71 A2 AT OO 0 OO A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O O

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(10) International Publication Number

WO 2007/149671 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2007/069509

(22) International Filing Date: 23 May 2007 (23.05.2007)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/816,288 23 June 2006 (23.06.2006) US
60/839,157 22 August 2006 (22.08.2006) US
11/689,177 21 March 2007 (21.03.2007) US

(71) Applicant (for all designated States except US): SENTIL-
LION, INC. [US/US]; 40 Shattuck Rd. Suite 200, An-
dover, MA 01810 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SELIGER, Rob
[US/US]; 10 Sanborn Street, Winchester, MA 01890 (US).
HARTZ, George [US/US]; 16 North Main Street, Salem,
NH 03079 (US). FONTANA, Eric [US/US]; 33 Rockwell
Drive, Shrewsbury, MA 01545 (US). FUSARI, David
[US/US]; 331 Riverbend Drive, Groton, MA 01450 (US).

(74) Agents: SUNSTEIN, Bruce, D. et al.; Bromberg & Sun-
stein, LLP, 125 Summer Street, Boston, MA 02110 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(81)

(34)

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: REMOTE NETWORK ACCESS VIA VIRTUAL MACHINE

Project
Information
310

Tools

| Token Gene(a(or’ 316 T

L 322

N _

User Specific ‘
Token
302

User-Specific !
Token
302

~== Virtual Machine Project Manager
g 04

]

i »| Virtual Machine
image

il

R S
{7 Virual Machine
i 308

N ' B Operating
T System -
Components)
312 ;
Config 2|, T — :

Appiication
Program
Components

314
-

(57) Abstract: A virtual machine project manager (304) creates a generic, i.e., not user-specific, virtual machine image file (300).
\& Copies of this image file (300) may be distributed to one or more users, each of whom may then use an automated procedure to
&\ generate a user-specific virtual machine image file (806) and, thus, a user-specific virtual machine on his/her remote host computer.
The generic virtual machine image file (300) may be distributed on computer-readable media, such as a DVD disks, or the file
~ Mmay be stored on a server and downloaded (such as via the Internet) by the users. Each user also receives or downloads a token
I~ (302), which contains a small amount of user-specific information that is used by the automated procedure to provision the generic
virtual machine image file (300) for the particular user. A virtual machine (808) accesses a security token (1602) connected to a
host computer (802) to automatically authenticate or re-authenticate a user, such as when a virtual private network connection (814)
is restarted. Substantially identical session identifiers (1802) are used by a host computer (802) and a virtual machine (808), or by
two or more virtual machines (808) and (1900), when communicating with an integrated access server (1804). A file server (2206)
g stores virtual machine images (2210-2214) that are accessed by a plurality of host computers (2202-2204).

10

15

20

25

30

WO 2007/149671 PCT/US2007/069509
Remote Network Access Via Virtual Machine

TECHNICAL FIELD

The present invention relates to virtual machines used to remotely access enterpris
computer networks and, more particularly, to methods and systems for provisioning such virtua

machines for users.

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of: U.S. Provisional Patent Application No. 60/839,157
filed August 22, 2006, titled “Remote Network Access Via Virtual Machine;” U.S. Provisiona
Patent Application No. 60/816,288, filed June 23, 2006, titled “Remote Network Access Vi
Virtual Machine;” and U.S. Patent Application No. 11/689,177, filed March 21, 2007, titlec
“Remote Network Access Via Virtual Machine,” the contents of all of which are hereby

incorporated by reference herein.

BACKGROUND ART

Many organizations, such as corporations, hospitals and universities, maintain enterprise
computer networks to interconnect workstation computers, printers, storage devices and othe
network resources. Such networks facilitate users’ access to data and application programs storec
on the network or on other workstations. Such networks also facilitate communication, such as by
electronic mail (e-mail), among workstation users.

Some organizations allow their users to connect remote workstations, such as home
computers, to their enterprise networks. Such remote connections facilitate working from home o
from some other “off campus” locations. For example, a doctor may have admitting privileges a
several hospitals. The doctor may find it convenient to be able to access patient data at all of these
hospitals from one or more locations, such as his/her primary clinical office or from a workstatior
in any of the hospitals.

Information technology (IT) organizations prefer to manage workstations connected to thei
respective enterprise networks. For example, these organizations typically control which operating
system and which version of the operating system executes on each workstation. Managec
workstations typically include prescribed anti-virus software. IT policy may also prohibit users
from installing unapproved software or hardware on users’ workstations to minimize the likelihooc
of malicious software being installed on the workstations. In general, IT organizations standardize

the workstations to facilitate maintaining and upgrading the workstations.
-1-

10

15

20

25

30

WO 2007/149671 PCT/US2007/069509

The desire to be able to access an enterprise network from remote locations and the
simultaneous desire to tightly manage all workstations connected to the enterprise network pose
problems. A virtual private network (VPN) connection can be used to interconnect a remote user
with an enterprise network. A VPN connection is a secure computer network connection between
two points. The VPN connection is carried over another network, typically a public wide area
network (WAN), such as the Internet. Communications between the end points of a VPN
connection are typically encrypted, so their contents cannot be ascertained by unauthorized nodes
along the WAN. Software at the endpoints operates to establish a network link (independent of the
carrying WAN) between the endpoints. Thus, a VPN connection makes the exemplary workstation
appear as a node on the enterprise network.

However, connecting a remote user’s computer to an enterprise network via a VPN
connection poses problems. For example, such a connection can expose the enterprise network to
malicious software on the user’s computer.

One solution to this problem involves executing a managed virtual machine on a user’s
remote (host) computer. The virtual machine provides protection against malicious software that
might execute on the host computer. A virtual machine is instantiated (created) on a host computer
by a virtualization program and a virtual machine image file. However, the virtual machine image
file must be provisioned (customized) for each remote user. Creating and distributing such user-

specific virtual machine image files is time consuming and expensive.

SUMMARY OF THE INVENTION

An embodiment of the present invention provides a method of provisioning a customized
virtual machine image to a user on a host computer so as to permit establishment of a virtual
machine on the host computer. The method of this embodiment includes providing a virtual
machine image for loading onto the host computer. This image has an operating system and as yet
is not customized to the user. The method additionally includes providing previously generated
customized configuration data from a source outside of the image for use by the operating system.

In further related embodiments, the method also includes determining additional
configuration data from predefined rules and providing the additional data for use by the operating
system. Optionally, the additional configuration data includes a memory size associated with the
virtual machine.

Alternatively or in addition, the virtual machine image also includes instructions and data

for establishing a VPN connection between the virtual machine and a computer environment.

2-

10

15

20

25

30

WO 2007/149671 PCT/US2007/069509

Optionally, the host computer is unmanaged. Also alternatively or in addition, the virtual machine
image includes computer instructions establishing an automated mini-setup procedure for the
operating system and the customized configuration data include data that are provided as answers to
the automated mini-setup procedure.

In further related embodiments, the virtual machine image includes computer instructions
establishing an authentication component to implement an authentication policy of an interactive
logon model, such component prompting for user-supplied credentials necessary for establishing
the VPN connection. Optionally, the authentication component also causes generation of a log file
external to the virtual machine, the log file containing diagnostic information concerning at least
one application running in the virtual machine. The at least one application may include the
authentication component itself, a VPN monitor, or a VPN helper or any combination of these
applications. Also alternatively or in addition, the virtual machine image also includes instructions
for causing log out from the operating system in response closing of a user interface window related
to the virtual machine.

In another embodiment, the invention provides a method of providing access by a remote
computer to a computing environment, such environment having a virtual private network
connection. The method of this embodiment includes providing a virtual machine image for loading
onto the remote computer. This image (i) permits establishment of a virtual machine on the remote
computér, (ii) has an operating system, (iii) includes instructions and data for establishing a VPN
connection between the virtual machine and a computer environment, and (iv) is as yet not
customized to a specific user. The method also includes providing previously generated customized
configuration data from a source outside of the image to the operating system. The configuration
data permits the virtual machine to log in to the environment and become registered onto a domain
of the environment.

The further related embodiments generally correspond to those discussed above. In further
related embodiments, the method also includes determining additional configuration data from
predefined rules and providing the additional data for use by the operating system. Optionally, the
additional configuration data includes memory size associated with the virtual machine.

Optionally, the host computer is unmanaged. Also alternatively or in addition, the virtual
machine image includes computer instructions establishing an automated mini-setup procedure for
the operating system and the customized configuration data include data that are provided as
answers to the automated mini-setup procedure.

In further related embodiments, the virtual machine image includes computer instructions

establishing an authentication component to implement an authentication policy of an interactive
23-

WO 2007/149671 PCT/US2007/069509

logon model, such component prompting for user-supplied credentials necessary for logging onto
the VPN connection. Optionally, the authentication component also causes generation of a log file
external to the virtual machine, the log file containing diagnostic information concerning at least
one application running in the virtual machine. The at least one application may include the
authentication component itself, a VPN monitor, or a VPN helper or any combination of these
applications. Also alternatively or in addition, the virtual machine image also includes instructions
for causing log out from the operating system in response closing of a user interface window related
to the virtual machine.

Another embodiment of the invention provides a computer program product. The product
includes a computer-readable medium on which is stored a virtual machine image for loading onto
a host computer. The image has an operating system that is not as yet customized to a user. In a
further related embodiment the virtual machine image includes computer instructions for causing
customization of the operating system to a particular user according to configuration data from a
source other than the computer-readable medium.

An embodiment of the invention provides a method of accessing a printer that is available
through a host computer. The host computer has a printer driver and a host operating system, and
the host computer executes a virtual machine. In response to a print request, the method includes
producing an intermediate description of the print request and passing the intermediate description
from the virtual machine to the printer driver.

In related embodiments, the method also includes storing the intermediate description on
the host computer. The intermediate description may be in a portable document format (PDF). The
intermediate description may be at least one command, including at least one graphic device
interface (GDI) command.

Another embodiment of the invention provides a computer printing system. The system
includes a host computer executing a real printer driver. The system also includes a virtual machine
operating within the host computer. The virtual machine executes a virtual printer driver. The
virtual printer driver is operative, in response to a print request, to produce an intermediate
description of the print request and to pass the intermediate description to the real printer driver.

In related embodiments, the intermediate description includes a file stored on the host
computer, The file may be a portable document format (PDF) file. The intermediate description
may include at least one command. The at least one command may include at least one graphic
device interface (GDI) command.

An embodiment of the invention provides a method of automatically obtaining at least one

user credential. The method includes connecting a security token to a port of a host computer and
4-

10

15

WO 2007/149671 PCT/US2007/069509

executing a virtual machine on the host computer. From within the virtual machine, the port is
accessed and data associated with at least one user credential related to a user is read from the
security token. Also from within the virtual machine, the read data is used to log the user into an
operating system executed by the virtual machine.

Another embodiment of the invention provides a method of automatically obtaining at least
one user credential. The method includes connecting a security token to a port of a host computer
and executing a virtual machine on the host computer. From within the virtual machine, the port is
accessed and data associated with at least one user credential related to a user is read from the
security token. The read data is used to establish a network connection between the virtual machine
and a server.

Yet another embodiment of the invention provides a method of method of automatically
obtaining at least one user credential. The method includes connecting a security token to a port of
a host computer. The method includes executing a virtual machine on the host computer and
executing a virtual machine player on the host computer. From within the player, the port is
accessed and data associated with at least one user credential related to a user is read from the
security token. Also from within the virtual machine, the player is accessed to obtain the read data.

In related embodiments, from within the virtual machine, the obtained data is used to log
the user into an operating system executed by the virtual machine. In another related embodiment,
from within the virtual machine, the obtained data is used to establish a network connection
between the virtual machine and a server.

Another embodiment of the invention provides a method of automatically obtaining at least
one user credential. The method includes executing a host operating system on a host computer and
within the host operating system, caching at least one user credential related to a user who is logged
into the host operating system. The host computer executes a virtual machine. From within a virtual
machine player, the at least one cached user credential is obtained from the host operating system,
and the obtained at least one user credential is used to log the user into an operating system
executed by the virtual machine.

An embodiment of the invention provides a method of establishing parallel sessions
between a host computer and an integrated access server and between a virtual machine being
executed on the host computer and the integrated access server. The method includes using a first
session identifier to establish a session between the host computer and the integrated access server
and using a second session identifier, substantially identical to the first session identifier, to

establish a session between the virtual machine and the integrated access server.

-5-

WO 2007/149671 PCT/US2007/069509

In related embodiments, on the host computer, the first session identifier is generated, based
at least in part on identification data associated with the host computer. Information about the
identification data associated with the host computer is communicated from the host computer to
the virtual machine. The communicated information is used to generate the second session
identifier. The identification data associated with the host computer may be a media access control
(MAC) address of the host computer.

Another embodiment of the invention provides a method of establishing parallel sessions
between a first virtual machine being executed on a host computer and an integrated access server
and between a second virtual machine being executed by the host computer and the integrated
access server. The method includes using a first session identifier to establish a session between the
first virtual machine and the integrated access server and using a second session identifier,
substantially identical to the first session identifier, to establish a session between the second virtual
machine and the integrated access server.

In related embodiments, identification data associated with the host computer is
communicated from the host computer to the first virtual machine. The communicated
identification data is used to generate the first session identifier. The identification data associated
with the host computer is communicated from the host computer to the second virtual machine. In
addition, the communicated identification data is used to generate the second session identifier.

