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(57) Abstract: A distributed load balancer in which a router
receives packets from at least one client and routes packet
flows to multiple ingress servers. For unknown packet
flows, an ingress server cooperates with primary and sec-
ondary flow trackers to establish connections to server
nodes. For known packet flows, the ingress server sends the
packets to target server nodes. The server nodes randomly
select egress servers for outgoing packets of the packet
flows. The ingress servers, flow trackers, and egress servers
are implemented by multiple load balancer nodes in a load
balancer node layer. The ingress and egress servers for a
given packet flow may be on difterent load balancer nodes.
The load balancer nodes may use a consistent hash function
to compute a consistent hash ring for the nodes according to
packet flow client/public endpoint pairs so that nodes asso-
ciated with given packet flows can be located.
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TITLE: ASYMMETRIC PACKET FLOW IN A DISTRIBUTED LOAD BALANCER

BACKGROUND

[0001] Conventional load balancers are typically single, dedicated boxes that include
multiple network interface controllers (NICs), for example eight NICs, with some of the NICs
handling inbound traffic from/outbound traffic to clients and the other NICs handling outbound
traffic from/inbound traffic to the host devices (e.g., servers such as web servers) that are being
load balanced. Bandwidth or throughput on these conventional load balancers is typically in the
range of 40 Gigabits per second (Gbps) on the client side and 40 Gbps on the server side. As the
scale and scope of network-based applications and network-based services such as cloud
computing services have increased, data centers may house hundreds or even thousands of host
devices (e.g., web servers) that need to be load balanced. Conventional load balancers may not
scale well in such environments.
[0002] Further, conventional load balancers typically use techniques such as max
connections (or max conns), round robin, and/or least connections (least conns) applied to data
collected from the host devices to select which host device will handle a connection. In addition,
conventional load balancers typically serve as proxies to the host devices that they front and thus
terminate connections (e.g., Transmission Control Protocol (TCP) connections) from the clients
and send the client traffic to the host devices on TCP connections established between the host
devices and the load balancer. Thus, a host device and a client do not communicate over a direct
TCP connection when using these conventional load balancers.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] Figure 1 is a block diagram of an example distributed load balancing system,
according to at least some embodiments.
[0004] Figure 2 is a high-level flowchart of a load balancing method that may be
implemented by the distributed load balancer system of Figure 1, according to at least some
embodiments.
[0005] Figure 3 shows an example load balancer node that includes ingress, egress, and flow
tracker components, according to at least some embodiments.
[0006] Figure 4 illustrates routing and packet flow in the distributed load balancer, according
to at least some embodiments.
[0007] Figure 5 illustrates advertising ingress nodes to the edge router, according to at least

some embodiments.
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[0008] Figure 6 is a flowchart of a multipath routing method, according to at least some
embodiments.

[0009] Figure 7 graphically illustrates asymmetric packet flow, according to at least some
embodiments.

[0010] Figure 8 illustrates packet flow in the distributed load balancing system, according to
at least some embodiments.

[0011] Figures 9A and 9B provide a flowchart of packet flow when establishing connections
in the distributed load balancing system, according to at least some embodiments.

[0012] Figures 10A through 10G illustrate packet flow in the distributed load balancing
system, according to at least some embodiments.

[0013] Figures 11A through 11D illustrate the handling of events that effect membership in
the load balancer node consistent hash ring, according to at least some embodiments.

[0014] Figure 12 is a high-level flowchart of a health check method that may be performed
by each load balancer node according to a health check interval, according to at least some
embodiments.

[0015] Figure 13 illustrates a method for health checking a load balancer node from another
load balancer node, according to at least some embodiments.

[0016] Figure 14 graphically illustrates a load balancer node health checking one or more
other load balancer nodes, according to at least some embodiments.

[0017] Figure 15 illustrates the load balancer nodes health checking the server nodes,
according to at least some embodiments.

[0018] Figure 16 graphically illustrates a view of health of another node that may be
maintained by a load balancer node 110, according to at least some embodiments.

[0019] Figure 17 illustrates health information that may be maintained by each load balancer
node, according to at least some embodiments.

[0020] Figures 18A and 18B illustrate handling a load balancer node failure, according to at
least some embodiments.

[0021] Figures 19A and 19B graphically illustrate a connection publishing technique,
according to at least some embodiments.

[0022] Figure 20 is a high-level flowchart of a connection publishing method that may be
performed by each load balancer module, according to at least some embodiments.

[0023] Figure 21 is a flowchart of a method for distributing the active connection information
received in a connection publishing packet to target load balancer nodes, according to at least

some embodiments.
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[0024] Figure 22 illustrates an alternative method for distributing the active connection
information received in a connection publishing packet to target load balancer nodes, according
to at least some embodiments.

[0025] Figure 23 illustrates example software stack architecture for a load balancer node
according to at least some embodiments.

[0026] Figure 24 illustrates aspects of core packet processing technology that may be used in
embodiments.

[0027] Figure 25 illustrates an example multicore packet processor for processing data flows
on the load balancer nodes, according to at least some embodiments.

[0028] Figure 26 illustrates another example multicore packet processor for processing data
flows on the load balancer nodes, according to at least some embodiments.

[0029] Figure 27 illustrates processing of incoming packets by a load balancer node process,
according to at least some embodiments.

[0030] Figure 28 illustrates processing of outgoing packets by a load balancer node process,
according to at least some embodiments.

[0031] Figure 29 illustrates a load balancing system that includes a distributed load balancer
in a production environment, according to at least some embodiments.

[0032] Figure 30 illustrates a distributed load balancer test system that incorporates a
message bus mechanism that enables multiple distributed load balancing system components to
be configured and executed in or as a single process, according to at least some embodiments.
[0033] Figures 31 and 32 illustrate message bus packet adapters and packet pipelines,
according to at least some embodiments.

[0034] Figure 33 A illustrates an example provider network environment, according to at least
some embodiments.

[0035] Figure 33B illustrates a distributed load balancer implementation in an example
provider network environment as shown in Figure 33A, according to at least some embodiments.
[0036] Figure 34A illustrates an example physical rack implementation of the distributed
load balancer and server nodes according to at least some embodiments.

[0037] Figure 34B illustrates another example physical rack implementation of the
distributed load balancer and server nodes according to at least some embodiments.

[0038] Figure 35 illustrates an example networking environment in which one, two or more
distributed load balancers are implemented in a network, according to at least some

embodiments.
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[0039] Figure 36 is a block diagram illustrating an example computer system that may be
used in some embodiments.

[0040] While embodiments are described herein by way of example for several embodiments
and illustrative drawings, those skilled in the art will recognize that embodiments are not limited
to the embodiments or drawings described. It should be understood, that the drawings and
detailed description thereto are not intended to limit embodiments to the particular form
disclosed, but on the contrary, the intention is to cover all modifications, equivalents and
alternatives falling within the spirit and scope as defined by the appended claims. The headings
used herein are for organizational purposes only and are not meant to be used to limit the scope
of the description or the claims. As used throughout this application, the word “may” is used in a
permissive sense (i.e., meaning having the potential to), rather than the mandatory sense (i.c.,
meaning must). Similarly, the words “include”, “including”, and “includes” mean including, but
not limited to.

DETAILED DESCRIPTION
[0041] Various embodiments of methods and systems for distributed load balancing in
network environments are described. Embodiments of a distributed load balancing method and
system are described that may be implemented according to embodiments of a distributed load
balancer in various network environments. Embodiments of the distributed load balancer may,
for example, be used to facilitate and maintain packet flows, for example Transmission Control
Protocol (TCP) technology packet flows, between clients on an external network such as the
Internet and destinations, typically servers (e.g., web servers, application servers, data servers,
etc.) on a local network, such as a provider network 1900 as illustrated in Figures 33A and 33B.
While embodiments are primarily described herein in relation to processing TCP packet flows,
note that embodiments may be applied to other data communications protocols than TCP, and to
other applications than processing packet flows.
[0042] The distributed load balancer may act to facilitate and maintain TCP packet flows
between particular clients and selected servers (e.g., web servers). However, the distributed load
balancer does not terminate the TCP flows from the clients and does not act as a proxy to the
servers as is done in conventional load balancers. Instead, the load balancer nodes of the
distributed load balancer route TCP packets received from the clients to target servers, and the
servers use their TCP stacks to manage the TCP connections to the clients. In other words, the
servers terminate the TCP packet flows from the clients.
[0043] In addition, instead of the load balancer node(s) making decisions as to which server

will service a connection request based on a load balancing technique or algorithm applied to
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information collected from the servers as is done in conventional load balancer technology, the
load balancer nodes may randomly select a server to receive a new connection request, and a
component of the distributed load balancer that resides on the server node makes the decision
locally as to whether the selected server will accept or reject the new connection request based
on one or more metrics of the current status of the respective server. Thus, the decisions as to
which servers are to accept connection requests is moved from the load balancer node(s) to the
server nodes that will be handling the connections. In other words, the decision is moved closer
to where and when the connection request will be serviced.

[0044] To facilitate and maintain the packet flows between the clients and the servers,
embodiments of the distributed load balancer may employ various techniques or technologies
including but not limited to multipath routing technology, consistent hashing technology,
distributed hash table (DHT) technology, Border Gateway Protocol (BGP) technology,
membership tracking, health checking, connection publishing, and packet encapsulation and
decapsulation. These as well as other aspects of the distributed load balancing system are
described below in relation to the Figures.

Distributed load balancing system

[0045] Figure 1 is a block diagram of an example distributed load balancing system,
according to at least some embodiments. Embodiments of the distributed load balancer may be
implemented in a network 100, for example a provider network 1900 of a service provider as
illustrated in Figures 33A and 33B. As a high-level overview of client packet handling in the
distributed load balancer system, one or more clients 160 of the network 100 may connect to a
border router 102 of the network 100, for example via an external network 150 such as the
Internet. The border router 102 may route incoming packets (e.g., TCP packets) from clients 160
to an edge router 104 component of the distributed load balancer that routes the incoming
packets to the load balancer (LB) nodes 110 in a load balancer node layer of the distributed load
balancer system. In at least some embodiments, the edge router 104 may make the routing
decisions according to a per-flow hashed multipath routing technique, for example an equal-cost
multipath (ECMP) hashing technique. The load balancer nodes 110 in turn encapsulate the
packets (e.g., according to User Datagram Protocol (UDP)) and route the encapsulated packets to
the local load balancer modules 132 on the server nodes 130 via a network fabric 120 (e.g., an L3
network) on network 100. The fabric 120 may include one or more networking devices or
components including but not limited to switches, routers, and cables. On the server nodes 130,

the local load balancer modules 132 decapsulate the packets and send the client TCP packets to
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the TCP stacks of the servers 134. The servers 134 on the server nodes 130 then use their TCP

stacks to manage the connections to the clients 160.

[0046] Figure 2 is a high-level flowchart of a load balancing method that may be
implemented by the distributed load balancer system of Figure 1, according to at least some
embodiments. Embodiments of the distributed load balancer system may not solve the hard
problem of assigning load among multiple destinations (e.g., web servers) as is done in
conventional load balancers. For example, conventional load balancers typically use techniques
or algorithms such as max connections, round robin, and/or least connections techniques to select
which server should handle a connection. However, these techniques have drawbacks, and in
particular are difficult to perform successfully in a distributed system where the data used to
make load balancing decisions is often almost immediately stale. In at least some embodiments
of the distributed load balancer system, instead of attempting to select a server node 130 to
satisfy a connection request using one or more of the load balancing techniques as is done in
conventional load balancers, a load balancer node 110 in the load balancer node layer may
randomly determine a server node 130 to receive a request for a client connection. If that server
node 130 considers itself overloaded, the server node 130 may send the connection request back
to the load balancer node 110 thus informing the load balancer node 110 that the server node 130
cannot currently handle the connection. The load balancer node layer may then randomly
determine another server node 130 to receive the connection request, or alternatively may return
an error message to the requesting client 160 to inform the client 160 that the connection cannot
currently be established.

[0047] As indicated at 10 of Figure 2, the load balancer node layer of the distributed load
balancer system receives a request for a communication session (e.g., a TCP connection) from a
source. The source may, for example, be a client 160 on an external network 150 to the network
100 that implements the distributed load balancer system. In at least some embodiments, the
request may be received from the client 160 at a border router 102 of the network 100, and routed
to an edge router 104 that routes the incoming packets to the load balancer (LB) nodes 110 in a
load balancer node layer, for example using a per-flow equal-cost multipath (ECMP) hashing
technique to pseudorandomly select a load balancer node 110 to which a particular connection
request from a client 160 is to be routed.

[0048] As indicated at 20, the load balancer node layer randomly selects a destination node
and forwards the connection request to the selected destination node. The destination node may,
for example, be one of a plurality of server nodes 130 fronted by the load balancer. In at least

some embodiments, a load balancer node 110 in the load balancer layer may randomly select a



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

server node 130 to receive a connection request from among all known server nodes 130.
However, other methods than purely random selection from among all known server nodes 130
may be used in some embodiments to select server nodes 130 to receive the connection requests.
For example, in some embodiments, information about the server nodes 130 may be used by the
load balancer nodes 110 to weight the random selection of server nodes 130. As an example, if
the load balancer nodes 110 know that different server nodes 130 are different types of devices or
are configured with different CPUs and thus have different capabilities or capacities, the
information may be used to bias the random selection towards (or away from) particular type(s)
or configuration(s) of server node 130.

[0049] As indicated at 30, the destination node determines if it can accept the
communications session. In at least some embodiments, a local load balancer (LB) module 132
on the server node 130 determines if the respective server 134 on the server node 130 can accept
the new connection based on one or more metrics of the current status of the respective server
134.

[0050] At 40, if the connection request is accepted, then as indicated at 50 the destination
node informs the load balancer node layer that the destination node can handle the connection.
As indicated at 60, a communications session is then established between the source (e.g., a
client 160) and the destination node (e.g., a server 134 on a server node 130) via the load
balancer node layer. In at least some embodiments, the server 134 on the server node 130 uses a
TCP stack to manage the connection to the client 160.

[0051] At 40, if the connection request is not accepted, then as indicated at 70 the destination
node notifies the load balancer node layer, and the method may return to element 20. The load
balancer node layer may then randomly select another destination node at 20, or alternatively
may inform the requesting client 160 that the connection cannot currently be established. Note
that the client 160 may, but does not necessarily, resubmit the connection request to begin the
method again at element 10.

[0052] Referring again to Figure 1, at least some embodiments of the distributed load
balancer system may use commodity hardware to route client traffic received at an edge router
104 on network 100 to server nodes 130 on the network 100. At least some embodiments of the
distributed load balancer may include a load balancer node layer that includes multiple load
balancer nodes 110. In at least some embodiments, each load balancer node 110 may serve in
one or more of multiple roles in the load balancer node layer. These roles of the load balancer
nodes 110 may include the roles of an ingress node, and egress node, and a flow tracker node (as

a primary flow tracker or a secondary flow tracker for a given packet flow). In at least some
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embodiments, each load balancer node 110 may be implemented in the load balancer node layer
as or on a separate computing device, such as a commodity rack-mounted computing device. In
at least some embodiments, cach load balancer node 110 may serve in each of the three roles of
ingress node, egress node, and flow tracker node (as a primary or secondary flow tracker for a
packet flow), with the load balancer node 110 generally serving in only one (but possibly in two
or three) of the roles for particular packet flows. Note, however, that in at least some
embodiments, a load balancer node 110 is not allowed to serve as both the primary flow tracker
and the secondary flow tracker for a particular packet flow. Alternatively, in some embodiments,
cach load balancer node 110 may serve in only one of the three roles. In this embodiment,
separate sets of computing devices may be implemented in the load balancer node layer
specifically as ingress nodes, egress nodes, and flow tracker nodes.

