

(51) International Patent Classification:

H05B 33/08 (2006.01)

(21) International Application Number:

PCT/IB2013/055236

(22) International Filing Date:

26 June 2013 (26.06.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/664,817 27 June 2012 (27.06.2012) US

(71) Applicant: **KONINKLIJKE PHILIPS N.V. [NL/NL]**
High Tech Campus 5, NL-5656 AE Eindhoven (NL).(72) Inventors: **TAO, Haimin**; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL). **WANG, Shrek**; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL). **KONG, Jian-hong**; c/o High Tech Campus 5, NL-5656 AE Eindhoven (NL).(74) Agents: **VAN EEUWIJK, Alexander, Henricus, Walterus** et al.; High Tech Campus Building 5, NL-5656 AE Eindhoven (NL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii))

Published:

- with international search report (Art. 21(3))

[Continued on next page]

(54) Title: DRIVER CIRCUIT BETWEEN ELECTROMAGNETIC BALLAST AND LED

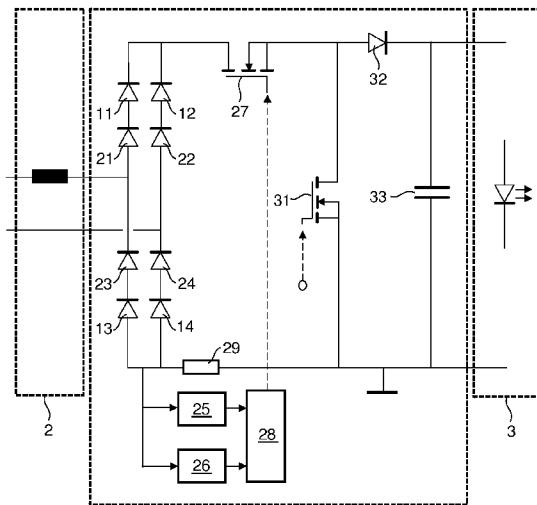


FIG. 1

(57) Abstract: To protect electromagnetic ballasts (2) against damage, driver circuits (1) for coupling the electromagnetic ballasts (2) to light circuits (3) comprising light emitting diodes are provided with rectifier bridges (11-14) for exchanging first current signals with the electromagnetic ballasts (2) and for providing second current signals to the light circuits (3), and with protection circuits (21-24, 25-27) for protecting the electromagnetic ballasts (3) against parameters of the first current signals obtaining values larger than threshold values. The parameters may be direct-current components of the first current signals and may be average values of rectified versions of the first current signals / peak values of the first current signals. The rectifier bridges (11-14) may comprise first diode elements. The protection circuits (21-24, 25-27) may comprise second diode elements serially coupled to the first diode elements. The protection circuit may comprise average value detectors (25) / peak value detectors (26) and may comprise switches (27) for, in response to detection results, interrupting the second current signals.

- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

Driver Circuit Between Electromagnetic Ballast And Led

FIELD OF THE INVENTION

The invention relates to a driver circuit for coupling an electromagnetic ballast to a light circuit comprising one or more light emitting diodes. The invention further relates to a device comprising the driver circuit and further comprising the electromagnetic ballast and/or the light circuit.

Examples of such a driver circuit are rectifier bridges. Examples of such a device are electromagnetic ballasts, lamps and parts thereof.

BACKGROUND OF THE INVENTION

When replacing gas-discharge lamps, such as fluorescent lamps, by light circuits comprising one or more light emitting diodes, sometimes the electromagnetic ballasts required for driving the gas-discharge lamps cannot be replaced or removed or should not be replaced or removed. In that case, the driver circuit possibly may cause damage to this electromagnetic ballast when the driver circuit drives the light circuit comprising one or more light emitting diodes.

SUMMARY OF THE INVENTION

It is an object of the invention to provide an improved driver circuit. It is a further object of the invention to provide an improved device.

