PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : (11) International Publication Number: WO 00/33186
GOGF 9733 Al (43) International Publication Date: 8 June 2000 (08.06.00)
(21) International Application Number: PCT/US99/28822 | (81) Designated States: JP, KR, European patent (AT, BE, CH, CY,
DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 3 December 1999 (03.12.99) SE).
(30) Priority Data: Published
09/204,536 3 December 1998 (03.12.98) Us With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San amendments.
Antonio Road, M/S PALQ1-521, Palo Alto, CA 94303 (US).
(72) Inventor: TREMBLAY, Marc; 140 Hanna Way, Menlo Park,
CA 94025 (US).
(74) Agents: KOESTNER, Ken, J. et al; Skjerven, Morrill,
MacPherson, Franklin & Friel LLP, Suite 700, 25 Metro
Drive, San Jose, CA 95110 (US).
(54) Title: VARIABLE ISSUE-WIDTH VLIW PROCESSOR
(57) Abstract
110 112
A processor has a flexible architecture
that efficiently handles computing applications P C1 MpPU1 P C.'E' MPU2
having a range of instruction-level parallelism 210 210
from a very low degree to a very high degree
of instruction—level parallelism. The processor Instruction Cache Instruction Cache
includes a plurality of processing units, an indi-
vidual processing unit of the plurality of pro- ! 212 l 7,212
cessing units including a multiple—instruction L Instruction Aligner I [Instruction Aligner l
parallel execution path. For computing applica-
tions having a low degree of instruction-level l L214 l £214
parallelism, the processor includes control logic Instruction Buffer Instruction Buffer I
that controls the plurality of processing units 296~ %))) 226~% ¥) xS
to execute instructions mutually independently PCU I‘_ PCU
in a plurality of independent execution threads. .
For computing applications having a high de- i/‘ 220 t t/‘ 220 t T/’ 220 t tl’ 220 i
gree of instruction-level parallelism, the pro- IMFU3| IMFU2| Wf:wl I GFUl- pWFU.?, MFU2 IMFU1I GFU
cessor further includes control logic that con- 7 7
trols the plurality of processing units with a 216'\¢ 22]0 t . t 2212 t 276'\¢ 22:0 : i 22,2
low thread synchronization to operate in com- ! Registe;r Files | I IV ! Registe;r files ! '
bination using spatial software pipelining in the - y y y
manner of agsinpgle widwissueppl;ocessci. The 2187 ~224 -224 f 224 o 218y 22 \'224¢ “224 “o24
control logic in the processor alternatively con- l Load/Store Unit]4- [Load/Store Unit |<-
trols the plurality of processing units to operate:

(1) in a multiple—thread operation on the basis

i {

of a highly parallel structure including multi- l
ple independent parallel execution paths for ex-

Shared Data Cache and Synchronization Area]

ecuting in parallel across threads and a multi-
ple—instruction parallel pathway within a thread,

and (2) in a single—thread wide-issue operation on the basis of the highly parallel structure including multiple parallel execution paths with
low level synchronization for executing the single wide—issue thread. The multiple independent parallel execution paths include functional
units that execute an instruction set including special data-handling instructions that are advantageous in a multiple-thread environment.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CcM
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES

FI

FR
GA
GB
GE
GH
GN
GR
HU
IE

KR
Kz
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
UG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 00/33186 PCT/US99/28822
-1-
VARIABLE ISSUE-WIDTH VLIW PROCESSOR

TECHNICAL FIELD

The present invention relates to processors. More specifically, the present invention relates to

architectures for Very Long Instruction Word (VLIW) processors.

BACKGROUND ART

One technique for improving the performance of processors is parallel execution of multiple instructions
to allow the instruction execution rate to exceed the clock rate. Various types of parallel processors have been
developed including Very Long Instruction Word (VLIW) processors that use multiple, independent functional
units to execute multiple instructions in parallel. VLIW processors package multiple operations into one very
long instruction, the multiple operations being determined by sub-instructions that are applied to the independent
functional units. An instruction has a set of fields corresponding to each functional unit. Typical bit lengths of a
subinstruction commonly range from 16 to 24 bits per functional unit to produce an instruction length often in a

range from 112 to 168 bits.

The multiple functional units are kept busy by maintaining a code sequence with sufficient operations to
keep instructions scheduled. A VLIW processor often uses a technique called trace scheduling to maintain
scheduling efficiency by unrolling loops and scheduling code across basic function blocks. Trace scheduling

also improves efficiency by allowing instructions to move across branch points.

Limitations of VLIW processing inciude limited parallelism, limited hardware resources, and a vast
increase in code size. A limited amount of parallelism is available in instruction sequences. Unless loops are
unrolled a very large number of times, insufficient operations are available to fill the instruction capacity of the
functional units. The operational capacity of a VLIW processor is not determined by the number of functional
units alone. The capacity also depends on the depth of the operational pipeline of the operational units. Several
operational units such as the memory, branching controller, and floating point functional units, are pipelined and
perform a much larger number of operations than can be executed in parallel. For example, a floating point
pipeline with a depth of eight steps has two operations issued on a clock cycle that cannot depend on any of the
operations already within the floating point pipeline. Accordingly, the actual number of independent operations
is approximately equal to the average pipeline depth times the number of execution units. Consequently, the
number of operations needed to maintain a maximum efficiency of operation for a VLIW processor with four

functional units is twelve to sixteen.

Limited hardware resources are a problem, not only because of duplication of functional units but more
importantly due to a large increase in memory and register file bandwidth. A largé number of read and write

ports are necessary for accessing the register file, imposing a bandwidth that is difficult to support without a large

10

15

20

25

30

WO 00/33186 . PCT/US99/28822

-0

cost in the size of the register file and degradation in clock speed. As the number of ports increases, the
complexity of the memory system further increases. To allow multiple memory accesses in parallel, the memory
is divided into multiple banks having different addresses to reduce the likelihood that multiple operations in a
single instruction have conflicting accesses that cause the processor to stall since synchrony must be maintained

between the functional units.

Code size is a problem for several reasons. The generation of sufficient operations in a nonbranching
code fragment requires substantial unrolling of loops, increasing the code size. Also, instructions that are not full
include unused subinstructions that waste code space, increasing code size. Furthermore, the increase in the size
of storages such as the register file increase the number of bits in the instruction for addressing registers in the

register file.

A challenge in the design of VLIW processors is effective exploitation of instruction-level parallelism.
Highly parallel computing applications that have few data dependencies and few branches are executed most
efficiently using a wide VLIW processor with a greater number of subinstructions in a VLIW group. However
many computing applications are not highly parallel and include branches or data dependencies that waste space
in instruction memory and cause stalling. Referring to FIGURE 1A, a graph jllustrates a comparison of
instruction issue efficiency and processor size for typical computing applications having generally average
instruction-level parallelism as VLIW group width is varied. The left axis of the graph relates to an instruction-
level parallelism plot 10 that depicts the number of instructions executed per cycle against VLIW issue width.
The right axis of the graph relates to a relative processor size plot 12 that shows relative processor size in relation

to VLIW issue width.

The graphs shown in FIGURE 1A illustrate that larger VLIW issue widths disadvantageously achieve
little improvement in execution efficiency at a great cost in circuit area for a typical range of computing
applications having an average level of instruction-level parallelism. However, some computing applications, for
example graphics and video applications, inherently have a high level of instruction-level parallelism. Referring
to FIGURE 1B, a second set of graphs shows the efficiency characteristics of a computing application that has a
high degree of instruction-level parallelism. Such a computing application may operate on multiple channels of
graphic data where the data in multiple channels are mutually independent so that no data dependencies arise. In
applications having an inherent high instruction-level parallelism, a wide VLIW issue size is justified and results

in highly efficient performance.

What is needed is a processor architecture that supports efficient handling of computing applications

having a wide range of instruction-level parallelism.

10

15

20

25

30

WO 00/33186 : PCT/US99/28822

DISCLOSURE OF INVENTION

A processor has a flexible architecture that efficiently handles computing applications having a range of
instruction-level parallelism from a very low degree to a very high degree of instruction-level parallelism. The
processor includes a plurality of processing units, an individual processing unit of the plurality of processing
units including a multiple-instruction parallel execution path. For computing applications having a low degree of
instruction-level parallelism, the processor includes control logic that controls the plurality of processing units to
execute instructions mutually independently in a plurality of independent execution threads. For computing
applications having a high degree of instruction-level parallelism, the processor further includes contro! logic that
controls the plurality of processing units to operate in éombination using spatial software pipelining in the

manner of a single wide-issue processor.

The control logic in the processor alternatively controls the plurality of processing units to operate: (1)
in a multiple-thread operation on the basis of a highly parallel structure including multiple independent parallel
execution paths for executing in parallel across threads and a multiple-instruction parallel pathway within a
thread, and (2) in a single-thread wide-issue operation on the basis of the highly parallel structure including
multiple parallel execution paths for executing the single wide-issue thread. The multiple independent parallel
execution paths include functional units that execute an instruction set including special data-handling

instructions that are advantageous in a multiple-thread environment.

In an illustrative embodiment, a Very Long Instruction Word (VLIW) processor includes a plurality of
independent processors on a single integrated circuit chip and a control logic that controls an execution
environment in which multiple independent execution threads execute simultaneously. For instructions having a
low level of instruction-level parallelism, the control logic operates the plurality of independent processors to
execute a corresponding plurality of execution threads in parallel. The plurality of execution threads are
variously controlled to operate independently or in combination. The control logic thus supports operation of the
plurality of execution threads in the same application, in different applications, in the operating system, in the

runtime environment (for example, garbage collection), and the like.

For applications with a high level of instruction-level parallelism, the VLIW processor executes a
plurality of instructions in parallel on the plurality of independent processors using low thread synchronization
overhead to operate with the same level of performance as an increased width VLIW processor. For example, in
an illustrative embodiment, a VLIW processor includes two independent four-wide VLIW processors to
selectively operate either as an eight-wide VLIW processor or two independent four-wide VLIW processors that
mutually execute separate threads. Each of the independent processors includes a very rich set of functional units
to form, in combination, a highly powerful processor, without the complexity of implementing the extensive

control circuitry and connections of an eight-wide VLIW processor.

10

15

20

25

30

WO 00/33186 _ PCT/US99/28822

-4-

A processor has an improved architecture for applications having a wide range of parallelism through
the usage of a highly parallel structure including multiple independent parallel execution paths for executing in
parallel across threads and a multiple-instruction parallel pathway within a thread. The processor includes
interconnections between the multiple independent parallel execution paths to selectively operate the multiple
independent parallel execution paths either in coordination as a combined-width VLIW processor with
subinstructions in the multiple independent parallel execution paths extending across the execution paths, or
independently as a plurality of threads. The multiple independent parallel execution paths include functional
units that execute an instruction set including special data-handling instructions that are advantageous in a

multiple-thread environment.

In accordance with one embodiment of the present invention, a general-purpose processor includes two
independent processor elements in a single integrated circuit die. The dual independent processor elements
advantageously execute selectively in multiple modes including a multiple-threaded mode in which two
independent threads concurrently execute during multiple-threading operation, and a single-thread mode in
which a single VLIW instruction word is executed across all of the functional units in the two independent

processor elements. The instructions in an instruction group execute on separate functional units.

In the independent operating mode, the two threads execute independently on the respective VLIW
processor elements, each of which includes a plurality of powerful functional units that execute in parallel. In the
illustrative embodiment, the VLIW processor elements have four functional units including three media
functional units and one general functional unit. In the single-thread mode, the VLIW processor elements execute
in combination on eight functional units including six media functional units and two general functional units.
All of the illustrative media functional units include an instruction that executes both a multiply and an add in a

single cycle, either floating point or fixed point.

BRIEF DESCRIPTION OF DRAWINGS

The features of the described embodiments are specifically set forth in the appended claims. However,
embodiments of the invention relating to both structure and method of operation, may best be understood by

referring to the following description and accompanying drawings.

FIGUREs 1A and 1B are graphs that illustrate a comparison of instruction issue efficiency and
processor size as VLIW group width is varied for applications having an average level of instruction-level

parallelism and for applications having a high degree of instruction-level parallelism, respectively.

FIGURE 2 is a schematic block diagram illustrating a single integrated circuit chip implementation of a

processor in accordance with an embodiment of the present invention.

FIGURE 3 is a schematic block diagram showing the core of the processor.

10

15

20

25

WO 00/33186 PCT/US99/28822

-5-

FIGURE 4 is a schematic block diagram that illustrates an embodiment of the split register file that is

suitable for usage in the processor.

FIGURES 5A and 5B are schematic block diagrams showing respectively (a) a logical view of the
register file and functional units in the processor, and (b) a combination of two groups of register files and

functional units to form an 8-wide VLIW processor.