[0053] In at least some embodiments, consistent hashing and consistent hash ring technology
may be applied to determine the primary and secondary flow trackers for the packet flows. Each
packet flow from a client may be uniquely identified, for example by a 4-tuple consisting of: the
client IP address, client port, server (public) IP address, and server port. This identifier may be
abbreviated as CP or CcPp indicating the client and public endpoint pair. Packets associated
with any given TCP flow (or CP pair) can appear on any load balancer node 110 operating as an
ingress server 112 due to the hashed multipath (e.g., ECMP) flow distribution from the edge
router 104. Consistent hashing is used so that when a packet arrives at a load balancer node 110
serving as an ingress node, the ingress node can determine which load balancer node 110 is
responsible for maintaining the state for the packet flow (i.e., the primary flow tracker node).
The CP pair may be hashed by the ingress node into a consistent hash ring to determine which
load balancer node 110 is responsible for maintaining state information for the packet flow. The
node 110 determined according to the consistent hash of the CP pair for the packet flow in the
consistent hash ring is the node 110 that serves as the primary flow tracker for the packet flow.
In at least some embodiments, the successor node in the consistent hash ring serves as the
secondary flow tracker for the packet flow.

[0054] Figure 3 shows an example load balancer (LB) node 110 that includes components
that implement all three roles (ingress, egress, and flow tracker), according to at least some
embodiments. In this example, an ingress server 112 component performs the ingress role of
receiving inbound TCP packets from client(s) and sending the TCP packets as encapsulated
packets to the server(s). An egress server 114 component performs the egress role of receiving
outbound encapsulated packets from the server(s) and sending the decapsulated TCP packets on

to the client(s). A flow tracker 116 component performs as a primary or secondary flow tracker
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for one or more packet flows that are established between the client(s) 160 and the server(s) 134.
The ingress server 112 may also communicate with the flow tracker 116 on load balancer node
110, or with the flow tracker 116 on another load balancer node 110 to initiate a TCP connection
between a client and one of the servers 134 in response to a connection request received from the
respective client 160, or to obtain mapping information for the packet flow. If the ingress server
does

Load balancer nodes

[0055] Referring again to Figure 1, in at least some embodiments, the load balancer nodes
110 in the load balancer node layer receive client traffic (packets, e.g. TCP packets) from one or
more routers 104 on the network and encapsulate the packets according to a protocol (e.g., the
User Datagram Protocol (UDP)) used by the distributed load balancer system on the fabric 120.
The load balancer node layer then forwards the encapsulated packets to the destination server
nodes 130 over fabric 120. Each server node 130 includes a local module 132 that is a
component of the load balancer system. The module 132 may be referred to herein as a load
balancer module or simply LB module, and may be implemented in software, hardware, or a
combination thercof on the server node 130. At each server node 130, the respective load
balancer module 132 decapsulates the packets and sends the TCP packets to a local TCP stack
for normal TCP processing. In at least some embodiments, the load balancer node layer may
maintain state information for every client-server TCP flow; however, the load balancer nodes
110 in the load balancer node layer may not interpret anything about the TCP flow. Each flow is
managed between the server 134 on the respective server node 130 and the client 160. The
distributed load balancer system insures that the TCP packets arrive at the correct destination
server 134. The load balancer module 132 at each server node 130 makes the decision as to
whether the respective server 134 will accept or reject a new connection in response to a client
connection request received from a load balancer node 110.

[0056] In at least some embodiments, the distributed load balancing system may use
consistent hashing technology to, for example, determine which load balancer node(s) 110
should remember which server node 130 is responsible for a particular TCP packet flow. Using
consistent hashing technology, the load balancer nodes 110 in the load balancer node layer may
be viewed as a consistent hash ring, and the load balancer nodes 110 may keep track of
membership in the ring and determine particular members in the ring that are responsible for
particular packet flows according to a consistent hashing function. In at least some
embodiments, there are two load balancer nodes 110 that are responsible for tracking each packet

flow between the clients 160 and the servers 134; these nodes 110 may be referred to as the
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primary flow tracker (PFT) node and the secondary flow tracker (SFT) node. In at least some

embodiments, the primary flow tracker is the first load balancer node 110 on the consistent hash
ring for the flow, and the secondary flow tracker is the next or subsequent load balancer node
110 on the consistent hash ring distinct from the primary flow tracker node. In this arrangement,
if the primary flow tracker node fails, then the secondary flow tracker node may become the new
primary flow tracker, and another load balancer node 110 (e.g., the next node 110 on the
consistent hash ring) may assume the role of the secondary flow tracker. Note that, in at least
some embodiments, a load balancer node 110 is not allowed to serve as both the primary flow
tracker and the secondary flow tracker for a given packet flow. This and other membership
changes in the consistent hash ring are discussed later in this document. In at least some
embodiments, configuration information for the load balancer implementation (e.g., authoritative
list(s) of the load balancer nodes 110 and server nodes 130 that are currently in the
implementation) may be maintained by a configuration service 122 component of the distributed
load balancing system, which may for example be implemented on one or more server devices
coupled to the load balancer nodes 110 via the fabric 120.

[0057] In at least some embodiments, in addition to serving as primary and secondary flow
tracker nodes, the load balancer nodes 110 may also perform in one of two other roles for a given
flow: the role of an ingress node and the role of an egress node. An ingress node for a packet
flow is the load balancer node 110 that receives the respective packet flow from the edge router
104 and forwards the packet flow (as encapsulated packets) to a selected server 134 on a server
node 130 via fabric 120. An ingress node is the only load balancer node 110 that moves actual
client data (TCP data packets) to the respective destination server node 130. The ingress node
maintains a mapping of the TCP flow to a respective load balancer module 132 on the destination
server node 130 so that the ingress node knows which load balancer module 132 to forward the
client traffic to. An egress node is a load balancer node 110 that is responsible for forwarding
the response traffic for a packet flow received from the server node 130 via fabric 120 to the
respective client 160 via the border network. The load balancer module 132 encapsulates
response packets obtained from the server 134 according to a load balancer protocol (e.g., UDP)
and sends the encapsulated response packets to the respective egress node for the flow via fabric
120. The egress nodes are stateless and simply decapsulate the packets and send the response
packets (e.g., TCP packets) onto the border network to a border router 102 for delivery to the
respective client 160 via the external network 150.

[0058] As previously mentioned, in at least some embodiments, each load balancer node 110

may perform the roles of an ingress node, an egress node, and/or a flow tracker node (as either a
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primary or a secondary flow tracker) for different packet flows. A single load balancer node 110
in the load balancer node layer may perform in any one of the roles depending on what packet
flow the node is processing. For example, in at least some embodiments, a load balancer node
110 may perform as an ingress node for one packet flow, as a primary or secondary flow tracker
for another packet flow, and as an egress node for yet another packet flow. In addition, in at least
some embodiments a load balancer node 110 may perform multiple roles for the same packet
flow, for example as the ingress node and as the primary (or secondary) flow tracker node for a
given packet flow. However, in at least some embodiments, for redundancy and recovery
purposes, a load balancer node 110 is not allowed to serve as both the primary and secondary
flow tracker node for the same packet flow.

[0059] The above describes embodiments where each load balancer node 110 may serve in
any of the three roles of ingress server, egress server, and flow tracker. However, in some
embodiments, different groups of computing devices may be assigned to the different roles in the
load balancing system. For example, in some embodiments, there may be distinct sets of ingress
nodes, egress nodes and flow tracker nodes each implemented on a separate computing device.
As another example, in some embodiments, one set of computing devices may serve as both
ingress nodes and flow tracker nodes, while another set of computing devices may serve only as
egress nodes.

Load balancer modules

[0060] As previously mentioned, each server node 130 includes a local load balancer module
132 that is a component of the load balancer system. The module 132 may be implemented in
software, hardware, or a combination thereof on the server node 130. In at least some
embodiments, the load balancer module 132 on a server node 130 may perform three main roles:
encapsulating outgoing and decapsulating incoming packets, making local load balancing
decisions for the server 134 on the node 130, and connection publishing. These three roles are
briefly described below, and described in more detail later in this document.

[0061] At least some embodiments of the distributed load balancing system do not terminate
TCP connections and do not spoof packets; the source and destination IP addresses of all packets
sent through the load balancer node layer are the actual IP addresses of the endpoints (i.c., the
clients 160 and servers 134) involved in the packet flows. Instead of spoofing, these
embodiments encapsulate all packets sent between the load balancer nodes 110 and the server
nodes 130 on fabric 120, for example as UDP packets. Since the inbound packets in a packet
flow arriving at a server node 130 from a load balancer node 110 acting as the ingress node for

the flow are encapsulated by the load balancer node 110, the packets need to be decapsulated and
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redirected to a localhost TCP flow for the server 134 on the node 130. The load balancer module
132 on node 130 performs this decapsulation. Similarly, outgoing packets for a packet flow from
the server 134 are encapsulated by the load balancer module 132 and sent via fabric 120 to a load
balancer node 110 acting as the egress node for the packet flow.

[0062] In at least some embodiments, the load balancer modules 132 on the server nodes 130
also make local decisions related to load balancing for the servers 134 on the respective server
nodes 130. Specifically, the load balancer module 132 on a node 130 decides whether the
respective server 134 will accept another TCP flow in response to receiving a request for a new
TCP connection. As previously noted, the load balancer nodes 110 encapsulate all packets sent to
the load balancer module 132, so the load balancer module 132 actually does not receive a TCP
synchronize (SYN) packet from the client 160; instead, the load balancer module 132 receives a
connection request message according to the encapsulation protocol (e.g., UDP) from a flow
tracker 116 which the load balancer module 132 can either accept or reject. If the load balancer
module 132 accepts the connection request message, the load balancer module 132 creates a
SYN packet destined for the localhost. When the localhost accepts the connection, this becomes
the actual TCP stack handling the respective client connection.

[0063] In at least some embodiments, to make the decision as to whether a connection
request message should be accepted, the load balancer module 132 looks at one or more metrics
regarding current resource consumption on the server node 130, and if there are sufficient
resources available to handle the new connection, the load balancer module 132 accepts the
connection. In at least some embodiments, resource metrics that may be considered by the load
balancer module 132 may include one or more of, but are not limited to, CPU utilization, recent
bandwidth consumption, and number of established connections. Other metrics may be
considered instead of or in addition to these metrics in some embodiments. For example, in some
embodiments, the load balancer module may consider server latency (i.e., the amount of time
requests are spending in the server connection backlog) as a metric, and may reject the
connection request if server latency is above a threshold. Using these and/or other metrics, the
load balancer module 132 can decide for the respective server 134 whether the server 134 is to
accept or reject new packet flows. In at least some embodiments, a resource utilization rate (e.g.,
N% utilization) may be determined from the metric(s) individually or in combination and
compared to a threshold (e.g., 90% utilization). If the determined resource utilization rate is at or
above the threshold, or if adding the connection would move the rate to above the threshold, then

the connection request may be rejected.
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[0064] In at least some embodiments, the load balancer modules 132 may implement a
probabilistic method for determining if connection request messages are to be rejected. Instead
of rejecting all connection requests if resource utilization is at or above a threshold as described
above, in this method may reject connection requests at different probabilities at two or more
different levels of utilization. For example, if resource utilization is 80%, a load balancer module
132 may reject connection requests at 20% probability; if resource utilization is 90%, the load
balancer module 132 may reject connection requests at 25% probability; if resource utilization is
95%, the load balancer module 132 may reject connection requests at 50% probability; and at
98% or above, the load balancer module 132 may reject all connection requests.

[0065] In at least some embodiments, each connection request message may include an
indication of how many times the connection request message has been rejected by load balancer
modules 132. If a connection request message received by a load balancer module 130 indicates
that it has been rejected over a threshold number of times, the load balancer module 130 may
accept the connection even though the performance metrics of the server node 130 indicate that
the connection request should be rejected.

[0066] In some cases, it is possible that all of the load balancer modules 132 that a
connection request message is sent to may reject the connection request. In at least some
embodiments, to prevent a connection request message from being bounced from load balancer
module 132 to load balancer module 132 for an indefinite period, each connection request
message may be given a time to live. If this time to live expires, the flow tracker node may
terminate the request and notify the respective client 160 that the request cannot currently be
serviced.

[0067] In at least some embodiments, the load balancer modules 132 on the server nodes 130
also perform connection publishing to the load balancer nodes 110. In at least some
embodiments, to perform connection publishing, periodically or aperiodically (e.g., once a
second) each load balancer module 132 looks at the routing table (e.g., a netstat routing table) on
the server node 130 and publishes a list of active connections (TCP flows) back to the load
balancer nodes 110. The load balancer nodes 110 that need to be informed about the existence of
a given packet flow are the load balancer nodes 110 that are serving as the ingress node and as
the primary and secondary flow trackers for the respective packet flow. In some embodiments,
the load balancer module 132 may use a consistent hashing technique to filter the list of load
balancer nodes 110 that need to be informed about the active TCP flows on the server node 130.
For example, the load balancer module 132 may determine which load balancer nodes 110 are

serving as the primary and secondary flow trackers for a given packet flow according to the
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consistent hash ring. In some embodiments, the load balancer module 132 tracks which load
balancer node 110 last sent a data packet to the load balancer module 132 for each packet flow,
and uses this information to determine which load balancer nodes 110 are serving as ingress
nodes for the packet flows, since only ingress nodes forward client data to the load balancer
module 132. In some embodiments, the load balancer module 132 then formulates messages for
cach of the load balancer nodes 110 that it has determined need to be informed about the packet
flows and sends the messages to the load balancer nodes 110 to inform the nodes 110 that the
respective server node 130 is still maintaining the connection(s) to the client(s) 160. This
connection publishing to the load balancer nodes 110 by the load balancer modules 132 may be
viewed as extending a lease at the load balancer nodes 110. If a load balancer node 110 has not
received a connection publishing message indicating a particular packet flow within a period of
time (e.g., ten seconds), then the load balancer node 110 is free to forget about the respective
packet flow.

Multipath routing to load balancer nodes

[0068] Figure 4 illustrates aspects of routing and packet flow in the distributed load balancer,
according to at least some embodiments. In at least some embodiments, each ingress node
(ingress nodes are shown in Figure 4 as ingress servers 112) advertises its ability to route one or
more public endpoints (e.g., IP address and port) to the edge router 104 for the distributed load
balancer, for example via the border gateway protocol (BGP). In at least some embodiments,
rather than each ingress node advertising itself to the edge router 104 via a BGP session, one or
more other ingress nodes, for example two neighbor nodes, may establish BGP sessions with the
edge router 104 to advertise the ingress node, as shown in Figure 5.