The identification data associated with the host computer may be a media access control
(MAC) address of the host computer. Communicating the identification data from the host
computer to the first virtual machine may include executing a virtual machine player on the host
computer.

Yet another embodiment of the invention provides a method of coordinating an access
request from a computer to a first integrated access server and an access request from the computer
to a second integrated access server, wherein the first and the second integrated access servers
maintain distinct universes of patient identifiers. The method includes receiving a patient identifier
that identifies a patient within the universe of patient identifiers maintained by the first integrated
access server and sending the received patient identifier to the first integrated access server. The
method also includes mapping the received patient identifier into a second patient identifier that
identifies the same patient within the universe of patient identifiers maintained by the second
integrated access server and sending the second patient identifier to the second integrated access

server.

10

15

20

25

30

WO 2007/149671 PCT/US2007/069509

In related embodiments, the method may include executing a virtual machine on a
computer. Sending the second patient identifier may include setting the second patient identifier
from the virtual machine to the second integrated access server.

An embodiment of the invention provides a method of executing a virtual machine in a
network that includes a plurality of host computers interconnected to a file server. The method
includes storing a plurality of virtual machine images on the file server and loading a selected one
of the plurality of virtual machine images from the file server onto a first selected one of the host
computers. The method also includes executing the loaded virtual machine image on the first
selected one of the host computers.

In related embodiments, storing the plurality of virtual machine images on the file server
may include storing a plurality of generic virtual machine images on the file server. Optionally,
after loading the selected one of the plurality of virtual machine images from the file server onto the
first selected one of the host computers, the method may also include automatically provisioning
the virtual machine on the host computer.

In further related embodiments, the method includes suspending execution of the virtual
machine on the first selected one of the host computers and storing information about the
suspended virtual machine on the file server. Suspending execution of the virtual machine may
include suspending execution of the virtual machine in response to a user command issued on the
first selected one of the host computers or in response to information stored on the file server or in
response to a remote procedure call.

In yet further related embodiments, the method includes loading the information about the
suspended virtual machine from the file server onto a second selected one of the host computers,
which is different than the first selected one of the host computers. The suspended virtual machine
may resume execution on the second selected one of the host computers or on the file server.

The information about the suspended virtual machine may be loaded from the file server
onto a compute server and execution of the suspended virtual machine may be resumed on the
compute server.

Information about at least one other suspended virtual machine may be loaded from the file
server onto the compute server and execution of the at least one other suspended virtual machine
may be resumed on the compute server.

Optionally, the virtual machine on the first selected one of the host computers may be
automatically provisioned. Storing the plurality of virtual machine images on the file server may

include storing a plurality of generic virtual machine images on the file server, and the information

7-

10

15

WO 2007/149671 PCT/US2007/069509

about the suspended virtual machine may include information about differences between a current
state of the virtual machine and one of the generic virtual machine images.

Optionally, storing the plurality of virtual machine images on the file server may include
storing a plurality of generic virtual machine images on the file server. After loading the selected
one of the plurality of virtual machine images is loaded from the file server onto the first selected
one of the host computers, the virtual machine on the host computer may be automatically
provisioned. After provisioning the virtual machine, execution of the virtual machine on the first
selected one of the host computers may be suspended, and information about differences between a
current state of the virtual machine and one of the generic virtual machine images may be stored on

the first selected one of the host computers.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more fully understood by referring to the following detailed
description in conjunction with the accompanying drawings, of which:

Fig. 1 is block diagram of a virtual machine operating within a real computer, according to
the prior art;

Fig. 2 is a block diagram of components for creating a virtual machine image file of Fig. 1,
according to the prior art;

Fig. 3 is a block diagram of components for creating a virtual machine image file, in
accordance with one embodiment of the present invention;

Fig. 4 contains a flowchart of operations related to creating the virtual machine image file of
Fig. 3, in accordance with one embodiment of the present invention;

Figs. SA-B depict an exemplary user interface to one of the components of Fig. 3, in
accordance with one embodiment of the present invention;

Fig. 6 is a flowchart of operations related to creating computer-readable media that contain
the virtual machine image file of Fig. 3, in accordance with one embodiment of the present
invention;

Fig. 7 is a block diagram of components for creating the computer-readable media of Fig. 6,
in accordance with one embodiment of the present invention;

Fig. 8 is a block diagram of components for creating a user-specific virtual machine from
the computer-readable media of Fig. 6, in accordance with one embodiment of the present

invention;

10

15

WO 2007/149671 PCT/US2007/069509

Fig. 9 is a flowchart of operations related to creating the user-specific virtual machine from
the computer-readable media of Fig. 6, in accordance with one embodiment of the present
invention;

Figs. 10A-B contain a flowchart of operations performed by the virtual machine of F ig. 8
the first time the virtual machine starts, in accordance with one embodiment of the present
invention;

Fig. 11 is a flowchart of operations performed by the virtual machine of Fig. 8 if an end user
closes the virtual machine, in accordance with one embodiment of the present invention;

Fig. 12 is a flowchart of operations performed by the virtual machine of Fig. 8 each time the
virtual machine starts, in accordance with one embodiment of the present invention;

Fig. 13 is a block diagram of a printing system, according to the prior art;

Fig. 14 is a block diagram of a printing system, in accordance with one embodiment of the
present invention;

Fig. 15 is a block diagram of a printing system, in accordance with another embodiment of
the present invention;

Fig. 16A is a block diagram of a virtual machine accessing a security token, in accordance
with one embodiment of the present invention;

Fig. 16B is a block diagram of a virtual machine accessing a security token, in accordance
with another embodiment of the present invention;

Fig. 17 is a block diagram of a virtual machine accessing user credentials in a host
computer, in accordance with one embodiment of the present invention;

Fig. 18 is a block diagram of a host computer and a virtual machine accessing an integrated
access server, in accordance with one embodiment of the present invention;

Fig. 19 is a block diagram of two virtual machines accessing an integrated access server, in
accordance with one embodiment of the present invention;

Fig. 20 is a block diagram of a host computer and a virtual machine accessing two separate
integrated access servers, in accordance with one embodiment of the present invention;

Fig. 21 is a block diagram of two virtual machines accessing two separate integrated access
servers, in accordance with one embodiment of the present invention;

Fig. 22 is a block diagram of plural host computers connected to a file server that stores a
plurality of virtual machine images, in accordance with one embodiment of the present invention;

Fig. 23 is a block diagram of plural host computers connected to a file server that stores a
plurality of virtual machine difference files, in accordance with one embodiment of the present

invention; and
9.

25

WO 2007/149671 PCT/US2007/069509

Fig. 24 is a block diagram of plural host computers that store respective virtual machine

difference files, in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

The contents of U.S. Provisional Patent Application No. 60/839,157, filed August 22, 2006,
titled “Remote Network Access Via Virtual Machine,” U.S. Provisional Patent Application No.
60/816,288, filed June 23, 2006, titled “Remote Network Access Via Virtual Machine,” and U.S.
Patent Application No. 11/689,177, filed March 21, 2007, titled “Remote Network Access Via

Virtual Machine,” are all hereby incorporated by reference herein.

Definitions
As used in this description and the accompanying claims, the following terms shall have the
meanings indicated, unless the context otherwise requires:
A “virtual machine” (sometimes herein called “VM”) is a self-contained software
environment on a host computer that simulates a computer separate from the host computer,
providing at least a degree of system independence from the hardware and software environment of

the host computer, including the operating system of the host computer.

Virtual machine

A virtual machine simulates actual computer hardware. Fig. 1 is block diagram of a virtual
machine operating within a real computer, according to the prior art. A host computer 100, such as
a personal computer, includes real hardware 102, such as a basic input/output system (BIOS), one
or more central processing units (CPUs), memory, one or more disk drives and, optionally, other
peripheral devices. The host computer 100 executes a host operating system 104, such as the
Windows XP operating system available from Microsoft Corporation, Redmond, WA.
Alternatively, other operating systems, such as Linux, can be used. The host operating system
controls the real hardware 102 and provides an environment 106 in which one or more application
programs, such as application 108, can execute. The host operating system provides an interface
between the application 108 and the real hardware 102. If the host computer 100 is appropriately
equipped, such as with a network interface card (NIC), the host operating system can establish a
network connection to another computer.

A “virtualization program” 110, is a program that executes on the host (real) computer 100,
typically independently of the host operating system 104. The virtualization program creates an

environment 112, a “virtual machine” 112 (defined above), in which other software can be

-10-

30

WO 2007/149671 PCT/US2007/069509

executed. The virtualization program 110 simulates operation of a computer. For example, the
virtualization program 110 provides virtual hardware 114, including a BIOS, CPU(s), memory, disk
drive(s) and optionally other peripherals to software that executes on the virtual machine 112.

The configuration of the virtual machine 112, such as the CPU model, amount of memory,
initial contents of the memory, number of disk drives and their contents, are stored in a virtual
machine image file 116. Upon beginning execution, the virtualization program 110 reads the virtual
machine image file 116 and creates the virtual machine 112 according to information in the virtual
machine image file 116. Exemplary virtualization programs 110 are available from VMware, Inc.,
Palo Alto, CA; Parallels, Inc., Herndon, VA; and Microsoft, Inc., Redmond, WA.

The virtualization program 110 may provide a virtual machine user interface 117, which
executes as an application in the environment 106 created by the host operating system 104. The
virtual machine user interface 117 typically communicates with the virtualization program 110,
such as to specify which virtual machine image file 116 the virtualization program 110 is to use to
create the virtual machine 112. Once the virtual machine 112 is created, the virtual machine user
interface 117 displays a window which displays outputs from the virtual machine 112 and accepts
user inputs for the virtual machine 112.

The virtual machine 112 typically executes software just as a real computer executes
software. For example, the virtual machine 112 typically executes an operating system 118. The
operating system 118 executed by the virtual machine 112 need not be the same operating system
or version as the host operating system 104 executed by the host computer 100. The operating
system 118 executed by the virtual machine 112 creates an environment 120 in which one or more
application programs, such as application 122, can execute.

The virtualization program 110 simulates interactions between the software, such as the
operating system 118 and the applications 122, that executes on the virtual machine 112 and the
virtualized hardware 114, such as disk drives and network interface cards (NICs). Thus, the
software executed by the virtual machine 112 has a degree of isolation from software executed by

the host computer 100.

Provisioning a Virtual machine
Fig. 2 is a block diagram of components for creating the virtual machine image file 116 of
Fig. 1, according to the prior art. An image creation tool 200 provides a user interface 202, by
which a user (typically an information technology (IT) technician) interacts with the tool 200. In

response to commands and configuration parameters, such as BIOS type, CPU model, amount of

-11-

30

WO 2007/149671 PCT/US2007/069509

memory, initial contents of the memory, number and types of disk drive(s), etc., the image creation
tool 200 creates a virtual machine 204.

The image creation tool 200 includes functionality similar to the virtual machine user
interface 117 (Fig. 1). Upon instruction from the technician, the image creation tool 200 causes the
virtual machine 204 to begin executing instructions, and the user interface 202 allows the technician
to interact with the virtual machine 204. For example, the technician can instruct the virtual
machine 204 to install an operating system, such as from operating system components 206 stored
on computer distribution media. The technician interacts with the operating system installation
procedure via the user interface 202, as though the technician were interacting with a real computer.
This installation procedure is similar to the procedures performed by computer vendors and/or end
users to provision real computers with information about the hardware, software, user accounts, etc.
of the computers. For example, during operating system software installation, the operating system
typically performs tests to ascertain what hardware is connected to the computer. In the case of
installing an operating system on a virtual machine 204, the virtualization program 110 simulates
virtual hardware 114, so the operating system configures itself according to the virtualized
hardware available on the virtual machine 204.

In addition, the operating system typically prompts for a name for the computer, user
account information (username(s) and password(s)), time zone, etc. As noted, the technician
supplies this information via the user interface 202. Setting up the operating systems usually
requires the technician to log in to the virtual machine 204 to perform some of the setup. For
example, once the operating system is installed, the technician may join the virtual machine 204 to
a domain. The technician may also install one or more applications on the virtual machine 204,
such as from computer distribution media 208. The technician may also set parameters, such as
browser favorites/bookmarks, etc., and perform other customizations. Fully setting up the virtual
machine may require restarting the operating system one or more times.

After the virtual machine 204 is fully set up, the image creation tool 200 creates the virtual
machine image file 116. The contents of the virtual machine image file 116 may include a
“snapshot” of the virtual machine 204 that defines the state of the virtual machine. The image
creation tool 200 can often set the virtual machine 204 to any state prior to creating the virtual
machine image file 116. For example, the operating system of the virtual machine 204 can be shut
down (via the user interface 202) and the state of the virtual machine can be set to “powered down.”
Each time the virtual machine image file 116 is used to instantiate a virtual machine, the virtual

machine starts up in the last state stored in the virtual machine image file 116.

-12-

10

WO 2007/149671 PCT/US2007/069509

An exemplary virtual machine image creation tool is available from VMware, Inc., Palo
Alto, CA. Conventional image creation tools 200 are difficult to use, due to the amount of detail,
and the complexity of the details, a technician must provide to the tool, Furthermore, the virtual
machine image files 116 created by such prior-art tools are user-specific. That is, a given virtual
machine image file 116 describes a virtual machine that has been provisioned with a certain user
accouni(s) and application(s). Such a virtual machine image file 116 is generally not useful to
another user. Thus, a different virtual machine image file 116 must be produced for each user.
Consequently, creating these user-specific virtual machine image files 116 for all the users who
require them can consume a considerable amount of time and IT resources (both human and

computer resources).