FIGURE 6 is a pictorial schematic diagram depicting an example of instruction execution among a

plurality of media functional units.
FIGURE 7 is a schematic timing diagram that illustrates timing of the processor pipeline.

FIGURESs 8A-8C are respectively, a schematic block diagram showing an embodiment of a general
functional unit, a simplified schematic timing diagram showing timing of a general functional unit pipeline, and a

bypass diagram showing possible bypasses for the general functional unit.

FIGURE 9 is a simplified schematic timing diagram illustrating timing of media functional unit

pipelines.

FIGUREs 10A-10C respectively show an instruction sequence table, and two pipeline diagrams
illustrating execution of a VLIW group which shows stall operation for a five-cycle pair instruction and a seven-

cycle pair instruction.
FIGUREs 11A-11C are pipeline diagrams illustrating synchronization of pair instructions in a group.

FIGUREs 12A, 12B, 12C, and 12D are respective schematic block diagrams illustrating the pipeline
control unit segments allocated to all of the functional units GFU, MFU1, MFU2, and MFU3.

FIGURE 13 is a schematic block diagram that illustrates a load annex block within the pipeline control

unit.

The use of the same reference symbols in different drawings indicates similar or identical items.

MODES FOR CARRYING OUT THE INVENTION

Referring to FIGURE 2, a schematic block diagram illustrates a processor 100 having an improved
architecture for multiple-thread operation on the basis of a highly parallel structure including multiple
independent parallel execution paths, shown herein as two media processing units 110 and 112. The execution
paths execute in parallel across threads and include a multiple-instruction parallel pathway within a thread. The

multiple independent parallel execution paths include functional units executing an instruction set having special

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-6-

data-handling instructions that are advantageous in a multiple-thread environment.

The multiple-threading architecture of the processor 100 is advantageous for usage in executing
multiple-threaded applications using a language such as the Java'™ language running under a multiple-threaded
operating system on a multiple-threaded Java Virtual Machine™. The illustrative processor 100 includes two
independent processor elements, the media processing units 110 and 112, forming two independent parallel
execution paths. A language that supports multiple threads, such as the Java™ programming language generates
two threads that respectively execute in the two parallel execution paths with very little overhead incurred. The
special instructions executed by the multiple-threaded processor include instructions for accessing arrays, and
instructions that support garbage collection. (JavaTM, Sun, Sun Microsystems and the Sun Logo are trademarks
or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC
trademarks, including UltraSPARC I and UltraSPARC 1J, are used under license and are trademarks of SPARC
International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon

an architecture developed by Sun Microsystems, Inc.)

A single integrated circuit chip implementation of a processor 100 includes a memory interface 102, a
geometry decompressor 104, the two media processing units 110 and 112, a shared data cache 106, and several
interface controllers. The interface controllers support an interactive graphics environment with real-time
constraints by integrating fundamental components of memory, graphics, and input/output bridge functionality
on a single die. The components are mutually linked and closely linked to the processor core with high
bandwidth, low-latency communication channels to manage multiple high-bandwidth data streams efficiently and
with a low response time. The interface controllers include a an UltraPort Architecture interconnect (UPA)
controller 116 and a peripheral component interconnect (PCI) controller 120. The illustrative memory interface
102 is a direct Rambus dynamic RAM (DRDRAM) controller. The shared data cache 106 is a dual-ported
storage that is shared among the media processing units 110 and 112 with one port allocated to each media
processing unit. The data cache 106 is four-way set associative, follows a write-back protocol, and supports hits
in the fill buffer (not shown). The data cache 106 allows fast data sharing and eliminates the need for a complex,

error-prone cache coherency protocol between the media processing units 110 and 112.

The UPA controller 116 is a custom interface that attains a suitable balance between high-performance
computational and graphic subsystems. The UPA is a cache-coherent, processor-memory interconnect. The
UPA attains several advantageous characteristics including a scaleable bandwidth through support of multiple
bused interconnects for data and addresses, packets that are switched for improved bus utilization, higher
bandwidth, and precise interrupt processing. The UPA performs low latency memory accesses with high
throughput paths to memory. The UPA includes a buffered cross-bar memory interface for increased bandwidth
and improved scaleability. The UPA supports high-performance graphics with two-cycle single-word writes on

the 64-bit UPA interconnect. The UPA interconnect architecture utilizes point-to-point packet switched

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-7-

messages from a centralized system controller to maintain cache coherence. Packet switching improves bus

bandwidth utilization by removing the latencies commonly associated with transaction-based designs.

The PCI controller 120 is used as the primary system 1/O interface for connecting standard, high-
volume, low-cost peripheral devices, although other standard interfaces may also be used. The PCI bus
effectively transfers data among high bandwidth peripherals and low bandwidth peripherals, such as CD-ROM

players, DVD players, and digital cameras.

Two media processing units 110 and 112 are included in a single integrated circuit chip to support an
execution environment exploiting thread level parallclism in which two independent threads can execute
simultaneously. The threads may arise from any sources such as the same application, different applications, the
operating system, or the runtime environment. Paralielism is exploited at the thread level since parallelism is rare
beyond four, or even two, instructions per cycle in general purpose code. For example, the illustrative processor
100 is an eight-wide machine with eight execution units for executing instructions. A typical “general-purpose”
processing code has an instruction level parallelism of about two so that, on average, most (about six) of the eight
execution units would be idle at any time. The illustrative processor 100 employs thread level parallelism and
operates on two independent threads, possibly attaining twice the performance of a processor having the same

resources and clock rate but utilizing traditional non-thread parallelism.

Thread level parallelism is particularly useful for Java™ applications, which are bound to have multiple
threads of execution. Java ™ methods including “suspend”, “resume”, “sleep”, and the like include effective
support for threaded program code. In addition, Java™ class libraries are thread-safe to promote parallelism.
Furthermore, the thread model of the processor 100 supports a dynamic compiler which runs as a separate thread
using one media processing unit 110 while the second media processing unit 112 is used by the current
application. In the illustrative system, the compiler applies optimizations based on “on-the-fly” profile feedback
information while dynamically modifying the executing code to improve execution on each subsequent run. For
example, a “garbage collector” may be executed on a first media processing unit 110, copying objects or

gathering pointer information, while the application is executing on the other media processing unit 112.

Although the processor 100 shown in FIGURE 2 includes two processing units on an integrated circuit
chip, the architecture is highly scaleable so that one to several closely-coupled processors may be formed in a
message-based coherent architecture and resident on the same die to process multiple threads of execution. Thus,
in the processor 100, a limitation on the number of processors formed on a single die thus arises from capacity
constraints of integrated circuit technology rather than from architectural constraints relating to the interactions

and interconnections between processots.

The processor 100 is a general-purpose processor that includes the media processing units 110 and 112,

two independent processor elements in a single integrated circuit die. The dual independent processor elements

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-8-

110 and 112 advantageously execute two independent threads concurrently during multiple-threading operation.
When only a single thread executes on the processor 100, one of the two processor elements executes the thread,
the second processor element is advantageously used to perform garbage collection, Just-In-Time (JIT)
compilation, and the like. In the illustrative processor 100, the independent processor elements 110 and 112 are
Very Long Instruction Word (VLIW) processors. For example, one illustrative processor 100 includes two
independent Very Long Instruction Word (VLIW) processor elements, each of which executes an instruction
group or instruction packet that includes up to four instructions. Each of the instructions in an instruction group

executes on a separate functional unit.

The usage of a VLIW processor advantageously reduces complexity by avoiding usage of various
structures such as schedulers or reorder buffers that are used in superscalar machines to handle data
dependencies. A VLIW processor typically uses software scheduling and software checking to avoid data

conflicts and dependencies, greatly simplifying hardware control circuits.

The two threads execute independently on the respective VLIW processor elements 110 and 112, each
of, which includes a plurality of powerful functional units that execute in parallel. In the illustrative embodiment
shown in FIGURE 3, the VLIW processor elements 110 and 112 have four functional units including three
media functional units 220 and one general functional unit 222. All of the illustrative media functional units 220
include an instruction that executes both a multiply and an add in a single cycle, either floating point or fixed
point. Thus, a processor with two VLIW processor elements can execute twelve floating point operations each
cycle. Ata 500 MHz execution rate, for example, the processor runs at a six gigaflop rate, even without

accounting for general functional unit operation.

Referring to FIGURE 3, a schematic block diagram shows the core of the processor 100. The media
processing units 110 and 112 each include an instruction cache 210, an instruction aligner 212, an instruction
buffer 214, a pipeline control unit 226, a split register file 216, a plurality of execution units, and a load/store unit
218. In the illustrative processor 100, the media processing units 110 and 112 use a plurality of execution units
for executing instructions. The execution units for a media processing unit 110 include three media functional

units (MFU) 220 and one general functional unit (GFU) 222.

An individual independent paraliel execution path 110 or 112 has operational units including instruction
supply blocks and instruction preparation blocks, functional units 220 and 222, and a register file 216 that are
separate and independent from the operational units of other paths of the multiple independent parallel execution
paths. The instruction supply blocks include a separate instruction cache 210 for the individual independent
parallel execution paths, however the multiple independent parallel execution paths share a single data cache 106
since multiple threads sometimes share data. The data cache 106 is dual-ported, allowing data access in both
execution paths 110 and 112 in a single cycle. Sharing of the data cache 106 among independent processor

elements 110 and 112 advantageously simplifies data handling, avoiding a need for a cache coordination protocol

10

15

20

25

30

WO 00/33186 PCT/US99/28822

and the overhead incurred in controlling the protocol.

In addition to the instruction cache 210, the instruction supply blocks in an execution path include the
instruction aligner 212, and the instruction buffer 214 that precisely format and align a full instruction group of
four instructions to prepare to access the register file 216. An individual execution path has a single register file
216 that is physically split into multiple register file segments, each of which is associated with a particular
functional unit of the multiple functional units. At any point in time, the register file segments as allocated to
each functional unit each contain the same content. A multi-ported register file is typically metal limited to the
area consumed by the circuit proportional with the square of the number of ports. The processor 100 has a
register file structure divided into a plurality of separate and independent register files to form a layout structure
with an improved layout efficiency. The read ports of the total register file structure 216 are allocated among the
separate and individual register files. Each of the separate and individual register files has write ports that
correspond to the total number of write ports in the total register file structure. Writes are fully broadcast so that

all of the separate and individual register files are coherent.

The media functional units 220 are multiple single-instruction-multiple-datapath (MSIMD) media
functional units. Each of the media functional units 220 is capable of processing parallel 16-bit components.
Various parallel 16-bit operations supply the single-instruction-multiple-datapath capability for the processor 100
including add, multiply-add, shift, compare, and the like. The media functional units 220 operate in combination
as tightly coupled digital signal processors (DSPs). Each media functional unit 220 has an separate and
individual sub-instruction stream, but all three media functional units 220 execute synchronously so that the

subinstructions progress lock-step through pipeline stages.

The general functional unit 222 is a RISC processor capable of executing arithmetic logic unit (ALU)
operations, loads and stores, branches, and various specialized and esoteric functions such as parallel power
operations, reciprocal square root operations, and many others. The general functional unit 222 supports less

common parallel operations such as the parallel reciprocal square root instruction.

The illustrative instruction cache 210 is two-way set-associative, has a 16 Kbyte capacity, and includes
hardware support to maintain coherence, allowing dynamic optimizations through self-modifying code. Software
is used to indicate that the instruction storage is being modified when modifications occur. The 16K capacity is
suitable for performing graphic loops, other multimedia tasks or processes, and general-purpose Java™ code.
Coherency is maintained by hardware that supports write-through, non-allocating caching. Self-modifying code
is supported through explicit use of “store-to-instruction-space” instruction store2i. Software uses the store2i
instruction to maintain coherency with the instruction cache 210 so that the instruction caches 210 do not have to

be snooped on every single store operation issued by the media processing unit 110.

The pipeline control unit 226 is connected between the instruction buffer 214 and the functional units

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-10 -

and schedules the transfer of instructions to the functional units. The pipeline control unit 226 also receives
status signals from the functional units and the load/store unit 218 and uses the status signals to perform several
control functions. The pipeline control unit 226 maintains a scoreboard, generates stalls and bypass controls.

The pipeline control unit 226 also generates traps and maintains special registers.

Each media processing unit 110 and 112 includes a split register file 216, a single logical register file
including 128 thirty-two bit registers. The split register file 216 is split into a plurality of register file segments
224 to form a multi-ported structure that is replicated to reduce the integrated circuit die area and to reduce
access time. A separate register file segment 224 is allocated to each of the media functional units 220 and the
general functional unit 222. In the illustrative embodiment, each register file segment 224 has 128 32-bit
registers. The first 96 registers (0-95) in the register file segment 224 are global registers. All functional units
can write to the 96 global registers. The global registers are coherent across all functional units (MFU and GFU)
so that any write operation to a global register by any functional unit is broadcast to all register file segments 224.
Registers 96-127 in the register file segments 224 are local registers. Local registers allocated to a functional unit

are not accessible or “visible” to other functional units.