According to a first aspect, a driver circuit for coupling an electromagnetic ballast to a light circuit comprising one or more light emitting diodes is provided, the driver circuit comprising

- a rectifier bridge with an input for exchanging a first current signal with the electromagnetic ballast and with an output for providing a second current signal to the light circuit, and
- a protection circuit for protecting the electromagnetic ballast against a parameter of the first current signal obtaining a value larger than a threshold value.

By providing the driver circuit, in addition to the rectifier circuit, with the protection circuit, the electromagnetic ballast is protected against a parameter of the first current signal obtaining a value larger than a threshold value.

An insight could be that a parameter of the first current signal that has 5 obtained a value larger than a threshold value may cause damage to the electromagnetic ballast.

A basic idea could be that the driver circuit is to be provided with a protection circuit for protecting the electromagnetic ballast against a parameter of the first current signal obtaining a value larger than a threshold value.

10 A light circuit comprises one or more light emitting diodes of whatever kind and in whatever combination.

An embodiment of the driver circuit is defined by the parameter being a direct-current component of the first current signal. Too large a direct-current component or DC component in the first current signal may result in saturation and thus overheating of the 15 electromagnetic ballast. This may result in damage to the electromagnetic ballast and its environment.

An embodiment of the driver circuit is defined by the rectifier bridge comprising four first diode elements, the protection circuit comprising four second diode elements, respective first diode elements being serially coupled to respective second diode 20 elements. A rectifier circuit consisting of four times two or more serially coupled diode elements forms a good protection against one of the diode elements failing as a so-called short. A diode element that fails as a short has too low an impedance value in its blocking direction. As soon as one of the diode elements in a serial connection has too low an impedance value in its blocking direction, the other one of the diode elements in this serial 25 connection will still exhibit its normal impedance behavior and will still block a reverse current. As a result, the combination of the rectifier bridge and the protection circuit will still have its rectifying function. The first and/or second current signal will then get a slightly asymmetrical shape due to the abnormal impedance behavior of the failing diode element, and as a result the DC component in this current signal will get a value slightly larger than 30 zero, but this value is still small enough to avoid damage to the electromagnetic ballast.

A diode element comprises a diode or a zener diode or a transistor or a part thereof. In the case of two or more serially coupled diode elements, each one may comprise a diode or a zener diode or a transistor or a part thereof.

An embodiment of the driver circuit is defined by the parameter being an average value of a rectified version of the first current signal. Too large an average value of the rectified version of the first current signal may result in the electromagnetic ballast becoming too hot. This may result in damage to the electromagnetic ballast and its environment. The average value of a rectified first current signal may represent a root mean square value of this first current signal.

An embodiment of the driver circuit is defined by the protection circuit comprising a detector for detecting the average value of the rectified version of the first current signal or an average value of the second current signal, and comprising a switch for, in response to a detection result, interrupting the second current signal. Detecting the average value of the second current signal is an alternative to detecting the average value of the rectified version of the first current signal.

An embodiment of the driver circuit is defined by the parameter being a peak value of the first current signal. Too large a peak value of the first current signal may result in the electromagnetic ballast becoming too hot. This may result in damage to the electromagnetic ballast and its environment.

An embodiment of the driver circuit is defined by the protection circuit comprising a detector for detecting the peak value of the first current signal or a peak value of the second current signal, and comprising a switch for, in response to a detection result, interrupting the second current signal. Too large a peak value of the first and/or the second current signal may result from a diode element failing as a so-called open. A diode element that fails as an open has an excessively large impedance value in its conducting direction. Detecting the peak value of the second current signal is an alternative to detecting the peak value of the first current signal.

An embodiment of the driver circuit is defined by the detector comprising a serial connection of a resistor, a diode and a capacitor, the detector further comprising a comparator for comparing an amplitude of a voltage signal present across the capacitor with a threshold voltage value and for, in response to a comparison result, controlling the switch. This is a simple, low-cost and robust peak value detector.