Creating a Generic Virtual machine

As noted, prior-art systems and methods for creating virtual machine image files pose
problems, because these image files are user-specific, and creating user-specific image files is time
consuming. Fig. 3 is a block diagram of components for creating a “generic,” i.e., not user-specific,
virtual machine image file 300, in accordance with one embodiment of the present invention.
Copies of this generic virtual machine image file 300 can be distributed to one or more users, each
of whom can then use an automated procedure (described below) to generate a user-specific virtual
machine image file (and, thus, a user-specific virtual machine) on his/her remote computer. The
generic virtual machine image file 300 can be distributed to the users on computer-readable media,
such as a DVD disks. Optionally or alternatively, the generic virtual machine image file 300 is
stored on a server and downloaded (such as via the Internet) by the users. Each user also receives or
downloads a token 302, which contains a small amount of user-specific information that is used by
the automated procedure to provision the generic virtual machine image file 300 for the particular
user.

An IT technician or system administrator uses a virtual machine project manager 304 to
create the generic virtual machine image file 300. Operations performed to create the generic virtual
machine image file 300 are summarized in a flowchart of Fig. 4 and are described in detail below.

First, the virtual machine project manager 304 is used to create a virtual machine 306 and
install an appropriate operating system, application programs and data and perform other
customizations, as described above. The operating system, application programs, etc. are selected to
be suitable for a number of users. Eventually, the virtual machine project manager 304 “de-
configures” the virtual machine. This de-configuration includes removing user accounts that were

created while the operating system was being installed on the virtual machine 306. The operating

-13-

10

WO 2007/149671 PCT/US2007/069509

system is then “resealed.” Thus, the first time the virtual machine is started on the end-user’s host
computer, the operating system completes its configuration, including setting up a user account
specific to the user and performing additional operations described below. Consequently, the
generic virtual machine image 300 does not include user-specific information, such as end-user
account information. Instead, the generic virtual machine image 300 contains software and/or data
that is suitable for a number of users.

As shown in Figs. 5A-B, the virtual machine project manager 304 provides a user interface
308 that enables the technician to create and manage descriptions of different, but related, virtual
machines. Each of these descriptions is referred to as a “project.” The descriptions of these projects
are stored in a project data file 310. The projects are related to each other in a hierarchical (tree)
fashion, such that child nodes of the tree inherit attributes from their respective parent nodes.

For example, the technician can create one virtual machine with a first set of applications
installed on the virtual machine and save a description of this virtual machine as a first project. The
technician can then use the first project to create another virtual machine identical to the first virtual
machine, without creating the second virtual machine from the beginning. Starting with this second
virtual machine, the technician can add or remove applications or perform other customizations and
save a description of the second virtual machine as another project in less time than it would take to
create the second virtual machine from the beginning,

Thus, the technician can create a base virtual machine (that may or may not be suitable for
any group of users) and then use this base virtual machine to create other virtual machines that are
suitable for different groups of users. Alternatively, the technician can start with a project that
describes a virtual machine suitable for a first group of users (such as doctors) and create a second
project that describes a similar, but suitably different, virtual machine that is suitable for a different
group of users (such as nurses).

Information, such as memory size or disk drive size, appearing in the fields of Figs. 5A-B is
merely exemplary of the type of data that can be entered into the virtual machine project manager
304. The values shown in Figs. S5A-B are not meant to provide guidance in selecting values for any
particular project.

In one embodiment of the virtual machine project manager 304, for each project, the
technician enters a project name to identify the project. The technician also enters, or the project
inherits from a parent project, additional information, of the general type listed in Table 1 and as

described below,

-14-

WO 2007/149671 PCT/US2007/069509

Table 1

Typical Information for Generic Virtual machine

Pattern for naming each end-user’s virtual machine

Username and password for an account that can be used to add the end-user’s virtual
machine to a domain

Domain end-user’s virtual machine joins

Password for an administrator account on the end-user’s virtual machine

Operating system license key

Initial screen resolution, color depth, etc. of virtual machine

Size of virtual machine memory

Size of virtual machine disk

The pattern for naming the end-user’s virtual machine referred to in Table 1 can include a
concatenation of fixed character strings and variables that are evaluated when the virtual machine is
created on the end-user’s host computer. For example, the pattern “XY-
%USERNAMEY%RANDNUMS4” can indicate that the characters “XY-”, the end-user’s username
and a four-digit random number are concatenated together to form the end-user’s virtual machine
name.

In a further embodiment of the present invention, the size of virtual machine memory
referred to in Table 1 specifies a value that may be adjusted (increased or decreased) each time the
virtual machine starts. This is referred to as “dynamic memory allocation,” and is described in
detail below.

The password for the administrator account is the password that can be used to log on to an
administrator’s account on the virtual machine, once the virtual machine is operational on an end-
user’s host computer. This administrator password can, but need not, be the same as the
administrator password used while the operating system, etc. software is installed on the virtual
machine 306.

After the technician enters the information described in Table 1, the virtual machine project
manager 304 creates the virtual machine 306. The technician interacts with the virtual machine 306
via the user interface 308 and installs an operating system and, optionally, applications on the
virtual machine using software installation kits 312 and 314. The technician can log in to the virtual
machine 306 using an administrator account and password that was established when the operating

system software was installed. However in a later operation, this administrator account will be

-15-

30

WO 2007/149671 PCT/US2007/069509

removed, as described below. Computer media that contain the software installation kits 312 and
314 appear as a virtual CD 315 or other storage device within the virtual machine 306. The
technician can join the virtual machine 306 to a domain (not shown), if necessary to complete
setting up the virtual machine 306.

Information that is needed by programs that execute on the virtual machine 306 during the
installation of the operating system, applications, etc. is stored in a directory of tools 316 on the real
computer on which the virtual machine project manager 304 is executing. In addition, the virtual
machine 306 is configured to include a virtual CD 318 or other storage device linked to the
directory of tools 316. Consequently, software executing in the virtual machine 306 can read
information (on the virtual CD 318) passed to it by the virtual machine project manager 304.
Executable programs (described below) are also passed to the virtual machine 306 through the
virtual CD 318 for execution within the virtual machine 306.

For example, the virtual machine project manager 304 includes a tool on the virtual CD 318
to replace, customize or modify selected portions of the operating system or applications installed
on the generic virtual machine. An operating system typically includes a graphical identification
and authentication (GINA) or other similar component to implement an authentication policy of an
interactive logon model. For example, the GINA ascertains if a user is authorized to logontoa
computer. The GINA is typically invoked as a result of a user performing a secure attention
sequence (SAS), such as simultaneously pressing the Ctrl, Alt and Del keys on a keyboard. Other
SASs, such as an interrupt from a fingerprint scanner, can be used.

In one embodiment, a tool on the virtual CD 318 replaces the operating system GINA with
a replacement GINA. The replacement GINA checks user-entered credentials, such as a username
and password. In addition, the GINA normally establishes a VPN connection between the virtual
machine and an enterprise network and joins the virtual machine to a domain. However, while
configuring the virtual machine 306, it is sometimes helpful or necessary fo isolate the virtual
machine 306 from the enterprise network or the domain. For example, during portions of the
operating system installation, the administrator’s password may be blank. However, a domain
policy may prohibit a computer with a blank administrator’s password from being an active
member of the domain. Consequently, during these portions of the operating system installation, the
virtual machine 306 cannot be connected to the domain.

To accommodate this need, the GINA enables a user (such as the technician) to select an
option, which causes the GINA to avoid establishing a VPN connection with the enterprise
network. This mode of operation is referred to as “off-line” mode. In contrast, the default situation,

i.e., not selecting this option and allowing the GINA to establish the VPN connection, is referred to
-16-

WO 2007/149671 PCT/US2007/069509

as “on-line” mode. This option can be selected by any suitable form of user interface. For example,
the GINA dialog box that prompts for a username and password can include a check box to select
off-line mode. Alternatively, a predetermined character, such as a backslash (*V"), included in the
username or another field can invoke the off-line mode option.

The GINA accepts “pluggable” VPN clients. In this fashion the virtual machine Image can
be tailored to work with any of a wide variety of enterprise networks. The GINA for a particular
project is thus equipped with a VPN client appropriate to the enterprise network involved.

Once the operating system and applications are installed on the virtual machine 306 and the
technician has made other changes to make the virtual machine 306 generically suitable for a group
of end-users, an image preparation tool is executed within the virtual machine 306 to de-configure
portions of the operating system. The image preparation tool accesses information that describes the

project and performs operations of the general type listed in Table 2.

Table 2

Typical Operations in Generic Virtual machine Image Preparation

Remove any user accounts that were created

Remove virtual machine from domain

Set administrator account password to a predetermined value, such as blank
Resize operating system paging file

Clean up virtual machine disk (delete temporary files and other unnecessary files)
Install SYSPREP program

Create WINBOM.INI file

Create configuration file for starting the VM operating system in factory mode

The administrator account password is set to a predetermined value (such as blank) to
facilitate executing an automatic provisioning process on the virtual machine, when the end-user
firsts starts the virtual machine. The provisioning process requires administrator privileges, thus the
provisioning process will need the administrator account password to log in. The image preparation
tool and the provisioning process are configured with the same predetermined password value.
Thus, the image preparation tool sets the administrator account password to the predetermined
value, and the provisioning process uses the same password to log in.

To reduce the size of the virtual machine image file, the image preparation tool adjusts the
size of the VM operating system’s page file, it deletes temporary and other unnecessary files and it
reduces the size of the VM disk. The image preparation tool sets the page file size to zero, such as

-17-

10

WO 2007/149671 PCT/US2007/069509

by changing appropriate entries in the operating system registry and restarting the operating system.
When the operating system restarts, it operates without a page file, and the previously used page
file can be deleted. The image preparation tool then calculates a size for the page file, based on the
size of the (simulated) memory on the virtual machine. The next time the operating system starts, a
page file of this size will be created.

To reduce the size of the VM disk, the image preparation tool removes unallocated portions
of the VM disk, so these portions will not be included in the VM image. In one embodiment, the
image preparation tool reduces the size of the VM disk by writing a predetermined data pattern,
such as zeros, into the unallocated portions of the VM disk. The contents of the unallocated
portions of the VM disk were previously unspecified, thus writing the predetermined pattern
enables the image preparation tool to distinguish allocated from unallocated portions of the VM
disk. The image preparation tool then deletes the portions of the VM disk that contain the
predetermined data pattern. Consequently, when the VM image file is produced, only the allocated
portions of the VM disk are included in the VM image.

Software providers typically distribute operating systems in one form to end users and in
another form to value-added computer resellers (vendors). An operating system for an end user is
typically configured such that the first time the operating system is started, the operating system
prompts the user for user-specific information, such as a computer name, username, password and
time zone. The operating system typically automatically configures itself for hardware (such as disk
drives, computer network interfaces, etc) that is present on the computer. This process is commonly
referred to as “hardware discovery.” In addition, the operating system typically configures itself
(such as configuring the size of a paging file) according to the amount of memory on the computer.
For example, in the Windows operating system from Microsoft, Inc., this process is referred to as
“mini setup.” The operating system uses user responses to these prompts and automatically
determined information to fully configure itself. As discussed below in connection with an
embodiment of the present invention, the mini setup process can also be driven by an answer file,
rather than accepting user responses and using hardware discovery.

On the other hand, a vendor typically needs to start an operating system in order to install
software that is to be bundled with a computer, without executing the mini setup, because the
vendor does not wish to configure the operating system, i.e., specify the computer name, etc.
Software tools, such as SYSPREP from Microsoft, Inc., enable a vendor to start an operating
system in “factory mode,” i.e., without executing mini setup. After the vendor installs the bundled

software, the vendor uses SYSPREP to “reseal” the operating system. Resealing configures the

-18-

10

WO 2007/149671 PCT/US2007/069509

operating system to execute the mini setup the next time the operating system starts, presumably
when an end-user first starts the computer.

The virtual machine image preparation tool installs SYSPREP (or equivalent) on the virtual
machine and executes SYSPREP to configure the operating system to start in factory mode the next
time the operating system starts, i.e., the first time the operating system starts on the end-user’s
virtual machine. The virtual machine image preparation tool also creates a WINBOM.INI (or
equivalent) file, which will be used to control operations during the factory mode startup of the
operating system. The WINBOML.INI includes instructions to start the provisioning program, such
as by invoking a batch file.

Computer Distribution Medium Generation

After the virtual machine project manager 304 creates the virtual machine image file 300, a
distribution media creator creates computer media, which can be distributed to end users, and/or
stores downloadable files on a server, so end users can download the virtual machine image file,
such as via the Internet. Operations performed by the distribution media creator are summarized in
a flowchart in Fig. 6 and described in detail below, with reference to a block diagram (in Fig. 7) of
components involved in these operations.

The distribution media creator 700 reads the virtual machine image file 300 and the project
information 310 to create an ISO image 702 of a computer medium 704 (such as a DVD disk),
which can be distributed to end-users. Alternatively or additionally, the distribution media creator
700 stores one or more files 706 on a server 708 to facilitate downloading the virtual machine
image file by a user 710, such as via the Internet 712. Typical contents of the distribution medium
704 (or the downloadable files 706) are summarized in Table 3.