The media processing units 110 and 112 are highly structured computation blocks that execute software-
scheduled data computation operations with fixed, deterministic and relatively short instruction latencies,
operational characteristics yielding simplification in both function and cycle time. The operational characteristics
support multiple instruction issue through a pragmatic very large instruction word (VLIW) approach that avoids
hardware interlocks to account for software that does not schedule operations properly. Such hardware interlocks
are typically complex, error-prone, and create multiple critical paths. A VLIW instruction word always includes
one instruction that executes in the general functional unit (GFU) 222 and from zero to three instructions that
execute in the media functional units (MFU) 220. A MFU instruction field within the VLIW instruction word
includes an operation code (opcode) field, three source register (or immediate) fields, and one destination register

field.

Instructions are executed in-order in the processor 100 but loads can finish out-of-order with respect to
other instructions and with respect to other loads, allowing loads to be moved up in the instruction stream so that
data can be streamed from main memory. The execution model eliminates the usage and overhead resources of
an instruction window, reservation stations, a re-order buffer, or other blocks for handling instruction ordering.
Elimination of the instruction ordering structures and overhead resources is highly advantageous since the
eliminated blocks typically consume a large portion of an integrated circuit die. For example, the eliminated

blocks consume about 30% of the die area of a Pentium II processor.

To avoid software scheduling errors, the media processing units 110 and 112 are high-performance but
simplified with respect to both compilation and execution. The media processing units 110 and 112 are most

generally classified as a simple 2-scalar execution engine with full bypassing and hardware interJocks on load

15

20

25

30

WO 00/33186 PCT/US99/28822

-11-

operations. The instructions include loads, stores, arithmetic and logic (ALU) instructions, and branch
instructions so that scheduling for the processor 100 is essentially equivalent to scheduling for a simple 2-scalar

execution engine for each of the two media processing units 110 and 112.

The processor 100 supports full bypasses between the first two execution units within the media
processing unit 110 and 112 and has a scoreboard in the general functional unit 222 for load operations so that
the compiler does not need to handle nondeterministic latencies due to cache misses. The processor 100
scoreboards long latency operations that are executed in the general functional unit 222, for example a reciprocal
square-root operation, to simplify scheduling across execution units. The scoreboard (not shown) operates by
tracking a record of an instruction packet or group from the time the instruction enters a functional unit until the
instruction is finished and the result becomes available. A VLIW instruction packet contains one GFU
instruction and from zero to three MFU instructions. The source and destination registers of all instructions in an
incoming VLIW instruction packet are checked against the scoreboard. Any true dependencies or output
dependencies stall the entire packet until the result is ready. Use of a scoreboarded result as an operand causes
instruction issue to stall for a sufficient number of cycles to allow the result to become available. If the
referencing instruction that provokes the stall executes on the general functional unit 222 or the first media
functional unit 220, then the stall only endures until the result is available for intra-unit bypass. For the case of a
Joad instruction that hits in the data cache 106, the stall may last only one cycle. If the referencing instruction is
on the second or third media functional units 220, then the stall endures until the result reaches the writeback

stage in the pipeline where the result is bypassed in transmission to the split register file 216.

The scoreboard automatically manages load delays that occur during a load hit. In an illustrative
embodiment, all loads enter the scoreboard to simplify software scheduling and eliminate NOPs in the instruction

stream.

The scoreboard is used to manage most interlock conditions between the general functional unit 222 and
the media functional units 220. All loads and non-pipelined long-latency operations of the general functional
unit 222 are scoreboarded. The long-latency operations include division idiv, fdiv instructions, reciprocal square
root frecsqrt, precsqrt instructions, and power ppower instructions. None of the results of the media functional
units 220 is scoreboarded. Non-scoreboarded results are available to subsequent operations on the functional unit

that produces the results following the latency of the instruction.

The illustrative VLIW processor 100 executes a plurality of instructions in parallel on the plurality of
independent processors using low thread synchronization overhead to operate with the same level of performance
as an increased width VLIW processor. For applications with a high level of instruction-level parallelism, the
VLIW processor 100 utilizes the two independent four-wide VLIW processors, media processing units 110 and
112, to selectively operate either as an eight-wide VLIW processor or two independent four-wide VLIW

processors that mutually execute separate threads. The independent media processing units 110 and 112 each

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-12-

includes a very rich set of functional units to form, in combination, a highly powerful processor without the

complexity of implementing the extensive control circuitry and connections of an eight-wide VLIW processor.

The VLIW processor 100 has a rendering rate of over fifty million triangles per second without
accounting for operating system overhead. To exploit the parallelism of the VLIW processor 160 when
processing independent data constructs, such as triangles, the media processing units 110 and 112 simply operate
on multiple elements (vertices) in parallel so that the utilization rate of the functional units is high. The result is
effectively a spatial software pipelining. Instead of overlapping several loop iterations in time, as is practiced in
conventional VLIW processors, the illustrative VLIW processor 100 overlaps operations by executing
computations on a plurality of vertices simultaneously. For other types of operations that have high instruction-

level parallelism, high trip count loops are software-pipelined to fully utilize the media functional units 220.

The usage of media processing units 110 and 112 in parallel to selectively operate either in coordination
as an increased-width VLIW processor or independently as a multiple-thread processor is highly advantageous
for efficiently performing applications that have differing levels of parallelism. Parallelism is rarely found
beyond the level of about four instructions, or even two instructions, per cycle in general purpose code.
Therefore, the illustrative processor 100 includes two media processing units 110 and 112 that are selectively
operated independently. Therefore, the two four-wide VLIW media processing units 110 and 112 typically
operates on two independent threads, rather than wasting most of the eight functional units in an eight-wide
processor, possibly attaining twice the performance of a much wider VLIW processor executing at the same
clock rate. The usage of independent media processing units 110 and 112 is particularly advantageous for Java™

applications which often have multiple threads of execution.

Therefore, data feeding specifications of the processor 100 are far beyond the capabilities of cost-
effective memory systems. Sufficient data bandwidth is achieved by rendering of compressed geometry using
the geometry decompressor 104, an on-chip real-time geometry decompression engine. Data geometry is stored
in main memory in a compressed format. At render time, the data geometry is fetched and decompressed in real-
time on the integrated circuit of the processor 100. The geometry decompressor 104 advantageously saves
memory space and memory transfer bandwidth. The compressed geometry uses an optimized generalized mesh
structure that explicitly calls out most shared vertices between triangles, allowing the processor 100 to transform
and light most vertices only once. In a typical compressed mesh, the triangle throughput of the transform-and-

light stage is increased by a factor of four or more over the throughput for isolated triangles.

Referring to FIGURE 4, a schematic block diagram illustrates an embodiment of the split register file
216 that is suitable for usage in the processor 100. The split register file 216 supplies all operands of processor
instructions that execute in the media functional units 220 and the general functional units 222 and receives
results of the instruction execution from the execution units. The split register file 216 operates as an interface to

the geometry decompressor 104 and supplies data to the setup/draw unit 108. The split register file 216 is the

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-13 -

source and destination of store and load operations, respectively.

In the illustrative processor 100, the split register file 216 in each of the media processing units 110 has
256 registers. Graphics processing places a heavy burden on register usage. Therefore, a large number of
registers is supplied by the split register file 216 so that performance is not limited by loads and stores or
handling of intermediate results including graphics “fills” and “spills”. The illustrative split register file 216
includes twelve read ports and five write ports, supplying total data read and write capacity between the central
registers of the split register file 216 and all media functional units 220 and the general functional unit 222. Total
read and write capacity promotes flexibility and facility in programming both of hand-coded routines and

compiler-generated code.

Large, multiple-ported register files are typically metal-limited so that the register area is proportional
with the square of the number of ports. A sixteen port file is roughly proportional in size and speed to a value of
256. The illustrative split register file 216 is divided into four register file segments 310, 312, 314, and 316, each
having three read ports and four write ports so that each register file segment has a size and speed proportional to
49 for a total area for the four segments that is proportional to 196. The total area is therefore potentially smaller
and faster than a single central register file. Write operations are fully broadcast so that all files are maintained
coherent. Logically, the split register file 216 is no different from a single central register file However, from
the perspective of layout efficiency, the split register file 216 is highly advantageous, allowing for reduced size

and improved performance.

The new media data that is operated upon by the processor 100 is typically heavily compressed. Data
transfers are communicated in a compressed format from main memory and input/output devices to pins of the
processor 100, subsequently decompressed on the integrated circuit holding the processor 100, and passed to the

split register file 216.

Splitting the register file into multiple segments in the split register file 216 in combination with the
character of data accesses in which multiple bytes are transferred to the plurality of execution units concurrently,
results in a high utilization rate of the data supplied to the integrated circuit chip and effectively leads to a much
higher data bandwidth than is supported on general-purpose processors. The highest data bandwidth requirement
is therefore not between the input/output pins and the central processing units, but is rather between the
decompressed data source and the remainder of the processor. For graphics processing, the highest data
bandwidth requirement is between the geometry decompressor 104 and the split register file 216. For video
decompression, the highest data bandwidth requirement is internal to the split register file 216. Data transfers
between the geometry decompressor 104 and the split register file 216 and data transfers between various
registers of the split register file 216 can be wide and run at processor speed, advantageously delivering a large
bandwidth.

10

15

20

25

WO 00/33186 PCT/US99/28822

- 14 -

The register file 216 is a focal point for attaining the very large bandwidth of the processor 100. The
processor 100 transfers data using a plurality of data transfer techniques. In one example of a data transfer
technique, cacheable data is loaded into the split register file 216 through normal load operations at a low rate of
up to eight bytes per cycle. In another example, streaming data is transferred to the split register file 216 through
group load operations which transfer thirty-two bytes from mémory directly into eight consecutive 32-bit
registers. The processor 100 utilizes the streaming data operation to receive compressed video data for

decompression.

Compressed graphics data is received via a direct memory access (DMA) unit in the geometry
decompressor 104, The compressed graphics data is decompressed by the geometry decompressor 104 and
loaded at a high bandwidth rate into the split register file 216 via group load operations that are mapped to the

geometry decompressor 104.

Data such as transformed and lit vertices are transferred to the setup/draw unit 108 through store pair

instructions which can accommodate eight bytes per cycle mapped to the setup/draw unit 108.

Load operations are non-blocking and scoreboarded so that a long latency inherent to loads can be

hidden by early scheduling.

General purpose applications often fail to exploit the large register file 216. Statistical analysis shows
that compilers do not effectively use the large number of registers in the split register file 216. However,
aggressive in-lining techniques that have traditionally been restricted due to the limited number of registers in
conventional systems may be advantageously used in the processor 100 to exploit the large number of registers in
the split register file 216. In a software system that exploits the large number of registers in the processor 100,
the complete set of registers is saved upon the event of a thread (context) switch. When only a few registers of
the entire set of registers is used, saving all registers in the full thread switch is wasteful. Waste is avoided in the
processor 100 by supporting individual marking of registers. Octants of the thirty-two registers can be marked as

“dirty” if used, and are consequently saved conditionally.

In various embodiments, the split register file 216 is leveraged by dedicating fields for globals, trap

registers, and the like.

Referring to FIGURE 5A, a schematic block diagram shows a logical view of the register file 216 and
functional units in the processor 100. The physical implementation of the core processor 100 is simplified by
replicating a single functional unit to form the three media processing units 110. The media processing units 110
include circuits that execute various arithmetic and logical operations including general-purpose code, graphics
code, and video-image-speech (VIS) processing. VIS processing includes video processing, image processing,

digital signal processing (DSP) loops, speech processing, and voice recognition algorithms, for example.

10

15

20

25

WO 00/33186 PCT/US99/28822

-15-

Referring to FIGURE 5B, a schematic block diagram illustrates a logical view of a combination of two
independent processors to form a wide-VLIW processor 100. Each of the illustrative VLIW processors includes
an instruction buffer 214, a register file 216, and four functional units arranged in a group of three media
functional units 220, and one general functional unit 222. The instruction buffer 214 in each of the independent
processors supplies up to four subinstructions to the register file 216. The up to four subinstructions execute on
the media functional units 220 and the general functional unit 222. For applications with a high level of
instruction-level parallelism, the eight-wide VLIW processor 100 executes a plurality of instructions in parallel
on the plurality of independent processors using low thread synchronization overhead to operate with the same
level of performance as an increased width VLIW processor. The VLIW processor 100 includes two
independent four-wide VLIW processors 110 and 112 to selectively operate either as an eight-wide VLIW
processor or two independent four-wide VLIW processors that mutually execute separate threads. The
independent processors includes a very rich set of functional units to form, in combination, a highly powerful
processor, without the complexity of implementing the extensive control circuitry and connections of the eight-

wide VLIW processor.

