7068292 A2 |V OO0 A 0 O

<r

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
12 August 2004 (12.08.2004)

(10) International Publication Number

WO 2004/068292 A2

(51) International Patent Classification’: GO6F
(21) International Application Number:
PCT/US2004/001827

(22) International Filing Date: 23 January 2004 (23.01.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/442,673
10/762,814

Us
Uus

24 January 2003 (24.01.2003)
22 January 2004 (22.01.2004)

(71) Applicant (for all designated States except US): BEA
SYSTEMS INC. [US/US]; 2315 North First Street, San
Jose, CA 95131 (US).

(72) Inventor; and
(75) Inventor/Applicant (for US only): BAU, David [US/US];
415 Howard, Gladwyne, Pennsylvania 19035 (US).

(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP,
Four Embarcadero Center, Fourth Floor, San Francisco,
California 94111 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,

KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,

PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,

TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARTPO (BW, GH,

GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-

pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,

GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: XML TYPES IN JAVA

Java
Project Compiler
101
XML
// Schema
! 102
i
1
1
]
\\ \
N \ e
\ Define L
AN ML /\/ \
N Data Vo
. 105 }
" ;
. |
\\\ XML ///

Java
Data
106

(57) Abstract: The use of XML types can allow the combination of XML- and Java-type systems, which overcomes many deficien-

cies in existing marshaling and unmarshaling systems by translating XML schemas which define XML data in an XML document

& into XML types in Java. Unlike traditional attempts at translating between XML and Java, XML schemas realized as XML types can
& remain fully faithful to the XML, and are capable of a number of XML data operations. In addition, the XML types can be easily
transformed among themselves and Java types, and a lightweight store retaining XML information at tag level allows incremental
XML marshaling and unmarshaling. This description is not intended to be a complete description of, or limit the scope of, the in-
vention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the

=

claims.

WO 2004/068292 A2 I} N0 N0VYH0 T 00000 N0 AR

Declaration under Rule 4.17: For two-letter codes and other abbreviations, refer to the "Guid-
— of inventorship (Rule 4.17(iv)) for US only ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

WO 2004/068292 PCT/US2004/001827

XML TYPES IN JAVA
COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent documeﬁt of the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

CLAIM OF PRIORITY
[0002] This application claims priority from the following application, which is hereby
incorporated by reference in its entirety:
[0003] U.S.Provisional Application No. 60/442,673, entitled XML TYPES INJAVA,
by David Bau, filed January 24, 2003 (Attorney Docket No. BEAS-01388US0
SRM/DTX).

FIELD OF THE INVENTION
[0004] The invention relates to the transformation of data and data types.

BACKGROUND

[0005] Certain drawbacks exist in the way data is currently transformed, or marshaled,
between data types. In existing systems, a user starts with an existing Java type and asks
the system to generate the XML schema that reflects the Java type, and further to
marshal the Java data to the XML that was automatically generated. Most products that
marshal XML run through a compiler, such as a Java to WSDL compiler, in order to
generate an XML schema. One drawback to such an approach is that only the scenario
going from Java to XML is addressed. Current tools are not particularly good at taking
an existing XML schema and turning that entire schema into a convenient-to-use Java
type.

[0006] Another problem with current marshaling technologies appears when a user

simply wishes to look at a small piece of XML data. That user may prefer to simply pass

-1-

WO 2004/068292 PCT/US2004/001827

on the rest of the XML data without processing that data. Current marshaling
technologies are not effective at simply passing on the remainder of the data. Typically,
going from marshaling to unmarshaling is complicated, as not all semantics in XML can
be easily captured in Java. If a user brings in a message, changes a small portion of the
message, and tries to resend the message as XML, portions other than that changed by
the user will be different, such that a lot of other information may be lost. If the XML
contains wildcard attributes or elements, for example, those wildcards will not be
retained. Information about element order may also be lost or scrambled, which is a

problem if the schema is sensitive to element order.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Figure 1 illustrates an exemplary XML schema definition file that can be used
in accordance with embodiments of the present.invention.
[0008] Figure 2 is a diagram of an exemplary system for XML marshaling and
unmarshaling that can be used in accordance with embodiments of the present invention.
[0009] Figure3illustrates exemplary code representing the XML types compiled from
an XML schema that can be used in accordance with embodiments of the present
invention.
[0010] Figure 4 illustrates exemplary code of an annotation-based format that can be
used in accordance with embodiments of the present invention.
[0011] Figure 5 illustrates exemplary code implementing a Web service that can be
used in accordance with embodiments of the present invention.
[0012] Figure 6 illustrates exemplary code for type transformation that can be used in
accordance with embodiments of the present invention.
[0013] Figure 7 illustrates exemplary code for default type declaration that can be used
in accordance with embodiments of the present invention.
[0014] Figure 8 illustrates exemplary code for XML transformation that can be used
in accordance with embodiments of the present invention.
[0015] Figure 9 illustrates exemplary code for XML transformation that can be used
in accordance with embodiments of the present invention.
[0016] Figure 10 is a diagram of an exemplary XML transformation system that can

be used in accordance with embodiments of the present invention.

-

WO 2004/068292 PCT/US2004/001827

[0017] Figure 11 is a diagram of an exemplary system for XML store that can be used
in accordance with embodiments of the present invention.

[0018] Figure 12 is a diagram of an exemplary system for XML schemas that can be
used in accordance with embodiments of the present invention.

[0019] Figure 13 is a diagram of an exemplary system for XML types that can be used
in accordance with embodiments of the present invention.

[0020] Figure 14 is a diagram showing an exemplary hierarchy diagram that can be

used in accordance with embodiments of the present invention.

DETAILED DESCRIPTION

[0021] The invention is illustrated by way of example and not by way of limitation in
the figures of the accompanying drawings in which like references indicate similar
elements. It should be noted that references to “an” or “one” embodiment in this
disclosure are not necessarily to the same embodiment, and such references mean at
least one.

[0022] Systems and methods in accordance with one embodiment of the present
invention overcome many deficiencies in existing marshaling and unmarshaling systems
by translating XML schemas, which define XML data in an XML document, into XML
types in Java when marshaling data between XML and Java. XML types are actually
Java types which, in addition to regular Java bean functions and access to database, can
also access and update XML data within Java in an efficient, type-safe, robust, and
convenient way. An architecture can be used in at least one embodiment that provides
the ability to handle almost 100% of the schema introduced by a user.