Table 3
Typical Distribution Medium Contents

Auto-run program

Virtual machine image file (as a set of files)

Player (virtualization program and related components) (optional)

Project information (encrypted)

Credentials for an administrative account, for use during initial customization of the VM to
- a particular user, in joining the virtual machine to a domain

Distribution medium package contents

-19-

30

WO 2007/149671 PCT/US2007/069509

The distribution medium creator 700 divides the virtual machine image file 300 into a set of
smaller files, each containing a portion of the virtual machine image file 300. Each of these smaller
files is optionally compressed and/or encrypted before storing it on the ISO image 702 or server file
706. The virtual machine image file can be large. Thus, storing the virtual machine image file 300
as a set of smaller files on the server 708 enables a download to restart at a point of failure, rather
than restarting from the beginning of the virtual machine image file. Optionally, in a related
embodiment of the present invention, the smaller files may be stored on a plurality of servers for
efficient distribution to users and may also be distributed using peer-to-peer methods.

As noted, a virtualization program is required to create a virtual machine from a virtual
machine image file. A “player” is such a virtualization program that includes other capabilities, as
described below. The player can be previously installed on an end-user’s computer or the player
can be distributed with the virtual machine image file on the computer medium 704.

The computer medium 704 includes encrypted project information, such as the end-user’s
virtual machine naming pattern, virtual machine screen resolution and color depth and credentials
of the account to be used to join a domain. The computer medium 704 also includes an auto-run
program that automatically executes when a user inserts the computer medium 704 into his/her
computer. This auto-run program can install the player (if not already installed) and performs other
operations, as described below.

The distribution medium package contents may include hash values calculated from the
files on the distribution medium, so when the distribution medium is later read, its contents can be

tested for corruption.

Token Generation

The computer medium 704 and the virtual machine image 300 stored on the computer
medium 704 is generic. That is, no user-specific information is stored on the computer medium
704. In addition, the virtual machine 306 that would be created from the virtual machine image 300
does not have a user account, computer name or other provisioning that would make the virtual
machine specific to a particular user. This provisioning will be performed the first time each end
user starts the virtual machine on his/her respective host computer. To facilitate this provisioning, a
token is created for each user who may use the computer medium 704. Typical components used to
create the tokens are shown in Fig. 3, and typical contents of a token are listed in Table 4. Some or
all of the contents of a token may be encrypted and can be decrypted using a suitably provided
decryption key.

20-

WO 2007/149671 PCT/US2007/069509

Table 4
Typical Token Contents

Customer identification (for Internet downloading) (optional)

Project name

Token expiration time and date

End-user username

Key for decrypting virtual machine image

Credentials for an administrative account that can join the virtual machine to a domain

(optional)

A token generator 322 reads the project information 322 and accepts user inputs via a user
interface 324 to produce the token 302. In one embodiment of the token generator 322, the token is
a file that contains the information listed in Table 4 formatted as XML text.

The token generator 322 can be included in an IT organizations automated procedure for
establishing a user account or setting up a user computer.

The token can be provided to the end user via any appropriate mechanism. For example, the
token can be sent as an e-mail attachment to the end user. Alternatively, the token can be provided
to the end user on a removable computer medium, such as a flash memory that is connectable to a
computer port, such as a universal serial bus (USB) port.

As noted, in lieu of distribution of the virtual machine image by a tangible medium such as
a DVD, in another embodiment of the invention, the end user can download the virtual machine
image from a server 708. In a further embodiment, the server 708 may be employed to store virtual
machine images for several different organizations. The customer identification in the token 302
can be used to distinguish among these organizations. For example, a URL can be defined for the
location of each organizations’ virtual machine image file. An end user can browse to the
appropriate URL to begin a download process that includes the virtual machine image associated
with the end-user’s organization. For example, browsing to URL “XYZ.VThere.net” would begin
downloading the virtual machine image file (and associated components) for the XYZ organization.
The URL can be provided to end users via any appropriate mechanism, such as including a
hyperlink to the URL in an e-mail message sent to the end users.

Similarly, in lieu of distributing tokens by e-mail or a tangible medium, the token may be

provided as a part of a URL itself. Base-64 encoded text that would otherwise be included in the

21-

WO 2007/149671 PCT/US2007/069509

XML token 302 can be included in the URL provided to the end user, such as in a parameter
postpended to the URL.

Automatically Provisioning End-User Virtual machine

Creating and provisioning an end-user’s virtual machine requires little end-user interaction.
Components related to creating and provisioning the virtual machine on the end-user’s host
computer are shown in a block diagram in Fig. 8, and operations related to creating the virtual
machine are shown in a flowchart of Fig. 9. As noted, the computer medium 704 includes an auto-
run program, which installs 904 the player 800 on the end-user’s host computer 802, if the player is
not already installed. The player installation procedure creates an association between tokens and
the player 800, such that if the user invokes a token, the player automatically processes the token.
For example, under the Windows operating system, the player registers the file type of the token
302 (for example, an extension in the form of “.vttok”, to avoid confusion with other file names in a
Windows XP operating system environment) and specifies the player 800 as the application
program to be executed when a file of this type is invoked. |

Thus, when the end-user invokes 906 the token 302, such as by double-clicking on the
token 302 attached to an e-mail message 804 (or by clicking on a hyperlink to the token embedded
in the message 804), the player 800 begins processing the token. The player 800 uses an appropriate
decryption key to decrypt encrypted portions of the token 302. The player 800 checks the expiration
time and date of the token 302. If the token has not yet expired, the player 800 uses the key
included in the token 302 to decrypt (in a process 908) and copy the virtual machine image file
from the computer distribution medium 704 (or server) to the host computer 802. The player 800
also copies other information from the token 302 to the host computer 802.

The player 800 uses the decrypted virtual machine image file 806 to create and start (in
process 910) a virtual machine 808. Operations related to the first start of the virtual machine 808
are shown in a flowchart in Figs. 10A-B. In process 1000, the virtual machine 808 begins executing
the operating system, which has been configured to start (the first time) in factory mode, causing
automatic login with administrative privileges, and to execute the provisioning program.

Before creating the virtual machine 808, the player 800 opens a listening port. A
provisioning program 812 opens (in process 1004) a connection 813 to the player’s listening port,
so the provisioning program 812 and the player 800 can communicate with each other over this
connection 813. The player 800 reads (in process 1006) the project information from the
distribution medium 704 and from the token 302 and sends this information to the provisioning

program 812. This information includes the computer naming pattern, time zone, screen resolution

22-

WO 2007/149671 PCT/US2007/069509

and color depth and key for decrypting the virtual machine image. (The player can ascertain the
time zone from the host operating system on the host computer.) The provisioning program 812
uses this information to create (in process 1008) a SYSPREP.INF file. For example, the
provisioning program 812 generates a name string for the virtual machine 808 according to the
naming pattern specified by the technician to the virtual machine project manager 304 (Fig. 3). The
provisioning program 812 sets a parameter in the SYSPREP.INF file to prevent the mini setup
process from prompting for user input and performing hardware discovery. The provisioning
program then reseals (in process 1010) the operating system. Consequently, the next time the
operating system starts, the operating system will perform the mini setup procedure.

The provisioning program then restarts (in process 1012) the virtual machine 808, and the
operating system starts (in process 1014) the mini setup procedure. The minj setup procedure reads
the SYSPREP.INF file created earlier. Consequently, the mini setup procedure does not prompt the
user for information or perform hardware discovery. The user may see the mini setup procedure
progress, although the user sees the input fields already filled in with information from the project
information and the token 302.

Once the mini setup procedure completes, the GINA 811 prompts (in process 1016) the user
for credentials, such as a username and a password. Optionally, if needed to establish a VPN
connection between the virtual machine 808 and the user’s enterprise network, the GINA 811
prompts for additional credentials, such as a second username, a second password and a pseudo-
random passcode. (An exemplary system for providing pseudo-random passcodes is available from
RSA Security, Inc., Bedford, MA under the tradename RSA SecurID authentication.)

The GINA 811 uses the user-entered credentials to establish (in process 1018) a VPN
connection 814 to the user’s enterprise network 816. If the VPN connection is refused due to
invalid user credentials, the GINA 811 re-prompts the user and retries to establish the VPN
connection using subsequently-entered end-user credentials, optionally up to a predetermined
number of times.

Once the virtual machine 808 is connected via the VPN connection to the enterprise
network 816, the GINA 811 recognizes this as the first time the user has logged on. Consequently,
the GINA 811 communicates with the player 800 to obtain (in process 1020) the credentials of an
account that can be used to join the virtual machine 808 to a domain on the enterprise network.
(Typically, the end-user does not have sufficient privileges to join a computer to the domain.) As
noted, these credentials are stored on the computer medium 704. The virtual machine 808 then
executes a program that joins the virtual machine 808 to a domain, using the credentials stored on

the computer distribution medium 704 and passed to the program by the player 800 via the
23

10

WO 2007/149671 PCT/US2007/069509

connection 813. Until the virtual machine 808 joins a domain, the GINA 811 typically can not
ascertain the validity of the user-entered credentials. However, once the virtual machine 808 joins
the domain, the GINA 811 can validate the user-entered credentials, such as by using an identity
store, such as a light-weight directory access protocol (LDAP) server 818 (Fig. 8). An exemplary
identity store is available from Microsoft, Inc. under the tradename Active Directory system;
however, other suitable identity stores may be employed.

The GINA 811 saves (in process 1022) the user-entered credentials and restarts (in process
1024) the virtual machine 808. When the operating system restarts, the GINA 811 automatically re-
establishes the VPN connection and logs the end-user in (in process 1026), using the saved
credentials. If any of the user credentials (such as the pseudo-random passcode) have expired, the
GINA 811 re-prompts for these credentials. However, if a fob or other device connected (such as
via a USB port) to the host computer 802 can be interrogated to obtains these credentials, the GINA
811 automatically does so. Similarly, if software executing on the host computer 802 can be
interrogated for these credentials, the GINA 811 does so.

When the virtual machine is shut down, the current state of the virtual machine is saved in
the virtual machine image file 806. Once the user-specific virtual machine image file has been
generated by the automated procedure described above, the virtual machine image file 806 is

considered to have been provisioned to the user.

Virtual machine Shutdown

If the end-user shuts down the virtual machine 808, such as by using the operating system’s
shut-down procedure, the next time the user starts the virtual machine 808, the virtual machine 808
starts as though it had just been powered up. That is, the BIOS startup procedure executes, the
operating system starts up and, eventually, the GINA 811 prompts for user credentials.

In the prior art, if a user simply “closes” a virtual machine (such as by clicking on a window
“close” icon, typically an “X” in the virtual machine user interface 117 (Fig. 1)), the virtualization
program “powers down” the virtual machine. In this case, the next time the user starts the virtual
machine, the virtual machine starts as though it had just been powered up, as described above.

In one embodiment of the player 800 (Fig. 8), the virtualization program is modified to
force logout of the user on the virtual machine if the end-user attempts to close the virtual machine
808. In one embodiment, if the user attempts to close the VM, control is passed to the player 800 to
effectuate the logout; in another embodiment, control is passed to the GINA to effectuate the
logout. For example, a portion of the virtualization program that normally shuts down network

operations can be modified (“hooked™) to pass control to another program. Operations, according to

4.

WO 2007/149671 PCT/US2007/069509

this modification, are shown in a flowchart in Fig. 11. Rather than virtually powering down the
virtual machine 808, the player communicates with the GINA 811, which automatically logs the
user off (in process 1100) and disconnects (in process 1102) the VPN connection. When the logout
and VPN disconnection are complete, the GINA 811 displays a prompt for user credentials and
notifies the player 800. At this point, the player 800 saves the state of the virtual machine 808. The
next time the end-user starts the player to create the virtual machine 808, the virtual machine does
not need to perform a bootstrap operation and start the operating system. Consequently, the user

credential prompt is displayed quickly.

Virtual machine Startup

Each time the player 800 is invoked to start a virtual machine 808, the player 800 can
perform a variety of checks and reconfigure itself to account for changes that might have been
made to the host computer 802 on which it executes. These operations are summarized in a
flowchart in Fig. 12 and described below.

Each time the player 800 is invoked to start (in process 1200) a virtual machine 808, the
player 800 optionally verifies (in process 1202) that the virtual machine 808 has not yet expired or
has not been revoked. For example, when the technician built the generic virtual machine 306 (Fig.
3) or created the token 302 for this end user, the technician could have specified an expiration date
and time for the virtual machine. If so, this expiration information is stored in the project
information 310 (if it applies to all end-users of this virtual machine) or in the token (if it applies to
only this end-user). If the player 800 ascertains that a virtual machine that it is starting has expired,
the player 800 displays an appropriate error message to the end user. Optionally, the player 800
sends an e-mail or other type of electronic message to the IT organization that produced the virtual
machine image. This message includes the project identification, end-user identification and can
also include information about the virtual machine that expired, such as operating system and
application license information. The IT organization can “recycle” the software license keys and
use them on other computer or otherwise dispose of them. Optionally, the player 800 also deletes
the virtual machine image file 806 from the end-user’s host computer 802.

Alternatively or in addition, each time the player 800 is to start a virtual machine, the player
800 may access a server (not shown) associated with the IT organization that created the virtual
machine. On this server, the IT organization posts information identifying virtual machines that are
revoked or have expired (or, alternatively, virtual machines that have not been revoked or have not
yet expired). This information can include the serial number of the virtual machine, end-user

information (such as username), project information or any other suitable information that can be

25-

WO 2007/149671 PCT/US2007/069509

used to identify one or, if appropriate, more virtual machines. If the information on the server
indicates that the virtual machine has been revoked or has expired, the player 800 performs
operations similar to those described above.