Referring to FIGURE 6, a simplified pictorial schematic diagram depicts an example of instruction
execution among a plurality of media functional units 220. Results generated by various internal function blocks
within a first individual media functional unit are immediately accessible internally to the first media functional
unit 510 but are only accessible globally by other media functional units 512 and 514 and by the general
functional unit five cycles after the instruction enters the first media functional unit 510, regardless of the actual
latency of the instruction. Therefore, instructions executing within a functional unit can be scheduled by
software to execute immediately, taking into consideration the actual latency of the instruction. In contrast,
software that schedules instructions executing in different functional units is expected to account for the five
cycle latency. In the diagram, the shaded areas represent the stage at which the pipeline completes execution of
an instruction and generates final result values. A result is not available internal to a functional unit a final
shaded stage completes. In the example, media processing unit 110 instructions have three different latencies -
four cycles for instructions such as fmuladd and fadd, two cycles for instructions such as pmuladd, and one cycle

for instructions like padd and xor.

Although internal bypass logic within a media functional unit 220 forwards results to execution units
within the same media functional unit 220, the internal bypass logic does not detect incorrect attempts to

reference a result before the result is available.

Software that schedules instructions for which a dependency occurs between a particular media
functional unit, for example 512, and other media functional units 510 and 514, or between the particular media
functional unit 512 and the general functional unit 222, is to account for the five cycle latency between entry of

an instruction to the media functional unit 512 and the five cycle pipeline duration.

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-16 -

Referring to FIGURE 7, a simplified schematic timing diagram illustrates timing of the processor
pipeline 600. The pipeline 600 includes nine stages including three initiating stages, a plurality of execution
phases, and two terminating stages. The three initiating stages are optimized to include only those operations
necessary for decoding instructions so that jump and call instructions, which are pervasive in the Java'
language, execute quickly. Optimization of the initiating stages advantageously facilitates branch prediction

since branches, jumps, and calls execute quickly and do not introduce many bubbles.

The first of the initiating stages is a fetch stage 610 during which the processor 100 fetches instructions
from the 16Kbyte two-way set-associative instruction cache 210. The fetched instructions are aligned in the
instruction aligner 212 and forwarded to the instruction buffer 214 in an align stage 612, a second stage of the
initiating stages. The aligning operation properly positions the instructions for storage in a particular segment of
the four register file segments 310, 312, 314, and 316 and for execution in an associated functional unit of the
three media functional units 220 and one general functional unit 222. In a third stage, a decoding stage 614 of
the initiating stages, the fetched and aligned VLIW instruction packet is decoded and the scoreboard (not shown)
is read and updated in parailel. The four register file segments 310, 312, 314, and 316 each holds either floating-

point data or integer data. The register files are read in the decoding (D) stage.

Following the decoding stage 614, the execution stages are performed. The two terminating stages
include a trap-handling stage 660 and a write-back stage 662 during which result data is written-back to the split

register file 216.

Referring to FIGUREs 8A, 8B, and 8C respectively, a schematic block diagram shows an embodiment
of the general functional unit 222, a simplified schematic timing diagram illustrating timing of general functional
unit pipelines 700, and a bypass diagram showing possible bypasses for the general functional unit 222. The
general functional unit 222 supports instructions that execute in several different pipelines. Instructions include
single-cycle ALU operations, four-cycle getir instructions, and five-cycle setir instructions. Long-latency
instructions are not fully pipelined. The general functional unit 222 supports six-cycle and 34-cycle Jong

operations and includes a dedicated pipeline for load/store operations.

The general functional unit 222 and pipeline control unit 226, in combination, include four pipelines,
Gpipel 750, Gpipe2 752, Gpipe3 754, and a load/store pipeline 756. The load/store pipeline 756 and the Gpipel
750 are included in the pipeline control unit 226. The Gpipe2 752 and Gpipe3 754 are located in the general
functional unit 222. The general functional unit 222 includes a controller 760 that supplies control signals for the
pipelines Gpipel 750, Gpipe2 752, and Gpipe3 754. The pipelines include execution stages (En) and annex
stages (An).

Results from instructions executed by the general functional unit 222 and media functional units 220 are

not immediately written to the register file segments 224. The results are staged in the annexes and broadcast to

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-17-

the register file segments 224 in T-stage if no trap is present. The register file segments 224 latch the results
locally and update the registers in the next clock cycle. The annex contains destination rd specifiers of all
instructions from the A1-stage and onward. The annex maintains valid bits for each stage of the pipeline. The

annex also contains priority logic to determine the most recent value of a register in the register file.

The general functional unit pipelines 700 include a load pipeline 710, a I-cycle pipeline 712, a 6-cycle
pipeline 712, and a 34-cycle pipeline 714. Pipeline stages include execution stages (E and En), annex stages
(An), trap-handling stages (T), and write-back stages (WB). Stages An and En are prioritized with smaller

priority numbers n having a higher priority.

The processor 100 supports precise traps. Precise exceptions are detected by E4/A3 stages of media
functional unit and general functional unit operations. One-cycle operations are stages in annex and trap stages
(A1, A2, A3, T) until all exceptions in one VLIW group are detected. Traps are generated in the trap-generating
stages (T). When the general functional unit 222 detects a trap in a VLIW group, all instructions in the VLIW

group are canceled.

When a long-latency operation is in the final execute stage (E6 stage for the 6-cycle pipeline 712 or E34
stage for the 34-cycle pipeline 714), and a valid instruction is under execution in the A3-stage of the annex, then
the long-latency instruction is held in a register, called an A4-stage register, inside the annex and is broadcast to
the register file segments 224 only when the VLIW group under execution does not include a one-cycle GFU

instruction that is to be broadcast.

Results of long-latency instructions are bypassed to more recently issued GFU and MFU instructions as
soon as the results are available. For example, results of a long-latency instruction are bypassed from the E6-
stage of a 6-cycle instruction to any GFU and MFU instruction in the decoding (D) stage. If a long-latency
instruction is stalled by another instruction in the VLIW group, results of the stalled long-latency instruction are
bypassed from the annex (A4) stage to all instructions in the general functional unit 222 and all media functional

units 220 in the decoding (D) stage.

Data from the T-stage of the pipelines are broadcast to all the register file segments 224, which latch the

data in the writeback (WB) stage before writing the data to the storage cells.

The bypass diagram shown in FIGURE 8C shows operation of the bypasses in the general functional
unit 222. The pipelines 700 are arranged in levels, shown arranged from right to left, with level _1 having a
higher priority than level 2 and so on. Among the stages in the same level, no difference in priority is enforced.
For the execution stages (E), if a load is followed by a gfu instruction with the same destination specifier rd, then
the higher priority gfu instruction enters the E-stage when the load is in a ldx1 stage of an annex (A). The

annexes include compare-match logic that enforce the bypass priority among instructions.

10

15

20

25

30

WO 00/33186 PCT/US99/28822

- 18-

The diagram assumes that the load returns in cycle 3 and enters ldx1-stage in cycle 4 and ldx2-stage in
cycle 5. Instl is unstalled in cycle 4. In cycle 5, when inst2 is in D-stage, the only bypass younger than the load
in 1dx2-stage is in the bypass from E-stage of gfu/mful instructions. Therefore, ldx2-stage is one level below

(level 2) the E-stage of the gfu/mful instructions.

Similarly, in cycle 6, when the load is in ldx3-stage, the stages younger than ldx_3 stage but having the
same destination specifiers rd are E/A1 stages of gfu and mful instructions. Therefore, ldx_3 stage is one level
below (level 3) the Al-stages of gfu/mful instructions in bypass. Similarly, ldx4_stage is one level below A2-
stage (level_4) in bypass priority. When the load is in ldx1-stage (in cycle 4), no younger instructions with the
same rd specifier as the load are possible due to hardware interlock with the load. Therefore, ldx1-stage has the

highest priority (level_1) in bypass.
Priority is similarly enforced for long latency instructions.

The annexes include multiplexers that select matching stages among the bypass levels in a priority logic
that selects data based on priority matching within a priority level. The annexes include compare logic that

compares destination specifiers rd against each of the specifiers rs1, rs2, and rd.

In the illustrative embodiment, the bypass logic for the first media functional unit 220 mful is the same
as the bypass logic for the general functional unit 222 since full bypass between the gfu and mful is supported.
Annexes for the second and third media functional units 220 (mfu2 and mfu3) are mutually identical but simpler
than the gfu/mful bypass logic since full bypass is not supported for mfu2/mfu3. In other embodiments, full

bypass may be implemented in all positions.

Referring to FIGURE 9, a simplified schematic timing diagram illustrates timing of media functional
unit pipelines 800 including single precision and integer pipelines. The media functional units 220 execute
single-precision, double-precision, and long operations. The media functional units 220 are connected to the
register file segments 224 via 32-bit read ports so that two cycles are used to read the source operands for 64-bit
double-precision and long operations. A “pair instruction” is any MFU instruction that utilizes a second
instruction to either read or write the lower or higher order pair of a source operand or destination operand. The
second instruction is not part of the instruction stream from the instruction memory but rather is generated in
hardware. The media functional units 220 support 1-cycle 810, 2-cycle 812, and 4-cycle 814 instructions on

single precision and integer operations.

The media functional units 220 execute pair instructions including two-cycle latency instructions that
read two long integers or two doubles and generate a single integer result, two-cycle latency instructions that read
two long integers and write to a long integer, five-cycle latency instructions that read two double or one double

operands and generate a double precision result, and seven-cycle latency instructions that read two double

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-19 -

precision operands and generate a double-precision result. When a five cycle or seven cycle latency instruction
is included in a VLIW group, all other instructions in the group are stalled in E-stage so that all instructions in the
VLIW group read T-stage simultaneously. Precise exceptions are thus supported even for five-cycle and seven-

cycle latency instructions.

When a second instruction of a pair is generated by hardware for a media functional unit 220,
instructions in a next issued VLIW group are stalled for one cycle so that the second instruction of the pair does

not have a conflict with the instruction in the next VLIW group for writing to the register file segment 224.

For efficient operation, when a VLIW group contains one or more pair instructions and the next
subsequent VLIW group in a sequence is vacant in the pair instruction positions, then the instructions in the
subsequent VLIW group in the nonvacant positions are executed along with the initial VLIW group. A group
position is vacant when no instruction is included or the instruction is a ‘nop’, any instruction which writes to
register 0 and has no side effects. The pipeline control unit 226 detects a vacant position in a VLIW group by

analyzing the opcode and the destination register rd of the instruction.

Referring to FIGUREs 10A-10C, an instruction sequence table and two pipeline diagrams illustrate
execution of VLIW groups including a five-cycle pair instruction and a seven-cycle pair instruction. FIGURE
10A is an instruction sequence table showing five VLIW groups (VLIW_n) and instructions executed in the
media functional units 220 (MFU3, MFU2, and MFU1) and in the general functional unit 222 (GFU) for

sequentially issued instruction groups n=1to 5.

FIGURE 10B shows instruction mful 1 in the MFU1 position of the group vliw_1 as a five-cycle
latency pair instruction and instruction mful_2 in the MFU1 position of the group vliw_2 as a valid instruction
and not a ‘nop’ so that instruction gfu_1 in the GFU position of the group vliw_1 is stalled in the E-stage for one
cycle. Stalling of the instruction gfu_1 causes gfu_1 to reach the T-stage at the same time as the instruction
mful 1. The first and second inherent instruction of a pair instruction are atomic instructions between which no
traps or interrupts can occur. All errors or exceptions caused by the double or long pair instructions are detected
when the instruction reaches the final Execute (E4) stage. If an error or exception is detected in the E4-stage of

the pair instruction, both the first and inherent second instruction of the pair are canceled.

In the illustrative example shown in FIGURE 10B, if a trap occurs in cycle 7, both the first and inherent
second instruction of mful 1 are canceled. If a trap occurs in cycle 8 due to external interrupt, asynchronous
error, instructions in group vliw 2, or the like, then the inherent second instruction of mful_1 is allowed to finish

execution and only the instructions in group vliw_2 are canceled.

FIGURE 10C shows instruction mful 1 in the MFU1 position of the group vliw_1 as a seven-cycle

latency pair instruction and no pair instructions in group vliw_2. The gfu_1 instruction in the group containing

15

20

25

30

WO 00/33186 PCT/US99/28822

220 -

the seven-cycle latency pair stalls for four cycles in the E-stage.

Referring to FIGUREs 11A-11C, pipeline diagrams show examples illustrating synchronization of pair
instructions in a group. If a two-cycle latency pair instruction is included in group vliw_1, then group vliw_2
stalls in D-stage for a cycle if the position in group vliw_2 corresponding to the two-cycle latency pair instruction

is not vacant.