An embodiment of the driver circuit is defined by a combination of a resistance value of the resistor and a capacitance value of the capacitor being arranged to determine a reaction time of the detector. Preferably, the reaction time should be below a predefined time-interval such as for example one second or two seconds or five seconds or ten seconds etc.

An embodiment of the driver circuit is defined by the parameter comprising a first parameter, a second parameter and a third parameter, the first parameter being a direct-current component of the first current signal, the second parameter being an average value of a rectified version of the first current signal, and the third parameter being a peak value of the 5 first current signal.

An embodiment of the driver circuit is defined by the rectifier bridge comprising four first diode elements, the protection circuit comprising four second diode elements, respective first diode elements being serially coupled to respective second diode elements, the protection circuit further comprising one or more detectors for detecting the 10 average value of the rectified version of the first current signal or an average value of the second current signal and for detecting the peak value of the first current signal or a peak value of the second current signal, and further comprising a switch for, in response to one or more detection results, interrupting the second current signal.

An embodiment of the driver circuit is defined by the parameter being a root 15 mean square value of the first current signal. Too large a root mean square value of the first current signal may result in saturation and thus overheating of the electromagnetic ballast. This may result in damage to the electromagnetic ballast and its environment. The protection circuit may then be provided with a detector for detecting the root mean square value of the first current signal or the root mean square value of the second current signal, and with a 20 switch for, in response to a detection result, interrupting the second current signal.

According to a second aspect, a device is provided comprising the driver circuit and further comprising the electromagnetic ballast and/or the light circuit.

The problem of providing an improved driver circuit has been solved. A further advantage could be that the driver circuit is simple, low-cost and robust.

25 These and other aspects of the invention will be apparent from and elucidated with reference to the embodiments described hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

30 Fig. 1 shows an embodiment of a driver circuit,
Fig. 2 shows an embodiment of a peak value detector,
Fig. 3 shows waveforms in a normal situation, and
Fig. 4 shows waveforms in a faulty situation.

DETAILED DESCRIPTION OF EMBODIMENTS

In Fig. 1, an embodiment of a driver circuit 1 is shown. The driver circuit 1 is arranged for coupling an electromagnetic ballast 2, such as a passive ballast that comprises for example a serial inductor, to a light circuit 3 that comprises one or more light emitting diodes. The driver circuit 1 comprises a rectifier bridge 11-14 with an input for exchanging a first current signal with the electromagnetic ballast 2 and with an output for providing a second current signal to the light circuit 3. The driver circuit 1 further comprises a protection circuit 21-24, 25-27 for protecting the electromagnetic ballast 2 against a parameter of the first current signal obtaining a value larger than a threshold value.

10 Therefore, a first input terminal of the driver circuit 1 is coupled to a first output terminal of the electromagnetic ballast 2, which first output terminal is for example coupled to the serial inductor. The first input terminal of the driver circuit 1 is coupled to (an anode of) a first serial connection of two diode elements 21 and 11, and to (a cathode of) a third serial connection of two diode elements 23 and 13. A second input terminal of the
15 driver circuit 1 is coupled to a second output terminal of the electromagnetic ballast 2. The second input terminal of the driver circuit 1 is coupled to (an anode of) a second serial connection of two diode elements 22 and 12, and to (a cathode of) a fourth serial connection of two diode elements 24 and 14.

20 The diode elements 11 and 12 (their cathodes) are coupled to each other and to a first main contact of a switch 27, here a first main electrode of a transistor. The diode elements 13 and 14 (their anodes) are coupled to each other and to a first side of a resistor 29 and to inputs of an average value detector 25 and a peak value detector 26. Another side of the resistor 29 is coupled to ground. Outputs of the detectors 25 and 26 are coupled to inputs of a combining circuit 28 such as an OR gate, that provides a control signal to a control
25 contact of the switch 27, here a control electrode of the transistor. A second main contact of the switch 27, here a second main electrode of the transistor, is coupled to an anode of a diode 32 and to a first main contact of a further switch 31, here a first main electrode of a further transistor. A second main contact of the further switch 31, here a second main electrode of the further transistor, is coupled to ground. A cathode of the diode 32 forms a
30 first output terminal of the driver circuit 1 and is coupled to one side of a capacitor 33 and to a first input terminal of the light circuit 3. Another side of the capacitor 33 forms a second output terminal of the driver circuit 1 and is coupled to ground and to a second input terminal of the light circuit 3.