[0023] The use of XML types can allow the combination of XML- and Java-type
systems. This can be done in a way that allows developers to achieve loose coupling.
XML schemas realized as XML types can remain fully faithful to the XML. It can be
easy for a developer to take control of precise transformations between existing Java
types and existing XML types. XML types can address the Java/XML boundary by
bringing together several technologies, including for example schema-aware strongly
typed access to XML data document from Java, compact and indexed in-memory XML

store, speedy and minimal (pull) parsing and (binary) serialization, lightweight

3.

WO 2004/068292 PCT/US2004/001827

document-cursor traversal, XPath and XQuery navigation and transformation, and
seamless Java IDE integration

[0024] For an XML-oriented “XML to XML via Java code” example, Figure 1 shows
a simple exemplary XML schema definition (XSD) file that can be used with
embodiments of the present invention. This particular XML schema describes the type
of a purchase order. The schema can be a pre-existing file that was generated by a
schema tool or created by a user. In this example, it may be necessary to “clean up” or
“fix” invalid XML purchase order information.

[0025] At the top of the XSD is a schema definition for an element named ‘purchase
order.” The element is defined as a complex type and contains an element called “line-
item.” There is a ‘maxOccurs’ attribute set to ‘unbounded,” meaning that the line-item
can be repeated any number of times. Each of the line items is shown to have four sub-
elements: desc, itemid, price, and qty. The ‘desc’ sub-element refers to a description
element which is a string, ‘itemid’ refers to an item identifier element which is an
integer (type int), “price’ refers to a price element which is a floating point number (type
float), and ‘qty’ refers to a quantity element which is an integer. These sub-elements are
all built-in types of the schema. This schema is basically a description or representation
of how a valid purchase order schema should look.

[0026] Inorder to write a program using XML types, an XML schema file can be added
to a Java project. An example of a system for XML marshaling and unmarshaling is
shown in Figure 2. In one embodiment, the system can process the file witha compiler
100 that knows not only how to compile a Java project 101, but also is capable of
compiling the XSD file 102. When XSD file is compiled, a number of XML types 103
can be generated in addition to regular Java types 104. These XML types can then be
added to the classpath. For example, an XML type called “purchase order” can be
generated from the schema type called “purchase-order.”

[0027] A Javasource code representation of the XML types compiled fromthe example
schema in Figure 1 is shown in Figure 3, where the source that generates these Java
types is the schema file itself. A type called Lineltem corresponds to the line item-
element nested inside the purchase-order element in the XSD file. In Java, the XML
line-item element can turn into something similar. For each element inside a type, a Java
field can be generated. For the “desc” element in the XSD, for instance, there are

corresponding “getDesc” and “setDesc” methods in the generated type for each line

4

WO 2004/068292 PCT/US2004/001827

item. For the purchase order as a whole, a user can obtain or send an individual line
item. The names of the generated types can be automatically derived from the schema
names. Each generated type can be annotated with the relevant schema name from which
it comes. Each type can also extend an existing XML type.

[0028] In one embodiment, XML types can implement a common base XML type
called “XMLObject”. Such an XML type provides the ability to execute a number of
XML-oriented data manipulations and will be referred to herein as an “XBean”. An
XBean is not a standard Java bean, as an XBean inherits from an XMLObject. An
XMLObject is unusual, in that an XMLObject as an XML type provides a way for each
XBean to retrieve its original, or corresponding, XML. An XBean can be thought of as
a design pattern for Java types representing data, such as business data, that can be
serialized and de-serialized to XML, as well as accessed in a type-safe way from Java.
XBeans can also be thought of as a small set of natural language idioms, either
annotated Java or non-Java, for generating those types. Normally, there is a tradeoff
when an application developer or component developer decides how to represent
business data. If the data is represented as type-safe Java, then serialization to XML or
to databases can be awkward. If the data is represented as XML, then conversion to Java
types can also be somewhat awkward. The same holds true for conversion to either of
the other types if data is in a result set from a database. It is therefore advantageous to
provide a single category of Java types that is convenient for passing, using, and
manipulating as both XML and Java. It is further advantageous that the same type is
convenient for database access as well as form input and validation.

[0029] As Shown in Figure 2, XBeans in one embodiment can sit at the intersection
of three types of business data: XML data 105, Java data 106, and database 107. An
XBean can simply contain data, without any logic or means for communication or
computation. An XBean can be defined using any of a number of idioms. Once an
XBean is defined, the XBean can be used in various contexts. For example, an XBean
can be defined using XML schema, then instantiated by attaching the XBean to an XML
input stream. In this case, the Java types that are generated can be passed around and
used as a Java bean, with friendly getters and setters.

[0030] For example, an application developer could define a file called

MyData.schemabean, with the following contents:

WO 2004/068292 PCT/US2004/001827

<xsd:element name="myData">
<xsd:sequence>
<xsd:element name="a" type="xsd:string">
<xsd:element name="1" type="xsd:int">
</xsd:seqence>
</xsd:element>
This file could compile into a XBean with metadata, such as in Figure 4, which shows
an exemplary annotation-based format, which would be another way of expressing an
XBean.
[0031] If the data was XIML-oriented, for example, a user might have cared whether
a name came before a description or a description came before a name. Systems and
methods in accordance with the present invention allow a user to get back to the
original, ordered XML. There can be any of several methods on a base XMLObject
type, such as methods called “getXMLCursor” and “executeXPath.” An XML type can
have anumber of XML data operations, including methods to query values using XPath,
transform values using XQuery, or iterate over the data document using an XMLCursor.
This base type can hold several technologies together.
[0032] Certain methods can determine what the XML looks like at any point in time.
For example, XML types can be used to implement a Web service that executed the
requested operation such as shown in Figure 5. The exemplary code in this Figure can
be used to fix quantities in an entire purchase order. On lines 1-2 of the Figure, the
method is declared as a Web service operation that takes a PurchaseOrder XML type.
The Web services runtime can recognize XML types and pass incoming messages
efficiently, without fully parsing the XML. The other XML type that was declared in the
schema is Lineltem, which can be seen on lines 4, 5, and 7 as an array called
emptyltems. Since the compiled XML types are strongly typed, they allow validation
of both schema, such as validating PurchaseOrder against a schema file, and Java
compiler checking, such as verifying that the type of the argument of
emptyltems[i].setQty(1) is an integer.
[0033] For instance, a user might receive a number of purchase orders with high line
items that have erroneously set the line item with quantity 0. That user may wish to
manipulate these purchase orders, such that whenever somebody leaves a quantity field

set to 0, the system changes that quantity field to 1. A function can take a purchase order

-6-

WO 2004/068292 PCT/US2004/001827

XBean as input, and an XPath can be executed on the purchase order which looks for
any line item tags underneath the purchase order tag that have quantity equal to 0. This
is shown, for example, starting at line 5 in the Figure. A list of nodes can be returned to
the user that match the XPath. That list of nodes can be cast back to the XBean type that
the user knows it to be. The system selects a set of line items that can be cast to an array.
Once the results are obtained from XPath, it is possible to iterate through the results and
use an XBean method to manipulate the result nodes.