If a five-cycle or seven-cycle latency pair instruction is included in group vliw_1, other instructions in
group vliw_1 stall in E-stage so that all instructions in group vliw_1 read the trap-generating (T) stage

simultaneously.

Instructions in group viiw_2 stall for an additional cycle in E-stage only if a port conflict of the inherent

second instruction of a pair and an instruction in group viiw_2 is scheduled to occur.

In the example shown in FIGURE 11A, instruction mful_1 is a seven-cycle latency pair instruction and

instruction mfu2_2 in group vliw_2 is a five-cycle latency pair instruction.

In the example shown in FIGURE 11B, in group vliw_1 instruction mful 1 is a two-cycle latency pair
instruction, instruction mfu2_1 is a five-cycle latency pair instruction, and instruction mfu3_1 is a seven-cycle
latency pair instruction. Group vliw_2 includes at least one valid MFU instruction which is not a five-cycle or

seven-cycle latency pair instruction.

In the example shown in FIGURE 11C, in group vliw_1 instruction mfu2_1 is a five-cycle latency pair
instruction and instruction mfu3_1 is a seven-cycle latency pair instruction, but instruction mful_1 is not a two-
cycle latency pair instruction. The difference between the examples shown in FIGURE 11B and FIGURE 11C
is that instructions in group vliw_2 in the latter case stali in the E-stage in cycle 6 to avoid port conflicts of the

inherent second instructions of instructions mfu2_1 and mfu3_1 with mfu2_2 and mfu3_2, respectively.

Referring to FIGUREs 12A, 12B, 12C, and 12D, respective schematic block diagrams illustrate the
pipeline control unit 226 segments allocated to all of the functional units GFU, MFU1, MFU2, and MFU3. The
pipeline control unit 226 imposes several scheduling rules that apply to bypass between instructions in a single
VLIW group. Full bypass is implemented between instructions executed by functional units GFU and MFU1 so
that bypass rules are identical for bypass from results of pair instructions in MFU1 to more recently issued
instructions executed in the GFU and MFU1 functional units. For other cases, an additional one cycle penalty is
imposed for bypass from a pair instruction to more recently issued instructions in other groups. The scheduling
rules are imposed by control units allocated to the general functional unit 222 and the media functional units 220.
A peu_gf control unit (pcu_gf_ctl 1110) is the control block for instructions executing in the general functional
unit 222. Similarly, pcu_mfl_ctl 1120, pcu_mf2_ctl 1122, and pcu_mf3_ctl 1124 are control blocks for mful,

mfu2. and mfu3, respectively. The pcu/ functional unit control blocks generate D-stage stalls, generate D-stage

10

15

20

25

30

WO 00/33186 PCT/US99/28822

_21 -

bypasses for “alu_use_immediate” cases and for generating multiplexer select signals for E-stage bypasses. The
control blocks for the various functional units are positioned adjacent to the scoreboard datapath associated to the
particular functional unit. The pcu control units include a partial decoder, such as gfu partial decoder 1130 and

mfu partial decoders 1132, 1134, and 1136.

The pipeline control unit 226 also include a plurality of internal registers (ir), many of which are not
accessible by a user. One internal register of the pipeline control unit 226 is a processor control register (PCR)
that controls power management, instruction and data cache enables, pipeline enable, and branch predict taken

enable.

The pecu control units perform various functions including qualifying scoreboard hits with immediate
bits, sending operation type signals to the load/store unit 218, and handling various instructions including getir,
setir, sethi, jmpl, membar, and prefetch. Signals generated by the decoder include a gfu_imm signal that
designates whether source rs2 is immediate, a gfu_load signal that designates whether a gfu instruction is a load,
a gfu_ldg signal that identifies whether the instruction is a group load, and a gfu_ldpair signal that designates
whether the instruction is a paired instruction within a load pair. Generated signals further include a gfu_store
signal that identifies a store instruction, a gf_stpair signal the indicates whether the gfu instruction is a store pair
instruction, and a gfu_cas signal which indicates that the gfu instruction is a cas instruction. A gfu_prefetch
signal indicates the gfu instruction is a prefetch. A gfu_call signal designates a call instruction with r2 as a
destination specifier. A gfu_branch signal designates a branch instruction with the rd field as a source specifier.
The gfu_nop signal designates a nop. A gfu_illegal signal identifies an illegal instruction. A gfu_privilege signal
designates a privileged instruction. A gfu_sir signal indicates a software initiated reset instruction. A
gfu_softrap signal identifies a softrap instruction. Signals including gfu_sethi, gfu_setlo, and gfu_addlo
designate sethi instructions. A gfu_long signal indicates a long latency instruction. Signals including gfu_setir,
gfu_getir, gfu_setir_psr, and gfu_memissue respectively designate setir, getir, setir to PSR, and membar

instructions.

The pcu_gf ctl 1110 generates D-stage and E-stage stalls of the general functional unit 222, generates

signals to hold the D-stage of the gfu instruction, source, and destination operands.

The pcu_gf ctl 1110 controls full bypass between the general functional unit 222 (gfu) and the media
functional unit 220 (mful). The pcu_gf ctl 1110 generates bypass signals in several circumstances. An ALU
use immediate bypass is generated if any of the source specifiers of the gfu instruction depends on the results of
an immediately preceding 1 cycle gfu or mful instruction. If a source specifier of any gfu instruction in E-stage
awaits load data, then the pcu_gf ctl 1110 asserts appropriate select signals to select the data returning from
either the load/store unit 218 or the data cache 106. If the source specifier of any gfu instruction in D-stage is
dependent on a previous long latency instruction, then the pcu_gf_ ctl 1110 asserts appropriate select signals to

select the long latency data. If an E-stage stall occurs and any source operand is not dependent on a load data

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-22-

return, then the pcu_gf ctl 1110 asserts appropriate signals to hold the data the source operand has already

bypassed.

The pcu_mfl_ctl 1120 is similar to the pcu_gf_ctl 1110 and performs functions including partial
decoding of the mful instruction to supply and maintain the D-stage opcode of the mful instructions. The
pcu_mfl_ctl 1120 generates all stalls of the mful instruction and recirculating the D-stage mful instruction. The
pcu_mfl_ctl 1120 generates bypass selects for mful instructions and sends load dependency information to the
mful annex so that the annex selects a proper bypass if the instruction is stalled in D-stage with load dependency.
The pcu_mfl_ctl 1120 detects bypasses for ALU-use immediate cases and generates the inherent second

instruction of a paired mful instruction. The mf1 also generates synchronizing stalls for mfu instructions.

In the illustrative embodiment, pcu_mf2_ctl 1122 and pcu_mf3_ctl 1124, control blocks for mfu2 and
mfu3 instructions, are the identical but differ from pcu_mf1_ctl 1120 because full bypass is not supported

between mfu2/mfu3 and gfu.

A first rule applies for a VLIW group N that contains a five-cycle or seven-cycle latency pair instruction
of the format ‘pair ax, bx, cx’ and the inherent second instruction of the pair has the format ‘helper ay, by, ¢y’
where ax/ay, bx/by, and cx/cy are even-odd pairs. If (1) at least one pair instruction is included in either of the
next two VLIW groups N+1 or N+2, or (2) a valid MFUx instruction in the VLIW group N+1 is included in the
position corresponding to the position of a pair instruction in the VLIW group N. then (i) any more recently
issued pair instruction within the same functional unit is to be at least four groups apart (VLIW group N+4) to
bypass the results of the pair instruction in VLIW group N, and (ii) any more recently issued instruction that uses
the results cx/cy is to be at least four groups apart (VLIW group N+4). Otherwise, any more recently issued

instruction that uses the results of the pair instruction is to be at least five groups apart (VLIW group N+5).

A second rule applies when a VLIW position holds a pair instruction in VLIW group N and a vacancy in
VLIW group N+1. Instructions in VLIW group N+1 are not to write to the same destination register rd as the

inherent second instruction of the pair in VLIW group N.

A third rule applies for a two-cycle latency pair instruction that generates integer results (demp and lemp
instructions) in a VLIW group N. Instructions in VLIW group N+1 can b'ypass results of the demp and lemp

operations.

A fourth rule applies for a two-cycle latency pair instruction that generates a 64-bit result (ladd/Isub) in
a VLIW group N. Any instruction in VLIW group N-+1 can bypass the results of the pair instruction in VLIW
group N.

A fifth rule specifies that an assembler is expected to schedule the correct even and odd register

specifiers since pipeline control unit 226 logic does not check to determine whether the even or odd register

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-23-

specifiers are correct. Pipeline control unit 226 logic reads the source operands that are specified in the
instruction and sends the source operands to the functional unit for execution. For pair instructions, logic in the
pipeline control unit 226 then inverts bit[0] of the source operands and sends the newly determined source
operands to the functional unit for execution in the next cycle. The results returned by the functional unit after
N-cycle, where N is the latency of the pair instruction, are written into the rd specifier specified in the instruction.
Results returned in cycle N+1 are written to the rd specifier with bit[0] inverted. If a pair instruction has any of
the source or destination operands specified as r0, then the source/destination operands of the inherent second

instruction of a pair are also r0.

The pipeline control unit 226 supports full bypass between the general functional unit 222 and MFU1 of
the media functional units 220. Thus results of instructions executed in MFU1 are available in the same cycle to
instructions in the D-stage in GFU and MFU1 units. However, results of instructions executed in MFU2 and
MFUS3 are available to the GFU and MFU1 functional units only after results enter the T-stage. Specifically, a
GFU instruction that uses the result of a one, two or four-cycle MFU?2 instruction has to be at least five cycles
later. GFU and MFU1 instructions have a two-cycle best case load-use penalty. MFU2 and MFU3 instructions
have a three-cycle best case load-use penalty. A GFU instruction having an output dependency with a previous

load and the load is a data cache hit returning data in the Al-stage has a three cycle penalty.

All pipeline stages from which the source operands of a GFU instruction bypass data are maintained in a
pipeline control unit - general functional unit interface 1110 shown in FIGURE 12A. Similar interfaces are
included for each of the media functional units 220, MFU1, MFU2, and MFU3 shown in FIGUREs 12B, 12C,
and 12C, respectively.

Referring to FIGURE 13, a schematic block diagram illustrates a load annex block 1200 within the
pipeline control unit 226. The load annex block 1200 includes a storage 1210 for holding data, read specifiers,
data size, and a valid bit. Read data is stored in a separate FIFO 1212 in the annexes. The read data is simply

shifted down every cycle. Every cycle, stage bits are shifted to the right by one position.

If a trap or flush occurs in a cycle N, all entries with a nonzero count are invalidated before the entries

are shifted down in cycle N+1.

Load addresses are calculated in E-stage of the pipeline. The data cache 106 is accessed in C/Al-stage
of the pipeline. If the load hits the data cache 106, data returns from the data cache 106 in the same cycle. If the
load misses the data cache 106, data returns from the load/store unit 218 after the load/store unit receives data
from either the main memory (not shown) or interface (not shown). Data from the load/store unit 218 is received

in any of annex (A1)- write-back (WB) stages or the write-back stage (WB).

Load data enters the annexes and is staged in the annexes for three cycles before being broadcast to the

10

15

20

25

30

WO 00/33186 PCT/US99/28822

224 -

register file 216. The load operation is staged in the Idx1-ldx4 stages in the annex. By staging the load for three
cycles, all precise exceptions caused by either the load or other instructions in the same VLIW group cause
cancellation of the load. During the Idx4 stage, the load is written to the register file 216. Data cannot be
accessed and written into the register file 216 in the same cycle so an additional stage is inserted to hold the data

while the data is written.

When load data enters the annex, the age of the data is indicated by stage bits (A1-T). If atrap is

detected before the load reaches the write-back (WB) stage, the load is invalidated.

Once the data returns from the load/store uﬂit 218, the data enters a ldx FIFO (not shown) in all the
annexes. The annex has four entries. Since the 64-bit write port in each of the register file segment 224 is

dedicated for loads, the FIFO is shifted down one entry each clock cycle.

The scoreboard is a storage structure that maintains information regarding unfinished loads and long
latency operations in the general functional unit 222. The scoreboard allows in-order processing with non-
blocking memory. The scoreboard supplies a hardware interlock between any unfinished load or long-latency
operation and a more recently issued instruction that has data/output dependency with the load or long-latency

operation.

The scoreboard has separate entries for loads and long-latency operations. When a new instruction
enters the decode stage, the scoreboard compares the source operand rs and destination operand rd specifiers with

all entries.