In a first situation, where protection is required against a parameter in the form of a direct-current component of the first current signal obtaining a value larger than a threshold value, in the driver circuit 1 the diode elements 11-14 and 21-24 are present, and all other elements 25-29 could be left out. In case one of the diode elements 11-14 has too low an impedance value in its blocking direction (has become a so-called short), the other one of the diode elements 21-24 in the same serial connection will still exhibit its normal impedance behavior, and as a result the combination of the rectifier bridge 11-14 and the protection circuit 21-24 will still have its rectifying function. The first and/or second current signal will then get a slightly asymmetrical shape, and as a result the direct current component or DC component in this current signal will get a value slightly larger than zero, but this value is still small enough to avoid damage to the electromagnetic ballast 2.

The DC component in the current signal will be, for example, one hundred times smaller in case one of the eight diode elements has become a short, as compared to when one of the four diode elements has become a short in a conventional rectifier circuit.

In a second situation, where protection is required against a parameter in the form of an average value of a rectified version of the first current signal obtaining a value larger than a threshold value, in the driver circuit 1 the diode elements 11-14 (or 21-24) are present, and the average value detector 25, the switch 27 and for example the resistor 29 are present. Across the resistor 29 a voltage signal is present that allows the average value detector 25 to perform a detection, but it will be clear to a person skilled in the art that there are many alternatives to such a resistor. So, in this case, the protection circuit 25, 27 comprises the detector 25 for detecting the average value of the second current signal, which detection is an alternative to the detection of an average value of a rectified version of the first current signal, and comprises the switch 27 for, in response to a detection result, interrupting the second current signal.

In a third situation, where protection is required against a parameter in the form of a peak value of the first current signal obtaining a value larger than a threshold value, in the driver circuit 1 the diode elements 11-14 (or 21-24) are present, and the peak value detector 26, the switch 27 and for example the resistor 29 are present. Across the resistor 29 a voltage signal is present that allows the peak value detector 26 to perform a detection, but it will be clear to a person skilled in the art that there are many alternatives to such a resistor. So, in this case, the protection circuit 26, 27 comprises the detector 26 for detecting the peak value of the second current signal, which detection is an alternative to the detection of the

peak value of the first current signal, and comprises the switch 27 for, in response to a detection result, interrupting the second current signal.

The peak value of the current signal will become excessively high in case one of the diode elements has too high an impedance value in its conducting direction (has 5 become a so-called open).

The further switch 31 allows an amount of power as supplied to the light circuit 3 to be controlled. Therefore, in a non-conducting mode of the further switch 31, the second current signal flows via the diode 32 to the light circuit 3 and is further used for charging the capacitor 33. In a conducting mode of the further switch 31, the second current 10 signal flows through this further switch 31 to ground, and the light circuit 3 gets its power only from the charged capacitor 33. The diode 32 prevents this capacitor 33 from being discharged via the conducting further switch 31. The control of such a further switch 31 will be clear to a person skilled in the art. Alternatively, some or all of the elements 31-33 may form part of the light circuit 3.

15 As an alternative to detecting the average value of the rectified version of the first current signal or the average value of the second current signal, a root mean square value of the first or second current signal could be detected. But root mean square detectors are (at the moment) relatively complex and relatively expensive. Average value detectors such as RC filters are relatively simple and relatively low-cost.

20 In Fig. 2, an embodiment of a peak value detector 26 is shown. The detector 26 comprises a serial connection of a resistor 41, a diode 42 and a capacitor 43, and further comprises a comparator 44 for comparing an amplitude of a voltage signal present across the capacitor 43 with a threshold voltage value generated by a source 45, and for, in response to a comparison result, controlling the switch 27. Preferably, a combination of a resistance value 25 of the resistor 41 and a capacitance value of the capacitor 43 is arranged to define a reaction time of the detector 26.