[0034] Strongly typed Java accessors may not be appropriate for all XML usage. In one
embodiment, XML types can extend a base XML-oriented XMLObject type that
provides, for example, XPath, XQuery, XMLCursor, and XMLReader. On line 5, the
XMLObject getAllValues method executes an XPath on the input to locate all line item
elements with qty=0. Onlines 6 and 7, it can be seen that the Lineltem types can be used
to update the XML data document. Each instance of the type refers to a specific node
in the document, and when methods such as setQty(1) are called, the data of the
document are being manipulated in an easy, type-safe way. On line 8, the type is
returned directly from the Web service to complete the function and send the response
message.

[0035] Systems and methods in accordance with embodiments of the present invention
can also deal with transformation among different XML types, where a user may need
to process an XBean to retrieve data. For example, it may be necessary to clean up the
line items by modifying the description and price to match the item ID. This can be done
in one examble by looking up each catalog item in an existing application database. This
work can be done using a Java lookup method that can take an integer item id and return
a Catalogltem type. For instance: |

Catalogltem findCatalogltem(int catalogID);

class Catalogltem

{
int getCatalogID();
String getDescription();
float getPrice();

}

This class appears to be similar to a Lineltem XML type, but has some relatively minor
differences. For instance, Catalogltem has no quantity and the item ID is called a

“catalogID” rather than an “itemID.” In fact, since Catalogltem is so similar to Lineltem,

7-

WO 2004/068292 PCT/US2004/001827

it may be desirable in some situations to write code such as that shown in Figure 6. In
the Figure the value of a complex XML type, Lineltems, is being set to a complex Java
type, Catalogltem. Each XML type has a set method that can take an arbitrary type, such
that the above code can compile and run. At runtime, however, the user can get an XML
conversion exception, complaining “No Transformation has been defined mapping from
Catalogltem to Lineltem”. In such case, the user can select the appropriate Catalogltem
type name and check the corresponding XML transformation. If a user has an existing
bean that looks up the title of an item and returns a Java type called ‘Catalogltem,’
Catalogltem will have a CatalogID description that looks like the line items, but is
slightly different than the prior example. For example, there is no quantity field, and
what was previously called “ItemID” is now called CatalogID.

[0036] In systems and methods in accordance with embodiments of the present
invention, each XML transformation can be implemented using an XQuery stored in a
directory of transformations. Each XQuery can transform from one or more types, each
with a known XML schema, into a specific type. A visual XQuery editor can be used
that has input and output types pinned to the line-item type, as well as the default type
for Catalogltem. An XQuery editor can allow a system or user to connect itemID to
cataloglD, and to indicate that the quantity should be zero.

[0037] Anexample of a default type declaration for the Catalogltem class is shown in
Figure 7. It can be visually written by XQuery into a file in a directory that contains all
the transformations. An XQuery can be defined that tells the system how to transform
a catalog item into a regular line item. An example of such a query is shown in Figure
8. The bolded text in Figure 8 corresponds to an XQuery that maps catalogID into
itemld and sets the extra field qty to 0. The remainder is an envelope that holds the
XQuery in an XML file. This 0 value can be corrected, such as can be done in Java as
shown in Figure 9. On line 13 in Figure 9, exemplary code can be seen where the
catalog item is being sent into the items line. It can be desirable to take a catalog item
that a user is getting from an existing API and get that item into an XBean that will
represent a line item. Such code would not normally work, as the catalog item is
different from the line item.

[0038] An example of an XML transformation system is shown in Figure 10. In one
embodiment, a global registry of transformations(XQueries) 111 can be used to get from

one data type to another. Once a set of XQueries is obtained, the transformation system

-8-

WO 2004/068292 PCT/US2004/001827

110 can automatically look up whether a transformation exists from a source type 108
to a target type 109. In another embodiment, a library of transformations 112 can still
be used, but instead of automatically transforming from a source type to a destination
type, each transformation will be given a name. When a catalog item is given and a
regular line item needs to be set, for example, the user can simply invoke the
transformation by name before the set is called. In Figure 9 where lines 13 and 14 are
in bold type, there will be a function call between the ‘set’ and ‘findCatalogltems’ that
tells the system to transform the catalog item to a line item. One reason to make this
transformation explicit is that an invisible registry of transformations can be too abstract
and “under the covers” for many users. If a user has data transformed, that user may
want to actually see the name of the transformation in the code. If a user can see the
name, it is possible for the user to navigate through the code to determine what the
transformation does and how it affects the data. This can act as a check so the user can
be sure that the transformation is understood, whether the code belongs to the user or
someone else.

[0039] An alternative way to ensure that the quantity is correct is to define the
Catalogltem through a line-item transformation to take two input arguments, such as a
Catalogltem and an integer quantity. From this example, it can be seen that there is a
global registry of transformations, indicating source types and target types. Sources and
targets are allowed to be Java types. Whenever an automatic translation between two
different types is required, the registry can be consulted. A registry can be used that
allows a single Java type to map to any number of different XML types, depending on
the situation. A registry can also have the advantage that every mapping between any
two given types need only be defined once, and then it is easily reusable.

[0040] Incertain systems, difficulties may arise such that multiple versions ofa schema
may need to be dealt with at the same time in a single program. For this reason, there can
be a provision for tagging each schema with a version identifier. The relevant Java types
and transformations can all be done separately, treating each version as its own type
system.

[0041] In yet another example, a user may wish to write a Web service that takes a
catalog item as input, or to expose an existing Java function such as “findCatalogltem”
as a Web service. For example, the following code could be written to expose

findCatalogltem as a Web service in existing systems:

9.

