智能变电站电压切换、并列方法及装置

【摘要】
本发明涉及智能变电站电压切换、并列方法及装置，本发明的双母线供电的电压切换方法是采集双母线上的两组电子式电压互感器的电压输出量，采集两隔离刀闸开入量状态信号，根据两组电压输出量及相应的隔离刀闸开入量状态信号控制输出相应母线的电压；当采集到 I 母隔离刀闸投入，并且 II 母隔离刀闸退出时，输出 I 母电压；当采集到 II 母隔离刀闸投入，并且 I 母隔离刀闸退出时输出 II 母电压；当采集到 I 母、II 母隔离刀闸均投入或均未投入时，输出 II 母电压。本方法对于电子式电压互感器输出数据与通讯规约无关，无需对输入信号进行解码，可直接输出对应的原始电子互感器的数字量信号，实现了信号的透明传输，而且实现简单，可靠性高。
1. 一种双母线供电的电压切换方法，其特征在于，该方法的步骤如下；

采集双母线的两组电子式电压互感器的电压输出量；将母线上两隔离刀闸位置信号作为开关量，采集两开关量状态信号；根据采集到的两组电子式电压互感器的电压输出量及相应的隔离刀闸开关量状态信号的逻辑判断来控制输出相应母线的电压。

2. 一种双母线供电的电压切换装置，其特征在于，该装置包括：

逻辑控制器，用于根据采集到的 I 母、II 母隔离刀闸位置信号的逻辑判断及相应的电压互感器的电压输出量来控制切换后母线的电压；

两电压输人端口，用于 I 母和 II 母的电压互感器电压输出量的接入，且分别通过光电控制回路连入逻辑控制器的输入端口；

两隔离刀闸位置输入端口，用于 I 母和 II 母隔离刀闸位置信号的输入，且分别通过光耦器件连入逻辑控制器的输入端口；

切换电压输出端口，用于切换后输出电压的输出，通过光电转换回路与逻辑控制器的输出端口相连。

3. 一种单母线分段或双母线的电压并列方法，其特征在于，该方法的步骤如下；

采集两母线的两组电子式电压互感器的电压输出量；将母线上两隔离刀闸位置信号作为开关量，采集两开关量状态信号；根据采集到的两组电子式电压互感器的电压输出量、两隔离刀闸开关量状态信号及并列开关隔离刀闸开关量状态信号的逻辑判断来控制输出并列后各段的电压。

4. 一种单母线分段或双母线的电压并列装置，其特征在于，该装置包括：

逻辑控制器，用于根据采集到的 I 母、II 母隔离刀闸位置信号及相应的电压互感器的电压输出量来控制并列后母线的电压；

两电压输入端口，用于将 I 母、II 母的电压互感器电压输出量的接入，且通过光电控制回路连入逻辑控制器的输入端口；

三隔离刀闸位置输入端口，用于并列开关、I 母和 II 母隔离刀闸位置信号的输入，分别通过光耦器件连入逻辑控制器的输入端口；

两并列电压输出端口，用于输出并列后两母线的输出电压，分别通过光电转换回路与逻辑控制器的输出端口相连。
智能变电站电压切换、并列方法及装置

技术领域
[0001] 本发明属于电力系统机电保护领域，涉及智能变电站中电子式电压互感器数字接口输出信号的电压切换、并列，尤其涉及智能变电站电压切换、并列方法及装置。

背景技术
[0002] 在进行一次电气元件倒母线操作时，电压切换或并列装置用来保证一次电气元件的继电保护、测量仪表和自动装置所需要的二次电压与一次元件所连接的母线相对应。
[0003] 在常规变电站中，电压切换的方法都是需要直流操作电源，通过对继电器的操作来完成电压切换功能。这种方法的缺点是：因直流操作电源故障、隔离开关辅助接点故障、继电器故障导致电压切换失败；电压互感器二次电压反充电。
[0004] 随着新型电子式互感器在变电站电气量信息采集的数字化应用，对电压切换、并列装置提出了新的要求，为电子互感器输出的数字信号通过可编程器件控制来实现电压切换、并列提供了条件。
[0005] 对于智能变电站中电子式电压互感器输出信号的电压切换、并列，现有的实现电压并列、切换的方法是将信号接入合并器，采用微处理器及逻辑器件对信号先进行解码，再根据通信规约的要求进行重新打包再传输，这种方法数据处理比较复杂，装置成本很高，切换装置的工作受互感器输出数据通讯规约的限制。