30 A diode element comprises a diode or a zener diode or a transistor or a part thereof. Each one of two or more serially coupled diode elements may comprise a diode or a zener diode or a transistor or a part thereof. Each switch 27, 31 may be a transistor or any other kind of switch. The detectors 25 and 26 may be combined, possibly with the combining circuit 28. In case only one detector 25, 26 is used, the combining circuit 28 will not be necessary. Many alternatives to the combining circuit and many embodiments for the detectors 25 and 26 will be clear to a person skilled in the art.

In Fig. 3, waveforms are shown for a normal situation. Upper graph: First current signal. Lower graph: Second current signal. Current from -1 to 1 A plotted vertically. Time from 0 to 33.3 msec. plotted horizontally.

In Fig. 4, waveforms are shown for a faulty situation (one diode element has become an open - the peak value detector 26 controls the switch 27 to interrupt the second current signal). Upper graph: First current signal. Lower graph: Second current signal. Current from -1 to 1 A plotted vertically. Time from 0 to 33.3 msec. plotted horizontally.

Summarizing, to protect electromagnetic ballasts 2 against damage, driver circuits 1 for coupling the electromagnetic ballasts 2 to light circuits 3 comprising light emitting diodes are provided with rectifier bridges 11-14 for exchanging first current signals with the electromagnetic ballasts 2 and for providing second current signals to the light circuits 3, and with protection circuits 21-24, 25-27 for protecting the electromagnetic ballasts 3 against parameters of the first current signals obtaining values larger than threshold values. The parameters may be direct-current components of the first current signals and may be average values of rectified versions of the first current signals / peak values of the first current signals. The rectifier bridges 11-14 may comprise first diode elements. The protection circuits 21-24, 25-27 may comprise second diode elements serially coupled to the first diode elements. The protection circuit may comprise average value detectors 25 / peak value detectors 26, and may comprise switches 27 for, in response to detection results, interrupting the second current signals.

While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description are to be considered illustrative or exemplary and not restrictive; the invention is not limited to the disclosed embodiments. Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting the scope.

CLAIMS:

1. A driver circuit (1) for coupling an electromagnetic ballast (2) to a light circuit (3) comprising one or more light emitting diodes, the driver circuit (1) comprising

- a rectifier bridge (11-14) with an input for exchanging a first current signal with the electromagnetic ballast (2) and with an output for providing a second current signal to the light circuit (3), and

- a protection circuit (21-24, 25-27) for protecting the electromagnetic ballast (2) against a parameter of the first current signal obtaining a value larger than a threshold value.

10 2. The driver circuit (1) as defined in claim 1, the parameter being a direct-current component of the first current signal.

15 3. The driver circuit (1) as defined in claim 2, the rectifier bridge (11-14) comprising four first diode elements, the protection circuit (21-24) comprising four second diode elements, respective first diode elements being serially coupled to respective second diode elements.

4. The driver circuit (1) as defined in claim 1, the parameter being an average value of a rectified version of the first current signal.

20

5. The driver circuit (1) as defined in claim 4, the protection circuit (25, 27) comprising a detector (25) for detecting the average value of the rectified version of the first current signal or an average value of the second current signal, and comprising a switch (27) for, in response to a detection result, interrupting the second current signal.

25

6. The driver circuit (1) as defined in claim 1, the parameter being a peak value of the first current signal.

7. The driver circuit (1) as defined in claim 6, the protection circuit (26, 27) comprising a detector (26) for detecting the peak value of the first current signal or a peak value of the second current signal, and comprising a switch (27) for, in response to a detection result, interrupting the second current signal.