WO 2004/068292 PCT/US2004/001827

class MyWebService

/** @jws:operation */
Catalogltem findCatalogltem(int catalogID)

{
return MyDbUtilities.findCatalogltem(catalogID);

}
}

[0042] Such an approach may be acceptable where a user is defining the proper WSDL
type for that user’s Web service. Unforfunately, the situation may be such that there is
an existing XML schema describing the desired result type. For example, the results may
be returned as a standard purchase order line-item element as in the examples above. In
such case, the actual WSDL may not conform to the existing XML schema. An attempt
can be made to create the proper schema using XML transformation, but other than
providing a convenient syntax, existing systems provide no assistance in ensuring that
the map conforms to the schema. Using a transformation registry in accordance with
various embodiments of the present invention, however, it can be easy to ensure that the
return result conforms to the proper type.

[0043] For example, the code could be modified as follows:

class MyWebService
{

/ ek
* @jws:operation
* @jws:return-schema type="po:line-item"
*/

Catalogltem findCatalogltem(int catalogID)

return MyDbUTtilities.findCatalogltem(catalogID);

}
}

The code above requires that there be a defined XML transformation that maps the
Catalogltem type to the type of the po:line-item element. If there is none, the IDE will
signal an error on the return-schema annotation. However, if there is a defined
transformation, the return type of the Web service method can conform to the requested
schema and the necessary schema can be included in the emitted WSDL.

[0044] In the example, such as can be seen in the line including “return-schema
type=po:line-item,” the system allows a user to return a catalog item, but have the line
item in the XML. The system can go to a registry of XQueries and execute the

instructions using an explicit XQuery. This embodiment provides for the association of

-10-

WO 2004/068292 PCT/US2004/001827

an XQuery with an XML Map, the support of every schema, and a way to get
simultaneous access to both the strongly-typed view and the XML view of the data.
[0045] As Shown in Figure 11, when systems and methods in accordance with one
embodiment load a piece of XML as an XML type 114, that XML type can be loaded
into a lightweight internal XML store 115. This is similar to what can be done with the
W3C Document Object Model (DOM), but is done in a more lightweight way, which
can have complete fidelity to the original XML. The store is lightweight, since it only
retains the XML data 113 either as a searchable index, or as in the current example, at
approximately the text or tag level. Therefore, when a user has an XML type such as a
purchase order, the user can simply have a handle to a location of one of these
lightweight XML stores, which can resemble XML trees. When the user obtains the
reference, there may not yet have been any marshaling. A getter can be called when a
user calls a method such as “getLineltem,” “getLineltem.getDesc,” or “getQty,” the
getter being used to marshal, determine the type, and return the answer. This approach
can be very time efficient, as only a portion of the data is being processed.

[0046] Systems and methods in accordance with some embodiments can keep an XML
schema and a corresponding Java type in sync. A user with a strongly-typed Java can
begin to add new line items or to change quantities, for example. If that user then wants
to run an XPath path on the Java type, the Xpath may need to be run on the XML data
document in the current form of the data. In this case, if a user makes a modification to
a document, either on the XML side or on the strongly-typed Java side, the appropriate
portion of the other side can be invalidated. When a user subsequently looks at that other
side, the previously-invalidated information can be faulted in.

[0047] In order to compile an XML schema, it can be necessary to parse the schema,
or XSD file, which is referred to as “schema for schema”, In other words, an XSD file
that represents the appropriate schema for the XSD files themselves. If a system is
supposed to be able to handle 100% of the schema passed to the system, and the system
generates convenient Java accessibility, it can be expected that the system uses its own
generated types for understanding XSD files when the system reads schema. A user
should be able to take the schema for schema and compile that into Java, such that the
system can simply use the Java.

[0048] Systems and methods in accordance with some embodiments, as shown in

Figure 12, there can be at least two parts to any piece of data, or XML data, including

-11-

WO 2004/068292 PCT/US2004/001827

the legal type of the data 116 and the meaning of the raw data 119. The legal type of the
data defines what kind of data is regarded as valid for the current application. A schema
can contain very specific details regarding the legal types of data, and can in some
instances contain some detail regarding the meaning of the data. Once the legal type of
the data is known, it is possible to generate an automatic type that provides access to that
data in a strongly-typed way. This is possible in part because the schema can identify
all the valid sub-fields of a given data field. It is then possible to grant a user strongly-
typed Java access in the appropriate place(s). Even after a user has loaded the data and
has the data in the appropriate type, the user may still not know what the data means. In
such case, a schema compiler 117 can be used that understands the raw data. This is
somewhat similar to what are known as compiler compilers, such as YACC (“Yet
Another Compiler Compiler”), which are capable of taking an abstract grammar and
compiling the abstract grammar into a syntax tree. Since XML is already a syntax tree,
this is not a problem. XML is not, however, a constrained syntax tree. Any node can
have a variety of elements beneath it in the tree. Once a user has a schema, which can
be thought of as a grammar for XML, the user knows exactly what is supposed to be
underneath any given node. Therefore, instead of using just a raw XML syntax tree, a
user can take advantage of a schema-constrained syntax tree.

[0049] Systems and methods in accordance with one embodiment of the invention
maintain each schema as a Java type, including simple types. If a user has a schema that
is a restriction of a simple type, it can be indicated in the schema. For instance, if a user-
defined type to be an integer of a legal type, it has to be a five digit number between
10,000 - 99,000. It is not necessarily desirable to define this to be a simple integer type
as in existing systems. Instead, the information can be generated into a Java type. The
name of the Java type can then be generated from the schema, such as the name
“restricted integer.”

[0050] Another invariant that can be maintained by systems and methods in accordance
with the present invention arises in cases where there are at least two types in a schema
that are base types. If one of the types is a base type of the other, that relationship will
connect the two types in Java. A high-fidelity translation of typed systems can allow
base types to be preserved.