Virtual machine expiration and/or revocation enable an IT organization to more easily
manage virtual machines. For example, an IT organization can issue virtual machines to employees,
contractors, vendors and the like and easily disable those virtual machines, without physically
retrieving anything. This is particularly advantageous in the case of employees, contractors, etc.
who work remotely and may never be present in the organization’s offices. In contrast, if the IT
organization issued a laptop or deskside computer, when an employee’s employment terminates or
a contractor’s project ends, the organization must retrieve potentially valuable hardware to prevent
unauthorized access to the organization’s applications and data.

In addition, each time the player 800 is invoked to start (in process 1200) a virtual machine
808, the player 800 optionally recalculates (in process 1204) the amount of memory the virtual
machine 808 is to have. In a typical virtual machine arrangement, the physical memory of the host
computer 802 is divided (not necessarily equally) between the virtual machine and the host
operating system. As noted, a technician specifies to the virtual machine project manager 304 the
amount of (simulated) memory that the virtual machine is to have. However, if insufficient physical
memory on the host computer 802 remains for the host operating system, the host operating system
and applications that execute under it may perform poorly or may not execute at all.

To calculate the amount of simulated memory on the virtual machine 808, the player begins
with the amount of simulated memory that was specified to the virtual machine project manager
304. If allocating this amount of physical memory to the virtual machine 808 leaves an insufficient
amount of physical memory for the host operating system, the player 800 reduces the amount of
memory allocated to the virtual machine 808. For example, if less than a predetermined amount
(such as 256 MB), or an amount calculated based on the software installed on the host computer, of
physical memory is left for the host operating system, the amount of memory allocated to the
virtual machine is reduced by up to a predetermined amount (such as 1/3 of the amount specified to
the virtual machine project manager 304). On the other hand, if more than the predetermined or
calculated amount of memory is left for the host operating system, the amount of memory allocated
to the virtual machine is increased by up to a predetermined amount (such as 1/2 of the amount
specified to the virtual machine project manager 304).

Each time the virtual machine 808 is started, the GINA 811 can perform additional checks
to ensure the virtual machine is authorized, not expired and not revoked. For example, the GINA

811 can communicate via the connection 813 with the player 800 to ensure the player 800 was
-26-

WA

WO 2007/149671 PCT/US2007/069509

distributed with the computer medium 704 or is otherwise an approved player. Because several
software suppliers provide players, the GINA 811 can ensure it operates only with an approved
player. If the GINA 811 detects an unauthorized player 800, the GINA can optionally shut down
the virtual machine 808.

As noted, when the user enters credentials, the GINA 811 normally establishes a VPN
connection 814 between the virtual machine 808 and the enterprise network 816. However
sometimes, it is helpful or necessary to isolate the virtual machine 808 from the enterprise network
816 or the domain. Embodiments of the present invention permit the virtual machine 808 to operate
in such an isolated mode. For testing purposes, for example, the GINA 811 enables a technician to
select the option (described above in connection with generating the generic virtual machine image)
that causes the GINA 811 to avoid establishing a connection with the domain; this mode of
operation is referred to as “off-line” mode. In a related embodiment, the user (without invoking
administrative privileges) may be permitted to operate the virtual machine in a “local” mode, in

which the GINA 811 similarly avoids establishing a connection with the domain.

Virtual Machine Operation

While the virtual machine 808 is operating with the VPN connection 814 to the enterprise
network 816, a VM monitor 822 monitors the VPN connection 814. If the VPN connection 814
malfunctions or is dropped (such as a result of an error in an intervening wide-area network 820,
such as the Internet), the VPN monitor 822 notifies the GINA 81 1, which automatically re-
establishes the VPN connection 814. Optionally, the GINA 811 displays a message to the user.

Various tools, such as the GINA 811 and the VPN monitor 822, execute in the virtual
machine 808 to create and maintain the virtual machine environment in which applications can
execute. The GINA 811, or alternatively, another program, causes aggregation of log information
from these tools, as well as log information from the virtualization program, and sends this log
information to the player 800 via the connection 813 between the virtual machine 808 and the
player 800. The player 800 stores the log information in an aggregated log file 824 on the host
computer 802, which is accessible even if the virtual machine 808 is not running or if the virtual
machine 808 cannot be started. Significantly, an IT technician can use the aggregated log file 824
on the host computer 802 to diagnose problems starting or running the virtual machine 808, even if
the virtual machine 808 cannot be started.

To facilitate diagnosing problems in the virtual machine 808, the GINA 811 responds to a
predetermined signal, such as the user simultaneously pressing the Ctrl + Alt + Shift + L keys, by
sending any cached log file information to the player 800.

27-

WO 2007/149671 PCT/US2007/069509

Portable Virtual machines

A virtual machine image file 806 can be stored on a portable memory device, such as a
flash memory, that can be connected to a computer port, such as a USB port. Such a virtual
machine image file 806 can then be carried by a user and used on various host computers to create
the user’s virtual machine. For example, if a campus or library were equipped with one or more
computers on which copies of the player 800 are installed, an end user could use any available real
computer to host his/her virtual machine. Optionally, if an available real computer does not have
the player installed, the player could be installed from the portable memory device prior to

launching the virtual machine.

Decentralizing Centralized Services
Computer programs that are typically executed by central servers in an organization can be
distributed to otherwise idle computers using the described virtual machines. For example, an IT
organization can create a virtual machine on each workstation within an enterprise and, optionally,
on remote workstations. Then, the IT organization can distribute software that otherwise would be
executed by web servers, e-mail servers and the like to these virtual machines. Users® workstations
are typically under utilized. Consequently, these computers typically have sufficient resources to

execute the virtual machines and the services discussed above.

Printing

In the prior art, printing from a virtual machine to a printer connected to a host computer
poses problems. Embodiments of the present invention provide a range of solutions to these
problems. As shown in Fig. 13, according to the prior art, a virtual machine 808 can access a printer
1300 that is directly connected, via a port 1302, to a computer 802 that hosts the virtual machine
808. The port 1302 may be a USB port, a parallel port or a serial port on the host computer 802.
Control of the port 1302 is taken away from the host operating system and given to the operating
system being executed on the virtual machine 808. Among other disadvantages, under this scheme,
application programs (not shown) being executed by the host computer 802 cannot print to the
directly-connected printer 1300; only application programs (such as application 1304) being
executed by the virtual machine 808 can access the printer 1300. Furthermore, the virtual machine
808 must be configured with an appropriate device driver 1306 for the printer 1300; however, the
printer type may not be known at the time the virtual machine 808 is created or provisioned for a
given user, thus the type of device driver may not be known when the virtual machine 808 is

created or provisioned. Under these circumstances, the appropriate device driver 1306 must be

28-

WO 2007/149671 PCT/US2007/069509

installed later; however, device driver installation is typically too complex for an end-user to
perform. Furthermore, the end-user typically does not have required administrator privileges on the
virtual machine 808 to install a device driver.

In any case, only directly-connected printers are accessible by the virtual machine 808. The
virtual machine 808 cannot access printers that are connected to the host computer 802 via a
network connection (other than printers that are part of a domain that the virtual machine joins).

These and other shortcomings of the prior art can be overcome in either of two ways.
According to the first way, as shown in Fig. 14, a virtual printer driver 1400 in the virtual machine
808 accepts print requests (print jobs) from application programs, such as application 1402, being
executed by the virtual machine 808. The virtual printer driver 1400 converts the print job into a file
1404, such as a portable document format (PDF) file. The virtual printer driver 1400 stores the file
1404 in a convenient location, such as on the hard disk of the virtual computer 802 or in the virtual
computer’s main memory (such as in a “RAM drive”). The virtual printer driver 1400 then sends
information about the file and the contents of the file 1404 to the player 800 being executed on the
host computer 802. The player 800 on the host computer 802 then queues the file 1404 for printing
on any printer that is accessible by the host computer 802. The accessible printers include directly-
connected printers (such as printer 1404), as well as network-connected printers (not shown). A
conventional real printer driver 1406 executed by the host computer 802 handles printing the
queued file 1404 in a well-known manner.

Alternatively, as shown in Fig. 15, a proxy printer driver 1500 is executed by the virtual
machine 808. The proxy printer driver 1500 communicates with the real printer driver 1406, such
as via the player 800 and the link 813 between the virtual machine 808 and the player 800. In this
case, the proxy printer driver 1500 generates and sends graphic device interface (GDI) commands,
or commands in another standard format, to the real printer driver 1406, and the real printer driver
responds to the commands by printing contents on the printer 1404 or on a network-connected
printer (not shown).

Optionally, the virtual printer driver 1400 or the proxy printer driver 1500 can log (audit)
print requests. Thus, for each print request, the user and application that requested the print job, the
requested printer, along with an identification of the files, patient, etc. that are to be printed, as well
as the time and date, can be logged.

In addition, the virtual printer driver 1400 or the proxy printer driver 1500 can implement a
security policy that limits which users and/or which applications can print data to a local printer
outside the enterprise. Such limitations may be useful in meeting Health Insurance Portability and

Accountability Act (HIPAA) requirements. In addition, if the printer driver 1400 or 1500 detects an
9.

WO 2007/149671 PCT/US2007/069509

unauthorized attempt to print data, the printer driver can send a message to a central server (not

shown).

Automatic Token Authorization and Re-Authorization

As noted, when a user logs on to a virtual machine, or when a VPN connection fails and is
reestablished, and a fob, smartcard, or other device that contains user credentials is connected (such
as via a USB port) to the host computer, the GINA 811 (or a plug-in component associated with the
GINA 811) can automatically interrogate the fob or other device (collectively hereinafter “fob”) for
the user credentials. This interrogation can be accomplished using either of two schemes. In the first
scheme, as shown in Fig. 16A, the port (such as a USB port 1600) is “passed through” to the virtual
machine 808. That is, control of the port 1600 is taken away from the host operating system and
given to the operating system being executed on the virtual machine 808. The port 1600 is,
therefore, accessible by software being executed by the virtual machine 808, and the GINA 811 (or
the plug-in component 1604) accesses the fob 1602 via the port 1600.

In the second scheme, as shown in Fig. 16B, the host computer 802 maintains control of the
port 1600, and the player 800 or another component being executed by the host computer 802 reads
information from the fob 1602 and passes the information to the GINA 811 (or the plug-in
component 1604). As noted, one or more software components being executed by the virtual
computer 808 establish a communication link 813 with the player 800. The GINA 811 (or the plug-
in component 1604) requests user credentials or other information from the fob 1602 via this

communication link 813.

Integrating Login Information with Host Operating system

The GINA 811 has been described as prompting for a username and password as part of an
authentication procedure. Optionally or alternatively, the GINA 811 can query the host operating
system for credentials related to the user that is logged in to the host operating system. For example,
as shown in Fig. 17, if the host computer 802 is part of a domain, and the host computer 802
accesses an identity store, such as an LDAP server 818, to authenticate the user, and the virtual
machine 808 is joined to the same domain, the virtual machine 808 can query the host operating
system, such as a credentials cache 1700, for the user’s credentials. These credentials can take the
form of a copy of the user’s Kerberos ticket, for example.

If the host computer 802 is part of a domain, and the host computer is trusted by the virtual

- machine 808 to adequately maintain security, the virtual machine 808 can allow some interaction

between the host computer 802 and the virtual machine 808 that would be otherwise prohibited. For

-30-

10

WO 2007/149671 PCT/US2007/069509

example, clipboard copy-and-paste or drag-and-drop operations between the host computer 802 and

the virtual machine 808 may be permitted.

Parallel Sessions with an Integrated Access Server

In hospitals, clinics, doctors’ offices and the like, healthcare providers often use several
computer application programs to access patient data. For example, one application may provide
blood test results, another application may provide x-ray images and a third application may
provide biopsy test results. Typically, each of these applications requires the healthcare provider to
enter user credentials and to identify a patient of interest. An “integrated access server” enables the
healthcare provider to log on once and access several applications. (This is commonly referred to as
a “context management architecture” (CMA).)

The integrated access server provides the user’s credentials to each of the applications. In
addition, after the user enters a patient identification, the integrated access server provides this
information to each of the applications, so the healthcare provider is ensured that all of the
applications display results from the same patient. Typically, applications and the integrated access
server operate according to a standard, such as the Clinical Context Management Specification
(CCOW). An exemplary integrated access server is the Vergence system from Sentillion, Inc.,
Andover, MA 01810.

Typically, each computer used by a healthcare provider executes a location service 1800, as
shown in Fig. 18. After the user enters his or her credentials, the location service 1800 provides an
identification of the user’s computer 802, such as the computer’s media access control (MAC)
address. The user’s credentials, together with the computer’s identification, form a “session ID”
1802. This session ID is sent to the integrated access server 1804, and the integrated access server
1804 provides access via an enterprise network 1806 to a shared “data context” session, which then
enables the application to access the patient data 1808.

However, a virtual machine 808 has a MAC address that is distinct from the host
computer’s MAC address. Consequently, according to the prior art, the session ID of the host
computer 802 is different than the session ID of the virtual machine 808. Thus, the integrated
access server 1804 treats the accessing application 1810 on the host computer 802 as being in a
different session than the accessing application 1812 of the virtual machine 808.