5

8. The driver circuit as defined in claim 7, the detector (26) comprising a serial connection of a resistor (41), a diode (42) and a capacitor (43), the detector (26) further comprising a comparator (44) for comparing an amplitude of a voltage signal present across the capacitor (43) with a threshold voltage value and for, in response to a comparison result, 10 controlling the switch (27).

10

9. The driver circuit (1) as defined in claim 8, a combination of a resistance value of the resistor (41) and a capacitance value of the capacitor (43) being such as to determine a reaction time of the detector (26).

15

10. The driver circuit (1) as defined in claim 1, the parameter comprising a first parameter, a second parameter and a third parameter, the first parameter being a direct-current component of the first current signal, the second parameter being an average value of a rectified version of the first current signal, and the third parameter being a peak value of the 20 first current signal.

25

11. The driver circuit (1) as defined in claim 10, the rectifier bridge (11-14) comprising four first diode elements, the protection circuit (21-24, 25-27) comprising four second diode elements, respective first diode elements being serially coupled to respective second diode elements, the protection circuit (21-24, 25-27) further comprising one or more detectors (25, 26) for detecting the average value of the rectified version of the first current signal or an average value of the second current signal and for detecting the peak value of the first current signal or a peak value of the second current signal and further comprising a switch (27) for, in response to one or more detection results, interrupting the second current 30 signal.

30

12. The driver circuit (1) as defined in claim 1, the parameter being a root mean square value of the first current signal.

13. A device comprising the driver circuit (1) as defined in claim 1 and further comprising the electromagnetic ballast (2).

14. A device comprising the driver circuit (1) as defined in claim 1 and further
5 comprising the light circuit (3).

15. A device comprising the driver circuit (1) as defined in claim 1 and further comprising the electromagnetic ballast (2) and the light circuit (3).