[0051] A validation engine using complied XML type constraints 118 can also be used

to allow a user to determine whether any relevant XML type 120 is valid according to

-12-

WO 2004/068292 PCT/US2004/001827

the XML. For example, in XML a purchase order line item might have a description
quantity, catalog number, and a price. There may also be a restriction in the appropriate
XML schema that indicates ‘description’ is optional, but ‘catalogltemNumber’ is not
optional. In Java, there is no way of indicating that a field is not optional, or cannot be
null. As such, most people who do marshaling are not able to validate a bean. Validate
methods in accordance with embodiments of the present invention can be used that
allow a use to validate any bean against the XML type constraints, and to be informed
of any validity problems.
[0052] In systems and methods in accordance with some embodiments, an XML type
can be shared among multiple Java components. An XBean can be automatically
emitted, such as where an automatically generated XML type is defined for a user-
defined component works. In such a case, XBeans representing parameters and return
values can be auto-generated as inner classes to an XML control interface generated for
the component. If the message types are actually shared across many components, it may
not make sense to have private XBean types for each instance of the message. In such
case, it should be possible to refer to an XBean type explicitly when defining a user-
defined component, in order to explicitly control how the XML type of the component
is shaped. For example:

package mypackage;

/**

:/@jws:xml—interface enable="true"

class MyComponent

{

/**
* @jws:operation
* parameter-xml-type="MyData"
* return-xml-type="MyStringMessage"
*/
String myOperation(String a, int i) { return a +1i; }
}
By referencing the XBean type "MyData" in the component, such as for parameter-xml,
it can be asserted that the bean has getters that correspond to the argument names. For
example, getA should return a String, and getl should return an int. If these types do not
line up, it may result in a compile-time error. For return-xml, it can be asserted that the
bean type is the return value, or that it has a single property whose type matches the

return value. By referencing the XML type, the XML schema is being referenced that

-13-

WO 2004/068292 PCT/US2004/001827

defines the type of input and output messages to this method. The schemas can be
reusable since they have names such as "MyData". A map is also being referenced
between the XML and the Java types. The map can be attached to the MyData type as
metadata and, since it is attached to a named type, the map can be reusable.
[0053] A generated XML control interface that can be obtained when specifying
explicit XBeans on the component can be as follows:

package mypackage;

interface MyComponentXMI Control
{

/ * %
* @jws:return-xml xml-type="MyStringResult"
* @jws:parameter-xml xml-type="MyData"
*/
XML myOperation(XML x);
}

In this example, the named XBean types are used to specify the xml schemas allowed,
and there are no generated inner classes.

[0054] An XBean type can extend a base XML type, such that wherever XML can be
passed, an XBean can be passed as well. In addition, any XBean can be attached to an
XML data document, so wherever XML is available, an XBean can be created for
convenient access to the data. In systems and methods in accordance with some
embodiments, XBeans can be created easily and used in several different ways. For
instance, an XBean can be created implicitly via the definition of a TWS (Java Web
services) method. An XBean can be created based on a parameter list of the function and
the maps associated with the function. Also, an XBean can be created explicitly using
a * xbean file. A * xbean file can have at least two different implementations, such as
JavaBean+Maps or XML+Query, each of which can freely use annotations. An example

of implicitly creating a bean over a JWS operation might look like the following:
/**
* @jws:operation
* @jws:usebean beanName::creditCardInfo::

**/

updateCreditCardInfo(String custld, String ccNumber, Date expDate, Address addr)
This would implicitly create an XBean using the default maps for the operation.
Applying a specific map to the operation would create the XBean using those maps for
input and output. If the beanName is already defined, the existing bean can be used. A

separate syntax can be used when creating a bean, instead of using an existing syntax.

-14-

WO 2004/068292 PCT/US2004/001827

[0055] A simple JavaBean+Maps *.xbean file might look like the following:

public interface xbeanl

{

/**

* @xbean:property

**/

String name;
/**

* @xbean:property

* ok /
String address;
}
This would create a file with public get and set methods, as well as the standard XML
that would be defined for this set of properties. A slightly more complex file would have
a map attached, such as:

public interface xbeanl extends JavaXBean

{

/**
* @jws:inputxml xml-map::

* <PERSON><NAME>{name}</NAME><ADDRESS>{address}</ADDRESS>::
E2 S /

/**

* @xbean:property

**/

String name;
/**

* @xbean:property
* */

String address;
The above examples use individual Java members as native storage. Equally important
can be the use of XML as a native storage. On the opposite side, a simple file could use

XQuery to return values. This might look as follows:
public interface xbean] extends XMLXBean

{
private XML xml;
void xbeanl (XML xmlParam)
{
xml = xmlParam;
}
/ ok
* @jws:xquery statement :: $xml/name/text() ::
& %k /
String getName();

-15-

WO 2004/068292 PCT/US2004/001827

[0056] In systems and methods in accordance with some embodiments, there can be
two XML types: movable cursors and immovable values from a developer’s point of
view. As cursors are moved, the part of the XML data document viewed by it can
change, so the types can be designed to operate anywhere within an XML data
document. On the other hand, immovable values can be fixed in one place, so they can
have strongly-typed methods that match the XML schema of the part of the data
document that they reference. Figure 13 shows an example of such an implementation,
wherein XMLIndex 121 represents immovable value while XMLCursor 122 or 123
represents movable cursor of the underlying XML data. The actual implementation of
a strong XML type may not use an XMLCursor, but it should be noted that the purchase
order interface 124 provides the same kind of reference into underlying XMLIndex ,
even though it is immobile.

[0057] Although a user can use and manipulate a strongly type such as PurchaseOrder
as if it were an ordinary Java type, behind the type can be an implementation that
directly accesses and manipulates the underlying XML data. For example, immediately
after a value is set in a strongly type, the same value can be available from any cursor
that uses XPath to search the same set of data.

[0058] The model shown in Figure 13 can be useful when an XML data document is
being held, queried, manipulated, and reused. At other times, it can be necessary to
stream XML for one-time-use without ever holding on to the data document. For those
situations there can be an XMLReader class such as an XML pull parser. Each XML
Value object can stream itself out by supplying an XMLReader. There can also be an
XMLIndex constructor that loads and indexes the contents of an XmIReader.

[0059] Figure 14 shows an exemplary class hierarchy diagram for an XML type APIL.
In the Figure, the rounded boxes designate interfaces while the squared boxes designate
concrete classes. A user starting from a file or a raw input stream can parse the XML
using an XML Parser, then index the parsed file using an XML Index. These are the
only two concrete classes shown, and these classes are factories for XML types that
implement all the other interfaces.