发明内容
[0006] 本发明的目的是提供一种智能变电站电压切换方法、并列方法，以解决现有方法的数据处理复杂，装置成本高，装置的工作受互感器输出数据通讯规约的限制的问题。
[0007] 本发明的另一目的是提供一种智能变电站电压切换装置、并列装置，以解决现有装置成本高，装置的工作受互感器输出数据通讯规约的限制的问题。
[0008] 本发明的一种双母线供电的电压切换方法技术方案如下，该方法的步骤如下：
　采集双母线上的两组电子式电压互感器的电压输出值；
　将双母线上两隔离刀闸位置信号作为开入量，采集两开入量状态信号；
　根据采集到的两组电子式电压互感器的电压输出量及相应的隔离刀闸开入量状态信号控制输出相应的母线电压；
　当采集到 I 母隔离刀闸投入，并且 II 母隔离刀闸退出时，输出 I 母电压；当采集到 II 母隔离刀闸投入，并且 I 母隔离刀闸退出时输出 II 母电压；当采集到 I 母、II 母隔离刀闸均投入或均未投入时，输出 II 母电压。
[0009] 本发明的一种双母线供电的电压切换装置的技术方案如下，该装置包括：
　逻辑控制器，用于根据采集到的 I 母、II 母隔离刀闸位置信号及相应的电压互感器的电压输出量来控制切换后电压的输出；
　两电压输入端口，用于 I 母和 II 母的电压互感器电压输出量的接入，且分别通过
光电控制回路连入逻辑控制器的输入端口；

两隔离刀闸位置输入端口，用于 I 母和 II 母隔离刀闸位置信号的输入，且分别通过光耦器件连入逻辑控制器的输入端口；

切换电压输出端口，用于切换后输出电压的输出，通过光电转换回路与逻辑控制器的输出端口相连。

[0010] 本发明的一种单母线分段或双母线的电压并列方法的技术方案如下，该方法的步骤如下：

采集两母线的两组电子式电压互感器的电压输出量；

将两母线上两隔离刀闸位置信号作为开入量，采集两开入量状态信号；

将分段开关或母联开关的隔离刀闸位置信号作为开入量，采集该开入量状态信号；

根据采集到的两组电子式电压互感器的电压输出量，两隔离刀闸开入量状态信号和并列开关隔离刀闸开入量状态信号来控制输出并列后各段的电压；

当并列开关隔离刀闸投入，I 母隔离刀闸投入，并且 I 母隔离刀闸退出时，两母线并列后输出 I 段的电压；当并列开关隔离刀闸投入，I 母隔离刀闸投入，并且 I 母隔离刀闸退出时，两母线并列后输出 II 母的电压；当并列开关隔离刀闸退出，I 母隔离刀闸和 II 母隔离刀闸均投入或均未投入时，I 母输出 I 母的电压，II 母输出 II 母的电压。

[0011] 本发明的一种单母线分段电压并列装置的技术方案如下，该装置包括：

逻辑控制器，用于根据采集到的 I 母、II 母的隔离刀闸位置信号及相应的电压互感器的电压输出量来控制并列后电压的输出；

双电压输入端口，用于将 I 母、II 母的电压互感器电压输出量的接入，且通过光电控制回路连入逻辑控制器的输入端口；

三隔离刀闸位置输入端口，用于并列开关、I 母和 II 母隔离刀闸位置信号的输入，分别通过光耦器件连入逻辑控制器的输入端口；

两并列电压输出端口，用于输出并列后两母线的输出电压，分别通过光电转换回路与逻辑控制器的输出端口相连。

[0012] 本发明所述的电压切换、并列方法，对于电子式电压互感器输出数据与通讯规约无关，对应的装置对于输入信号无需进行解码，装置直接输出对应的原始电子互感器的数字量信号，实现了信号的透明传输，而且实现简单，可靠性高。

[0013] 本发明所述的电压切换、并列装置中设置逻辑控制器，电子式电压互感器的数字量输出分别通过光电转换回路输入逻辑控制器，而且将各自对应的隔离刀闸位置信号作为开入量，逻辑控制器根据开入量状态来实现电压切换、并列控制，并将切换或并列后的信号经光转换回路输出，电压切换、并列装置为电压切换或并列方法的实现提供硬件支持，而且实现简单，可靠性高。