The scoreboard has an E-stage entry for holding information relating to loads and long-latency
operations when the operations transition from the D-stage to the E-stage. The E-stage entry includes a field for
storing the destination register specifier of the load or long-latency instruction, a field to designate that the
instruction is a load instruction or a long-latency instruction, a field to indicate whether the load instruction is a
pair instruction, and a field to indicate a load group (Idg) instruction. The E-stage entry also includes a field to
indicate whether the destination register rd is 0x02 since a “CALL” instruction writes the return address into
register r2. The register 2 is not specified explicitly in the instruction so that, for an unfinished load writing to
12, then the “CALL” instruction is to stall until the load finishes updating register r2. The E-stage entry also
includes a field to indicate whether the E-stage entry is valid, which occurs in the E-stage. When the instruction
transitions from the E-stage to the Al-stage, the E-stage entry becomes invalid and either the load entries or the

long latency entry of the scoreboard is updated.

The number of entries allocated for loads is equal to the number of entries in the load buffer of the
load/store unit 218. The processor 100 allows one load hit under four misses requiring five load entries in the

scoreboard. Fields in the load entries include an 8-bit register for holding the destination address (rd) specifier of

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-25-

the load instruction, a field to indicate a group load (1dg), a field to indicate a load pair or load long, a field stage
representing the age in the scoreboard of the instruction, a group load count indicating the number of finished
loads in a group load, a field to indicate whether the entry is valid, and a field to indicate whether the load is to
register 2. Stage bits are shifted right by one position each cycle. If a trap is detected before the load reaches

write-back stage, the entry is invalidated.

If a long latency operation is not finished before a more recently issued long latency operation is
received in the general functional unit 222, the pipeline control unit 226 stalls the pipeline in the decoding (D)

stage.

Instructions from all functional units (GFU, MFU1, MFU2, and MFU3) access the scoreboard in the
decode (D) stage to check for dependencies. Usage of a single centralized scoreboard structure would require all
source and destination register specifiers of all instructions to be routed to the scoreboard, increasing routing
congestion and degrading scoreboard access time. Therefore, the pipeline control unit 226 replicates the
scoreboard for each functional unit, but with all pointers to write and update or reset the entries in all scoreboards

generated in a single control block within the pipeline control unit 226 and routed to all scoreboards.

When a pair instruction enters the decode (D) stage of a media functional unit 220, the data and output
dependencies of the inherent second instruction of the pair are also checked in the same cycles. Accordingly,
seven read ports are used for the scoreboards of one media functional unit 220 including three source operands
and one destination operand for the first instruction and two source operands and one destination operand for the

inherent second instruction of the pair.
Instructions executed in the general functional unit 222 use four read ports.

When a load returns from either the load/store unit 218 or data cache 106, the valid signal is asserted
later in the cycle so that insufficient time remains in the cycle to generate reset pointers to invalidate the
corresponding entry in the scoreboard. If a load returns in cycle N, the entry to be invalidated or updated is

computed in cycle N+1 and the updated valid or ldg count bits are visible in cycle N+2.
A load enters the scoreboard at the first invalid entry corresponding to loads.

When the load buffer becomes full, the load/store unit 218 asserts a buffer full flag in E-stage of the last
load which filled the load buffer. The signal becomes late in the cycle due to the transfer time in the round trip
path between the pipeline control unit 226 and the load/store unit 218. The pipeline control unit 226 latches the
buffer full flag and stalls any load or setir instruction in the E-stage. The load/store unit 218 uses the load buffer

to stage the data written to internal registers by the setir instruction.

When the load enters the scoreboard, the encoded index is sent to the load/store unit 218. When the

10

15

20

25

WO 00/33186 PCT/US99/28822

226 -

load/store unit 218 returns the load, the load/store unit 218 also sends back the index to the scoreboard. The
entry corresponding to the index is accessed to reset the scoreboard. The index-based scoreboard facilitates
resetting of the scoreboard by avoiding comparison of the load_rd address with all the rd specifiers in the
scoreboard to find the entry which is to be reset or updated. A load can be entering one entry in the scoreboard

while another load is updating or invalidating another entry in the same cycle.

A load returning from the load/store unit 218 resets the scoreboard for a normal load or a Idpair or 1dg
which is updating the last pair of registers. For the ldg instruction which occurs during updating of the registers,

only the group load count is changed.

The entry corresponding to a long latency operation is reset when the long latency operation enters A4

or T stage without being stalled.

Instructions access the scoreboard in D-stage with the rd specifier of the load returned in the previous
cycle compared with the rs/rd specifiers of the current instruction to determine whether the load has returned. A
dependency occurs only if a scoreboard match occurs and the data does not return from the load/store unit 218 or

data cache 106 in the previous cycle.

The scoreboard is checked for data dependency and output dependency. For a load group instruction,
only part of the source specifier bit are compared and the compare signal is disqualified if the load group count
bits indicate the source specifier has already returned. For a load pair, part of the bits of the source specifier are
compared to the destination specifier held in the scoreboard. For other instructions, all bits of the source

specifier are compared to the destination specifier in the scoreboard.

For long latency instructions, data dependency is checked by comparing the destination specifier of the
long entry against the source specifier. For output dependency of all instructions other than gfu load group, load
pair, and call instructions, all bits of the long entry destination specifier are compared against the source specifier
of the instruction. For the gfu load group, load pair, and call instructions, only part of the bits of the long entry

destination specifier are compared against the source specifier of the instruction.

All matches from long entry are disqualified for gfu and mful instructions if the long latency entry is in
a final execute stage in the cycle since gfu and mful instructions can bypass the results of long latency operations

from the final execute stages.

Results of long latency operations enter an A4-stage register in the annexes. Instructions executed in

mfu2 and mfu3 can bypass results held in the A4-stage register.

Several definitions are set forth for describing stalls. The term “matching a load entry” refers to a

scoreboard hit in which the data has not yet returned from the data cache 106 or the load/store unit 218. Source

10

15

20

25

30

WO 00/33186 : PCT/US99/28822

-27-

specifiers for the media functional units (mfu) 220 are rsl, rs2, and rs3, except for pair instructions in which the
source specifiers are rsl, rs2, rsih, and rs2h. Source specifiers for the general functional unit (gfu) 222, except
for branches and conditional moves, are rs1 and rs2. Source specifiers for stores are rsl, rs2, and rd. Source

specifiers for branches are rd. Source specifiers for conditional move (cmove) instructions are rs1, rs2, and rd.

Decoder stage (D-stage) stalls for instructions executed in the general functional unit 222 occur under
several conditions including the occurrence of an output dependency when a previous load is unfinished. A D-
stage stall occurs when an output dependency occurs with a long-latency entry when the long-latency entry is not
in the final execute stage of the cycle. A D-stage stall occurs when the rd/rs specifier for the instruction matches

a scoreboard entry, a condition termed a “load use immediate/ long use immediate case”.

A D-stage stall also occurs when the instruction in the D-stage is a long-latency instruction and a valid
long-latency entry already exists in the scoreboard where the long-latency entry in the scoreboard does not reset
the scoreboard in that cycle either because the instruction associated with the long-latency entry has not finished

or is finished but held in a hold register due to a port conflict.

A D-stage stall also results when the processor 100 is in a step mode that is part of a debug functionality.
In the step mode, all instructions in one VLIW group stall in the D-stage until the pipelines are empty. Following

the stall, data for the source operands is received from the register file segments 224 and execution proceeds.

D-stage stalls for media functional unit 220 instructions of mful are the same as D-stage stalls for
general functional unit 222 instructions except that mful instructions stall in the D-stage for all data
dependencies and output dependencies of the inherent second instruction of a pair. Media functional unit 220

instructions of mfu2 and mfu3 stall in the D-stage for any source/destination specifier match in the scoreboard.

For various instructions, generation of a D-stage stall includes accessing the scoreboard for a load or
long-latency dependency for all rs/rd specifiers, then qualifying scoreboard matches and ORing the scoreboard

matches. The time for D-stage stall generation lasts for more than half the clock cycle.

To preserve the VLIW nature of instructions, even though each instruction in a VLIW group may enter
the E-stage at different cycles, all instructions in the group wait in the E-stage until the full VLIW group has
entered the E-stage. Accordingly, the instructions stall in the E-stage until the entire VLIW group is available for
execution. Each instruction stalls in the E-stage for a number of cycles that is generally independent of the
operation of other individual instructions within the group. When an instruction is waiting in the E-stage for
other instructions in the group, the waiting instruction generates a local E-stage stall signal (gf_local_stalle or

mf local stall).

In addition to the E-stage stall, instructions executed in the general functional unit 222 also stall for the

cases of (i) a load use dependency with a previous load, (ii) a gfu instruction with load or store buffer full, (iii) a

10

15

20

25

30

WO 00/33186 PCT/US99/28822

-28 -

stall for synchronizing long latency pair gfu instructions, (iv) stalls to avoid port conflicts, (v) stalls to handle
load-use dependencies, (vi) a “membar” instruction, and (vii) a processor in a step mode of the load/store unit
218. The membar instruction is a memory access instruction that specifies that all memory reference instructions

that are already issued must be performed before any subsequent memory reference instructions may be initiated.

For the load use dependency with a previous load, if a gfu or mful instruction enters the E-stage with a
load dependency, the instruction does not assert the load dependency E-stage stall until all other sub instructions
of the VLIW group enter the E-stage, but the instruction does bypass the load data returning from the load/store

unit 218.

Another stall condition occurs when the general functional unit 222 executes an instruction such as load,
setir, prefetch, or cas, and the load buffer is full. Alternatively, the general functional unit 222 executes a store or
cas instruction and the store buffer is full, in which case the gfu instruction also generates an E-stage stall. The
load/store unit 218 sends a “pcu-Isu loadbuffer full” signal and a “Isu-pcu store buffer full” signal to the pipeline
control unit 226. The pipeline control unit 226 latches the signals and uses the signals during the E-stage to

generate stalls.

An instruction executed by the general functional unit 222 stalls in E-stage for either one cycle or three
cycles so that the instructions reach the T-stage simultaneously with five cycle and seven cycle latency pair

instructions in the same VLIW group.

E-stage stalls are also invoked to avoid port conflicts. If a group N+1 includes a valid instruction in a
position of the media functional units 220 for which the instruction is a 7 cycle or 5 cycle pair instruction in the
group N, then all instructions in the group N+1 stall for an additional cycle in the E-stage so that the mfu
instruction in the group N+1 does not finish in the same cycle as the inherent second instruction of the pair. The

stall signal generated is a “previous pair stall” (gf_prev_pair_stall_e).

An E-stage stall is generated when the instruction in the first position of the media functional units 220
(mful) has a load-use dependency with a previous unfinished load instruction. The mful instruction asserts the

stall (mf1_1d_stalle) only after all the instructions in the VLIW group reach the E-stage.

While the invention has been described with reference to various embodiments, it will be understood
that these embodiments are illustrative and that the scope of the invention is not limited to them. A typical
implementation will generally include two, three, four, or more processors, although any suitable number of

processors may be included.

Many variations, modifications, additions and improvements of the embodiments described are possible.
For example, those skilled in the art will readily implement the steps necessary to provide the structures and

methods disclosed herein, and will understand that the process parameters, materials, and dimensions are given by

10

WO 00/33186 PCT/US99/28822

=29

way of example only and can be varied to achieve the desired structure as well as modifications which are within the
scope of the invention. Variations and modifications of the embodiments disclosed herein may be made based on
the description set forth herein, without departing from the scope and spirit of the invention as set forth in the
following claims. For example, the described structure and operating method may be applied to a particular
functional unit/ register file segment pair cluster structure including a set number and type of functional units and
divided register file structure, other suitable structures may otherwise be employed. The number of functional unit/
register file segment pair clusters may be varied, and other types of functional units employed. The register file may
be replaced by any type of executional storage for storing results generated by the functional units. The register file
and processor may be any suitable size. The register file may be much larger or much smaller than the described

128 registers. The very long instruction word may include any suitable number of subinstructions.

W

w =N &N v b

[, S - UL N S]

o

WO 00/33186 PCT/US99/28822

WE CLAIM

1. A processor comprising:
a plurality of parallel execution paths that selectively execute instructions in a plurality of operating
modes including:
an extended-width operating mode in which instructions execute in coordination across the
parallel execution paths; and
a multiple-thread operating mode in which instructions execute in parallel across a plurality of
independent threads, the execution paths including a multiple instruction parallel

pathway within a thread.

2. A processor according to Claim 1 wherein:
the independent parallel execution paths include functional units that execute an instruction set
including special data handling instructions supporting a multiple-thread execution

environment.

3. A processor according to Claim 1 wherein:

the processor is a Very Long Instruction Word (VLIW) processor.

4. A processor according to Claim 1 further comprising:
control logic that controls a plurality of processing units in the parallel execution paths to execute

instructions mutually independently in a plurality of independent execution threads.

5. A processor according to Claim 1 further comprising:
control logic that controls a plurality of processing units in the parallel execution paths with a low thread
synchronization to operate in combination using spatial software pipelining in the manner of a

single wide-issue processor.