[0060] XML types can add the schema to the Java runtime model. For example, every
schema can compile into a Java type at compile time. This can include both complex

types and simple types. Precompiled types such as XmlString and XmlIDate can be used

-16-

WO 2004/068292 PCT/US2004/001827

for the fundamental and simple types built-in to XML Schema. XMLObject itself can
correspond to the xsd:anyType. In addition, for each schema, a pointer resource can be
generated into the target class hierarchy that provides a map from all schemas with a
given name into corresponding java type names.

[0061] Multiple schemas can be allowed to have the same XML name, but different
types with the same name may be tagged with different “XML world” names. Only one
world may be allowed to be the default world. One way to control type generation is
through an .xval file adjacent to the .xsd file at compile time. At runtime, indexed XML
can be automatically schema-aware. The visibility of schemas can be tied to the current
ClassLoader. A thread-local index of visible schemas can be maintained. When a new
schema 1is requested via fully-qualified XML name, a
ClassLoader.getResourceAsStream call can be used to locate a pointer to the
corresponding Java type, such as in the default world. Lookups in a specific world can
also be done. An implementation of XMLIndex can automatically resolve all XML to
types using such a scheme. If no “xml world” is specified, a default world can be used.
Other alternate views can also be specified that allow different versions of schemas to
be used.

[0062] One embodiment may be implemented using a conventional general purpose or
a specialized digital computer or microprocessor(s) programmed according to the
teachings of the present disclosure, as will be apparent to those skilled in the computer
art. Appropriate software coding can readily be prepared by skilled programmers based
on the teachings of the present disclosure, as will be apparent to those skilled in the
software art. The invention may also be implemented by the preparation of integrated
circuits or by interconnecting an appropriate network of conventional component
circuits, as will be readily apparent to those skilled in the art.

[0063] One embodiment includes a computer program product which is a storage
medium (media) having instructions stored thereon/in which can be used to program a
computer to perform any of the features presented herein. The storage medium can
include, but is not limited to, any type of disk including floppy disks, optical discs,
DVD, CD-ROMs, micro drive, and magneto-optical disks, ROMs, RAMs, EPROMs,
EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards,

17-

WO 2004/068292 PCT/US2004/001827

nanosystems (including molecular memory ICs), or any type of media or device suitable
for storing instructions and/or data.
[0064] Stored on any one of the computer readable medium (media), the present
invention includes software for controlling both the hardware of the general
purpose/specialized computer or microprocessor, and for enabling the computer or
microprocessor to interact with a human user or other mechanism utilizing the results
of the present invention. Such software may include, but is not limited to, device drivers,
operating systems, execution environments/containers, and applications.
[0065] The foregoing description of the preferred embodiments of the present invention
has been provided for the purposes of illustration and description. It is not intended to
be exhaustive or to limit the invention to the precise forms disclosed. Many
modifications and variations will be apparent to the practitioner skilled in the art.
Particularly, while the concept “type” is used for both XML and Java in the
embodiments of the systems and methods described above, it will be evident that such
concept can be interchangeably used with equivalent concepts such as, interface, shape,
class, object, bean, and other suitable concepts. Embodiments were chosen and
described in order to best describe the principles of the invention and its practical
~ application, thereby enabling others skilled in the art to understand the invention, the
various embodiments and with various modifications that are suited to the particular use
contemplated. It is intended that the scope of the invention be defined by the following

claims and their equivalents.

-18-

WO 2004/068292 PCT/US2004/001827

CLAIMS
What is claimed is:
1. A system to marshal and unmarshal data between XML and Java, comprising:
an XML data;
an XML schema which defines the XML data;
an XML type which is a Java type capable of accessing the XML data
within Java; and

acompiler capable of generating the XML type from the XML schema.

2. The system according to claim 1, wherein:
the compiler is capable of generating the XML type based on the

definition of a Java web services method.

3. The system according to claim 1, wherein:
the compiler is capable of generating the XML type based on a

definition file.

4, The system according to claim 1, wherein:
the compiler is capable of compiling a Java project into one or more

regular Java types.

5. The system according to claim 1, wherein:
the XML type can be a movable cursor, capable of reading anywhere
within the XML data.

6. The system according to claim 1, wherein:
the XML type can be a immovable value, capable of referencing a fixed

part of the XML data.

7. The system according to claim 1, wherein:

the XML type can be shared among multiple Java components.

-19-

WO 2004/068292 PCT/US2004/001827

10.

11.

12.

13.

14.

type.

15.

The system according to claim 1, wherein:

the XML type is capable of updating the XML data within Java.

The system according to claim 1, wherein:
the XML type is capable of accessing and updating Java data using
Java type methods.

The system according to claim 1, wherein:

the XML type is capable of accessing and updating a database.

The system according to claim 1, wherein:
the XML type is capable of a number of XML data operations, which
include: querying XML data, transforming between XML types, and

iterating over XML data document.

The system according to claim 1, further comprising:
an XML schema capable of defining the legal types of the XML data,
which include constraints on data types and ranges of the data; and

constraints on the data types and ranges of the XML type.

The system according to claim 12, wherein:
the compiler is capable of generating constraints on the XML type from

the XML schema on legal types of the XML data.

The system according to claim 12, wherein:

the constraints on the XML type are capable of validating the XML

A system to transform types between XML and Java, comprising:
a Java type;
an XML type which is a Java type capable of accessing XML data

within Java; and

-20-

WO 2004/068292 PCT/US2004/001827

an XML transformation capable of transforming a source type to a
target type, wherein the source and target type can be either the XML
type or the Java type.

16. The system according to claim 15, further comprising:
a global registry of XML transformations capable of looking up an

existing XML transformation between a source and a target type.

17. The system according to claim 15, further comprising:
a library of XML transformations capable of looking up an existing

XML transformation by name between a source and a target type.

18. A system to marshal and unmarshal data between XML and Java, comprising:
an XML data;
a lightweight XML store capable of retaining the XML data as a
searchable index; and
an XML type which is a Java type capable of referencing the
. lightweight XML store and accessing the XML data within Java.

19. A system to marshal and unmarshal data between XML and Java, comprising:
an XML data;
a lightweight XML store capable of retaining the XML data at the text
or tag level; and
an XML type which is a Java type capable of referencing the
lightweight XML store and accessing the XML data within Java.

20. The system according to claim 19, wherein:
the lightweight XML store is capable of representing the retained XML

data as a hierarchical structure.

21. The system according to claim 20, wherein:

the hierarchical structure can be a iree.