附图说明

[0014] 图 1 是双母线供电的 EVT 电压切换装置示意图；

图 2 是单母线分段或双母线的 EVT 电压并列装置示意图。
具体实施方式

[0015] 实施例一：
本发明的双母线供电的电压切换方法的步骤如下：
采集双母线上的两组电子式电压互感器的电压输出量；
将双母线上两隔离刀闸位置信号作为开入量，采集两开入量状态信号；
根据采集到的两组电子式电压互感器的电压输出量及相应的隔离刀闸开入量状态信号控制输出相应母线的电压；

如下表 1 所示，当采集到 I 母隔离刀闸投入，并且 II 母隔离刀闸退出时，输出 I 母电压；
当采集到 II 母隔离刀闸投入，并且 I 母隔离刀闸退出时输出 II 母电压；当采集到 I 母、II 母隔离刀闸均投入或均未投入时，输出 II 母电压。

<table>
<thead>
<tr>
<th>EVT1</th>
<th>EVT2</th>
<th>切换装置输出</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入</td>
<td>退出</td>
<td>EVT1</td>
<td>切换装置</td>
</tr>
<tr>
<td>其它</td>
<td>EVT2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0016] 实施例二：
本发明的双母线供电的电压切换装置如图 1 所示，该装置包括：
逻辑控制器 CPLD（也可以用可编程器件 FPGA），用于根据采集到的 I 母、II 母隔离刀闸位置信号及相应的电压互感器的电压输出量来控制切换后电压的输出；
两电压输入端口 A、B，用于 I 母和 II 母的电压互感器电压输出量的接入，且分别通过光电控制回路 O/E 连入逻辑控制器 CPLD 的输入端口；
两隔离刀闸位置输入端口 PT1、PT2，用于 I 母和 II 母隔离刀闸位置信号的输入，且分别通过光耦器件连入逻辑控制器 CPLD 的输入端口；
切换电压输出端口 X，用于切换后输出电压的输出，通过光电转换回路 E/O 与逻辑控制器 CPLD 的输出端口相连。

[0017] 实施例三：
本发明的单母分段或双母线电压并列方法的步骤如下：
采集两母线上的两组电子式电压互感器的电压输出量；
将两母线上两隔离刀闸位置信号作为开入量，采集两开入量状态信号；
将分段开关或母联开关的隔离刀闸位置信号作为开入量，采集该开入量状态信号；
根据采集到的两组电子式电压互感器的电压输出量、两隔离刀闸开入量状态信号和并列开关隔离刀闸开入量状态信号来控制输出并列后各段的电压；

如下表 2 所示，当采集到并列开关隔离刀闸投入，I 母隔离刀闸投入，并且 II 母隔离刀闸退出时，两母线并列后输出 I 母的电压；当并列开关隔离刀闸投入，II 母隔离刀闸投入，并且 I 母隔离刀闸退出时，两母线并列后输出 II 母的电压；当采集到并列开关隔离刀闸退出，I 母隔离刀闸和 II 母隔离刀闸均投入或均未投入时，I 母输出 I 母的电压，II 母输出 II 母的电压。
表 2

<table>
<thead>
<tr>
<th>EVT1</th>
<th>EVT2</th>
<th>并列开关</th>
<th>I 母并列后</th>
<th>II 母并列后</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>退出</td>
<td>投入</td>
<td>投入</td>
<td>EVT2</td>
<td>EVT2</td>
<td></td>
</tr>
<tr>
<td>投入</td>
<td>退出</td>
<td>脱开</td>
<td>EVT1</td>
<td>EVT1</td>
<td></td>
</tr>
<tr>
<td>不定</td>
<td>退出</td>
<td>EVT1</td>
<td>EVT1</td>
<td>EVT2</td>
<td>并列装置</td>
</tr>
</tbody>
</table>

[0018] 实施例四：

本发明的单母分段或双母线的电压并列装置如图 2 所示，该装置包括：

逻辑控制器 CPLD（也可以用可编程器件 FPGA），用于根据采集到的 I 母、II 母的隔离刀闸位置信号及相应的电压互感器的电压输出量来控制并列后电压的输出；

两电压输入端口 A、B，用于将 I 母、II 母的电压互感器电压输出量的接入，且通过光电控制回路 0/E 连入逻辑控制器 CPLD 的输入端口；

三隔离刀闸位置输入端口 PT、PT1、PT2，用于并列开关、I 母和 II 母隔离刀闸位置信号的输入，分别通过光耦器件连入逻辑控制器 CPLD 的输入端口；

两并列电压输出端口 X、Y，用于输出并列后两母线的输出电压，分别通过光电转换回路与逻辑控制器 CPLD 的输出端口相连。