In one embodiment of the present invention, the location service 1814 on the virtual
machine communicates with the player 800 and ascertains the identification (such as the MAC
address) of the host computer 802 or the session ID used by the host computer 802. Thus, the

location service 1814 on the virtual machine 808 generates a session ID that is substantially

31-

WO 2007/149671 PCT/US2007/069509

identical to the session ID used by the host computer 802. Consequently, the integrated access
server 1804 treats the session of the application 1810 on the host computer 802 as being the same as
the session of the application 1812 on the virtual machine 808. Of course, the host computer 802
and the virtual machine 808 can each execute more than one application.

Similarly, as shown in Fig. 19, more than one virtual machine 808 and 1900 can be hosted
on a single host computer 802. In this case, the location services 1902 and 1904 in each of the
virtual machines 808 and 1900 communicate with the player 800 being executed by the host
computer 802. The player 800, or one of the location services 1902 or 1904, coordinates the session
IDs used by the location services 1902 and 1904, such that both virtual machines 808 and 1900
have substantially identical session IDs. Consequently, the integrated access server 1804 treats the
context session for the application 1906 (which is executed by one of the virtual machines 808) as
the same context as another application 1908 (which is executed by the other virtual machine

1900).

Mapper (Coordinated Patient Identification to Multiple Integrated Access Servers)

Thus far, parallel sessions between two or more different (real and/or virtual) computers
and a single integrated access server 1804 have been described. In these contexts, a patient
identification entered by a user identifies a single patient, regardless of the number or mixture of
application programs being executed by the computers.

A healthcare provider can, however, need to access information about a single patient,
where the information is stored in the databases of two or more unaffiliated healthcare facilities.
Consequently, a healthcare provider may need to interact with more than one integrated access
server. However, each healthcare facility, and thus each integrated access server, maintains data on
a different set of patients, and each integrated access server maintains its own set ("universe") of
patient identifiers. Thus, for example, patient ID 8473625445 in one healthcare facility’s database
does not necessarily represent the same patient as in a different healthcare facility’s database.
Consequently, if parallel sessions are established to two or more different integrated access servers,
according to the prior art, a user must enter a patient ID for each of the integrated access servers.
Entering multiple patient IDs to access data for a single patient is, however, error-prone. If a
healthcare provider inadvertently enters an incorrect patient ID, the healthcare provider would be
presented with data about two different patients. Similarly, if a healthcare provider completes
working on a first patient’s data and then selects a second patient in an application that is connected
to one of the integrated access servers, applications that are connected to the other integrated access

server do not automatically change to the second patient.

32-

WO 2007/149671 PCT/US2007/069509

Fig 20 is a block diagram of a system that solves this problem. The system includes a host
computer 802 and a virtual machine 808. An application 2000 and a location service 2002 are used
to access a first integrated access server 2004 and a corresponding enterprise network 2006 and
patient data 2008. A second application 2010 and a second location service 2012 executed by a
virtual machine 808 access a second integrated access server 2014 and a corresponding second
enterprise network 2016 and patient data 2018. Assume that the first integrated access server 2004,
the first enterprise network 2006 and the first patient data 2008 are associated with a first healthcare
facility that is not associated with the healthcare facility that maintains the second integrated access
server 2014, the second enterprise network 2016 and the second patient data 2018. That is, a patient
identification used in one of these healthcare facilities cannot be used in the other healthcare facility
to request data about the same patient.

A “context participant” is executed by the virtual machine. The context participant joins the
same context as the clinical applications and is able to detect any changes to that context that may
occur, as well as make changes to that context. Additionally a context participant is executed on the
host computer that wishes to synchronize context. The context participants communicate via the
player 800 to notify each other of any changes made in other applications.

A “mapper” 2020 is executed by the virtual machine 808. The mapper 2020 maps or
converts a patient identification that is used in one of the integrated access servers to a patient
identification, for the same patient, that is used in the other integrated access server using a defined
mechanism, such as the Agent interface defined by CCOW. Thus, if a user enters a patient
identification into one of the applications 2000 or 2010, the mapper 2020 converts the patient
identification, such that the other of the applications 2010 or 2000 displays information about the
same patient, despite the fact that the information is fetched for the two applications from
unaffiliated medical facilities. The patient IDs, user IDs and other context data sent to the multiple
integrated access services 2004 and 2014, and that should be synchronized, are said to be
“coordinated.”

In alternative embodiments, the mapper 2020 can be executed by the host computer 802, or
the mapper 2020 can be included in the player 800, in the location service 2002 or 2012 or in
another component. For example, as shown in Fig. 21, a host computer 802 executes two virtual
machines 808 and 1900. Each virtual machine 808 and 1900 executes an application 1906 and 1908
and a location service 1902 and 1904. In this embodiment, the player 800 includes the mapper
2020.

-33-

WO 2007/149671 PCT/US2007/069509

Transferable (Suspended) Virtual Machines

Virtual machines have been described as being executed by host computers. In many
situations, the user’s provisioned virtual machine executes on the same host computer each time the
user wishes to use an application that is executed by the virtual machine. Typically, after the user
finishes using the application, the user logs out or shuts down the virtual machine. However, in
other situations, it would be convenient to suspend the execution of a virtual machine on one host
computer, transfer the virtual machine to another host computer and resume execution of the virtual
machine on the other host computer. For example, a doctor may use a virtual machine to access
clinical applications on a host computer in the doctor’s office. If the doctor were to be called to an
emergency room (ER), the doctor may find it convenient to be able to suspend the virtual machine
on the office host computer and resume execution of the virtual machine on a computer in the ER,
once the doctor reaches the ER.

Fig. 22 is a block diagram of a system that enables users to suspend execution of virtual
machines and transfer the virtual machines to different (or back to the same) host computers. An
enterprise network 2200 interconnects a plurality of host computers 2202, 2204, etc., a file server
2206 and (optionally) a compute server 2208. The file server 2206 stores a plurality of folders.
Each folder can be associated with a particular user (such as User A, User B, User C, etc., as shown
in Fig. 22), a particular function (such as general practitioner, nurse, physical therapist, etc.), or the
folders can be organized in any other desired manner. Each folder stores a provisioned virtual
machine image 2210, 2212, 2214, etc. That is, each virtual machine image 2210-2214 has been
customized, as described above, for the respective user, function, etc. The folders can also store
other files associated with the users, functions, etc.

When a user wishes to start a virtual machine, the appropriate virtual machine image 2210-
2214 is read from the file server 2206 into the user’s host computer 2202-2204. When the user
wishes to suspend the virtual machine, the user issues a command, such as to the player (not shown
in Fig. 22). The state of the virtual machine is then stored in the appropriate virtual machine image
2210-2214. The next time the user wishes to start the virtual machine, whether on the same host
computer or on a different one of the host computers 2202-2204, the saved state of the virtual
machine is loaded from the file server 2206 into the host computer the user wishes to use.

Optionally, the host computers 2202-2204 can be minimally configured. That is, the host
computers 2202-2204 need not include mass storage devices, such as disks. Instead, the host
computers 2202-2204 can start (bootstrap) using files stored on the file server 2206 and accessed

via the enterprise network 2200. In addition, the host computers 2202-2204 can execute a minimal

-34-

WO 2007/149671 PCT/US2007/069509

operating system, such as Linux, as long as the operating system supports execution of the player
800 (not shown).

Optionally or alternatively, the user can instruct the file server 2206 to resume the virtual
machine, either directly after the virtual machine is suspended on the former host computer or at a
predetermined time or upon the occurrence of a predetermined event. In this case, the saved state of
the virtual machine is loaded from the file server 2206, and the file server 2206 is caused to execute
the virtual machine, such as shown at 2216 or 2218. Similarly, the user can instruct the compute
server 2208 to execute the virtual machine, as shown at 2220. In this way, the user can free up the
host computer 2202-2204, and the virtual machine can continue executing on another host
processor, such as on the file server 2206 or on the compute server 2208.

Optionally, if a predetermined type of virtual machine is suspended, the virtual machine is
automatically transferred to the file server 2206 or the compute server 2208 to continue execution.
For example, if the virtual machine executes media center software (such as the Windows XP
Media Center operating system from Microsoft, Inc.), it may be desirable to automatically transfer
a suspended virtual machine to another computer for execution, to minimize interruption of the
entertainment (music, video, etc.) provided by the media center software.

If the user wishes to suspend execution of a virtual machine, but the user is not proximate
the host computer that is executing the virtual machine (or the user cannot conveniently issue a
command to the host computer), the user causes a remote procedure call to be placed to the host
computer or a trigger file to be created in the appropriate folder on the file server 2206. The trigger
file can contain commands to suspend execution of the virtual machine, or the mere existence of the
file can cause the virtual machine to be suspended. For example, the player on a host computer
executing a virtual machine can periodically, such as once per second, or occasionally check for the
existence of, or read the contents of, the trigger file. If the trigger file exists or contains an
appropriate command, the player suspends the virtual machine and stores the state of the virtual
machine in the appropriate folder of the file server 2206.

Thus, continuing the previous example of the doctor who was called from his or her office
to the ER, the doctor need not suspend the virtual machine before leaving his or her office. Instead,
once the doctor reaches the ER, the doctor can issue a command on a host computer in the ER
(such as logging in) to cause the trigger file to be created and the virtual machine (which is still
executing on the doctor’s office computer) to be suspended and transferred to the ER computer. In
general, a user can request a suspended or executing virtual machine to be transferred to any
convenient computer, such as to a computer located near the user’s current location, or to a central

computer, such as the file server 2206 or the compute server 2208.
-35-

WO 2007/149671 PCT/US2007/069509

Alternatively, as shown in Fig. 23, instead of storing each user’s provisioned virtual
machine image 2210-2214 on the file server 2206, each host computer 2202-2204 stores a generic
base virtual machine image 300. (The generic base virtual machine image 300 is described above
with reference to Figs. 3 and 7.) In this case, when a virtual machine is first started, the virtual
machine is provisioned (customized to the user), as described above. When the virtual machine is
suspended or shut down, portions of the virtual machine image that are different from the base
virtual machine image 300 are stored in the appropriate user’s virtual machine differences file 2302,
2304 or 2306. Subsequently, when the virtual machine is restarted or resumed, the differences from
the virtual machine difference file 2302-2306 are used, along with the base virtual machine image
300, to re-create the virtual machine.

Optionally, as shown in Fig. 24, the virtual machine difference files 2302-2306 can be
stored on the respective host computers 2202, etc. instead of, or in addition to, storing these files on
the file server 2206. If the virtual machine difference files 2302-2306 are stored on both the file
server 2206 and on the host computers 2202, etc., these files should at least occasionally be
synchronized.

A .virtual machine project manager 304 creates a generic, i.e., not user-specific, virtual
machine image file 300. Copies of this image file 300 may be distributed to one or more users, each
of whom may then use an automated procedure to generate a user-specific virtual machine image
file 806 and, thus, a user-specific virtual machine on his/her remote host computer. The generic
virtual machine image file 300 may be distributed on computer-readable media, such as a DVD
disks, or the file may be stored on a server and downloaded (such as via the Internet) by the users.
Each user also receives or downloads a token 302, which contains a small amount of user-specific
information that is used by the automated procedure to provision the generic virtual machine image
file 300 for the particular user.

A virtual printer driver 1400 or proxy printer driver 1500 executed by a virtual machine 808
communicates with a real printer driver 1406 executed by a host computer 802 to enable
application programs 1402 executed by the virtual machine 808 to print data on printers 1404 that
are accessible by the host computer 802.

A virtual machine 808 accesses a security token 1602 connected to a host computer 802 to
automatically authenticate or re-authenticate a user, such as when a virtual private network
connection 814 is restarted. A virtual machine 808 accesses user credentials 1700 stored on a
trusted host computer 802, to avoid redundantly requesting user logon information.

Substantially identical session identifiers 1802 are used by a host computer 802 and a

virtual machine 808, or by two or more virtual machines 808 and 1900, when communicating to an
-36-

WO 2007/149671 PCT/US2007/069509

integrated access server 1804. A mapper 2020 coordinates patient identifiers when a virtual
machine 800 and a host computer 802, or two virtual machines 808 and 1900, communicate with
two different integrated access servers 2004 and 2014,

A file server 2206 stores virtual machine images 2210-2214 that are accessed by a plurality
of host computers 2202-2204. After a virtual machine is suspended from execution on one of the
host computers 2202-2204, the state of the virtual machine is stored on the file server 2206. The
virtual machine can, therefore, be transferred back to the same, or to another, host computer 2202-
2204 to continue execution or to a compute server 2208. A host computer 2202-2204 stores a base
(un-provisioned) virtual machine image 300, and a file server 2206 and/or the host computer 2202-
2204 stores differences 2302-2306 between the un-provisioned virtual machine image 300 and the
current state of the virtual machine.

Systems and methods above have been described with reference to a processor controlled
by instructions stored in a memory. Some of the processes detailed above have been described with
reference to flowcharts. Those skilled in the art should readily appreciate that functions, operations,
decisions, etc. of all or a portion of each block, or a combination of blocks, of the flowcharts can be
implemented as computer program instructions, software, hardware, firmware or combinations
thereof. Those skilled in the art should also readily appreciate that instructions or programs defining
the functions of the present invention can be stored or delivered to a processor in many forms,
including, but not limited to, information permanently stored on non-writable, computer-readable
media (e.g. read only memory devices within a computer, such as ROM, or devices readable by a
computer /O attachment, such as CD-ROM and DVD data disks), information alterably stored on
writable, computer-readable media (e.g. floppy disks and hard drives) or information conveyed to a
computer through communication media, including computer networks. In addition, while the
invention may be embodied in software, the functions necessary to implement aspects of the
invention may alternatively be embodied in part or in whole using firmware and/or hardware
components, such as combinatorial logic, Application Specific Integrated Circuits (ASICs), Field-
Programmable Gate Arrays (FPGAs) or other hardware or some combination of hardware, software
and/or firmware components.