21-

WO 2004/068292 PCT/US2004/001827

22, The system according to claim 19, wherein:
the XML type is capable of accessing the XML data incrementally.
23. A method to marshal and unmarshal data between XML and Java, comprising:
defining an XML data using an XML schema;
accessing the XML data via an XML type within Java; and
generating the XML type from the XML schema using a compiler.
24, The method according to claim 23, further comprising:
generating the XML type based on the definition of a Java web services
method.
25. The method according to claim 23, further comprising:
generating the XML type based on a definition file.
26. The method according to claim 23, further comprising:
compiling a Java project into one or more regular Java types.
27. The method according to claim 23, further comprising:
utilizing the XML type as a movable cursor to read anywhere within the
XML data.
28. The method according to claim 23, further comprising::
utilizing the XML type as a immovable value to reference a fixed part
of the XML data.
29. The method according to claim 23, further comprising:
sharing the XML type among multiple Java components.
30. The method according to claim 23, further comprising:

updating the XML data within Java via the XML type.

20

WO 2004/068292 PCT/US2004/001827

31.

32.

33.

34.

35.

36.

37.

The method according to claim 23, further comprising:

accessing and updating Java data using Java type methods.

The method according to claim 23, further comprising:

accessing and updating a database via the XML type.

The method according to claim 23, further comprising:
utilizing a number of XML data operations via the XML type, these
operations include: querying XML data, transforming between XML
types, and iterating over XML data document.

The method according to claim 23, further comprising:
defining the legal types of the XML data via an XML schema, which
include constraints on data types and ranges of the XML data.

The method according to claim 34, further comprising:
generating constraints on the data types and ranges of the XML type
from the XML schema on legal types of the XML data.

The method according to claim 34, further comprising:

validating the XML type using the constraints on the XML type.

A method to transform types between XML and Java, comprising:
utilizing a Java type;
utilizing an XML type which is a Java type capable of accessing an
XML data within Java; and
transforming a source type to a target type via an XML transformation,
wherein the source and target type can be either the XML type or the
Java type.

23.

WO 2004/068292 PCT/US2004/001827

38. The method according to claim 37, further comprising:
looking up an existing XML transformation between a source and a

target type via a global registry of XML transformations.

39. The method according to claim 37, further comprising:
looking up an existing XML transformation by name between a source

and a target type via a library of XML transformations.

40. A method to marshal and unmarshal data between XML and Java, comprising:

retaining an XML data as a searchable index via a lightweight XML

store; and
referencing the lightweight XML store and accessing the XML data via
the XML type within Java.

41. A method to marshal and unmarshal data between XML and Java, comprising:

retaining an XML data at the text or tag level via a lightweight XML
store; and

referencing the lightweight XML store and accessing the XML data via
the XML type within Java.

42. The method according to claim 41, further comprising:
. representing the retained XML data as a hierarchical structure, which

can be a tree.

43, The method according to claim 41, further comprising:
accessing the XML data incrementally via the XML type.

44, A machine readable medium having instructions stored thereon that when
executed by a processor cause a system to:
define an XML data using an XML schema;
access the XML data via an XML type within Java; and
generate the XML type from the XML schema using a compiler.

24-

WO 2004/068292 PCT/US2004/001827

45. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
generate the XML type based on the definition of a Java web services

method.

46. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:

generate the XML type based on a definition file.

47. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
compile a Java project into one or more regular Java types with the

compiler,

48. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
utilize the XML type as a movable cursor to read anywhere within the
XML data.

49, The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
utilize the XML type as a immovable value to reference a fixed part of
the XML data.

50. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:

share the XML type among multiple Java components.
51. The machine readable medium of claim 44, further comprising instructions that

when executed cause the system to:

update the XML data within Java via the XML type.

25-

WO 2004/068292 PCT/US2004/001827

52. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:

access and update Java data using regular Java type methods.

53. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:

access and update a database via the XML type.

54. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
utilize a number of XML data operations via the XML type, these
operations include: querying XML data, transforming between XML
types, and iterating over XML data document.

55. The machine readable medium of claim 44, further comprising instructions that
when executed cause the system to:
define the legal types of the XML data via an XML schema, which
include constraints on data types and ranges of the XML data.

56. The machine readable medium of claim 55, further comprising instructions that
when executed cause the system to:
generate constraints on the XML type from the XML schema on legal
types of the XML data.

57. The machine readable medium of claim 55, further comprising instructions that
when executed cause the system to:

validate the XML type using the constraints on the XML type.
58. A machine readable medium having instructions stored thereon that when

executed by a processor cause a system to:

utilize a Java type;

26-

WO 2004/068292 PCT/US2004/001827

utilize an XML type which is a Java type capable of accessing an XML
data within Java; and

transform a source type to a target type via an XML transformation,
wherein the source and target type can be either the XML type or the
Java type.

59. The machine readable medium of claim 58, further comprising instructions that
when executed cause the system to:
look up an existing XML transformation between a source and a target

type via a global registry of XML transformations.

60. The machine readable medium of claim 58, further comprising instructions that
when executed cause the system to:
look up an existing XML transformation by name between a source and

a target type via a library of XML transformations.

61. A machine readable medium having instructions stored thereon that when
executed by a processor cause a system to:
retain an XML data as a searchable index via a li ghtweight XML store;
and
reference the lightweight XML store and access the XML data via the
XML type within Java.

62. A machine readable medium having instructions stored thereon that when
executed by a processor cause a system to:

retain an XML data at the text or tag level via a lightweight XML store;

and
reference the lightweight XML store and access the XML data via the
XML type within Java.

63. The machine readable medium of claim 62, further comprising instructions that

when executed cause the system to:

27-

WO 2004/068292 PCT/US2004/001827

represent the retained XML data as a hierarchical structure, which can

be a tree.

64. The machine readable medium of claim 62, further comprising instructions that
when executed cause the system to:

access the XML data incrementally via the XML type.

65. A system to marshal and unmarshal data between XML and Java, comprising:
means for defining an XML data using an XML schema;
means for accessing the XML data via an XML type within Java; and
means for generating the XML type from the XML schema using a

compiler.
66. A computer data signal embodied in a transmission medium, comprising:

a code segment including instructions to define an XML data using an
XML schema;

a code segment including instructions to access the XML data via an
XML type within Java; and
a code segment including instructions to generate the XML type from

the XML schema using a compiler.