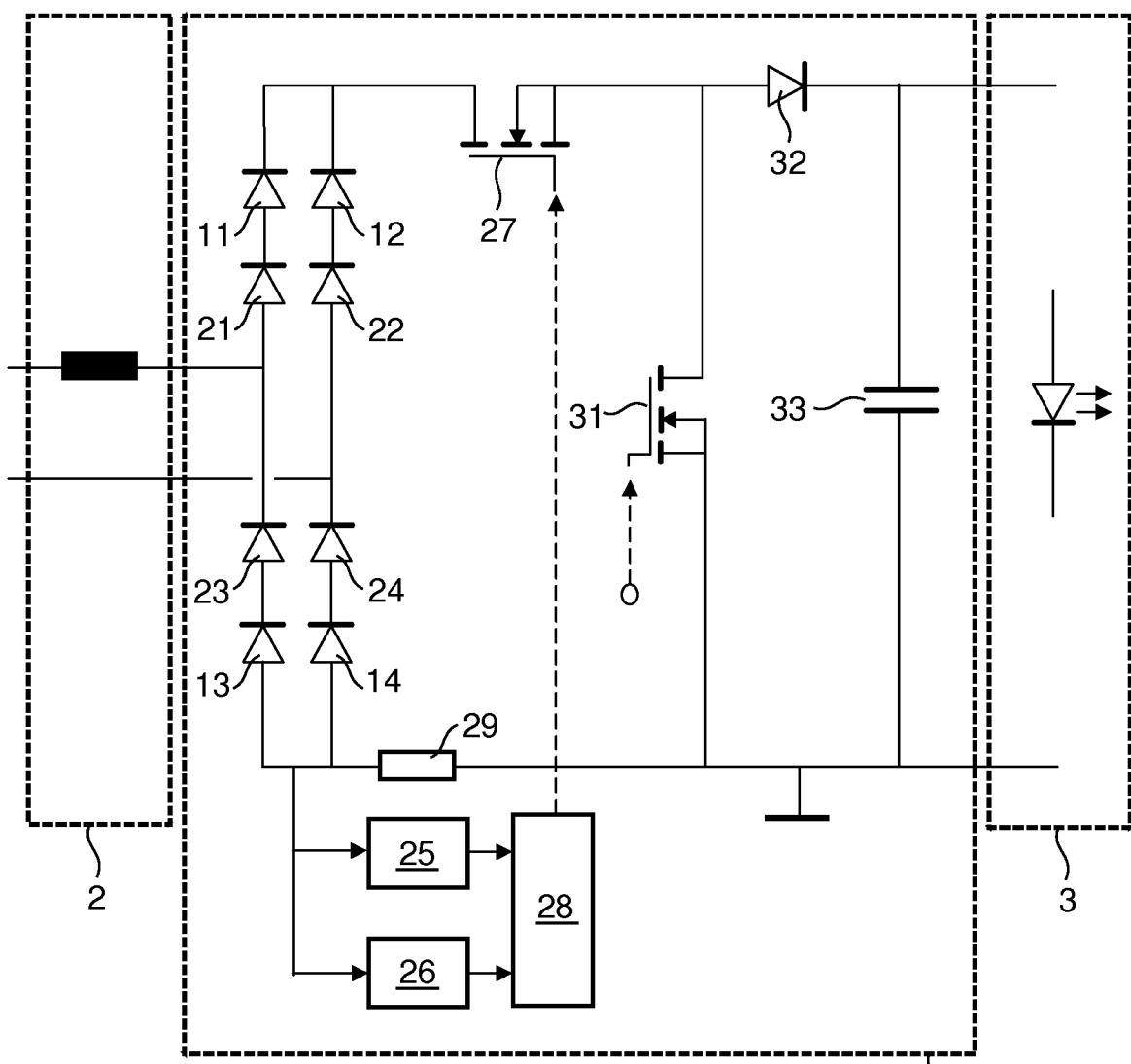


FIG. 1

1

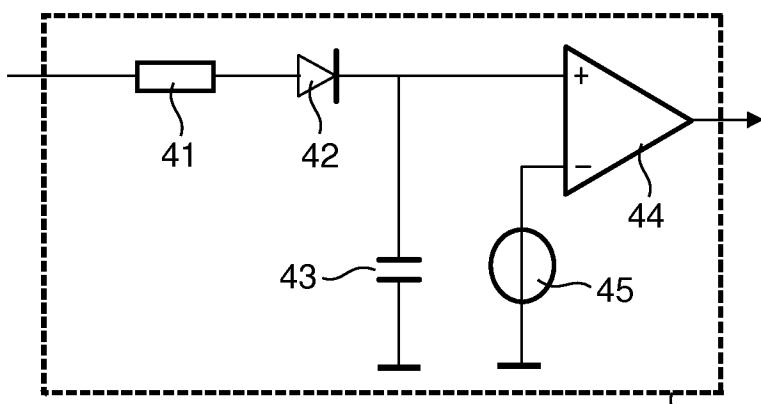


FIG. 2

26

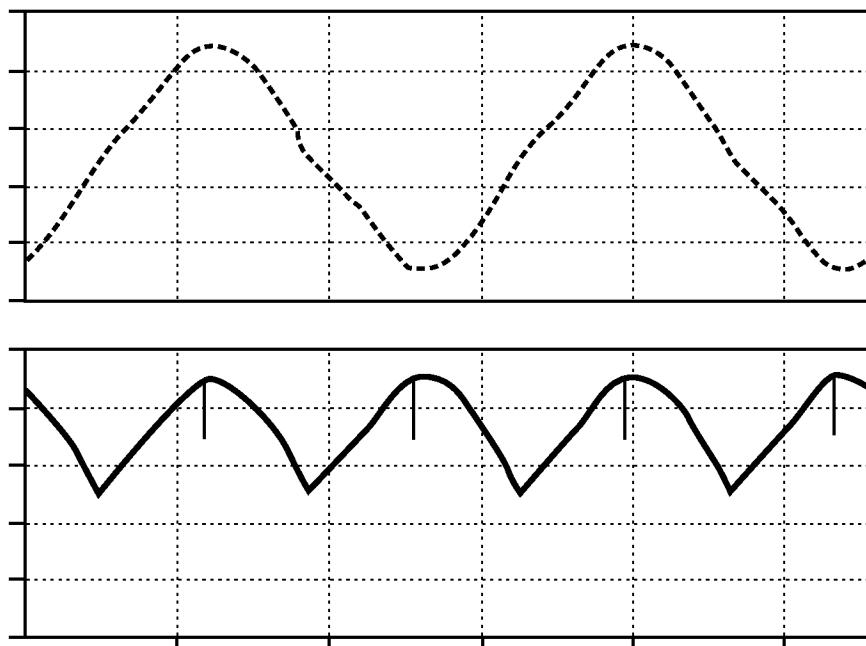


FIG. 3

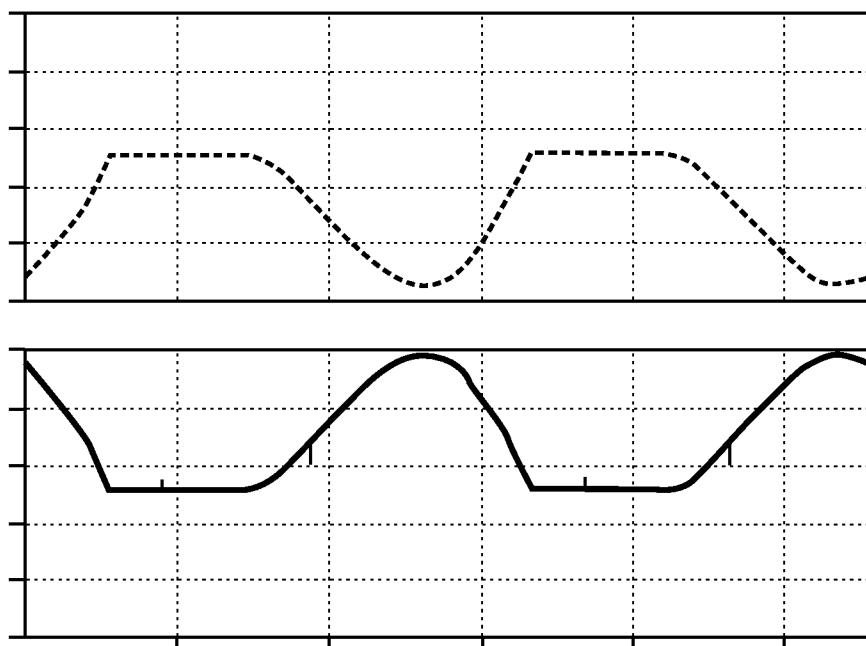


FIG. 4

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2013/055236

A. CLASSIFICATION OF SUBJECT MATTER
INV. H05B33/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H05B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 2006/102355 A2 (FAIRCHILD SEMICONDUCTOR [US]; OH IN-HWAN [US]; RAYABHARI MADHU [US]) 28 September 2006 (2006-09-28) paragraph [0056] - paragraph [0057]; figure 2 ----- US 2004/004446 A1 (LIU HUN-HUANG [TW]) 8 January 2004 (2004-01-08) abstract; figure 1 ----- WO 2011/155712 A2 (LEE JUNG HANG [KR]; PARK SUNG JIN [KR]; SJHIGHTECH CO LTD [KR]) 15 December 2011 (2011-12-15) abstract; figure 1 -----	1,2,6-9, 11-13 1,2,6, 13-15 1,2, 13-15

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
5 December 2013	12/12/2013
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Brown, Julian

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2013/055236

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 2006102355	A2	28-09-2006	CN 101199239 A JP 2008537459 A KR 20080002852 A US 2006214603 A1 WO 2006102355 A2	11-06-2008 11-09-2008 04-01-2008 28-09-2006 28-09-2006
US 2004004446	A1	08-01-2004	NONE	
WO 2011155712	A2	15-12-2011	CN 102278722 A KR 100996670 B1 WO 2011155712 A2	14-12-2011 25-11-2010 15-12-2011