While the invention is described through the above-described exemplary embodiments, it
will be understood by those of ordinary skill in the art that modifications to, and variations of, the
illustrated embodiments may be made without departing from the inventive concepts disclosed
herein. Moreover, while the preferred embodiments are described in connection with various

illustrative data structures, one skilled in the art will recognize that the system may be embodied

-37-

WO 2007/149671 PCT/US2007/069509

using a variety of data structures. Accordingly, the invention should not be viewed as limited,

except by the scope and spirit of the appended claims.

-38-

WO 2007/149671 PCT/US2007/069509

CLAIMS

What is claimed is:

1. A method of provisioning a customized virtual machine image to a user on a host computer
(802) so as to permit establishment of a virtual machine (808) on the host computer (802), the
method comprising:

providing a virtual machine image (806) for loading onto the host computer (802), such
image (806) having an operating system and as yet not customized to the user; and

providing previously generated customized configuration data from a source (302) outside

of the image (806) for use by the operating system.

2. The method of claim 1, further comprising determining additional configuration data from

predefined rules and providing the additional data for use by the operating system.

3. A method according to claim 1, wherein the virtual machine image (806) also includes
instructions and data for establishing a VPN (814) connection between the virtual machine (808)

and a computer environment (816).
4, A method according to claim 1, wherein the host computer (802) is unmanaged.

5. A method according to claim 1, wherein the virtual machine image (806) includes computer
instructions establishing an automated mini-setup procedure for the operating system and the
customized configuration data include data that are provided as answers to the automated mini-

setup procedure.

6. A method according to claim 3, wherein the virtual machine image (806) includes computer
instructions establishing an authentication component to implement an authentication policy of an
interactive logon model, such component prompting for user-supplied credentials necessary for

establishing the VPN connection (814).

7. A method according to claim 6, wherein the authentication component also causes
generation of a log file (824) external to the virtual machine (808), the log file (824) containing

diagnostic information concerning at least one application running in the virtual machine (808).

8. A method according to claim 7, wherein the at least one application includes the
authentication component itself.
-39-

WO 2007/149671 PCT/US2007/069509

9. A method according to claim 7, wherein the at least one application includes a VPN

monitor (822).
10. A method according to claim 7, wherein the at least one application includes a VPN helper.

11. A method according to claim 2, where the additional configuration data includes a memory

size associated with the virtual machine.

12. A method according to claim 1, wherein the virtual machine image (806) also includes
instructions (1100) for causing log out from the operating system in response closing of a user

interface window related to the virtual machine (808).

13. A method of providing access by a remote computer (802) to a computing environment
(816), such environment having a virtual private network connection (814), the method comprising:

providing a virtual machine image (806) for loading onto the remote computer (802), such
image (i) permitting establishment of a virtual machine (808) on the remote computer (802), (ii)
having an operating system, (iii) including instructions and data for establishing a VPN connection
(814) between the virtual machine (808) and a computer environment (816), and (iv) being as yet
not customized to a specific user; and

providing previously generated customized configuration data from a source (302) outside
of the image (806) to the operating system, such configuration data permitting the virtual machine
(808) to log in to the environment (816) and become registered onto a domain of the environment

(816).

14. The method of claim 13, further comprising determining additional configuration data from

predefined rules and providing the additional data for use by the operating system.
15. A method according to claim 13, wherein the host computer (802) is unmanaged.

16. A method according to claim 13, wherein the virtual machine image (806) includes
computer instructions (1008-1010) establishing an automated mini-setup procedure for the
operating system and the customized configuration data include data that are provided as answers to

the automated mini-setup procedure.

-40-

WO 2007/149671 PCT/US2007/069509

17. A method according to claim 13, wherein the virtual machine image (806) includes
computer instructions establishing an authentication component to implement an authentication
policy of an interactive logon model, such component prompting for user-supplied credentials

necessary for logging onto the VPN connection (814).

18. A method according to claim 17, wherein the authentication component also causes
generation of a log file (824) external to the virtual machine, the log file (824) containing diagnostic

information concerning at least one application running in the virtual machine (808).

19. A method according to claim 18, wherein the at least one application includes the

authentication component itself.

20. A method according to claim 18, wherein the at least one application includes a VPN

monitor (822).

21. A method according to claim 18, wherein the at least one application includes a VPN

helper.

22. A method according to claim 14, where the additional configuration data includes memory

size associated with the virtual machine.

23. A method according to claim 13, wherein the virtual machine image (806) also includes
instructions (1100) for causing log out from the operating system in response closing of a user

interface window related to the virtual machine.

24. A computer program product comprising:
a computer-readable medium (704) on which is stored a virtual machine image (806) for
loading onto a host computer (802), such image (806) having an operating system and as yet not

customized to a user.

25. A computer program product according to claim 24, wherein the virtual machine image
includes computer instructions for:

receiving previously generated customized configuration data from a source outside (302)
of the image (806); and

customizing the operating system to a particular user, according to the received previously

generated customized configuration data from a source other than the computer-readable medium.

41-

WO 2007/149671 PCT/US2007/069509

26. A method of automatically obtaining at least one user credential, comprising:

connecting a security token (1602) to a port (1600) of a host computer (802);

executing a virtual machine (808) on the host computer (802);

from within the virtual machine (808), accessing the port (1600) and reading from the
security token (1602) data associated with at least one user credential related to a user; and

from within the virtual machine (808), using the data thus read to log the user into an

operating system executed by the virtual machine (808).

27. A method of automatically obtaining at least one user credential, comprising:

connecting a security token (1602) to a port (1600) of a host computer (802);

executing a virtual machine (808) on the host computer (802);

from within the virtual machine (808), accessing the port (1600) and reading from the
security token (1602) data associated with at least one user credential related to a user; and

using the data thus read to establish a network connection (814) between the virtual

machine (808) and a server (826).

28. A method of automatically obtaining at least one user credential, comprising:

connecting a security token (1602) to a port (1600) of a host computer (802);

executing a virtual machine (808) on the host computer (802);

executing a virtual machine player (800) on the host computer (802);

from within the player (800), accessing the port (1600) and reading from the security token
(1602) data associated with at least one user credential related to a user; and

from within the virtual machine (808), accessing the player (800) to obtain the data thus

read.

29. A method according to claim 28, further comprising, from within the virtual machine (808),
using the obtained data to log the user into an operating system executed by the virtual machine

(808).

30. A method according to claim 28, further comprising, from within the virtual machine (808),
using the obtained data to establish a network connection (814) between the virtual machine (808)

and a server.

4D

WO 2007/149671 PCT/US2007/069509

31. A method of automatically obtaining at least one user credential, comprising:

executing a host operating system on a host computer (802);

within the host operating system, caching (1700) at least one user credential related to a user
who is logged into the host operating system;

executing a virtual machine (808) on the host computer (802);

from within a virtual machine player (800), obtaining the at least one cached user credential
from the host operating system; and

from within the virtual machine (808), using the obtained at least one user credential to log

the user into an operating system executed by the virtual machine (808).

32. A method of establishing parallel sessions between a host computer (802) and an integrated
access server (1804) and between a virtual machine (808) being executed on the host computer
(802) and the integrated access server (18024), comprising:

using a first session identifier (1802) to establish a session between the host computer (802)
and the integrated access server (1804); and

using a second session identifier (1802), substantially identical to the first session identifier
(1802), to establish a session between the virtual machine (808) and the integrated access server

(1804).

33. A method according to claim 32, further comprising:

on the host computer (802), generating the first session identifier (1802), based at least in
part on identification data associated with the host computer (802);

communicating, from the host computer (802) to the virtual machine (808), information
about the identification data associated with the host computer (802); and

using the communicated information to generate the second session identifier (1802).

34. A method according to claim 33, wherein the identification data associated with the host

computer (802) comprises a media access control (MAC) address of the host computer (802).

-43-

WO 2007/149671 PCT/US2007/069509

35. A method of establishing parallel sessions between a first virtual machine (808) being
executed on a host computer (802) and an integrated access server (1804) and between a second
virtual machine (1900) being executed by the host computer (802) and the integrated access server
(1804), comprising:

using a first session identifier (1802) to establish a session between the first virtual machine
(808) and the integrated access server (1806); and

using a second session identifier (1802), substantially identical to the first session identifier
(1802), to establish a session between the second virtual machine (1900) and the integrated access
server (1806).

36. A method according to claim 33, further comprising:

communicating, from the host computer (802) to the first virtual machine (808),
identification data associated with the host computer (802);

using the communicated identification data to generate the first session identifier (1802);

communicating, from the host computer (802) to the second virtual machine (1900), the
identification data associated with the host computer (802); and

using the communicated identification data to generate the second session identifier (1802).

37. A method according to claim 36, wherein the identification data associated with the host

computer (802) comprises a media access control (MAC) address of the host computer (802).

38. A method according to claim 36, wherein communicating the identification data from the
host computer (802) to the first virtual machine (808) comprises executing a virtual machine player

(800) on the host computer (802).

-44-

WO 2007/149671 PCT/US2007/069509

39. A method of coordinating an access request from a computer (802) to a first integrated
access server (2004) and an access request from the computer (802) to a second integrated access
server (2014), wherein the first and the second integrated access servers (2004, 2014) maintain
distinct universes of patient identifiers, the method comprising:

receiving a patient identifier that identifies a patient within the universe of patient identifiers
maintained by the first integrated access server (2004);

sending the received patient identifier to the first integrated access server (2004);

mapping (2020) the received patient identifier into a second patient identifier that identifies
the same patient within the universe of patient identifiers maintained by the second integrated
access server (2014); and

sending the second patient identifier to the second integrated access server (2014).

40. A method according to claim 39, further comprising executing a virtual machine (808) on
the computer (802); and wherein sending the second patient identifier comprises setting the second

patient identifier from the virtual machine (808) to the second integrated access server (2014).

41. Inanetwork (2202) that includes a plurality of host computers (2202, 2204) interconnected
to a file server (2206), a method of executing a virtual machine, comprising:

storing a plurality of virtual machine images (221 0-2214) on the file server (2206);

loading a selected one of the plurality of virtual machine images (2210-2214) from the file
server (2206) onto a first selected one of the host computers (2202, 2204); and

executing the loaded virtual machine image on the first selected one of the host computers

(2202, 2204).

42. A method according to claim 41, wherein:

storing the plurality of virtual machine images (2210-2214) on the file server (2206)
comprises storing a plurality of generic virtual machine images on the file server; and further
comprising:

after loading the selected one of the plurality of virtual machine images (2210-2214) from
the file server (2206) onto the first selected one of the host computers (2202, 2204), automatically
provisioning the virtual machine on the host computer (2202, 2204).

-45-

WO 2007/149671 PCT/US2007/069509

43. A method according to claim 41, further comprising:
suspending execution of the virtual machine on the first selected one of the host computers
(2202, 2204); and

storing information about the suspended virtual machine on the file server (2206).

44, A method according to claim 43, wherein suspending execution of the virtual machine
comprises suspending execution of the virtual machine in response to a user command issued on

the first selected one of the host computers (2202, 2204).

45. A method according to claim 43, wherein suspending execution of the virtual machine
comprises suspending execution of the virtual machine in response to information stored on the file

server (2206).

46. A method according to claim 43, wherein suspending execution of the virtual machine

comprises suspending execution of the virtual machine in response to a remote procedure call.

47. A method according to claim 43, further comprising:

loading the information about the suspended virtual machine from the file server (2206)
onto a second selected one of the host computers (2202, 2204), different than the first selected one
of the host computers (2202, 2204); and

resuming execution of the suspended virtual machine on the second selected one of the host
computers (2202, 2204).

48. A method according to claim 43, further comprising:

resuming execution of the suspended virtual machine on the file server (2206).

49. A method according to claim 43, further comprising:
loading the information about the suspended virtual machine from the file server (2206)
onto a compute server (2220); and

resuming execution of the suspended virtual machine on the compute server (2220).

50. A method according to claim 49, further comprising:

loading information about at least one other suspended virtual machine from the file server
(2206) onto the compute server (2220); and

resuming execution of the at least one other suspended virtual machine on the compute

server (2220).

46-

WO 2007/149671 PCT/US2007/069509

51. A method according to claim 43, further comprising:

automatically provisioning the virtual machine on the first selected one of the host
computers (2202, 2204); and wherein:

storing the plurality of virtual machine images (2210-2214) on the file server (2206)
comprises storing a plurality of generic virtual machine images on the file server (2206); and

the information about the suspended virtual machine comprises information about
differences (2302-2306) between a current state of the virtual machine and one of the generic

virtual machine images.

52. A method according to claim 41, wherein:

storing the plurality of virtual machine images (2210-2214) on the file server (2206)
comprises storing a plurality of generic virtual machine images on the file server (2206); and
further comprising:

after loading the selected one of the plurality of virtual machine images from the file server
(2206) onto the first selected one of the host computers (2202, 2204), automatically provisioning
the virtual machine on the host computer (2202, 2204);

after provisioning the virtual machine, suspending execution of the virtual machine on the
first selected one of the host computers (2202, 2204); and

storing information about differences (2302, 2304) between a current state of the virtual
machine and one of the generic virtual machine images on the first selected one of the host

computers (2202, 2204).