8-

WO 2004/068292 PCT/US2004/001827

1/9

<xsd:schema. . .>
<xsd:element name="purchase-order”>
<xsd:complexType>
<xsd:element name="line-item” maxOccurs=“unbounded”>
<xsd:complexType>
<xsd:element name="desc” type="xsd:string"/>
<xsd:element name="itemid” type="xsd:int"/>
<xsd:element name="price” type="xsd:float"/>
<xsd:element name="“qty” type="xsd:int"/>
</xsd:complexType>
</xsd:element>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 1

/**
/** @xbean:schema-type element="purchase-order” */
interface PurchaseOrder implements XmlObject
{
/**
* @xbean:schema-type element="line-item”
*
interface Lineltem implements XmIObject
{
String getDesc();
void setDesc(String desc);
int getltemid();
void setltemid(int itemid);
float getPrice();
void setPrice(float price);
int getQty();
void setQty(int qty);
}
Lineltem getLineltem(int index);
void setLineltem(int index, Lineltem lineltem);

int getLineltemCount();
void addLineltem(Lineltem lineltem);
void insertLineltem(int index, Lineltem lineltem);

Lineltem insertNewLineltem(int index);

void removeLineltem(int index);

Figure 3

WO 2004/068292

S

Update

2/9
Java
Project Compiler
101 100
I//
XML \\\ ')]
Schema N\ i
102 N
\\ !
\ 1
\ |
\\ I\
Vo Access/
Update
Define
XML \
Data ‘\‘
105 !
% N
AN : \\\
" XML / o

Figure 2

Access/

PCT/US2004/001827

-~

e ————— T

WO 2004/068292 PCT/US2004/001827

3/9

/**
* @xb:schema
* element: ,
<xsd:element name="myData">
<xsd:sequence>
<xsd:element name="a" type="xsd:string">
<xsd:element name="i" type="xsd:int">
</xsd:segence>
</xsd:element>

@xb:xml-map
map::
<myData>
<a>{aj
<i>{i}</i>
</myData>

%k A * F % %k * ok * ¥ % * F

y ..
class MyData implements XBean

{
String getA();
void setA(String a);

int getl();
void setl(int i);

Figure 4

I** @jws:operation */
PurchaseOrder fixQuantities(PurchaseOrder po)

Lineltem[] emptyltems;

items = (Lineltem[])po.getAllValues(".//line-item[qty=0]");

for (int i = 0; i < emptyltems.length; i++)
Emptyltemsli].setQty(1);

return po;

O©COONNDOL WN-
~—

}
Figure 5

WO 2004/068292 PCT/US2004/001827

4/9

1. /I** @jws:operation */
2 PurchaseOrder fleuantltxes(PurchaseOrder po)

34

4 Lineltem[] emptyltems;

5 items = (Lineltem[])po.getAllValues(".//line-item[qty=0]");
6 for (inti= 0; i < emptyltems.length; i++)

7 emptyltems]i].set(1);

8 items = (Lineltem[])po.getAliValues(".//line-item");

9 for (inti = 0; i < emptyltems.length; i++)

10 {

11 int itemid = emptyltems[i].getitemid();

12 emptyltemsli].set(findCatalogltem(emptyltems]i]));
13 }

14 return po;

15}

Figure 6

<xs:type name="Catalogltem">
<xs:complexType>
<xs:sequence>
<xs:element name="catalogID" type="xs:int"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="price" type="xs:float"/>
</xs:sequence>
</xs:complexType>
</xs:type>

Figure 7

WO 2004/068292

10
11
12
13
14
15

PCT/US2004/001827

5/9

<xt:transformation
xmins:dbtypes="java://dbtypes.mycompany.com/*
xmins:po="http://standards.org/po-152"
xmins:xsi="... more namespaces ...">
<xt:input>
<xt:argument name="input" type="dbtypes:CatalogID"/>
</xtiinput>
<xt:output type="po:Lineltem">
<xt:xquery><![CDATA[
<x:value xsi:type="po:Lineltem">
<pi:description>{$input/description}</pi:item-id>
<pi:itemid>{$input/cataloglD}</pi:item-id>
<pi:price>{$input/price}</pi:item-id>
<pi:qty>0</pi:qty>
</x:value>
JI></xt:xquery>
</xt:transformation>

Figure 8

for (int i = 0; i < emptyltems.length; i++)

int itemid = emptyltems]i].getltemid();
int rememberQty = emptyltems][l].getQty();
emptyltemsli].set(findCatalogltem(emptyltemsi]));
emptyltems]i].setQty(rememberQty);

}

Figure 9

WO 2004/068292 PCT/US2004/001827

6/9
Transform
Source Type Target Type
108 - Y > 100
XML Transformation
System
110
Look Up Look Up
Global Registry of Library of
Transformations Transformations

111 112

Figure 10

WO 2004/068292 PCT/US2004/001827

7/9
Tag 1
Sub Tag 1
Sub Tag 2
Tag 2
% Access XML Type
- < >
XML Data 114
) Update
. 113
Retain Reference
Lightweight Tag1 Tag2
XML Store
Sub Tag 1 Sub Tag 2
115
Figure 11
XML Schema: XML Type
trai
Legal Type Schema Compiler Constraints
116 117 118
Constrain l) l Validate
XML Schema:
Raw Data XML Type

Figure 12

WO 2004/068292

8/9

¢

PurchaseOrder

sor

Xmlindex
121

{strongly typed methods)

Figure 13

PCT/US2004/001827

WO 2004/068292 PCT/US2004/001827

9/9
XmiObject XmlReader
newXmlReader(} nestToken{)
suppartsX¥mlCursor() getText(int, int, char[l, int)
newXmiCursor() representative
methads shawn)

L

J L]
Universal ¥ml base class / Universal Xml streaming class

{far passing+storing) (for parsing+navigating)
XmlvalueObject XmlParser
schemaType() XmiParser{java.io.Reader)
find(xpath)
intvalue() implements implements
XmiObject XmlReader

J L
Node-aware logic view \Fast pull parser

LmlCursor
toPath{"xpath")

nextElement() implements
) ¥mlvalueObject,
¥miReader
Lightweight XML Stare Access
{Movable cursor)
PurchaseQrder Kmiindex
getLineltem(int} Xmilndex{XmlReader)
implements implements
¥mivalueObject rmivalueObject
Canvenient XML Data Access Fast xml store

{Immobile, strongly typed reference)

Figure 14

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