6. A processor according to Claim 1 further comprising:

control logic that controls a plurality of processing units in the parallel execution paths in a multiple-
thread operation on the basis of a highly parallel structure including multiple independent
parallel execution paths for executing in parallel across threads and a multiple-instruction

parallel pathway within a thread.

7. A processor according to Claim 1 further comprising:

control logic that controls a plurality of processing units in the parallel execution paths in a single-thread

()

(O8]

w N N wn A

WO 00/33186 PCT/US99/28822

-31 -

wide-issue operation on the basis of the highly parallel structure including multiple parallel

execution paths with low level synchronization for executing the single wide-issue thread.

8. A processor according to Claim 1 wherein:
the plurality of independent parallel instruction paths selectively execute as a plurality of processors in
multiple-threaded applications using a Java™ programming language running under a

multiple-threaded operating system on a multiple-threaded Java Virtual Machine™.

9. A processor according to Claim 1 wherein:
the processor includes two independent processor elements forming a respective two independent

parallel execution paths.

10. A processor according to Claim 1 wherein:

in a first selected mode of operation the plurality of independent parallel instruction paths execute as a
plurality of processors in muitiple-threaded applications using a Java™ programming language
that generates a plurality of threads that respectively execute in the plurality of independent
parallel instruction paths with a minimum of threading overhead; and

in a second selected mode of operation the plurality of independent paralle! instruction paths execute as
a single processor in extended-width applications using the Java™ programming language that

generates an extended-width thread.

11. A processor according to Claim 1 wherein:

the independent processor elements are integrated into a single integrated-circuit chip.

12. A processor comprising:

a plurality of processor elements in a single integrated circuit chip capable of executing a respective
plurality of threads concurrently during a multiple-threaded operation; and

a control logic that selectively controls an execution environment in which the plurality of processor
elements execute multiple independent execution threads execute simultaneously, and
alternatively controls the plurality of processor elements execute in the parallel execution paths
with a low thread synchronization to operate in combination using spatial software pipelining

in the manner of a single wide-issue processor.

13. A processor according to Claim 12 wherein:
the processor elements are Very Long Instruction Word (VLIW) processors forming a respective

plurality of independent parallel execution paths.

(%)

[T I N A

HOWN

QLN R W

WO 00/33186 PCT/US99/28822

14. A processor according to Claim 12 wherein:

the processor is a general-purpose processor.

15. A processor according to Claim 12 wherein:

the processor includes two independent processor elements in a single integrated circuit chip.

16. A processor according to Claim 12 wherein:
the independent processor elements include a plurality of functional units that execute a respective

plurality of instructions concurrently and in parallel.

17. A processor according to Claim 12 wherein:

a plurality of independent processor elements are Very Long Instruction Word (VLIW) processor
elements that include a plurality of functional units operating concurrently in parallel, the
functional units including media functional units operating as digital signal processors, and a
general functional unit, and

the media functional units capable of executing a instruction that executes both a multiply operation and
an addition operation in a single cycle, the multiply operation and add operations being either

floating point or fixed point.

18. A processor according to Claim 12 wherein:
the control logic controls a plurality of processing units in the parallel execution paths to execute

instructions mutually independently in a plurality of independent execution threads.

19. A processor according to Claim 12 wherein:
the control logic controls a plurality of processing units in the parallel execution paths with a low thread
synchronization to operate in combination using spatial software pipelining in the manner ofa

single wide-issue processor.

20. A processor comprising:
a plurality of processor elements in a single concurrently executable parallel processor, the processor
elements including:
an instruction supply logic;
an instruction preparation logic coupled to the instruction supply logic;
a plurality of functional units coupled to the instruction supply logic and coupled to the

instruction preparation logic;

10
11
12

14
15
16
17
18
19
20

B LN AoOWN

(NG B e N, TR - VS B

WO 00/33186 PCT/US99/28822

-33-

a register file coupled to the plurality of functional units, coupled to the instruction supply
logic, and coupled to the instruction preparation logic,

the instruction supply logic, the instruction preparation logic, the plurality of functional units,
and the register file for a first independent processor element being independent and
separate from the instruction supply logic, the instruction preparation logic, the
plurality of functional units, and the register file of a second independent processor
element;

a control logic that selectively controls an execution environment in which the plurality of processor
elements execute multiple independent execution threads execute simultaneously, and
alternatively controls the plurality of processor elements execute in the parallel execution paths
with a low thread synchronization to operate in combination using spatial software pipelining
in the manner of a single wide-issue processor; and

a data cache coupled to and shared among the plurality of independent processor elements.

21. A processor according to Claim 20 wherein:
the plurality of independent processor elements are capable of executing a respective plurality of threads
concurrently during a multiple-threaded operation and capable of executing in combination in a

single extended-width thread in paraliel.

22. A processor according to Claim 20 wherein:

the plurality of independent processor elements are integrated into a single integrated-circuit chip.

23. A processor according to Claim 20 wherein:
an instruction supply logic includes an instruction cache for a first independent processor element that is
independent and separate from an instruction cache of the instruction supply logic of a second

independent processor element.

24. A processor according to Claim 20 wherein:

the control logic controls the processor for applications with a high level of instruction-level parallelism
to execute a plurality of instructions in parallel on the plurality of processor elements using a
low thread synchronization overhead to operate with a level of performance of an increased-
width VLIW processor; and

the control logic controls the processor for applications with a low level of instruction-level parallelism

to execute a plurality of independent threads in parallel on the plurality of processor elements.

(05}

w A

0 1 O s W N

(9%}

N N b

BOWN

WO 00/33186 PCT/US99/28822

-34 -

25. A processor according to Claim 20 wherein:

the processor is a Very Long Instruction Word (VLIW) processor including two independent four-wide
VLIW processor elements and the control logic controls the processor to selectively execute in
a first mode as an eight-wide VLIW processor and to alternatively execute in a second mode as

two four-wide VLIW threads.

26. A processor comprising:

a plurality of selectively independent parallel instruction paths executing instructions in parallel across
threads and a multiple-instruction pathway within a thread, and alternatively executing the
parallel instruction paths in combination in a single thread,;

low overhead interconnections between the parallel instruction paths to selectively operate the plurality
of parallel instruction paths either in coordination as a combined-width VLIW processor with
subinstructions in the multiple independent parallel execution paths extending across the

execution paths, or independently as a plurality of threads.

27. A processor according to Claim 26 further comprising:
a plurality of functional units that execute an instruction set including special data handling instructions

that are useful in a multiple-thread environment.

28. A general-purpose processor comprising:
a plurality of processor elements in a single integrated circuit die, the plurality of processor elements
executing selectively in multiple modes including:
a multiple-threaded mode in which multiple processor elements execute concurrently in
multiple-threaded operation; and
an extended-width instruction mode in which multiple processor elements execute concurrently

in coordination in a single thread across a plurality of functional units.

29. A processor according to Claim 28 wherein:
the processor is a VLIW processor including a plurality of VLIW processor elements, the VLIW

processor elements including a plurality of functional units that execute in parallel.

30. A processor according to Claim 28 wherein:
the processor is a VLIW processor including a two VLIW processor elements, the VLIW processor
elements including four functional units that execute in parallel, the four functional units

including three media functional units and one general functional unit.

(93]

B . Y

w

0 N N W B

WO 00/33186 PCT/US99/28822

-35-

31. A processor according to Claim 28 wherein:

the processor is a VLIW processor including a two VLIW processor elements, the VLIW processor
elements including four functional units that execute in paraliel, the four functional units
including three media functional units and one general functional unit, the processor executing
in an extended-width mode in combination on the eight functional units, and the processor
executing in a multiple-thread mode in parallel in two threads, one thread executing on each of

the two VLIW processor elements.

32. A method of operating a processor comprising:
selecting an execution mode between a multiple-thread mode and an extended-width instruction mode;
selectively executing instructions in a plurality of parallel execution paths including:
executing the instructions in the multiple-thread mode in parallel across a plurality of
independent threads, the execution paths including a multiple instruction parallel
pathway within a thread; and
executing the instructions in the extended-width instruction mode in coordination across the

parallel execution paths.

33. A method according to Claim 32 further comprising:
executing an instruction set including special data handling instructions supporting a multiple-thread

execution environment.

WO 00/33186

ILP A

PCT/US99/28822

ILP ﬁ

1/18
ASIZE
12
| | | | !
| I I [|
4 8
FIG. 1A
$SIZE
12 10
| | ! | |
| i | I |
4 8
FIG. 1B

SUBSTITUTE SHEET (RULE 26)

PCT/US99/28822

- WO 00/33186

2/18

S/9 91

WyHa4a ﬁ

S/ ¢be

19d ﬁ

¢ 9l

s/g9 9°1 'S-¥dN

/g9 9°L ‘N-vdn

941 — DI _
I LT T o L) _
1 “ "
201~ | _
__ _L
|
" _
cndi | “ LNdN
.
« > qa < >
901" d m
2L~ " 011
P J“
0zl -~ “
poL | dd9 -
" o0t

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

3/18

PCT/US99/28822

110 112
PC4 MPU1 PCo MPU2
210 210
Instruction Cache Instruction Cache
! 212 | 212
Instruction Aligner Instruction Aligner
, 214 ' 214
Instruction Buffer Instruction Buffer
226~ _v v v v 226~y v Y Y
PCU < PCU o
Yrocol | 1220 Vool 1 (2203
MFU3| IMFU2|[IMFU1| | GFU - MFU3| IMFU2{|\MFU1| | GFU |«
216~} 2207} |} 222/} o16-] 2207} | 1§ 2227}
- Register Files | ' Register Fies |
218~ 224 224 V224 224 || | 218~ V224 224} ‘204 -224
Load/Store Unit ol Load/Store Unit o
{ !

Shared Data Cache and Synchronization Area

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

4/18 /216
Broadcast Writes (5)
v v v v
316~ 314~ 312~ 310~
RF3 RF2 RF1 RFO

l l l l

3 Read Ports 3 Read Ports 3 Read Ports 3 Read Ports

FIG. 4
Global 276
Registers 1 Register File
12R/4W Y Y Y Y

YVYy Y VY A A 4 Yy

or
12R/5W MFU,| | IMFU,| | |MFUs|{ | | GFU

/ 220 / 220 / 220 / 222

FIG. 5A
100,
<«——— 8 VLIWWORDS —>
214~ 214~
| I I l | I l |
216—\ Y \ 4 A4 A 216-\ \ A A4 \ 4
Register File Register File

A {k A A A A A A
Y VN YYyYy Y Y N A A VV\} YYY Y_V N Y N

MEU, || MU |{|MFUS| || GFU || [MFU, || MU, | |MFUS|| | GFU

/220 /220 /220 /222 /220 / 220 / 220 / 222

1107 1127
FIG. 58

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

9/18

Dataln
(up to 3 32-bit registers)

\

5 Cycles Hardware bypasses
(globally provide shortest

visible internal latency
latency) (4, 2 and 1 cycle

| l latency)
7 7
512 514 p.
A
Data Out

Y (one 32-bit register)

FIG. 6

SUBSTITUTE SHEET (RULE 26)

PCT/US99/28822

WO 00/33186

6/18

L 94

A

m:o.aﬁm_ao é:&.&-m:ﬂ
09" 9 | S | *x ‘ £y ‘ 2 | Iy
suoneiadp ad ppe-np
0v9 £x . o | *x
2r9-"
M 1 7
/ /
299 099 0c9 ve9 c€9
cam.\ 029"

4

4

vi9

219~

019~

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

7/18
700~ ,
rsi & rs1 rs2 rsl rs2
1 el L]
GpipeT Gpipe2 Gpipe3
005 750 752 754
e et] E1 E1
' pipe La/St 1|__E7
i Pe s S T] !
e AT E2 E2
5' v v v v
A2 A2 E3 E3
Ly v v v
| A3 A3 E4 E4
|
]
1 Ad ! v
i g E5 E5
'. <
i I
| WB v]
|
| Located in the E6 E6
 Pipe_control Unit | il —
1
E34
|
FIG. 8A

SUBSTITUTE SHEET (RULE 26)

PCT/US99/28822

for

LMY

Gotl

PCT/US99/28822

WO 00/33186

/18

g8 9Id
pe3 63 3 £3 23 13
97 (o) el £9 23 13
B
|
|
. Y “
21/ — (1odid) adid sjofo [| M 1 ey oy e m VAR
A b e e v o
dp ids nad vy adid Jpab cv Ly 7
01— (G adid) adid peoy| gM 1 ey A4 L¥/0 3