-47-

i
WO 2007/149671 PCT/US2007/069509 71—

1127

Host (Real) Computer 100
; ; 106
Virtual Machine
112
Application
120 108
Application
122
: Virtual
Operating System _ | Computer
118 User Interface
117
Virtual Hardware
114
Virtualization Program Host Operating System
110 - 104
Y
— L\
N~
Virtual
Computer Real Hardware 102
Image
116
______/

(Prior Art)
Fig. 1

WO 2007/149671

User Interface
202

Virtual Machine Image Creation
Tool
200

2127

PCT/US2007/069509

TN

.

M

Operating

A

Virtual Machine

204

System
Components
206

(Prior Art)
Fig. 2

~

Virtual Machine
w

L£="

==

N

Application

Components

Image
116

Program

208 |

N

L

i

PCT/US2007/069509

WO 2007/149671

3127

TN
Pl

sjusuodwo)
welboid
uoneolddy

¢ ‘B4

e

e
5

T T
cie

sjusuoduwon
waishg
Bunesadp

T

TN

aulyoel fenyip [

TN

00¢
abew|

\ 4

@

Gle
90¢

SUIYOB} [ENMIA

20¢
uayo |
oyivadg-iasn

/
gle

A

A
Y

N~

¥0¢

JoBeueyy 108loid auiyoepy [enuIA

91¢
|00

AN

20¢
uaMo |
ol0adg-1es

—

f445
Jojeseuan) usyo |

L

01¢
UOBLIO|
108loid

80¢€
soeplu| Jasn

Y

o
~

|
WO 2007/149671 PCT/US2007/069509 1

4/27

Project Manager/Image Creator

Create virtual machine with tools stored on a virtual
storage device

}
Y

Start virtual machine

t
Y

Install operating system and application programs;
customize settings

!
Y

Replace GINA

Remove virtual machine from domain

v

Change administrator password to a predetermined
value (such as blank)
Remove user accounts created when operating system
was installed
Change size of virtual machine’s disk
Create script file for initial startup on end-user’s host
computer
Remove page file
Clean up virtual machine’s disk (delete temporary files,
etc.)

E
Y

Save virtual machine state in image file

Fig. 4

WO 2007/149671 PCT/US2007/069509 +

5127
™ fr—
vThere ™ Image Creator LJ X
Eile Window Help
Create a New Project from an Existing Project H

Step 1: Select Existing Project:

C:wy prg Copying... L X
Step 2 _ - >
= U ml
|

1.0 versi
Copying source image

Step 3 vz

:D:\Deve:,, 55 Seconds Remaining

Cancel

Fig. 5A

WO 2007/149671 PCT/US2007/069509 “"%”

6/27

R—
™ !
vThere™ Image Creator — [1.0.495 Test] @ s X

File _Project Window Help

o

v—é> s ;_7;? Q _ x]

Launch Prdject Edit Settings Backup Project... Create ISO Delete Project....

Project Name: | 1.0.495 Test

Description: | This project is a new gold image with the new
partitioning scheme and split disk images.

Date Last Used: | 6/9/2006 3:11:52 PM

Project Ancestry

Created From: | Split Disk Gold Image

From Date: | 6/9/2006 3:11:52PM

From Description: | This project is a new gold image with the new
partitioning scheme and split disk images

System Information
Max Drive Size: | 15360mb

Partition Size: | Partition sizes are not reported yet

Memory: | 384mb

Domain:

Organization:

Backup
Date Created: | <none>

Description:

Fig. 5B

!
WO 2007/149671 PCT/US2007/069509 T~
7127

DVD Creator

Divide virtual machine image file into several (optionally
compressed) files

4

Encrypt some or all pieces of virtual machine image
(optional)

\ 4

Create ISO image with virtual machine image file
portions (and optionally player)

Burn computer distribution medium

Fig. 6

WO 2007/149671 PCT/US2007/069509 +

8127
e ~ S~
Virtual Machine Bl Project
Image ayer Information
300 310
Y
Distribution Media
Creator
700
_______/
Server
708
ISO ~
Image
702 Downloadable
Files
706
___‘_’/
S~

Computer

Medium
704 TN

~
)
3

Internet
712
% End
User

710

Fig. 7

PCT/US2007/069509

WO 2007/149671

g8 ‘B4

8z8 J— i
abelo)g vL8 [44] 018
- uonoaUU0Y JOHUON sjoo|
—-_— N N
L welbold Buiuoisinold
_ A 028 VNI -
928 TS 808 SUIYOBIN [BNHIA
Janeg J
NdA ﬁ/ Y
! vz8
N o 607 porsboI6s
N JIONGON 07 paiebalbby
osudiouy) T 908
b 818 aBew) suiyoeyy €18
JEVNETS leniA paldAioe(
dvan P N
—] \ ¥0/ /I\\\ﬁ
$824N0SaY — wnipsiy Y
IETNiTe) 08 loindwio) f—— |
9 SI8JUld 008
Jakeld
.

08 Jeindwon 1soH

}

WO 2007/149671 PCT/US2007/069509 ——

10/27

End-User Computer

Install player on end-user’s host computer (associates
token file type with player)

Y
Insert distribution medium (auto-start installs player, if
not already installed)

904

h 4

Invoke token (starts player)

906

Y
Decrypt virtual machine image file and copy to host
computer

908

Y
Create virtual machine (according to image file) and start
virtual machine

91

Fig. 9

WO 2007/149671 PCT/US2007/069509 “l|*

11727
Virtual Machine (First Boot)

Initial startup of operating system (in factory mode).
Automatically log in as administrator.

1000

\ 4

Process script, which starts provisioning program

1002

/

Provisioning program contacts player

1004

4

Player reads information from distribution medium and
token and sends the information to provisional program

1006

Y
Create information file (SYSPREP.INF)

1008

y

Reseal operating system. (Will start in mini-setup mode
on next boot)

1010

4

Restart virtual machine

101

i

N

Fig. 10A

|
WO 2007/149671 PCT/US2007/069509

Operating system (SYSPREP) processes information file
(mini-setup mode)

1014

Y

Replaced GINA prompts for user credentials

1016

) 4

On first user log in, connect VPN

1018

4

Get account credentials form player and join domain

1020

h 4

Save user credentials

1022

h 4

Restart virtual machine

1024

\ 4

Automatically log in as user, using saved credentials

WO 2007/149671

13/27

User Closes Virtual Machine

PCT/US2007/069509

Log off user

1100

/

Close VPN connection

1102

4

Save virtual machine state
(at operating system logon prompt)

1104

Fig. 11

+

WO 2007/149671 PCT/US2007/069509 1~
14/27

Virtual Machine

Start player

1200

h J

Check virtual machine image for revocation/expiration

1202

A

Calculate amount of memory in virtual computer

1204

4
Create virtual machine with calculated memory size and
according to virtual machine image

1206

Fig. 12

WO 2007/149671

15127

|
PCT/US2007/069509 1~

Host Computer
802

Virtual Machine
808

Application
1304

4

Printer Driver
1306

Real Hardware

Port
1302

Printer
1300

(Prior Art)
Fig. 13

WO 2007/149671 PCT/US2007/069509 +

16/27

Host Computer
802

Virtual Machine 813

808
/ Player

Application D 800
1402 |

v

Y Real

Virtual Printer Printer | Printer

1400 1406

/4

___//
Intermediate Print
Job
Description
1404

~ N

Fig. 14

WO 2007/149671

17127

Host Computer
802
Virtual Machine 813
808 /
|
-l Player
Application 800
1402 }
Y Real
Proxy Printer Driver Printer
1500 Driver
1406

PCT/US2007/069509

Printer

Fig. 15

1404

i

;

PCT/US2007/069509

WO 2007/149671

18/27

918

#I0MBN
asLdiaug

R

9¢8
JEVNEIS

NdA

y18
uooBUUOD NdA

)

vl ‘b4

028 lsuleyy

/zi .

091
(Idv)
ul-bnig
NdA

A

118
YNIO

808

SUIYoeN feniiA

Jaindwo) 3soH

\ 4

0091
Hod
asn

¢09l
usyo |
Anosg

PCT/US2007/069509

WO 2007/149671

ET

19727

818 g9} "bid Z0o7
Janeg usyoL
dvai Ajunoeg
|
T NG
918 Y
3JomiaN _ 009}
asudisjug co;om%cr%o NdA HOd dSn
i S \(\ ’ ~ r
| TRET \
L /7 (Idv) < 008
9¢8 uj-6ni4 1ofe|d
SETVETS . NdA
NdA 0Z8 jeulsiu| clg
«(\\// 1
118
YNIO
808

SUIYOE} [ENMIA

08 Jeind WwoD 1SO0H

WO 2007/149671 PCT/US2007/069509 +

20727
LDAP
Server
818

Host Computer 802 i
}

Virtual Machine 808
GINA _> Network
§ e

VPN Plug-In

(AP
1604

Player
800

Credentials
Cache
1700

Fig. 17

WO 2007/149671 PCT/US2007/069509 "%“

21727

Integrated Access Server

1804
Host Computer 802
(Enterprise
’ ~ P Network \)
o ¢ 1806
Application | — ™~ ~
| 1810 | /
| Identical
Session IDs I
. 1802 ,
Player Locat.lon |
= 800 Service Q
- 1800 4
M~
Virtual Machine Patient Data
808 1808
|
Application [—
1812 § ~ N
|
Location
» Service
1814
Fig. 18

PCT/US2007/069509

WO 2007/149671

61 ‘b1

061
90IAI8S
uoneso

8061

Y uopeolddy

0061

808} . SUIYOBN [ENUIA
Ele(jusijed

008
_ Jaheid

N / Z06T

22/27

(SRINETS
muuuwwwwwwwmw\\\\) uopeooT

/
2081
$(| uoIsseg
leonuap) 9061
,,,,, o uoppeo|jddy

9087 p

808
YIOM}ON

esudiejug SUIYDBIN [BNLIA
o 208 Jeindwo)) 1soH

Y081
Janlag sse00y pajelBaju

PCT/US2007/069509

WO 2007/149671

23127

0z ‘b1

810¢
EJe(] usjed

ANr4
90IAI8G U0NED0"

|

010z

910¢ /
JiomieN -
asudisiug /
e /
\V; ,,,,,,, A\/
2014 /
JonIeg $s900y pajeibaiu] \
S(| UoISSag pajeulploo))
8002 /

eleq jusied

5002 /
NIOMIBN < .

uoneoijddy

0¢0¢
Jaddeyp

A

808
auIyoR [eNpIA

asudisug

o

¥00¢
JoAIBS $8200Y paje.baju)

¢00¢ ey
=
uoned0T
000¢
uoljeoljddy
208 19indwo?) 1soH

PCT/US2007/069509

WO 2007/149671

24/27

810¢
eleq jusiied

910¢

12 "bidg

}JomiaN R
asudisiug & \
/

_ rd

.

y10¢
Janieg sseooy pajelboju|

/

800¢
ejeq jusiied

S| UOISSg pajeulpi0on

}IOMISN
asudisjug

e

061
80IAIOG
UonesoT

8061
uoneolddy

0067
SUIYOBIN [enHIA

c061
80IAISS
uoneso

¥00¢
Jonieg ss900y pajelBsju

9061
uoieolddy

808
SUIYOB} [BNUIA

0c0¢
Jaddepy

008
Jahe|d

208 J9Indwion) 1soH

PCT/US2007/069509

WO 2007/149671

25/27

A A IE

¢cc

aulyoe
[ENLIA

80¢¢
(jeuondQ) Jonsag andwon

glee glee
auiyoep aulyoe
[enjIA [ENJIA
s9jl4 BYIO vice
abew| WA
TN TS
s9ji4 Y10
s8jl4 Byl 1]¥44
abew| AA
v Jasn

90¢¢ 1eMss 9|l

—

¢0¢c
3IOMJSN
asudiajug

V44
Jejndwo) 1soH

¢0¢c
Jaindwo?) 1soH

PCT/US2007/069509

26/27

WO 2007/149671

: ¢z "bi4 oo
abeuw)
= INA oseg
SOl IO saouaieyg
S WA D Jesn
- y0¢c
> Jajndwio)) 3soH
$0€C
S9|l4 JoYIO| seduslayIq
NA g 188N Pt
g Josn mom
abew|
> \\ - INA 8sed
¢0¢c¢ ———
— YIOM]BN -
— asldiajug _
$9jl4 IsYl0 ssoualaliq |
o ¢0¢c
- Jaindwo?) 3soH

9022 Jonies oy

PCT/US2007/069509

WO 2007/149671

27/27

90€c

$9|14 J8Yl0 ssousIagi
NA D iesn

D Jesn

0S¢
saji4 Jayl0| ssousiayi(]
A g 488N
g Jesn
SEE NI (g) wwowwm”wt_o
1o, WNA Y J8sn

90¢¢ Janiag 9|l

T "B

—

¢0¢¢
YIomjeN

é@\

0€c
seoualayiq

NA g 493N

00¢
abeuw|

INA 9seg

v0ce
Jaindwon 1soH

¢0ge
ssoualayiq

WA V 488N

00¢
abeuw)

INA oseg

¢0cc
Jeyndwo) JsoH

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings

