual m]
‘Raing | pG¢ |
Relationship SequenCe D | 1.4
Sequence | 2
l Location . | | |

Figure 3

CA 02561089 2006-09-21

PCT/GB2005/001051

WO 2005/093603

4/12

aouanbagOIN

¥ 9unb1 4

., 10°[q0 opuewss

——

=

sse|D joelisqy -

ulg Eipsin

19]joJJu0D) BIPSIA;

|

., 102[q0 pews

S ——————

PCT/GB2005/001051
5/12

CA 02561089 2006-09-21

WO 2005/093603

jods .
A d ..
:mw_wc_%h G 9.inbi

591940}

& -

ﬁ Bunelqalsd |\) ¢ Mo|g O} ssed G} ssed
p— ¢ 1dwape ¢ 18UI02 19beueul Huielqeeo SNSIUM q wes | q weat
(uoisioaq Ajjeusd UIm) g 1ueal e ~ . S e 9
UOIS] .) ‘" :
Aog , v tea | 9 /mw.o e | mm_‘ ou

Z 1e0D) g urea]

@D

@

| . uoijoeay . *
(dn-pjing ym) - (dn-p|ing yum) | (dn-pjing ypm)
Z _momv. - WeD L ¢ Jdweny | [e0D g ulea]| L [0S g Wea]
LUes
a2 GO Rt = D, AD <
™
yojel Jo 1sey HO
&> @

™

asuanbas LIOIJONPOIJUL

Buiso|o

o)) _

CA 02561089 2006-09-21

PCT/GB2005/001051

i ——s - =

WO 2005/093603
6/12

Title | Football Goal Highlights Template

Section W“__“ITM,-O —
Query | U

Section Name [Main
Query —Acior oo
Constraint - |

Section Name | Qutro
Query URI contains "outro"

L _ 1

Rl contains " Football Intro"

A — PP P dp——

Target Duration = 150s

Actor contains "Michael Owen”

oy e N e

vy

Pt e — el PErEr—

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
7/12

60
- TRANSLATE SECTION QUERY TO |

OBJECTSTORE QUERY
|

EXECUTE OBJECTSTORE QUERY
TO RETRIEVE POINTERS TO
MEDIA OBJECTS

GENERATE SECONDARY QUERY 63
TO RETRIEVE POINTERS TO d
SEMANTICALLY-RELATED
MEDIA OBJECTS

— 64
FIND TREE CONTAINING |
ALL MEDIA OBJECTS IN SELECTION

- SORT TREE TO CONFORM
- WITH USER-DEFINED SEQUENCES

6&

72

ADD / REMOVE MEDIA OBJECTS TO SATISFY
CONSTRAINTS SPECIFIED IN TEMPLATE

Figure 7

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
8/12

e

| Pass Query to ObjectStore AP!

707

Receive Pages
Containing Media Objects

i which Satisfy Query (Direct Hits)
O —

Pass References to Direct Hits |
o Template Populator

For each Direct Hit

| Generate Secondary Query for other Media Objects |

| Belonging to same Relationship object B

713

Pass Secondary Query —
to ObjectStore AP

Receive Pages . 715
Containing Media Objects

which Satisfy
Secondary Query (Indirect Hits)

— 117

Pass References to Indirect Hits’
to Template Populator |

Program '

Figure 8

CA 02561089 2006-09-21

PCT/GB2005/001051

WO 2005/093603

9/12

jods _
Ajeuad 0}
sjyutod

._99I18)o¥

(uois1oaq Ajjeuad Yiim)

oo g wes| |
@)

¢ N0}
Vv Wwea |

(150

(dn-pjing Yyyim)
Z [e0S g wea|

3
-~

6 24nbi4
Buieigoalso \ € MO
| ones e 1dwane g 48ulod 1abeuew bunegeeo SISIUM
Y oo 20b vV wesa [wea j m:ﬁ m_ teal 5319j9Y
0 om 0 GL'0

(dn-pjing yum)
¢ jdwany

uooeaY

| |[BOS) g WeD |

e roveel] @D

YOje\ JO 159y

o>,

anuanbas

- -

Buiscjo

~\

y

. (eob ﬂ@r ssed
ques; §| guweal

oo

(dn-pjing yim)
| |eos) g wes]

G| ssed
q wes |

D

AL <

uoten

Uo1joNPOoIU

©

CA 02561089 2006-09-21

PCT/GB2005/001051

WO 2005/093603

10/12

yods
Aeuad 0}
sjuiod
CEEFEIEY

(uoisioa Ajjeuad Yim)
Z 1805 g wea]

0l @4nbiJ

¢ [No}
v wes |

(dn-pling ypm)
Z [e09 g wes|

Qe

- ¢ dwane
fowes || s || v
,, < wes |
170 mm 0

(dn-pjing yum)
¢ Jdwishy

BOC) Y WES
®_ OV w._.

Z Jau109

punesged \ 77
jebeueul Huneiqalad
quwea)] ||suejguedl

¥1'0
JEe9 (o)

co:umom

L |[eOS) g Wea |

@

¢ Moid
IISIUM

5901859y

(€10

(dn-pjing ypm)
| [0S g ulea}

QD) <

Uole\ 1O 159y

ae

—

- gouanbos
buisojo

.
HO 3O

®

)

)

Uoren

\l

@

T)

uononposul

PCT/GB2005/001051
11/12

CA 02561089 2006-09-21

WO 2005/093603

yods
Aljeuad o)
sjuiod
23.13)9Y

1} @inbi4

Buieiqaled \ 7 e Molg
| ones ¢ [dwoye ¢J8uiod | | jabeuews Buielgs|ed SNSIUM
(uoisioa(Ajeuad unm) m wea) |eob e g wes] ||suejgwes] 551013}

Z 1209 g WEa]

GL 0 cLo
. o0 ‘ A EEVA

-

uoloeay

(dn-pjing yum)
L |BOD) g weaj

O =

%.._U__E M)

(
¢ Jdwsny

EO wes
ED POV

(dn-pjing yum)

Z |eos) g wea | L |e09) g We3 |

a2

aouanbas UO1ONPOJUL

@m:_mo_o e_._owm_\/_Al e |

CA 02561089 2006-09-21

WO 2005/093603 PCT/GB2005/001051
12/12

PR—— ittt A ———

" AvB Highlights file://c:/media/intro.avi
ﬁle://c:fmedfa/AvB/OlO.aviu
ﬂle://c:/rﬁ‘edia/A—\—/E/Oﬂ.aW
file://c:/media/AVB/012.avi |
file :/7c:/n71Ledia/m.avi
ﬂﬁle:77c:/rﬁedia/Af/B/053.avf

_fﬂé://c:media/oﬂtro:avi

N—— - A il Pl e p— -,

Figure 12 |

- A\

g —
Match closing
sequence

introduction
o)

Rest of Maich

- 4 V) [~
@ @ Team A Goal @) @
Team B Goal 1 Team B Goal 1 Attempt 3 Team B Goal 2
with build-u i itd- with build-u
(P) . aaction . | (with build-up) y (P)

®

" (o1a Team B Goal 2
Referee Team BTans || Team B aam A goal Team (with Penalty Decision)
Whistie celehrating manager comer 2 attempt 3 save 1
k Biow 3 _ Y, \celebrating]) S AN J J

Referee
points

to penalty
spot

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - abstract drawing