F9V1S-400040

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

9/18

/‘700
gfu |lax mful |mfu2 \mfud |long
level 1|E lax1 |E E6E34
level 2 {A1T |ldx2 |AT/E2 A4
gfu |ldx |mful |mfu2 \mfu3 |long
level 3A2 |ldx3 |A2
level 4 |A3 |ldx4 |A3/E4
level 5|1 T T T
level 6 | wB WB__|wB__|WB
level 7 | RFO
FIG. 8C
/800

E1 E2 A2 A3 T w 812

E1 E2 E3 E4 T we -84

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

10/18

PCT/US99/28822

group |mfud |mfu2 |mfuT gfu
viiw 1 \mfu3_1 \mfu2_1 \mful_1 |gfu_1
viiw 2 \mfu3_2 \mfu2_2 \mful_2 |gfu_2
viw_3 |mfu3_3 {mfu2_3 |mful_3 gfu 3
viiw 4 \mfu3_4 \mfu2_4 |mful_4 gfu 4
viiw 5 \mfu3_5 \mfu2_5 \mful_5 | gfu_5
FIG. 10A
cycle 51314567 8|9]|10(11]12]13
mful 1| D |ET|E2| X |E3|E4| T |WB
helper D |E1|E2| X |E3|E4| T |WB
glu_1 | D E|A1|A2 A3 | T |WB
gfu_2 D|E|E|A1T|A2|A3| T |WB
FIG. 108
ocle |1]2 3 [45[6]|7]8|9|10|17[12]13
mfu 1 | D |ET|E2|X1|X2|X3|E3|E4| T |WB
helper DIET|E2| X1 | X2| X3 | E3| E4| T |WB
giu_l | D E|E|E |AT]A2|A3| T |WB
viiw_2 D E|E |AT|A2|A3| T |WB
FIG. 10C

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

11/18

cycle (11231456789]|10(17]|12
mful 1| D {E1|E2|X1|X2| X3|E3 |E4 | T |WB
helper D|E1|E2| X1|X2|X3 | E3|F4| T |WB
mful_2 D|D|D|E|E|AT|A2|A3| T |WB

miu2 1T\ p| E| E| E| E| A1| A2|A3| T |WB
mfu2 2 D|D|D|E1T|E2| X |E3|E4| T
helper D |E1VE2| X |E3|E4| T

giul |D|E|E|E|E|AI|A2|A3| T |WB
gfu_2 D|D|D|D|E|E|AT|A2|A3| T |WB

FIG. 11A

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

12/18

cicle | 11231451617 (8(9]|10]11]12
mful_1| D |E1\E1|ET|ET|E2|A2 |A3| T |WB
helper D|D|D|D|ET| E2|A2|A3| T |WB
mful 2 D|E|AT|A2|A3| T |WB

mu2_1 | D |ET|ET|ET| E2) X| E3|E4| T |WB
helper D|D|D|ET|E2| X|E3| E4] T |WB
mfu2_2 DIDI|E|AT|A2|A3| T |WB

miu3_1{ p | E1| E2| X1| X2| X3| E3| E4| T |WB
helper DIET|E2|X1iX2|X3| E3|E4| T |WB
mfu3_2 DID|D|D|E|AT|A2|A3]| T |WB

giul \D| E| E| E| E| A1 A2 A3| T |WB
gfu 2 DIDI|\D|D|D|EV|AT|A2|A3| T |WB

FIG. 11B

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

13/18

cycle 1123|4567 8|9]|10]|11)12
mful _1 | D {E1 |E1 |ET | ET|E2|A2 |A3 | T |WB

mful_2 D|D|D{D| E| E|AT|A2|A3| T |WB

mfu2_ 1| D | ET|ET|ET|E2| X |E3|E4| T |WB
helper D|D|D|EI{E2| X | E3| E4| T |WB
mfu2_2 D|E|E|AT|A2{A3| T |WB

miu3_1 | p | E1| E2| X1| X2| X3 | E3| E4| T (WB
helper D IET\E2|X1 | X2 | X3 | E3| E4| T |WB
mfu3_2 DID|D|E|E|A1|A2|A3| T |WB

giu 1 |\ p| E| E| E| E|A1|A2|A3| T |WB
gfu 2 DID|D|D|E|E|AT|A2|A3] T |WB

FIG. 11C

SUBSTITUTE SHEET (RULE 26)

WO 00/33186 PCT/US99/28822

14/18

s ifu_pcu_pc /226

RFO

mfu2x_data_t | horizontal = 3 x 32

mfu3x_data_t

spr_data_a2

<
—

YVYY v_\¥

PCU_GFUX_DP|~ 1110
1130

AA A AA AA AA

PCU_GFUX_MC

mful_pcu_data_e
mful_pcu_data_e2
mful_pcu_data_e4

dcu_pcu_dc_data[31:0]
deu_pcu_dc_data[63:32]
Isu_pcu_ndc_data[31:0]
Isu_pcu_ndc_data[63:32]

A A

4\ ﬂ\

, pCU_rs2_data
» pcu_rs1_data
— pcu_strd_data
— pcu_strd1_data

horizontal buses = 11 x 32
vertical routing = 13x 32 {43 \{pcu_rs1_data

pcu_rs2_data
pcu_strd_data

GFU
202

FIG. 12A

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

15/18

PCT/US99/28822

/r226

RF1
(decoding)

RF1

A A A

spr_data_a2

nﬁJZx_data_t

mfu3x_data_t

miul X_data_t

horizontal = 4

rf1_pcu_rs1_data

YYYN \A A

PCU MFU1X_MC

PCU_MFU1X_DP

1132

rf1_peu_rs2_ “data
1rf7 _peu_ 153 _data

1120

gfux_data_al

-
e
)

AAA A{m{t A A

dcu_pcu_dc_data[31:0]

gfux_data_a4

<

dcu_pcu_dc_data[63:32]

<

-

ldx1_data
ldx1m_data

horizontal buses = 13

pcu_mful rs1_data
pcu_mful_rs2_data
pcu_mful_rs3_data

| /su_pcu_ndc_data[31.0]
| Isu_pcu_ndc_data[63:32]

mful_pcu_data_e
mful_pcu_data 2

Yy Y'Y

mfut _pcu_data_e4

YVvY

gfu_pcu_data_e
gfu_pcu_data_e6e34

pcu_strd_data

MFUT

220

FIG. 12B

SUBSTITUTE SHEET (RULE 26)

- WO 00/33186

PCT/US99/28822

16/18

/'225
RF2
) A4 Y mifulx_data_t
Horizontal Mfudx _data_t
buses = 4 spr_data_a2
- mfu2x_data_t
“ rf2_pcu_rs1_data
YVYY \ A A -— -
rf2_pcu_rs2_data
rf2_pcu_rs3_data
PCU_MFU2X_MC 1122
PCU_MFU2X_DP
1134
AAA A A A A
Horizontal buses = 4
< ldx1m_data
ldx1_data

ﬂx A ﬂx

gfux_data_al
gfux_data_a4

mfu2_pcu_data_e
mfu2_pcu_data_e4
pcu_mfu2_rs1_data mfu2_pcu_data_e2
pcu_mfu2_rs2_data
pcu_mfu2_rs3_data

'Yy

pcu_strd_data

220
MFU2 4

FIG. 12C

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

PCT/US99/28822

17/18 226
RET + data wh
. A — B YW W gfux_data_t
- ldx3_data
- ldx3m_data

““mfux_data_t

—
»

mfu3x_data_t

Horizontal buses -
in channel = 5 YV VVYY

o

PCU_MFU1X_MC

PCU_MFU1X_DP

22 outputs

sl rf1 _pcu_rs1_data
YYVY VYV ¥ rf1_pcu_rs2_data
rf1_pcu_rs3_data

1122

1132

? y

Horizontal buses

4 M1 11 deu_peu_de_data[31:0]
dcu_pcu_dc_data[63:32]
_LIsu_pcu_ndc_data[31:0]
_Isu_pcu_ndc_data[63:32]

in channel = 19

— mful_pcu_data_e

> mful_pcu_data_e2
> mful_pcu_data_e4
gfu_pcu_data_e
gfu_pcu_data_e6e34

< gfux_data_aT
g;ux_gaia_ag mfulx_data_al
glux_dala a5 mfy1x_data_a2
mfulx_cata_a3
F
pcu_mful_rs1_data ;Z);;ﬁ?daé«;ta
pcu_mful_rs2_data ldx2_data

pcu_mful_rs3_data

wrwrw}

220 |dx2m data

FIG. 12D

SUBSTITUTE SHEET (RULE 26)

WO 00/33186

PCT/US99/28822

18/18 1200
LSU pcu_trap
\L \ 4 A A l
| stage | Jdd_rd[7:0] |lox1_data[63:0] | dsize | vaiid {747
2 | stage | ldx2_rd[7:0] |ldx2_data[63:0] | dsize valid
jdx3 | stage | lox3_rd[7:0] |ldx3_data[63:0] dsize | valid
ldx4 RF
1212
FIG. 13
cycle | 1 31415617189\ 10|11]12
load D C (A2 | A3| T |WB
membar pD| E| E| E| A1l A2|A3| T |WB
instrx E |A1|A2|A3| T |WB
FIG. 14A
cycle | 1 3145|6718 |9]|10|11]712
setir D C |A2|A3| T |WB
load D| E| C|A2| A3| T |WB
Joad D E|E |AT[A2|A3| T |WB
instrx DI|E|A1T|A2|A3| T |WB
FIG. 14B

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inte .tional Application No

PCT/US 99/28822

A, CLA%SIFICATION OF SUBJECT MATTER

IPC

GO6F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

8 December 1999 (1999-12-08)

the whole document

FILLO M ET AL: "THE M-MACHINE
MULTICOMPUTER™"

ALAMITOS, IEEE COMP. SOC. PRESS,

XP000585356 ISBN: 0-8186-7349-4
the whole document

EP 0 962 856 A (TEXAS INSTRUMENTS INC)

PROCEEDINGS OF THE ANNUAL INTERNATIONAL
SYMPOSIUM ON MICROARCHITECTURE,US,LOS

vol. SYMP. 28, 1995, pages 146-156,

1-7,9,
11-16,
18-29,
32,33

1-7,9,
11-16,
18-24,
26-29,
32,33

8,10
-/—

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Speciai categories of cited documents :

apn
gn

u

“Qr

pw

document defining the general state of the art which is not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on priority claim(s) or

which is cited to establish the publication date of another
citation or other special reason (as specified)

document referring to an oral disclosure, use, exhibition or
other means

document published prior to the intermnational filing date but
later than the priority date claimed

“T" later document published after the internationai filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the ¢claimed invention
cannot be considerad to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

7 April 2000

Date of mailing of the international search report

17/04/2000

Name and mailing address of the |SA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Klocke, L

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Inte .tional Application No

PCT/US 99/28822

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication.where appropriate, of the relevant passages

Relevant to claim No.

WOLFE A ET AL: "A VARIABLE INSTRUCTION
STREAM EXTENSION TO THE VLIW ARCHITECTURE"
COMPUTER ARCHITECTURE NEWS,US,ASSOCIATION
FOR COMPUTING MACHINERY, NEW YORK,
vol. 19, no. 2, 1 April 1991 (1991-04-01),
pages 2-14, XP000203245

ISSN: 0163-5964
the whole document

US 5 784 630 A (KOBAYASHI YOSHIKI ET AL)
21 July 1998 (1998-07-21)
the whole document

GLOSSNER AND VASSILIADIS: "The DELFT-JAVA

engine: an introduction"

3RD INTERNATIONAL EURO-PAR CONFERENCE
26 - 29 August 1997, pages 29766-770,
XP000901534

PASSAU,DE

the whole document

b

TULLSEN D M ET AL: "SIMULTANEOUS
MULTITHREADING MAXIMIZING ON-CHIP
PARALLELISM"

PROCEEDINGS OF THE ANNUAL SYMPOSIUM ON
COMPUTER ARCHITECTURE,US,NEW YORK, ACM,
vol. SYMP., 22, 1995, pages 392-403,
XP000687825 ISBN: 0-7803-3000-5

page 399, right-hand column -page 401,
left-hand column

MENDELSON AND MENDELSON: "Toward a

general-purpose multi-stream system"

PACT ’94 : CONFERENCE ON PARALLEL

ARCHITECTURES AND COMPILATION TECHNIQUES,
24 - 26 August 1994, pages 335-338,
XP000571393

Montréal,CA

the whole document

1,3,4.6,
12,13,
20-22,
25,26,
28,29,32

1,12,20,
26,28

17

1,12,20,
26,28,32

1,12,20,
26,28,32

Fom PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No

PCT/US 99/28822

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0962856 A 08-12-1999 JP 2000029731 A 28-01-2000

US 5784630 A 21-07-1998 JP 4117540 A 17-04-1992
JP 2834298 B 09-12-1998
JP 4127351 A 28-04-1992
us 5968160 A 19-10-1999
DE 4129614 A 19-03~1992

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