[0069] Conventional load balancers can typically only serve a single public endpoint. In
contrast, embodiments of the distributed load balancer enable multiple load balancer nodes 110
to service a single public endpoint. Depending on router capabilities, this enables configurations
in which a single public IP address routed to all the ingress servers 112 may handle the entire
bandwidth (e.g., 160 Gbps) through the edge router(s) 104. In at least some embodiments, to
achieve this, the edge router(s) 104 may utilize a layer 4 per-flow hashed multipath routing
technique, for example an equal-cost multipath (ECMP) routing technique, to distribute traffic
across multiple ingress servers 112 each advertising the same public IP address. Distributing
incoming packets to all of the ingress servers 112 using layer-4 source and destination ports for
the flows as part of the edge router(s) 104 flow hash may generally keep the packets for each

connection routed to the same load balancer node 110 serving as the ingress server 112 to avoid
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out-of-order packets. Note, however, that the edge router(s) 104 may use other techniques to
distribute traffic across the ingress servers 112 in some embodiments.

[0070] Figure 4 also shows that two or more distributed load balancers may be implemented
on a network 100. The two or more distributed load balancers may each act as an independent
load balancer that fronts a plurality of servers 130 and that each advertises a different public IP
address, or alternatively as shown in Figure 4 two or more distributed load balancers may each
advertise the same IP address, and a hashing technique (e.g., a layer 4 per-flow hashed multipath
routing technique) may be used at the border router(s) 102 to partition the packet flows out to the
edge routers 104, which in turn distribute the packet flows to their respective ingress servers 112.
[0071] Figure 5 illustrates using Border Gateway Protocol (BGP) to advertise ingress nodes
to the edge router, according to at least some embodiments. In this example, there are four load
balancer nodes serving as ingress nodes 110A through 110D in the load balancer
implementation. Edge router 104 routes incoming packets from clients (not shown) to the load
balancer nodes 110. In at least some embodiments, the edge router 104 may make the routing
decisions according to a layer 4 per-flow hashed multipath routing technique, for example an
equal-cost multipath (ECMP) routing technique.

[0072] In at least some embodiments, edge router 104 learns about the ingress nodes 110 that
are currently available in the load balancer implementation to receive client traffic via Border
Gateway Protocol (BGP) technology advertising sessions initiated by the ingress nodes 110.
Each ingress node 110 could use BGP to advertise itself to the edge router 104. However, BGP
typically takes a relatively long time to converge (three seconds or more). Using this technique
where each ingress node 110 advertises itself via BGP, if an ingress node 110 goes down, it may
take considerable time in networking terms (three seconds or more) for the BGP session on the
edge router 104 to time out and thus for the edge router 104 to learn about the failure close down
and reroute the current TCP flows to the ingress node 110.

[0073] To avoid the convergence problem with BGP and to recover more quickly upon node
110 failure, in at least some embodiments, instead of an ingress node 110 advertising itself to the
edge router 104 via a BGP session, at least one other ingress node 110 in the load balancer
implementation takes responsibility for advertising the ingress node 110 to the edge router 104
via BGP. For example, in some embodiments as shown in Figure 5, the left and right neighbor
ingress nodes 110 of a given ingress node 110, for example the left and right neighbors in an
ordered listing of the nodes 110, for example a consistent hash ring formed by the nodes 110,
may advertise the given ingress node 110 to the edge router 104. For example, in Figure 5,

ingress node 110A advertises ingress nodes 110B and 110D, ingress node 110B advertises
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ingress nodes 110A and 110C, ingress node 110C advertises ingress nodes 110B and 110D, and

ingress node 110D advertises ingress nodes 110C and 110A. The ingress nodes 110 check and
gossip each other’s health as described later in this document. Using the health check method as
described, unhealthy nodes can be detected and the information can be propagated among the
nodes 110 in less than a second, for example in 100 milliseconds (ms). Upon determining that an
ingress node 110 is not healthy, the ingress nodes 110 that advertise the unhealthy node may
immediately stop advertising the unhealthy node 110. In at least some embodiments, the ingress
nodes 110 end the BGP sessions with the edge router 104 by sending a TCP Close or similar
message for the BGP session to the edge router 104. Thus, rather than having to wait for a BGP
session established by a failed node 110 to time out to detect the node 110 failure, the edge router
104 may discover the failed node 110 when the other ingress nodes 110 that advertise on behalf
of the failed node 110 terminate the BGP sessions with the edge router 104 that advertise the
node 110 upon detecting that the node 110 is unhealthy. The handling of load balancer node
failures is further discussed in relation to Figures 18A and 18B later in this document.

[0074] Figure 6 is a flowchart of a multipath routing method, according to at least some
embodiments of the distributed load balancing system. As indicated at 900, the ingress nodes
110 in a load balancer implementation advertise their neighbor nodes 110 to the edge router 104.
In at least some embodiments, the ingress nodes 110 may determine their neighbor nodes 110
according to an ordered listing of the nodes 110 such as a consistent hash ring. In at least some
embodiments, the ingress nodes 110 advertise their neighbor node(s) 110 to the edge router 104
using BGP sessions, with one BGP session established to the edge router 104 for each advertised
node 110.

[0075] As indicated at 902, the edge router 104 distributes traffic received from clients 160
to the active (advertised) ingress nodes 110 according to a per-flow hashed multipath routing
technique, for example an equal-cost multipath (ECMP) routing technique. In at least some
embodiments, the edge router 104 exposes a public IP address to the clients 160; the ingress
nodes 110 all advertise the same public IP address to the edge router 104. The edge router uses
layer-4 source and destination ports as part of the edge router’s 104 flow hash to distribute the
incoming packets among the ingress nodes 110. This generally keeps the packets for each
connection routed to the same ingress node 110.

[0076] As indicated at 902, the ingress nodes forwards the data flows to target server nodes
130. In at least some embodiments, the ingress nodes 110 interact with primary and secondary

flow tracker nodes for the data flows to map the data flows to the target server nodes 130. Thus,
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cach ingress node 110 may maintain mappings of active data flows through the node 110 that
may be used to appropriately forward the received packets to the target server nodes 130.

[0077] Elements 906 through 910 relate to detecting and recovering from ingress node 110
failures. As indicated at 906, the ingress nodes 110 may detect that an ingress node 110 is down,
for example according to a health checking technique as described herein. Upon detecting that
the node 110 is down, its neighbor nodes 110 stop advertising the node 110 to the edge router
104. In at least some embodiments, this involves sending a TCP Close to the edge router 104 for
the respective BGP session.

[0078] As indicated at 908, the edge router 104, upon detecting that the ingress node 110 is
down via the closing of the BGP sessions, redistributes incoming traffic from the clients 160 to
the remaining ingress nodes 110 according to the per-flow hashed multipath routing technique.
Thus, at least some data flows may be routed to different ingress nodes 110.

[0079] As indicated at 910, the ingress nodes 110 may recover mappings as necessary and
forward the data flows to the appropriate target server nodes. Methods for recovering from node
110 failures on ingress nodes 110 are discussed elsewhere in this document. As one example, an
ingress node 110, upon receiving a packet for which it does not have a current mapping, may use
a consistent hash function to determine a flow tracker node for the data flow according to a
consistent hash ring and recover the mapping from the flow tracker node.

Asymmetric packet flow

[0080] In at least some embodiments, to efficiently utilize ingress node bandwidth and CPU
usage when the ratio of outbound traffic to inbound data is greater than 1, the distributed load
balancing system forwards outbound packets from the server nodes 130 to multiple egress nodes
as shown in Figure 7. In at least some embodiments, for each connection, the load balancer
module 132 on the respective server node 130 hashes the client endpoint/public endpoint tuple
and uses a consistent hash algorithm to select a load balancer node 110 to serve as the egress
server 114 for the respective outbound packet flow. However, in some embodiments other
methods and/or data may be used to select the egress servers 114 for connections. The selected
egress server 114 may typically be, but is not necessarily, a different load balancer node 110 than
the load balancer node 110 that serves as the ingress server 112 for the connection. In at least
some embodiments, unless there is a failure of that load balancer node 110 / egress server 114, all
of the outbound packets for the particular connection will be forwarded to the same egress server
114 in order to avoid out-of-order packets.

[0081] In at least some embodiments, the method and data used for selecting an egress server

114 by the server nodes 130 may be different than the method and data used for selecting an
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ingress server 112 performed by the edge router(s) 104. Using the different methods and data

may generally result in a different load balancer node 110 being selected as the egress node for a
given connections than the load balancer node 110 selected as the ingress node for the
connection, and may also result in multiple load balancer nodes 110 being selected as egress
nodes to handle the outgoing traffic for connections that pass through a single load balancer node
110 serving as an ingress node.

[0082] Figure 7 graphically illustrates asymmetric packet flow, according to at least some
embodiments. At least one connection has been established from clients 160 on external network
150 through ingress server 112 to each of server nodes 130A, 130B, 130C, and 130D. In at least
some embodiments, to select egress nodes for the connections, for each connection, the load
balancer module 132 on the respective server node 130 hashes the client endpoint/public
endpoint tuple and uses a consistent hash algorithm to select a load balancer node 110 to serve as
the egress server 114 for the respective outbound packet flow. For example, server node 130A
has selected egress server 114A for a connection, and server node 114B has sclected egress
server 114A for one connection and egress server 114B for another connection. However, in
some embodiments other methods and/or data may be used to select the egress nodes for
connections.

Recovering from load balancer node failures without dropping client connections

[0083] While it is possible for the load balancer nodes 110 to use consistent hashing to
determine which server node 130 should receive client traffic, due to the long lifespan of some
connections this approach may not maintain existing flows in cases where a new server node 130
joins the consistent hash membership and there is a subsequent ingress load balancer node 110
failure. In this scenario, a load balancer node 110 that takes over a flow from the failed node 110
may not be able to determine the original mapping selected, as the consistent hash ring for the
servers 130 would have different membership. Thus, in at least some embodiments, distributed
hash table (DHT) technology may be used by the load balancer nodes 110 to select server nodes
130 for connections and to route packets to the selected server nodes 130. Once a server node
130 has been selected according to the DHT to receive a particular connection, and assuming that
the server node 130 stays healthy and that the load balancer module 132 on the server node 130
continues to extend the lease by periodically transmitting the status of that active connection to
the DHT (e.g., via connection publishing), the DHT will retain the mapping until the connection
completes. An ingress node 110 failure impacts the distribution of packets from the edge router
104 to the remaining load balancer nodes 110, resulting in the load balancer nodes 110 receiving

traffic from a different set of client connections. However, since the DHT tracks all active
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connections, the load balancer nodes 110 can query the DHT to obtain leases for any active
mappings. As a result, all the load balancer nodes 110 will pass traffic to the correct server nodes
130, thus preventing failure of active client connections even in the event of an ingress load
balancer node 110 failure.

Packet flow in the distributed load balancing system

[0084] Figure 8 illustrates packet flow in the distributed load balancing system, according to
at least some embodiments. Note that the solid lines with arrows in Figure 8 represent TCP
packets, while the dotted lines with arrows represent UDP packets. In Figure 8, an ingress server
112 receives TCP packets from one or more clients 160 via the edge router 104. Upon receipt of
a TCP packet, ingress server 112 determines if it has a mapping for the TCP packet flow to a
server node 130. If the ingress server 112 does have a mapping for the TCP packet flow, then the
server 112 encapsulates the TCP packet (for example according to UDP) and sends the
encapsulated packet to the target server node 130. If the ingress server 112 does not have a
mapping for the TCP packet flow, then the ingress server 112 may send a UDP message
including information about the TCP packet flow extracted from the TCP packet to the primary
flow tracker 116A to establish a connection to a server node 130 and/or obtain a mapping for the
TCP packet flow. Figures 9A and 9B and Figures 10A through 10G illustrate methods for
establishing a connection between a client 160 and a server node 130. The load balancer module
132 on a server node 130 randomly selects load balancer node(s) 110 to serve as the egress
server(s) 114 for TCP connection(s) on the server node 130 and sends UDP-encapsulated TCP
response packets to the client(s) 160 via the egress server(s) 114.

[0085] Figures 9A and 9B provide a flowchart of packet flow when establishing connections
in the distributed load balancing system, according to at least some embodiments. As indicated
at 200 of Figure 9A, an ingress server 112 receives a TCP packet from a client 160 via the edge
router 104. At 202, if the ingress server 112 has a mapping for the TCP flow to a server node
130, then the ingress server 112 encapsulates and sends the TCP packet to the respective server
node 130 as indicated at 204. Note that the ingress server 112 may be continuously receiving
and processing packets for one, two or more TCP flows from one, two, or more clients 160.
[0086] At 202, if the ingress server 112 does not have a mapping for the TCP flow, the
packet may be a TCP synchronize (SYN) packet from a client 160. As indicated at 206, upon
receipt of a SYN packet, the ingress server 112 extracts data from the SYN packet and forwards
the data to the primary flow tracker 116A, for example in a UDP message. In at least some
embodiments, the ingress server 112 can determine the primary flow tracker 116A and/or

secondary flow tracker 116B for the TCP flow according to a consistent hash function. At 208,
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the primary flow tracker 116A stores the data, for example in a hash table, generates an initial
TCP sequence number for the server node 130 side of the TCP connection, and forwards the data
and the TCP sequence number to the secondary flow tracker 116B. At 210, the secondary flow
tracker 116B may also store the data, and fabricates and sends a SYN/ACK packet to the client
160, the SYN/ACK packet containing at least the TCP sequence number.

[0087] As indicated at 212, the ingress server 112 receives a TCP acknowledgement (ACK)
packet from the client 160 via the edge router 104. The ingress server 112 does not at this time
have a mapping for the TCP flow to a server 130 node, so at 214 the ingress server 112 sends a
message including data extracted from the ACK packet to the primary flow tracker 116A. As
indicated at 216, upon receiving the message, the primary flow tracker 116A confirms the TCP
flow according to the stored data, and confirms that the acknowledged sequence number (+1)
from the ACK packet matches the value sent in the SYN/ACK. The primary flow tracker 116A
then selects a server node 130 to receive the TCP flow, and sends a message containing the data,
TCP sequence number, and IP address of the local load balancer module 132 on the selected
server node 130 to the secondary flow tracker 116B. As indicated at 218, the secondary flow
tracker 116B also confirms the data and TCP sequence number, fabricates a SYN message, and
sends the fabricated SYN message to the local load balancer module 132 on the selected server
node 130. The method continues at element 220 of Figure 9B.

[0088] As indicated at 220 of Figure 9B, in response to the fabricated SYN message, the load
balancer module 132 may examine one or more metrics of the server node 130 to determine if the
server node 130 can accept the connection. At 222, if the load balancer module 132 determines
that the server node 130 cannot currently accept the connection, then at 224 the load balancer
module 132 messages the secondary flow tracker 116B. The secondary flow tracker 116B may
delete the information for the flow that it previously stored. At 226, the secondary flow tracker
116B messages the primary flow tracker 116A. The primary flow tracker 116A may then select
a new target server node 130 and message the secondary flow tracker 116B as indicated at 216 of
Figure 9A.

[0089] At 222, if the load balancer module 132 determines that the server node 130 can
accept the connection, then as indicated at 228 of Figure 9B the local load balancer module 132
constructs a TCP SYN packet from the fabricated SYN and sends the TCP SYN packet to the
server 134 on the server node 130. The source IP address of the TCP SYN packet is populated
with client 160’s actual IP address so that server 134 will believe that it has received a direct
TCP connection to the client 160. The load balancer module 132 stores relevant details about the

TCP flow, for example in a local hash table. As indicated at 230, the server 134 responds with a
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SYN/ACK packet that the load balancer module 132 intercepts. As indicated at 232, the load

balancer module 132 then sends a message including connection information to the secondary
flow tracker 116B to indicate that the connection has been accepted. Upon receipt of this
message, at 234 the secondary flow tracker 116B records the mapping to the server 134, and
sends a similar message to the primary flow tracker 116A, which also records the mapping
information. As indicated at 236, the primary flow tracker 116A then forwards a mapping
message to the ingress server 112. Ingress server 112 now has a mapping for the TCP flow from
the client 160 to the server 130.

[0090] At 238, ingress server 112 encapsulates and forwards any buffered data packets for
the data flow to the local load balancer module 132 on the server node 130. Additional incoming
packets for the data flow from the client 160 received by the ingress server 112 are encapsulated
and forwarded directly to the load balancer module 132, which decapsulates the packets and
sends the data packets on to the server 134.

[0091] At 240, the load balancer module 132 randomly selects an egress server 114 for the
data flow. Subsequent outbound TCP packets from the server 134 are intercepted by the load
balancer module 132, encapsulated according to UDP, and forwarded to the arbitrarily selected
egress server 114. The egress server 114 decapsulates the outgoing packets and sends the TCP
packets to the client 160.

[0092] As noted above, at 202, if the ingress server 112 does not have a mapping for the TCP
flow of a received packet, the packet may be a TCP synchronize (SYN) packet from a client 160.
However, the packet may not be TCP SYN packet. For example, if load balancer node 110
membership changes due to addition or failure of a load balancer node 110, the edge router 104
may start routing packets for one or more TCP flows to the ingress server 112 that the ingress
server 112 does not have mappings for. In at least some embodiments, upon receiving such a
packet for which the ingress server 112 does not have a mapping, the ingress server 112 may use
the consistent hash function to determine the primary flow tracker 116A and/or secondary flow
tracker 116B for the TCP flow according to the consistent hash ring and message either the
primary flow tracker 116A or the secondary flow tracker 116B to request the mapping. Upon
receiving the mapping for the TCP flow from a flow tracker 116, the ingress server 112 can store
the mapping and begin encapsulating and forwarding the TCP packet(s) for the TCP flow to the
correct destination server node 130.

Load balancer node details

[0093] In at least some embodiments, the load balancer nodes 110 each have three roles:
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e Ingress — Receiving all incoming packets from a client 160 in a client connection, routing
the packets to a server node 130 if the mapping is known, or messaging a flow tracker if
the mapping is not known. The outgoing packets from an ingress node are encapsulated
(e.g., according to UDP) by the ingress node.

e Flow tracking - Keeping track of connection states (e.g. which server node 130 / server
134 has been assigned to service each client connection). Flow trackers also participate
in establishing connections between clients 160 and servers 134.

e Egress — Decapsulating and forwarding outbound packets received from a server 134 to a
client 160.

[0094] In at least some embodiments, in the ingress role, a load balancer node 110 is
responsible for forwarding packets to servers 134 when a client->server mapping is known, or
forwarding a request to a flow tracker when the mapping is unknown. In at least some
embodiments, a load balancer node 110 serving as an ingress node for a particular client
connection/data flow may also serve as either the primary flow tracker or the secondary flow
tracker for the client connection, but not both.

[0095] In at least some embodiments, in the flow tracker role, a load balancer node 110 is
responsible for maintaining the state of connections that are still being established, as well as
maintaining the client->server mapping for established connections. Two flow trackers are
involved with each individual client connection, referred to as the primary flow tracker and the
secondary flow tracker. In at least some embodiments, the flow trackers associated with client
connections may be determined using a consistent hash algorithm. The flow trackers also
perform load-balancing functionality, including but not limited to pseudorandomly selecting a
server node 130 for each new client connection. Note that the local load balancer module 132 on
a selected server node 130 may reject a connection request if it determines that the server 134
cannot handle the connection. If this happens, then the flow trackers may select another server
node 130 and send the connection request to the other server node 130. In at least some
embodiments, the primary flow tracker role and the secondary flow tracker role for a given
connection are performed by different load balancer nodes 110.

[0096] In at least some embodiments, in the egress role, a load balancer node 110 is stateless
and decapsulates incoming packets received from server nodes 130, performs some validation,
and forwards the outbound TCP packets to respective clients 160. In at least some embodiments,
a local load balancer module 132 on a server node 130 may arbitrarily select a load balancer
node 110 for a given connection.

Load balancer node consistent hash ring topology
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[0097] In at least some embodiments, the load balancer nodes 110 form a ring topology
based on the consistent hashing of input keyspace (client endpoint, public endpoint). The input
keyspace may be partitioned among the available flow tracker nodes, and every flow tracker
node may be responsible for answering queries corresponding to its keyspace. In at least some
embodiments, data may be replicated to the primary and secondary flow tracker nodes based on
the successor in the consistent hash ring (e.g., the secondary flow tracker node is the successor
node, or next node in the consistent hash ring, to the primary flow tracker node). If a flow
tracker node goes down for some reason, the next load balancer node in the consistent hash ring
acquires the keyspace of the failed node. When a new flow tracker node joins, the node registers
its endpoint (e.g., with a configuration service 122 as shown in Figure 1) so that other load
balancer nodes may learn about the configuration change in the load balancer implementation
and thus in the consistent hash ring. The handling of additions and failures of flow trackers in
the consistent hash ring is discussed in more detail in reference to Figures 11A through 11D.

Ingress node <-> flow tracker node communications

[0098] In at least some embodiments, the load balancer nodes 110 serving as ingress nodes
may learn about the load balancer nodes 110 serving as flow tracker nodes from configuration
service 122. The ingress nodes may monitor the configuration service 122 for membership
changes in the load balancer implementation and thus in the consistent hash ring. When an
ingress node receives a packet from a client 160 that the ingress node does not have a mapping
for, the ingress node may use a consistent hash function to determine which flow tracker node
should service the packet. In at least some embodiments, the input to the hash function is the
(client endpoint, public endpoint) pair from the packet. In at least some embodiments, the
ingress nodes and flow tracker nodes communicate using UDP messages.

[0099] When a primary flow tracker node receives a message from an ingress node for a new
packet flow, the primary flow tracker node randomly determines a TCP sequence number and
forwards another message to the secondary flow tracker node. The secondary flow tracker node
generates a TCP SYN/ACK message for the client. Both flow trackers remember the client
connection endpoint pair and the TCP sequence number, and retain this information until
memory pressure or expiration causes the state to be purged.

[0100] When the primary flow tracker node receives a message from an Ingress node that a
TCP ACK packet has been received, the primary flow tracker node wverifies that the
acknowledged TCP sequence number matches the stored value that was sent in the SYN/ACK
packet, selects a server node 130 to service the request, and forwards a message to the secondary

flow tracker node. The secondary flow tracker node sends a message to the load balancer module
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132 on the selected server node 130 to initiate an actual TCP connection with the TCP stack on
the server node 130, and then waits for an acknowledgement response from the server node 130.
[0101] When the secondary flow tracker node receives a connection acknowledgement from
the load balancer module 132 on the server node 130, a reverse message flow through the
primary flow tracker to the ingress node is triggered that stores information about the associated
server node 130 in both nodes. From this point forward, additional TCP packets received at the
ingress node are forwarded directly to the load balancer module 132 on the server node 130.

Load balancer module <-> load balancer node communications

[0102] In at least some embodiments, every load balancer module 132 registers its endpoint
with configuration service 122 and monitors configuration service 122 continuously for
membership changes in the load balancer node layer. The following describes functions of the
load balancer module 132, according to at least some embodiments:
e Connection publishing - periodically (e.g., once a second) or aperiodically publish the set
of active connections (client endpoint, public endpoint) on the respective server node 130
to both the primary and the secondary flow tracker nodes responsible for those
connections, as well as to the ingress nodes that last sent packets to the load balancer
module 132 for those connections. The connection publishing function renews the lease
for the connection states at the responsible load balancer nodes 110.
e Monitor membership changes in the load balancer layer. If the membership changes, the
load balancer modules 132 may use this change information to immediately send active
connections to the load balancer nodes that are now responsible for the connections.

Packet flow in the distributed load balancing system - details

[0103] The distributed load balancing system may include multiple load balancer nodes 110.
In at least some embodiments, each load balancer node 110 in the distributed load balancing
system may serve in the roles of a flow tracker node, an egress node, and an ingress node for
client 160 connections to the servers 134. The distributed load balancing system may also
include a load balancer module 132 on each server node 130.

[0104] Figures 10A through 10G illustrate packet flow in the distributed load balancing
system, according to at least some embodiments. In Figures 10A throughl0G, packets
exchanged between load balancer nodes 110 and packets exchanged between load balancer nodes
110 and server nodes 130 are either UDP messages or UDP-encapsulated client TCP packets. In
at least some embodiments, client TCP packets only exist on network 100 in decapsulated form

on the north side of the load balancer nodes 110 in transit to and from the border router 102 (see
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Figure 1). Note that the solid lines with arrows in Figures 10A-10G represent TCP packets,

while the dotted lines with arrows represent UDP packets.

[0105] In at least some embodiments, the distributed load balancing system may attempt to
preserve established connections in the event of a single load balancer node 110 failure. In at
least some embodiments, this may be achieved by replicating connection details in a primary
flow tracker node and a secondary flow tracker node so that, if cither of these nodes fails, a
connection's client->server mapping may be restored by the remaining flow tracker node. In at
least some embodiments, some packet loss may occur in the event of a node failure; however,
client/server TCP packet retransmissions may recover the lost packets.

[0106] Each TCP connection from a client may be referred to as a TCP flow, and is uniquely
identified by a 4-tuple consisting of: the client IP address, client port, server (public) IP address,
and server port. This identifier may be abbreviated as CP or CcPp indicating the client and
public endpoint pair. Packets associated with any given TCP flow (or CP pair) can appear on
any load balancer node 110 operating as an ingress server 112 due to the hashed equal-cost
multipath (ECMP) flow distribution from the upstream edge router 104. However, packets for a
TCP flow may generally continue to arrive at the same load balancer node 110 unless there is a
link or load balancer node 110 failure that causes the TCP flows to be redirected. The load
balancer node 110 that receives packets for a TCP flow from the upstream router 104 is referred
to as the ingress node for the TCP flow.

[0107] In at least some embodiments, consistent hashing is used so that when packets arrive
at a load balancer node 110 serving as an ingress node for the TCP flow, the ingress node can
determine which load balancer node 110 contains the state for the TCP flow (i.e., the flow tracker
node). The CP pair may be hashed by the ingress node into a consistent hash ring to determine
which load balancer node 110 is responsible for maintaining state regarding the TCP flow. This
node serves as the primary flow tracker for the TCP flow. The successor node in the consistent
hash ring serves as the secondary flow tracker for the TCP flow.

[0108] In at least some embodiments, all load balancer nodes 110 may serve as ingress
nodes, primary flow tracker nodes, and secondary flow tracker nodes. Depending on the
consistent hash result for a TCP flow, a load balancer node 110 serving as the ingress node for
the TCP flow may also serve as the primary or the secondary flow tracker node for the TCP flow.
However, in at least some embodiments, different physical load balancer nodes 110 perform the

primary and secondary flow tracker roles for the TCP flow.

25



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

Establishing Connections

[0109] Referring to Figure 10A, new connections from a client 160 may be triggered by a
client TCP synchronize (SYN) packet. The load balancer nodes 110 do not actually establish a
connection with a server node 130 upon receipt of the SYN packet, nor do they immediately
select a server node 130 to receive the connection. Instead, the load balancer nodes 110 store
relevant data from the client's SYN packet, and generate a SYN/ACK packet on behalf of the yet-
to-be-chosen server node 130. Referring to Figure 10C, once the client 160 responds with the
first ACK packet in the TCP three-way handshake, the load balancer nodes 110 select a server
node 130, generate an equivalent SYN packet for that server node 130, and attempt to establish
an actual TCP connection with the server node 130.

[0110] Referring again to Figure 10A, upon receipt of a client SYN packet at the load
balancer node 110 serving as the ingress server 112 for the TCP flow, the ingress server 112
extracts the data fields from the SYN packet and forwards the data to the primary flow tracker
116A for the TCP flow. The primary flow tracker 116A stores the data, for example in a hash
table, generates an initial TCP sequence number (for the server side of the TCP connection), and
forwards the same data to the secondary flow tracker 116B. The secondary flow tracker 116B
fabricates a SYN/ACK packet for the client 160 containing that server TCP sequence number.
[0111] In Figure 10A, the ingress server 112, primary flow tracker 116A, and secondary flow
tracker 116B roles are each performed by different load balancer nodes 110. However, in some
cases, the load balancer node 110 serving as the ingress server 112 for a TCP flow may be the
same node 110 that serves as the primary flow tracker 116A or the secondary flow tracker 116B
for the TCP flow (but not both). The reason that the ingress server 112 for a packet flow may
be on the same node 110 as a flow tracker 116 for the flow is that the edge router 104
pseudorandomly selects the ingress server 112 for the flow according to a per-flow hashed
multipath routing technique (e.g., an ECMP routing technique), while the flow trackers 116 for
the packet flow are determined on a consistent hash ring according to a consistent hash function
applied to the packet flow’s address information. If the ingress server 112 for a packet flow is on
the same node 110 as a flow tracker 116 for the packet flow, the data from the SYN packet may
only be forwarded from the node 110 that implements the ingress server 112 to the other flow
tracker 116 node 110. For example, in Figure 10B, the primary flow tracker 116A is on the same
load balancer node 110A as the ingress server 112 for the TCP flow, while the secondary flow
tracker 116B is on a different load balancer node 110B, and thus the data from the SYN packet is
forwarded from node 110A (by flow tracker 116A) to the secondary flow tracker 116B on load
balancer node 110B
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[0112] Referring to Figure 10C, when non-SYN packets arrive at an ingress server 112, the

ingress server 112 either knows or does not know which server node 130 to forward the packets
to. The first non-SYN packet to arrive at an ingress server 112 for a TCP flow should be the first
TCP acknowledgement (ACK) packet in the TCP three-way handshake (or possibly a subsequent
data packet), where the TCP acknowledgement number field matches the server sequence
number (+1) that was sent in the SYN/ACK packet in Figure 10A. When the ingress server 112
receives a non-SYN packet for which it has no server mapping, it forwards a message to the
primary flow tracker 116A for the TCP flow, the message including information from the ACK
packet such as a sequence number, or alternatively containing the ACK packet itself. In at least
some cases, the primary flow tracker 116A remembers the stored data for the TCP flow and
confirms that the acknowledged sequence number (+1) matches the value that was sent to the
client 160 in the SYN/ACK packet. The primary flow tracker then selects a server node 130 for
the TCP flow and forwards another message containing the previously stored data for the TCP
flow, the server sequence number, and an IP address for the load balancer module 132 on the
selected server node 130 to the secondary flow tracker 116B. The secondary flow tracker 116B
confirms the server sequence number, records the information, and sends a fabricated SYN
message to the load balancer module 132 on the selected server node 130. The TCP flow's CP
endpoint pair is now mapped to the load balancer module 132/server node 130. The load
balancer module 132 on the server node 130 is responsible for creating a legitimate TCP SYN
packet for the server 134 on the server node 130 when it receives the fabricated SYN message
from the secondary flow tracker 116B. In creating the SYN packet, the source IP address is
populated with the client 160's actual IP address so that the server 134 will believe that it has
received a direct TCP connection request from the client 160. The load balancer module 132
stores the relevant details about the TCP flow, for example in a local hash table, and sends the
TCP SYN packet to the server 134 (e.g., injects the SYN packet into the Linux kernel of the
server 134).

[0113] In Figure 10C, the ingress server 112, primary flow tracker 116A, and secondary flow
tracker 116B roles are each performed by different load balancer nodes 110. However, in some
cases, the load balancer node 110 serving as the ingress server 112 for a TCP flow will be the
same node 110 that serves as the primary flow tracker 116A or the secondary flow tracker 116B
for the TCP flow (but not both). For example, in Figure 10D, the secondary flow tracker 116B is
on the same load balancer node 110A as the ingress server 112 for the TCP flow, while the

primary flow tracker 116A is on a different load balancer node 110B.
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[0114] Referring to Figure 10E, the server 134 (e.g., the Linux kernel) responds with a

SYN/ACK packet that the load balancer module 132 also intercepts. The SYN/ACK packet may
contain a different TCP sequence number than was originally delivered to the client 160 in the
generated SYN/ACK from the secondary flow tracker 116B (see Figure 10A). The load
balancer module 132 is responsible for applying the sequence number delta to incoming and
outgoing packets. The SYN/ACK packet from the server 134 also triggers a message (e.g., a
UDP message) from the load balancer module 132 back to the secondary flow tracker 116B to
indicate that the connection to the selected server node 130 / load balancer module 132 / server
134 has succeeded. Upon receipt of this message, the secondary flow tracker 116A may record
the client and public endpoint pair (CP) mapping between the client 160 and the server 134 as
committed, and send a similar message to the primary flow tracker 116A which will also record
the CP mapping. The primary flow tracker 116A may then forward a CP mapping message to
the ingress server 112, which causes the ingress server 112 to forward any buffered data packets
for the connection to the local load balancer module 132 on the server node 130 as encapsulated
data packets.

[0115] Referring to Figure 10F, the CP mapping for the connection is known to the ingress
server, so incoming TCP packets received by the ingress server 112 for the connection may be
encapsulated (e.g., according to UDP) and forwarded directly to the to the local load balancer
module 132 on the server node 130 as encapsulated data packets. The load balancer module 132
decapsulates the data packets and sends the TCP packets to the server 134 on the server node
130, for example by injecting the TCP packets on to a TCP stack of the kernel. Outbound
packets from the server 134 are intercepted by the load balancer module 132 on the server node
130, encapsulated (e.g., according to UDP), and forwarded to an arbitrary load balancer node 110
that the load balancer module 132 randomly selects as the egress server 114 for this connection.
The egress server 114 decapsulates the packets and sends the decapsulated packets to the client
116. The egress function of the selected load balancer node 110 is stateless, so a different load
balancer node 110 can be selected as the egress server 114 for the connection in the event of
failure of the load balancer node 110 serving as the egress server. However, generally the same
load balancer node 110 is used as the egress server 114 for the duration of the connection to
reduce or eliminate re-ordering of the outbound packets.

[0116] Referring to Figure 10G, in at least some embodiments, if the load balancer module
132A on a server node 130A that is selected by the primary flow tracker 116A (see Figure 10C)
determines that it is overloaded, it has the option to reject the fabricated SYN message received

from the secondary flow tracker 116B (see Figure 10C). In at least some embodiments, the
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fabricated SYN message includes a time to live (TTL) value or counter that allows for a
maximum number of rejections. In at least some embodiments, if this TTL value reaches zero,
the load balancer module 132A may cither accept the connection or drop the connection to shed
load. If the load balancer module 132A decides to reject the connection, it decrements the TTL
value and sends a reject message to the secondary flow tracker 116B. The secondary flow
tracker 116B resets the CP mapping and sends a release message to the primary flow tracker
116A to do the same. The primary flow tracker 116A chooses a new load balancer module 132B
on another server node 130B and sends a new target message back to the secondary flow tracker
116B, which sends a new fabricated SYN message to the newly chosen load balancer module
132B. Note that packet drops may result in this sequence failing to complete; however, a
retransmission from the client 160 may trigger the load balancer module selection process again
at the primary flow tracker 116A, which may, but does not necessarily, choose the same load
balancer module 132 for the connection if it has not learned about the previous rejection of the
fabricated SYN packet.

[0117] In at least some embodiments, the TTL counter may be used to prevent continuously
sending connection requests to server nodes 130, which may occur for example if all the server
nodes 130 are busy. In at least some embodiments, each time a load balancer module 132 rejects
a connection request on behalf of a respective server node 130, the load balancer module 132
decrements the TTL counter. The flow tracker nodes 116 may monitor the TTL counter and, as
long as the TTL counter is not zero (or is above some specified threshold), may select another
server node 130 and try again. If the TTL counter reaches zero (or reaches the specified
threshold), the connection request is dropped and no further attempts are made by the flow
tracker nodes 116 to send a connection request to a selected one of the server nodes 130 for that
connection. In at least some embodiments, an error message may be sent to the respective client
160.

[0118] In at least some embodiments, the distributed load balancer system supports multiple
public IP addresses. As such, it is possible that a client 160 may initiate two TCP connections
from the same client port number to two different public IP addresses. These TCP connections
are distinct from the client 160's point of view, but internally the distributed load balancer may
map the connections to the same server node 130, which would result in a collision. In at least
some embodiments, to detect and handle possible collisions, the load balancer module 132, upon
receiving the fabricated SYN packet from the secondary flow tracker 116B as shown in Figures
10C and 10D, may compare the address information to its active connections and, if this

connection would cause a collision, reject the connection request as shown in Figure 10G.

29



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

Handling load balancer node failures and additions

[0119] In many conventional load balancers, some or all existing connections are lost in the
event of a load balancer failure. In at least some embodiments, in the event of failure of a single
load balancer node 110, the distributed load balancing system may maintain at least some of the
established connections so that the clients and servers can continue to exchange packets via the
connections until the connections complete normally. In addition, the distributed load balancing
system may continue to service connections that were in the process of being established at the
time of failure.

[0120] In at least some embodiments of the distributed load balancing system, a failure
recovery protocol may be implemented that may recover existing client connections in the event
of a single load balancer node 110 failure. Multiple load balancer node 110 failures, however,
may result in lost client connections. In at least some embodiments, TCP retransmissions
between a client 160 and a server 134 may be used as a means of recovery following a load
balancer node 110 failure.

[0121] In addition to potential load balancer node 110 failures, new load balancer nodes 110
may be added to the distributed load balancer system. These new nodes 110 may be added to the
load balancer layer and thus to the consistent hash ring, and load balancer node 110 roles
regarding existing client connections may be adjusted according to the change, as necessary.

Handling flow tracker node failures and additions

[0122] In at least some embodiments, as each connection is established (see, e.g., Figures
10A through 10G), the connection state information is passed through two load balancer nodes
110, referred to as the primary and secondary flow trackers, which may be determined using a
consistent hash algorithm that, for example, uses the (client IP:port, public IP:port) tuple as hash
function input. In the event of a single load balancer node 110 failure, at least one of the
surviving load balancer nodes 110 may continue to be mapped via the consistent hash function
and may contain the necessary state information for a connection to direct packets to the selected
server node 130 for a connection. In addition, in the case of an addition of a load balancer node
110 to the consistent hash ring, state information for connections may be refreshed to the
appropriate flow trackers.

[0123] Figures 11A through 11D illustrate the handling of events that effect membership in
the load balancer node consistent hash ring, according to at least some embodiments. These
events may include, but are not limited to, adding a new primary flow tracker node, adding a new
secondary flow tracker node, failure of a primary flow tracker node, and failure of a secondary

flow tracker node.
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[0124] Figure 11A illustrates handling the addition of a new primary flow tracker node to the

consistent hash ring. The top row of Figure 11A shows flow tracker 116A as the primary flow
tracker for one or more client connections and flow tracker node 116B as the secondary flow
tracker for the same connection(s). In the bottom row of Figure 11A, a new flow tracker node
116C has been added, and becomes the primary flow tracker for the client connection(s). Flow
tracker node 116A, formerly the primary flow tracker, becomes the secondary flow tracker, while
flow tracker node 116B, formerly the secondary flow tracker, becomes a next flow tracker in the
consistent hash ring. State information for the client connection(s) that was maintained by flow
trackers 116A and 116B may be provided to the new primary flow tracker 116C. In addition,
flow tracker 116B may “forget” its formerly tracked connections in the role of secondary flow
tracker.

[0125] Figure 11B illustrates handling the addition of a new secondary flow tracker node to
the consistent hash ring. The top row of Figure 11B shows flow tracker 116A as the primary
flow tracker for one or more client connections and flow tracker node 116B as the secondary
flow tracker for the same connection(s). In the bottom row of Figure 11B, a new flow tracker
node 116C has been added, and becomes the secondary flow tracker for the client connection(s).
Flow tracker node 116A remains as the primary flow tracker for the connection(s), while flow
tracker node 116B, formerly the secondary flow tracker, becomes a next flow tracker in the
consistent hash ring. State information for the client connection(s) that was maintained by flow
trackers 116A and 116B may be provided to the new secondary flow tracker 116C. In addition,
flow tracker 116B may “forget” its formerly tracked connections in the role of secondary flow
tracker.

[0126] Figure 11C illustrates handling the failure of a primary flow tracker node in the
consistent hash ring. The top row of Figure 11C shows flow tracker 116A as the primary flow
tracker for one or more client connections, flow tracker node 116B as the secondary flow tracker
for the same connection(s), and flow tracker node 116C as a next flow tracker in the consistent
hash ring. In the bottom row of Figure 11C, primary flow tracker node 116A has failed. Flow
tracker node 116B becomes the primary flow tracker for the connection(s), while flow tracker
node 116C becomes the secondary flow tracker for the connection(s). State information for the
client connection(s) is maintained by flow tracker 116B and may be provided to the new
secondary flow tracker 116C.

[0127] Figure 11D illustrates handling the failure of a secondary flow tracker node in the
consistent hash ring. The top row of Figure 11D shows flow tracker 116A as the primary flow

tracker for one or more client connections, flow tracker node 116B as the secondary flow tracker

31



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

for the same connection(s), and flow tracker node 116C as a next flow tracker in the consistent
hash ring. In the bottom row of Figure 11D, secondary flow tracker node 116B has failed. Flow
tracker node 116A remains as the primary flow tracker for the connection(s), while flow tracker
node 116C becomes the secondary flow tracker for the connection(s). State information for the
client connection(s) is maintained by flow tracker 116B and may be provided to the new
secondary flow tracker 116C.

[0128] In at least some embodiments, the load balancer modules 132 on the server nodes 130
perform connection publishing to the load balancer nodes 110. In at least some embodiments,
the connection publishing periodically (e.g., once a second) or aperiodically pushes current
connection state information from the server nodes 130 to the load balancer nodes 110 serving as
flow tracker nodes and ingress nodes, which acts to refresh or restore the connection mappings to
both the primary and secondary flow tracker nodes for the connections. In at least some
embodiments, a load balancer module 132 may detect a flow tracker membership change, for
example as illustrated in Figures 11A through 11D. In response, the load balancer module 132
may perform a connection publication to populate the state information for the connections in the
primary and secondary flow tracker nodes, which may have changed for the connections when
the membership changed. Note that connection publishing may allow at least some established
connections to be recovered in the event of multiple load balancer node failures.

Failure-related message flow

[0129] In at least some embodiments, the protocol between the primary and secondary flow
tracker nodes may include a correction or synchronization functionality. For example, referring
to Figure 11A, when a new primary flow tracker node 116C joins the consistent hash ring, the
new node 116C may lay claim to the consistent hash keyspace for some number of connections
(~ I/N) and begin receiving traffic related to these connections from the edge router 104.
However, the new primary flow tracker node 116C does not have any state stored for the
connections, so it may operate on ecach packet as if it were the first packet received from the
client 160. The primary flow tracker is responsible for generating server TCP sequence numbers
in response to SYN packets (see, e.g., Figure 10A) and for selecting server nodes 130 in response
to the first ACK packet from a client 160 (see, e.g., Figure 1), and these generated values may
disagree with values chosen by the previous primary flow tracker (flow tracker node 116A in
Figure 11A). However, in at least some embodiments the consistent hash algorithm assigns the
previous primary flow tracker (flow tracker node 116A in Figure 11A) into the secondary flow
tracker role, and this flow tracker still retains the previously stored state for the connections.

Thus, in at least some embodiments, when the secondary flow tracker (flow tracker node 116A in
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Figure 11A) detects a discrepancy in information received from the primary flow tracker 116C, it
can send update messages back to the primary flow tracker 116C to bring the two load balancer
nodes 110 serving as flow trackers for the connections into synchronization. Similar methods
may be used to synchronize the flow trackers after other changes in the consistent hash ring
membership.

Load balancer module details

[0130] In at least some embodiments, the load balancer module 132 is a component of the
distributed load balancer system that resides on each of the server nodes 130. Roles of the load
balancer node 132 include, but are not limited to, decapsulating packets received from the load
balancer nodes 110 and sending the decapsulated packets to the server 134 on the server node
130, and encapsulating outgoing packets from the server 134 and sending the encapsulated
packets to a load balancer node 110.

[0131] In at least some embodiments, incoming packets to the load balancer modules 132 on
the server nodes 130 from the load balancer nodes 110 serving as ingress servers 112 are
stateless protocol (e.g., UDP) packets that encapsulate the actual client data packets. Each
encapsulated client data packet has the original clientIP:port of a respective client 160 as the
source address and the server 134 publicIP:port as the destination address. The load balancer
modules 132 strip the encapsulation from the client data packets and send the packets to the
respective servers 134 on the server nodes 130, for example by redirecting the packets to a
localhost TCP flow.

[0132] In at least some embodiments, outgoing packets from the servers 134 to the load
balancer nodes 110 serving as egress servers 114 are stateless protocol (e.g., UDP) packets that
encapsulate the outgoing IP packets. The load balancer modules 132 encapsulate the outgoing IP
packets and send the encapsulated packets to the egress servers 114 via the fabric 120. Each
encapsulated outgoing IP packet has the server 134 publicIP:port as the source address and the
clientIP:port of a respective client 160 as the destination address.

Load balancer module functionality

[0133] In at lecast some embodiments, functions of the load balancer module 132 on a server

node 130 may include one or more of, but are not limited to:

e Terminating UDP tunnels from the load balancer node(s) 110, e.g. from the ingress server
112 handling a connection to a client 160. This includes stripping UDP encapsulation

from incoming client data packets received from the ingress servers 112.

e Seclecting an egress server 114 to receive outgoing traffic for a connection.
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e Intercepting outgoing IP packets on a connection to the respective server 134,
encapsulating the outgoing IP packets for the connection, and sending the encapsulated

packets to the egress server 114.

e Mangling the sequence number in incoming and outgoing packets so that the sequence
number aligns with the sequence number generated by the flow tracker nodes 116 when

the flow tracker nodes 116 sent a SYN/ACK to the client 160.

e Making the decision on whether to accept or reject a connection for the respective server
134, for example based on one or more metrics indicating the respective server 134’s

current load.

e Detecting and rejecting connections from the same clientIP:port address to the respective
server 134 if there is an active connection for that clientlP:port address to avoid

collisions.
e Connection tracking and connection publishing.

Load balancer module configuration information

[0134] In at least some embodiments, each load balancer module 132 may acquire and
locally store one or more of, but is not limited to, the following sets of information for its
configuration: a set of load balancer node 110 endpoints; a set of valid public IP addresses which
it is to serve; and the port number(s) on which the respective server 134 accepts incoming
connections. In a least some embodiments, this information may be acquired from or updated by
accessing or querying a configuration service 122 component of the distributed load balancer
system, as illustrated in Figure 1. Other methods of acquiring the information may be used in
some embodiments.

Load balancer module packet handling

[0135] The following describes load balancer module 132 operations for inbound traffic and
outbound traffic according to at least some embodiments. In at least some embodiments, when
an inbound data packet is received by the load balancer module 132, the data packet is
decapsulated from the UDP packet, and the destination address in the decapsulated TCP packet is
first validated against a set of configured valid public IP addresses. If there is no match, the
packet is dropped or ignored. In at least some embodiments, the load balancer module 132 may
adjust the sequence number in the TCP header by a constant delta so that the sequence number

matches the randomly chosen sequence number generated by the flow tracker nodes 116 that sent
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the SYN/ACK packet to the client 160. The load balancer module 132 records the mapping from

the [Client:Public] endpoint to the [Client:Server] endpoint as an internal state.

[0136] In at least some embodiments, for outbound TCP packets from the server 134, the
load balancer module 132 first checks its internal state to determine if the packet is for an active
connection that the load balancer module is managing. If it is not, the load balancer module 132
just passes the packet through. If it is, the load balancer module 132 encapsulates the outgoing
TCP packet, for example according to UDP, and forwards the encapsulated packet to a load
balancer node 110 that was selected as the egress server 114 for this connection. In at least some
embodiments, the load balancer module 134 may adjust the TCP sequence number in the
outgoing TCP packet by a constant delta so that it aligns with the sequence number generated by
the flow tracker nodes 116 that sent the SYN/ACK packet to the client 160.

Connection tracking

[0137] In at least some embodiments, the load balancer module 132 on cach server node 130
manages a hash table containing connection details for every active client connection to the
respective server 134. In at least some embodiments, the key for the hash table is the
(clientIp:port, publiclp:port) tuple. In at least some embodiments, the connection state for each
client connection may include one or more of, but is not limited to:

e The client IP : Port

e The public IP : Port

e The initial server TCP sequence number provided by the flow tracker 116 nodes.

e The server TCP sequence number delta.

e The original primary flow tracker IP address.

e The original secondary flow tracker IP address.

e The IP address of the last detected ingress server 112.

e An expiration time for this entry

e [cast Recently Used (LRU) / Collision indices.
[0138] In at least some embodiments, each load balancer module 132 periodically generates
connection publishing messages to the primary and secondary flow tracker nodes for all active
client connections. In at least some embodiments, the content of /proc/net/tcp is scanned and
intersected with the active connections in the load balancer module's hash table so that they will
continue to be published to the flow tracker nodes until the Linux kernel stops tracking the
connection. Connection publishing will be discussed in more detail later in this document.

Sequence number mangling
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[0139] As previously described, in at least some embodiments the load balancer nodes 110
generate SYN/ACK packets in response to client 160 SYN packets on behalf of the server 134.
Only after the client 160 sends an ACK packet (the TCP three-way handshake) does a load
balancer module 110 send any data to a load balancer module 132 on a server node 130. When
the load balancer module 132 is first instructed to establish a client connection, the load balancer
module 132 locally fabricates a SYN packet to begin a TCP connection with the server 134 on
the server node 130, and intercepts the server 134’s corresponding SYN/ACK packet. Typically,
the server 134 (e.g., the Linux kernel on the server node 130) selects an entirely different TCP
sequence number than the one the client received in the SYN/ACK packet from the load balancer
nodes 110. Thus, in at least some embodiments, the load balancer module 132 may correct for
the sequence numbers in all the packets in the TCP connection between the client 160 and the
server 134. In at least some embodiments, the load balancer module 132 computes the difference
between the sequence number generated by the load balancer nodes 110 and the sequence
number generated by the server 134 and stores the difference as a delta value in the hash table
entry for the TCP connection. When incoming data packets arrive from the client 160 on the
connection, the TCP header will contain acknowledgement numbers that will not align with the
sequence number used by the server 134, so the load balancer module 132 subtracts the delta
value (e.g., using two's complement) from the sequence number value in the TCP header. The
load balancer module also adds the delta value to the sequence number in outbound packets from
the server 134 to the client 130 on the connection.

Health checking in the distributed load balancer system

[0140] In at least some embodiments of the distributed load balancer system, each load
balancer node 110 requires a consistent view of the healthy members in the load balancer
implementation (i.e., of the healthy load balancer nodes 110 and server nodes 130) for at least the
following reasons:

e Load balancing - The load balancer nodes 110 need to detect server node 130 failures and
converge on a set of healthy server nodes 130 that can accept client traffic.

e Distributed state management — The load balancer is a distributed system with the state
shared/replicated across multiple load balancer nodes 110 (e.g., according to a consistent
hashing mechanism). In order to properly handle client traffic, each load balancer node
110 needs to have an eventually consistent view of the healthy member nodes 110 in the
load balancer implementation.

[0141] To accomplish this, at least some embodiments of the distributed load balancer

system may implement embodiments of a health check protocol that monitors nodes in the load
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balancer implementation and detects unhealthy nodes as soon as possible. The health check
protocol may propagate health information among the nodes in the load balancer implementation,
and may provide methods that enable the nodes to converge on a set of healthy nodes. In
addition, the health check protocol may provide mechanisms for reporting healthy/unhealthy
nodes and state changes in the load balancer implementation.

[0142] In at least some embodiments, the health check protocol may be based on one or more
of, but not limited to, the following assumptions:

e All nodes in the load balancer implementation are known. (I.e., the health check protocol
may not perform discovery).

e All node failures are fail-stop.

e All messages between nodes are stateless protocol (e.g., UDP) messages, and the
messages may be dropped, delayed, duplicated or corrupted. There are no guarantees on
message delivery.

[0143] In at least some embodiments, a node in a load balancer implementation (e.g., a load
balancer node 110 or server node 130) may be considered healthy under the following
conditions:

e All of the node’s internal components are in ready state (ready to handle client traffic).

e The node’s incoming/outgoing network links are healthy (for at least the network
interface controllers (NICs) on which client traffic flows).

[0144] Figure 12 is a high-level flowchart of a health check method that may be performed
by each load balancer node according to a health check interval, according to at least some
embodiments. As indicated at 1000, at each load balancer interval, for example every 100
milliseconds, each load balancer (LB) node 110 may health check at least one other LB node 110
and at least one server node 130. As indicated at 1002, the load balancer node 110 may update
its locally stored health information according to the health checks. As indicated at 1004, the
load balancer node 110 may then randomly select at least one other load balancer node 110 and
send its health information to the selected load balancer node(s) 110. In at least some
embodiments, the node 110 may also send a list of healthy load balancer nodes 110 to one or
more server nodes 130, for example to the same server node(s) 130 that are health checked by the
node 110. The elements of Figure 12 are explained in more detail in the following discussion.

[0145] In at least some embodiments of the health check protocol, a load balancer node 110
does not assert its own health to the other load balancer nodes 110. Instead, one or more other
load balancer nodes 110 may health-check the node 110. For example, in at least some

embodiments, each load balancer node 110 may periodically or aperiodically randomly select
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one or more other nodes 110 to health-check. As another example, in at least some
embodiments, one or more other load balancer nodes 110, for example the two nearest neighbors
of a given load balancer node 110 on an ordered list of nodes 110 such as a consistent hash ring,
may each periodically or aperiodically check the health of the given node 110. In at least some
embodiments, health checking a node 110 may include using health pings sent to the NICs 1114
on the node 110 as illustrated in Figure 23. In at least some embodiments, if a first node 110
determines that a second node 110 is healthy via a health check, the first node 110 may update
(e.g., increment) the heartbeat counter for the second node 110 stored in local health information
for the load balancer nodes 110. The first node 110 periodically or aperiodically sends its local
health information to one or more other load balancer nodes 110 in the load balancer
implementation, which may update their own local health information accordingly (e.g., by
incrementing the heartbeat counter for the second node) and send their updated local health
information to one or more other nodes 110. The heartbeat information for the second node 110
may thus be propagated to the other nodes 110 in the load balancer implementation. As long as
the second node 110 is healthy, all of the other nodes 110 that are reachable from the second
node 110 should thus see the second node 110’s heartbeat counter getting incremented on a
consistent basis, e.g. once a second or once every ten seconds. If the second node 110 is detected
to be unhealthy by the node(s) 110 that check its health, no heartbeat for the node 110 is sent by
the health checking nodes 110 and, after some time threshold, the other nodes 110 in the load
balancer implementation 110 consider the node 110 in question to be unhealthy, or down.

[0146] In at least some embodiments, a load balancer node 110 may check one or more
aspects of its own internal state and, if the node 110 detects that it is unhealthy for some reason,
the node 110 may stop responding to the health pings from other nodes 110 that check its health.
Thus, the nodes 110 checking the unhealthy node 110’s health may consider the node 110 as
unhealthy, and may not propagate heartbeat increments on behalf of the node 110.

Health check protocol details

[0147] In at least some embodiments, the health check protocol may leverage a heartbeat
counter technique and gossip protocol technology. The health check protocol may be considered
to have two main parts — health checking and gossip / failure detection.

[0148] Health checking - Every load balancer node 110 in the load balancer implementation
may periodically or aperiodically health check one or more other nodes 110 in the
implementation. Methods by which the one or more other nodes are determined are discussed
later. A core idea of health checking is that if a node 110 health checks another node 110 and
determines that the other node 110 is healthy, the checking node 110 asserts that the other node
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110 is healthy by incrementing and propagating a heartbeat counter for the other node 110. In

other words, the nodes 110 do not assert their own health to the other nodes; instead, one or more
other nodes 110 check and assert the health of each node 110 in the load balancer
implementation.

[0149] Gossip / failure detection - In at least some embodiments, the health check protocol
may leverage a gossip protocol to propagate load balancer node 110 health information among
the member load balancer nodes 110 in the load balancer implementation. The gossip protocol
converges rapidly, and provides eventual consistency guarantees that are sufficient for the
purposes of the distributed load balancing system. In at least some embodiments, using the
gossip protocol, each load balancer node 110 maintains a heartbeat counter for each other node
110 in the load balancer implementation, for example in a heartbeat list. Each load balancer
node 110 periodically or aperiodically performs a health check of at least one other load balancer
node 110 as described above, and increments the heartbeat counter for a node 110 upon
determining via the health check that the checked node 110 is healthy. In at least some
embodiments, each load balancer node 110 periodically or aperiodically randomly selects at least
one other node 110 in the load balancer implementation to which it sends its current heartbeat
list. Upon receipt of a heartbeat list from another node 110, a load balancer node 110 merges the
heartbeat information in the received list with its own heartbeat list by determining the maximum
heartbeat counter for each node 110 in the two lists (the received lists and its own list) and using
the determined maximum heartbeat counter in its own heartbeat list. In turn, this heartbeat list
gets sent to another randomly selected node 110, which updates its own heartbeat list
accordingly, and so on. Using this technique, heartbeat information for each healthy node 110 is
eventually (e.g., in a few seconds) propagated to all of the other load balancer nodes 110 in the
load balancer implementation. As long as the heartbeat counter keeps increasing for a given load
balancer node 110, it is considered to be healthy by the other nodes 110. If a load balancer node
110’s heartbeat counter does not get incremented for a specified period by the health checking
and gossiping method, then other load balancer nodes 110 may converge on the load balancer
node 110 being considered unhealthy.

Health checking load balancer nodes

[0150] The following describes a method for health checking a load balancer node 110 that
may be performed by another load balancer node 110, according to at least some embodiments.
With reference to Figure 23, in at least some embodiments, a load balancer node 110 may be

considered healthy if one or more of the following conditions are determined for the node 110:

39



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426
e The processor threads (e.g., core packet processing code 1108 threads) of the node 110

are in the ready state (internal).

e The node 110 knows the edge router 104’s IP address and/or MAC address (internal).

e All of the threads and/or protocol handlers of the node 110 are in the ready state
(internal).

e The incoming and outgoing links from the north side (edge router 104 / border network)
and from the south side (servers 130 / production network) are active (external).

e The node 110 can receive and dispatch packets via the network interface controllers
(NICs) used in the load balancer implementation. For example, in an example load
balancer node 110 embodiment as shown in Figure 23, the node 110 should successfully
receive and dispatch packets via the north-facing NIC 1114A and the south-facing NIC
1114B.

[0151] If one or more of these health conditions does not hold for a given node 110, the node
110 may be considered not healthy. Note that, in some embodiments, a node 110 is only
considered healthy if all of the above conditions hold for the node 110.

[0152] In at least some embodiments, in addition to the above health conditions, a third NIC,
shown in Figure 23 as NIC 1114C, on each load balancer node 110 that may, for example, be
used for control plane communications may also be checked by a health-checking node 110 by
sending packets to and receiving packets from the NIC and, if the check of the third NIC fails,
the node 110 being checked may be considered unhealthy.

[0153] Figure 13 illustrates an example method for health checking a load balancer node
from another load balancer node, according to at least some embodiments. In this example, load
balancer node 110A is health checking load balancer node 110B. Each node 110A and 110B has
a north-facing NIC (NIC 1114A in Figure 23) and a south-facing NIC (NIC 1114B in Figure 23).
At 1, node 110A sends a packet (e.g., a ping packet) from its north-facing NIC to the north-
facing NIC of node 110B via edge router 104. Node 110B receives the packet on its north-facing
NIC, and at 2 sends a response from its north-facing NIC to the north-facing NIC of node 110A
via fabric 120, provided the conditions given in the list above are satisfied. After receiving the
response on its north-facing NIC, at 3, node 110A sends a packet (e.g., a ping packet) from its
south-facing NIC to the south-facing NIC of node 110B via fabric 120. Node 110B receives the
packet on its south-facing NIC, and at 4 sends a response from its south-facing NIC to the south-
facing NIC of node 110A via edge router 104, provided the conditions given in the list above are

satisfied. Upon receiving the response on its south-facing NIC, node 110A considers node 110B
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to be healthy and increments node 110B’s local heartbeat counter, which may then be propagated
to other nodes 110 according to a gossip protocol as previously described.

[0154] As an alternative to the above, in some embodiments, load balancer node 110B may
respond to the first ping message, received at its north-facing NIC, via its south-facing NIC to the
south-facing NIC of node 110A, and respond to the second ping message, received at its south-
facing NIC, via its north-facing NIC to the north-facing NIC of node 110A.

[0155] In addition, in some embodiments, node 110A may also health check a third NIC of
node 110B that is used for control plane communications (shown as NIC 1114C in Figure 23) by
pinging node 110B’s third NIC from its own third NIC and receiving a response to the ping
message on its third NIC from node 110B’s third NIC if node 110B is healthy. The ping
message and response may pass through one or more control plane device(s) 170, for example a
network switch.

[0156] The above-described health check mechanism exercises all of the incoming and
outgoing links and data paths of node 110B in all directions (north, south, and through the
control plane) as well as all of node 110B’s NICs, and also verifies the internal health of node
110B as the ping packets traverse the internal queues and dispatching of node 110B as would a
client packet.

Assigning health checking responsibilities to load balancer nodes

[0157] In at least some embodiments, every load balancer node 110 in a load balancer
implementation has access to a list (¢.g., a sorted list) of all of the other load balancer nodes 110
in the load balancer implementation, for example via a configuration function and/or via a
configuration service 122 component as shown in Figure 1. In at least some embodiments, each
load balancer node 110 may randomly select one or more other nodes 110 on the list to health
check at each health check interval, incrementing their heartbeat counter if determined healthy.
Note that the list includes all load balancer nodes 110 in the load balancer implementation
whether currently considered healthy or unhealthy via the health check mechanism, and currently
unhealthy nodes 110 may be randomly selected from the list and health checked as well as
healthy nodes 110. Thus, a currently unhealthy node 110 may be determined to be healthy by
one or more nodes 110 that health check the node 110, its heartbeat counter may be incremented
and propagated to the other nodes 110, and the unhealthy node 110 may thus return to healthy
status.

[0158] Alternatively, in some embodiments, each load balancer node 110 may assume
responsibility for health checking one or more other nodes 110 in the list and incrementing their

heartbeat counter if determined healthy. For example, in some embodiments, each node 110 may
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assume responsibility for two other nodes, for example its “left” (or previous) and “right” (or
next) nearest neighbor nodes 110 in the list. Note that the list may be considered circular and a
node 110 at the “end” of the list may assume responsibility for health checking a node 110 at the
“beginning” of the list, and vice versa. In some embodiments, the two other nodes 110 may be
otherwise selected, for example as the two nearest neighbors next on the list. In some
embodiments, each node 110 may assume responsibility for health checking more than two other
nodes 110 on the list, for example three or four other nodes 110. In at least some embodiments,
if a neighbor node 110 that is being checked by a node 110 is determined to be unhealthy, then
the node 110 may assume responsibility for health checking at least one node on the list that the
unhealthy neighbor node 110 was responsible for checking. In at least some embodiments, in
addition to health checking its neighbor nodes 110 (e.g., a “left” and “right” neighbor node), each
load balancer node 110 may also periodically or aperiodically randomly select a node 110 in the
ring and perform a health check of that randomly selected node 110 and, if healthy, increment
and propagate the random node 110’s heartbeat. In at least some embodiments, all other nodes
110 in the ordered list are considered for the random selection and health check regardless of
whether the other node 110 was previously considered healthy or not.

[0159] In at least some embodiments, each node 110 performs the health check of one or
more randomly selected nodes 110, or alternatively of its neighbor nodes 110 and a randomly
selected node, at a regular interval, which may be referred to as the health check interval. For
example, in some embodiments, the heartbeat interval may be 100 milliseconds, although shorter
or longer intervals may be used. In addition, in at least some embodiments, each node 110 sends
or “gossips” its current heartbeat list to at least one other randomly selected node 110 at a regular
interval, which may be referred to as a gossip interval. In some embodiments, the health check
interval and the gossip interval may be the same, although they are not necessarily the same.
[0160] Figure 14 graphically illustrates a load balancer node health checking one or more
other load balancer nodes, according to at least some embodiments. In this example, there are
cight load balancer nodes 110A — 110H in the load balancer implementation. The dotted circle
represents an ordered list of all nodes 110 in the implementation. In some embodiments, each
node 110 may randomly select one or more other nodes 110 on the list to health check at each
interval. As an alternative, in some embodiments, each load balancer node 110may assume
responsibility for checking one or more particular nodes 110 on the ordered list, for example
node 110A may take responsibility for health-checking its two nearest neighbor nodes 110B and
110H according to the ordered list as shown in Figure 14.In addition, the load balancer node may

also randomly select another node 110 from the ordered list at each health check interval. As
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shown in this example, node 110A has also randomly selected node 110F to health check. At the

gossip interval, node 110A randomly selects some other healthy node 110, for example node
110D, and sends its current heartbeat list to the selected other node 110, for example in a UDP
message. A node 110, upon receiving a heartbeat list from another node 110, may update its own
heartbeat list accordingly and propagate the heartbeat list to one or more randomly selected
nodes 110 at the next gossip interval.

Health checking the server nodes

[0161] In addition to health checking the load balancer nodes 110 as described above,
embodiments of the health check protocol may perform health checking of the server nodes 130
including the load balancer modules 132 and servers 134 on those nodes 130. In at least some
embodiments, a server node 130 may be considered healthy if one or both of the following
conditions are determined for the node 130:
e The load balancer module 132 is healthy.
e The server node 130 responds successfully to health pings (e.g., L7 health pings).

[0162] Figure 15 illustrates the load balancer nodes health checking the server nodes,
according to at least some embodiments. In at least some embodiments, every load balancer
node 110 in a load balancer implementation has access to a list of all of the other load balancer
nodes 110 in the load balancer implementation, as well as a list of all server nodes 130 in the
load balancer implementation. The list(s) may be obtained and updated, for example via a
configuration function and/or via a configuration service 122 component as shown in Figure 1.
In at least some embodiments, the server nodes 130 may be consistent hashed against the healthy
load balancer nodes 110 to form a consistent hash ring as illustrated in Figure 15. In at least
some embodiments, each server node 130 in the ring is health checked by two healthy load
balancer nodes 110 in the ring. For example, in Figure 15, server node 130A is health checked
by load balancer nodes 110A and 110C. These two nodes 110 may be referred to as the first
(node 110A) and second (node 110B) health checking nodes 110 for the server node 130 in the
consistent hash ring. Note that a given healthy load balancer node 110 may health check more
than one server node 130. For example, in Figure 15, load balancer node 110A also health
checks server nodes 130B and 130C. In addition, a given node balancer node 110 may be a first
health checking node 110 for one or more server nodes 130 and a second health checking node
110 for one or more other server nodes 130. For example, in Figure 15, load balancer node 110A
is the first health checker node for server nodes 130A and 130B and the second health checker
node for server nodes 130C and 130D.
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[0163] In at least some embodiments, if a load balancer node 110 fails, the membership in
the consistent hash ring changes, and one or more others of the load balancer nodes 110 that are
still healthy and thus still on the consistent hash ring may assume responsibility for health
checking the server nodes 130 previously health checked by the failed node 110.

[0164] In at least some embodiments, each healthy node 110 performs the health check of its
assigned server nodes 130 at a regular interval, which may be referred to as a server check
interval. In at least some embodiments, the server check interval may be greater than or equal to
the gossip interval previously mentioned.

[0165] In at least some embodiments, to perform a health check of a server node 130, a
healthy load balancer node 110 (e.g., node 110A in Figure 15) initiates a health ping message
(e.g., a L7 HTTP health ping message) to a server node 130 (e.g., server node 130A in Figure
15). If healthy, the server node 130 sends a ping response back to the load balancer node 110. In
at least some embodiments, the ping message is received and processed by the load balancer
module 132 on the server node 130, so the health check ping, if successful, establishes that the
module 132 on the server node 130 is healthy. Upon receiving the response to the ping, the load
balancer node 110 considers the server node 130 as healthy, and increments a heartbeat counter
for the server node 130.

[0166] In at lecast some embodiments, the heartbeat counters for all server nodes 130 health
checked by a given healthy load balancer node 110 may be propagated to the other load balancer
nodes 110, for example according to the gossip technique previously described for the load
balancer node 110 heartbeat counters in which each node 110 sends its heartbeat list to at least
one other randomly selected node 110 at a regular interval (the gossip interval), and the receiving
node 110 updates its own heartbeat list according to the maximum values in the two lists.

Failure detection and gossip

[0167] In at least some embodiments, the information obtained through the load balancer
node 110 health checks and the server node 130 health checks described above may need to be
propagated to all the nodes 110 in the load balancer implementation so that all load balancer
nodes 110 can maintain consistent view of the load balancer implementation. As described
above, in at least some embodiments, the load balancer nodes 110 may communicate with each
other according to a gossip protocol to exchange and propagate this health information and to
detect load balancer node 110 and server node 130 failures.

[0168] In at least some embodiments, at a regular interval (referred to as the gossip interval),
cach load balancer node 110 randomly selects another load balancer node 110 and sends the

other node 110 its view of healthy load balancer nodes 110 and server nodes 130 along with the
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heartbeat counters for the load balancer nodes 110 and server nodes 130. As long as a load
balancer node or server node 130 is healthy, the node will pass its health checks and its heartbeat
counter will keep increasing. If the heartbeat counter for a node does not change for a specified
interval (which may be referred to as a fail time interval), then the node is suspected to have
failed by the load balancer nodes 110. Once a node is suspected to have failed, the load balancer
nodes 110 may wait for a specified interval (which may be referred to as the unhealthy time
interval) before determining that the node is unhealthy. This unhealthy time interval allows the
load balancer nodes 110 to wait until all the load balancer nodes 110 learn that the node has
failed.

[0169] Figure 16 graphically illustrates a state for, or view of, health of another node (either
a load balancer node 110 or server node 130) that may be maintained by a load balancer node
110, according to at least some embodiments. Assume the load balancer node 110 starts with a
view of the node in question as being healthy, as indicated at 300. This indicates that the
heartbeat counter for the node has been incrementing. However, if the node’s heartbeat counter
does not increase for a specified interval (the fail time interval) as indicated at 302, then the load
balancer node 110 suspects that the node has failed, as indicated at 304. If the node’s heartbeat
counter does not increase for a specified interval (the unhealthy time interval) as indicated at 306,
then the load balancer node 110 considers the node unhealthy, as indicated at 308. However, if
the heartbeat counter for the node increments before the unhealthy time interval expires as
indicated at 310, the load balancer node 110 again considers the node as healthy 300. Similarly,
receiving a heartbeat increment for an unhealthy node as indicated at 312 can cause the node to
be considered as healthy 300.

[0170] Determining that a node is unhealthy may involve different actions by the load
balancer node(s) 110 depending on whether the unhealthy node is a load balancer node 110 or a
server node 130, and also depending on the load balancer node’s 110 relationship with the
unhealthy node, as described elsewhere herein.

Load balancer node data

[0171] In at least some embodiments, each load balancer node 110 may maintain data about
the state of the load balancer implementation. In at least some embodiments, this data may be
maintained in one or more data structures on each load balancer node 110 including but not
limited to a healthy load balancer node list, a suspect load balancer node list, and a heartbeat list.
Figure 17 illustrates an example load balancer node 110 that maintains a healthy load balancer
node list 320, a suspect load balancer node list 322, an unhealthy load balancer node list 324, and
a load balancer node heartbeat list 326.
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[0172] In at least some embodiments, each load balancer node 110 may maintain a healthy
load balancer node list 320, which is a list of healthy load balancer nodes 110 that may, for
example, be used to determine which nodes 110 are healthy and are thus participating in the
gossip protocol. Only the nodes 110 on the list 320 are involved in the propagation of load
balancer information via the gossip protocol, only the nodes 110 on the list 320 are considered to
be in the consistent hash ring, and only the nodes 110 on this list health-check server nodes 130.
A node 110 may randomly select another node 110 from this list 320 to which its heartbeat
information is sent. In addition, heartbeat counters are exchanged only for the nodes 110 that are
currently in the healthy load balancer node list 320. In at least some embodiments, a load
balancer node N can be added to the healthy load balancer node list 320 of another load balancer
node 110 if node N passes a health check by the load balancer node 110 or if the load balancer
node 110 receives a gossip message about node N from some other load balancer node 110 on the
list 320.

[0173] In at least some embodiments, each load balancer node 110 may maintain a suspect
load balancer node list 322, which is a list of load balancer nodes whose heartbeat counter (see
heartbeat list 326) has not increased for a specified interval (referred to as the fail time interval).
If a load balancer node £ is in the suspect load balancer node list 322 of a load balancer node
110, then the load balancer node 110 will not gossip about node £. If some other load balancer
node 110 on the healthy list 320 gossips to the load balancer node 110 about node £ with a
higher heartbeat counter than the counter for node £ in the node 110’s heartbeat list 326, then
node £ will be moved from the suspect list 322 to the healthy list 320. If the node £ stays on the
load balancer node 110’s suspect list 322 for a specified interval (referred to as the unhealthy
time interval), node £ is considered unhealthy by the load balancer node 110 and is moved onto
an unhealthy node list 324. A node 110 on the unhealthy node list 324 (in this example, node G)
may be moved to the healthy node list 320 of a load balancer node 110 upon node G passing a
health check by the node 110 or upon receiving an updated heartbeat counter for the node G from
another node 110.

[0174] In at least some embodiments, each load balancer node 110 may maintain a heartbeat
list 326 for all known load balancer nodes 110. For each node, 110, this list 326 may include a
heartbeat counter and a timestamp that indicates when the heartbeat counter last changed.

[0175] In at least some embodiments, cach load balancer node 110 may also maintain a
heartbeat list for all known server nodes, not shown in Figure 17. This list may be similar to the
load balancer node heartbeat list 326. In some embodiments, the two lists may be combined. In

at least some embodiments, the heartbeat information for the server nodes 130 may be
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propagated among the load balancer nodes 110, for example according to a gossip protocol,
along with or in addition to the heartbeat information for the load balancer nodes 110.

[0176] While Figure 17 shows four separate lists, it is to be noted that two or more of the
lists may be combined into a single list. For example, in some embodiments, a single list of all
nodes 110 may be maintained on each load balancer node 110, and bit flags or other data
structures may be used to indicate whether each node is currently healthy, suspect, or unhealthy.

Server node data

[0177] In at least some embodiments, the server nodes 130 and local load balancer modules
132 on the nodes 130 do not participate in the gossip protocol with the load balancer nodes 110.
The load balancer nodes 110 gossip the heartbeat information about the other load balancer
nodes 110 obtained by the load balancer node health check method and the heartbeat information
about the server nodes 130 obtained by the server node health check method only among
themselves (specifically, each load balancer node 110 gossips only to nodes currently on its
healthy load balancer node list 320).

[0178] However, each server node 130 / load balancer module 132 may need information
about healthy load balancer nodes 110 in the load balancer implementation so that the server
node 130 can determine load balancer nodes 110 (specifically, egress nodes) to which the server
node 130 can forward outgoing client traffic and determine which load balancer nodes to which
connection publishing information is to be sent. In at least some embodiments, to provide this
information to the server nodes 130, the load balancer nodes 110 may periodically or
aperiodically update the server nodes 130 with information identifying the currently healthy load
balancer nodes 110 (e.g., healthy load balancer node list 320 in Figure 17). In at least some
embodiments, the load balancer nodes 110 that are responsible for health checking a given server
node 130 (see Figure 15) are responsible for providing the information identifying the currently
healthy load balancer nodes to the server 130. For example, referring to Figure 15, load balancer
node 110A may send its healthy load balancer node list 320 to server nodes 130A, 130B, 130C,
and 130D, load balancer node 110B may send its healthy load balancer node list 320 to server
nodes 130C, 130D, and 130E, and so on.

Handling load balancer node failures

[0179] Figures 18A and 18B illustrate handling a load balancer node failure, according to at
least some embodiments. Figure 18A shows an example load balancer implementation. There
are four load balancer nodes 110A through 110D currently in the load balancer implementation.
Edge router 104 routes incoming packets from clients (not shown) to the load balancer nodes

110. In at least some embodiments, the edge router 104 may make the routing decisions
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according to a layer 4 per-flow hashed multipath routing technique, for example an equal-cost
multipath (ECMP) routing technique. In at least some embodiments, edge router 104 learns
about the load balancer nodes 110 that are currently available in the load balancer
implementation to receive client traffic via load balancer node 110 advertisements, for example
advertisements via Border Gateway Protocol (BGP) technology sessions initiated by the load
balancer nodes 110. However, in at least some embodiments, instead of a load balancer node
110 advertising itself to the edge router 104 via a BGP session, at least one other node 110 in the
load balancer implementation takes responsibility for advertising the node 110 to the edge router
104 via BGP. For example, in some embodiments as shown in Figure 18A, the left and right
neighbor nodes 110 of a given node 110 advertise the given node 110 to the edge router 104. For
example, load balancer node 110A advertises nodes 110B and 110D, load balancer node 110B
advertises nodes 110A and 110C, and load balancer node 110C advertises nodes 110B and 110D.
[0180] As shown in the example of Figure 18A, cach load balancer node 110 also
periodically health checks one or more other load balancer nodes 110, for example one or more
randomly selected nodes 110, one or more neighbor nodes 110 as determined by an ordered list
of load balancer nodes, or one or more neighbor nodes and one or more randomly selected nodes.
In addition, each load balancer node 110 may periodically health check at least one server node
130 and also may send its list of healthy load balancer nodes 110 to the server node(s) it health
checks. Health information for the load balancer nodes 110 and the server nodes 130 may be
propagated among the nodes 110, for example according to a gossip protocol.
[0181] Figure 18B illustrates handling the failure of a single load balancer node 110 in the
example load balancer implementation of Figure 18A. In this example, load balancer node 110B
has failed for some reason. For example, nodes 110A and 110C may health check node 110B,
and both may detect that node 110B is failing its health checks. Thus, nodes 110A and 110C do
not increment the heartbeat counter for node 110B. The heartbeat information from both nodes
110A and 110B is propagated to the other healthy load balancer nodes 110 (in this example, the
only other load balancer node is node 110D) according to the gossip protocol. As soon as all of
the healthy load balancer nodes 110 (in this example, nodes 110A, 110C, and 110D) converge on
node 110B’s failure, one or more of, but not limited to, the following events may occur. Note
that these events do not necessarily occur in this order.
e Nodes 110A and 110C stop advertising node 110B to the edge router 104. In at least
some embodiments, this involves ending the BGP session that the node 110 established
with the edge router 104 to advertise node 110B. Note that each node 110 establishes a

separate BGP session with the edge router 104 for each other node 110 that it advertises,
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so ending the BGP session for node 110B does not affect other nodes 110 that are
advertised. In at least some embodiments, a node 110 ends a BGP session with the edge
router 104 by sending a TCP Close or similar message for the BGP session to the edge
router 104.

In response to detecting that node 110B is no longer being advertised by any of the nodes,
edge router 104 stops routing client data packets to node 110B. The edge router 104 also
adjusts the multipath (e.g., ECMP) hashing to redistribute packet flows from the clients to
the remaining healthy load balancer nodes 110, specifically to the ingress servers 112 on
the nodes 110. For any packet flow routed to an ingress server 112 for which the ingress
server 112 does not have a client->server mapping, the mapping may be obtained from a
flow tracker node for the client->server connection, or alternatively a new client->server
connection may be established according to the technique as illustrated in Figures 10A
through 10G.

Nodes 110A and 110C may each opens a BGP session to edge router 104 to advertise
cach other. Note that, since both nodes 110A and 110C are advertised to edge router 104
by load balancer node 110D as well as node 110B, the fact that node 110B may stop
advertising nodes 110A and 110B to the edge router 104 when it fails does not cause edge
router 104 to stop routing packets to these two nodes 110.

In at least some embodiments, nodes 110A and 110C may take responsibility for health
checking each other, since they are now neighbor nodes 110. Note that node 110B, even
though considered unhealthy, may still be randomly health checked by one or more of the
other nodes 110.

One or more of the remaining healthy load balancer nodes 110 may assume responsibility
for flow tracking connections formerly flow tracked by node 110B. For example, node
110C and/or node 110D may take over as primary or secondary flow trackers as
illustrated in Figures 11C and 11D for one or more connections for which node 110B was
a primary or secondary flow tracker.

One or more of the remaining healthy load balancer nodes 110 may assume responsibility
for health checking the server nodes 130 previously health checked by node 110B. The
server nodes 130 are updated with the healthy load balancer node list (now not including
node 110B) by the remaining load balancer nodes 110. For example, in Figure 18B, load
balancer node 110A begins health checking and updating server node 130C, and load
balancer node 110C begins health checking and updating server node 130B.
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e On the edge router 104, the BGP sessions from the failed node 110B eventually time out.

Alternatively, the edge router 104 may terminate the BGP sessions upon recognizing that

node 110B has failed.
[0182] It is possible that two load balancer nodes 110 can fail at or at close to the same time.
If the two failed load balancer nodes are not adjacent to each other, then the failures are
independent and may be handled as separate single node 110 failures according to the method
illustrated in Figure 18B. However, if the two failed nodes are adjacent to each other (e.g., nodes
110B and 110C in Figure 18A, then as soon as all of the healthy load balancer nodes 110 (in this
example, nodes 110A and 110D) detect and converge on the failure, one or more of, but not
limited to, the following events may occur. Note that these events do not necessarily occur in
this order.

e Node 110A ends the BGP session to edge router 104 for node 110B.

e Node 110D ends the BGP session to edge router 104 for node 110C.

e Nodes 110A and 110D start BGP session with edge router 104 to advertise each other.

e Nodes 110A and 110D may begin health checking each other. Note that nodes 110A and
110D may also continue to health check the failed nodes 110.

e The remaining healthy nodes 110 update the server nodes 130 with the healthy load
balancer node lists.

e Traffic may continue to flow from the edge router 104 to node 110B and/or node 110C
since these two nodes 110 may continue to advertise each other to edge router 104.
However, these BGP sessions will eventually timeout, and the edge router 104 will
redistribute the flows to the remaining advertised nodes 110 accordingly.

e Nodes 110B and 110C may close their BGP sessions with edge router 104 on which they
advertise nodes 110A and 110D, respectfully, if nodes 110B and 110C think they are still
healthy.

Connection publishing

[0183] Referring again to Figure 1, in at least some embodiments, the load balancer nodes
110 in a load balancer implementation maintain state information for client TCP connections to
servers 130. This state information allows the load balancer nodes 110 to route incoming client
traffic from the edge router 104 to the server nodes 130 responsible for the TCP connections. The
load balancer modules 132 on the server nodes 130 maintain lists of active TCP connections to
their respective servers 134. Connection publishing is a mechanism via which the load balancer
modules 132 on the server nodes 130 may publish their lists of active client TCP connections to

the load balancer nodes 110. In at least some embodiments, the connection publishing packets

50



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426
are formed and published to the load balancer nodes 110 by the load modules 132 at a regular

interval, which may be referred to as the connection publishing interval.

[0184] In at least some embodiments, the connection state information maintained by the
load balancer nodes 110 may be viewed as a form of cache, and maintaining the state information
for a particular connection may be viewed as maintaining a lease on the load balancer node 110
for that connection. Unless the cache entries are renewed, the load balancer nodes 110 may not
be able to route client data flows to the server nodes 130 that are handling the data flows. The
connection publishing mechanism periodically renews the caches, and thus the leases, on the
load balancer nodes 110 with current connection state information from the server nodes 130 to
thus keep the TCP packets flowing from the clients 160 to the appropriate server nodes 130.
When a client 160 ends a TCP connection to a server 134, the load balancer module 132 on the
server node 130 associated with that connection will drop the connection from its list of active
connections and thus will no longer publish the TCP connection through the connection
publishing mechanism. Thus, the connection state information for that connection (the cache
entry or entries) on the load balancer nodes 110 associated with that connection (specifically, the
ingress server 112 and the primary and secondary flow trackers 116 for the connection) is no
longer renewed, and the connection is dropped by the load balancer nodes 110. In at least some
embodiments, the cache entry or entries for the connection may remain in the cache on a load
balancer node 110 until the memory is required for some other active connection.

[0185] Thus, the connection publishing mechanism periodically or aperiodically extends the
connection leases on the ingress servers 112 and the primary and secondary flow trackers 116 to
keep the client traffic flowing. In addition, the connection publishing mechanism may help
recover from at least some load balancer node 110 failures. When one or more load balancer
nodes 110 holding state information for a client connection fails, the active connection
information provided to the remaining load balancer nodes 110 by connection publishing may in
some cases be used to recover the connection.

[0186] Using the connection publishing mechanism, the server nodes 130 are the
authoritative sources for the states of the connections between the servers 134 and the clients
160. In addition, closing of connections to the servers 134 is passively handled by the load
balancer modules 132 on the server nodes 130 and the load balancer nodes 110. Handshaking is
not required between the server nodes 130 and the load balancer nodes 110. In other words, the
load balancer modules 132 do not have to send messages to the load balancer nodes 110 to
actively inform the nodes that particular connections have been closed. When a server 134

closes a connection, the server 134 clears its internal state for the connection. The load balancer
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module 132 uses the server 134’s internal state to populate the connection publishing packet.
Since the connection is no longer in the server 134’s internal state, the connection does not get
published to the load balancer nodes 110. The lease for the connection on the load balancer node
110 thus expires, and the load balancer nodes 110 passively forget about the connection.
Memory in a load balancer node 110°s cache that was used for the connection can then be used
for other connections as necessary.

[0187] In some embodiments, the leases for connections maintained by the load balancer
nodes 110 may involve time-stamping entries for the connections in the cache. When a
connection’s lease is renewed by a connection publishing packet, the timestamp may be updated.
If a connection’s lease is not renewed because the connection is no longer being published by the
load balancer module 132 on the server node 130, then the timestamp is no longer updated. In at
least some embodiments, a lazy garbage collection method may be used in which the entry for
the connection may remain in the cache until the memory is needed. For example, in at least
some embodiments, timestamps on cache entries may be compared to a lease renewal time
threshold; if the timestamp for a cache entry is older than the threshold, then the entry is stale and
may be reused. However, in some embodiments, stale entries may be actively garbage collected.

Connection publishing recipients

[0188] In at least some embodiments, for each client TCP connection, there are three load
balancer nodes 110 that maintain a connection state — the node 110 serving as the ingress server
112, the node 110 serving as the primary flow tracker 116 and the node serving as the secondary
flow tracker 116. For a given TCP flow, the primary and secondary flow trackers 116 can be
determined, for example by a load balancer node 110, by applying a consistent hash function to
the TCP flow to find the primary flow tracker 116 node and its successor node in the consistent
hash ring. The load balancer node 110 serving as the ingress server 112 for a TCP flow is the
node 110 that receives traffic for that flow from the edge router 104 based on the edge router
104's internal multipath (e.g., ECMP) hash function. If there is a node 110 failure or addition,
the load balancer node 110 serving as the ingress server 112 may change for many of the active
TCP flows; and the load balancer nodes 110 serving as flow trackers for at least some active TCP
flows may change (see, ¢.g., Figures 11A through 11D). For every TCP flow to the server 132
on a server node 130, the load balancer module 132 on that server node 130 maintains state
information indicating which of the load balancer nodes 110 is the ingress server 112 for that
TCP flow, since it receives traffic from that load balancer node 110. However, in at least some
embodiments, the load balancer module 132 may not know and may not be able to determine

which load balancer nodes 110 are serving as the primary and secondary flow trackers for a TCP
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flow, since the load balancer module 132 may not know the consistent hash function that is used.
In other words, in at lecast some embodiments, the load balancer modules 132 do not do
consistent hashing.

Publishing the active connection information

[0189] Figures 19A and 19B graphically illustrate a connection publishing technique,
according to at least some embodiments. Figure 19A illustrates load balancer (LB) modules
publishing active connection information to the load balancer nodes. In at least some
embodiments, each load balancer module 132 collects information for each active TCP flow on
the server node 130 and forms a connection publishing packet. The information for a given TCP
flow includes information identifying the load balancer node 110 serving as the ingress server
112 for the flow. When a connection publishing packet is ready (e.g., when the connection
publishing interval has been reached), the load balancer module 132 randomly selects a load
balancer node 110, for example from the list of healthy load balancer nodes 110 that are
periodically sent to the server nodes 130 from the load balancer nodes 110 that health-check the
server nodes 130 as previously described. The load balancer module 132 then sends the
connection publishing packet to the selected node 110. For example, in Figure 19A, load
balancer module 132A has sent one connection publishing packet to load balancer node 110A,
and later sends another connection publishing packet to load balancer node 110B.

[0190] Figure 20 is a high-level flowchart of a connection publishing method that may be
performed by each load balancer module 132, according to at least some embodiments. As
indicated at 500, the load balancer (LB) module 132 creates a connection publishing entry for
every active TCP flow on the respective server node 130. In at least some embodiments, the load
balancer module 132 retrieves the set of active TCP connections that the server 134 on the server
node 130 handles, for example from /proc/net/tcp on the server node 130. For every active TCP
connection, the load balancer module 132 looks up (e.g., in a locally maintained table of active
connections) the load balancer node 110 that is serving as the ingress server 112 for the TCP
flow and creates a connection publishing entry that indicates the TCP tuple for the connection
(c.g., a 4-tuple consisting of: the client IP address, client port, server (public) IP address, and
server port) and the ingress server 112 for the connection. Note that each load balancer module
132 maintains information for each active TCP connection indicating the last load balancer node
110 from which a packet was received for the connection, and this information may be used by
the load balancer module 132 to identify the ingress node 110 for each active connection.

[0191] As indicated at 502, the load balancer module 132 randomly selects a load balancer

node 110 to which the connection publishing packet (containing one or more connection
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publishing entries, with one entry for each active TCP connection) is to be sent. In at least some
embodiments, the load balancer module 110 may be randomly selected when the load balancer
module 132 determines that the connection publishing packet is ready to be sent. In at least some
embodiments, this determination is made according to a connection publishing interval. As non-
limiting examples, the connection publishing interval may be 100 milliseconds (ms), or one
second. In at least some embodiments, the load balancer module 110 is selected from a list of
healthy load balancer nodes 110 that has been previously received from one of the load balancer
nodes 110. As indicated at 504, the load balancer module then publishes the connection
publishing packet to the selected load balancer node 110. In at least some embodiments, the
connection publishing packet is a stateless packet, for example a UDP packet. In some
embodiments, the connection publishing packet may be compressed prior to sending the packets
to the target load balancer node 110. In at least some embodiment, the connection publishing
information may be sent to the target load balancer node 110 in two or more packets.

[0192] As indicated by the arrow returning from element 504 to clement 500, the load
balancer module 132 may continuously build connection publishing packets, select random
nodes 110, and send the packets to the selected nodes. As noted above, this may be performed
according to a connection publishing interval so that the load balancer nodes 110 are relatively
regularly refreshed with current active connection information to maintain the connection leases
on the load balancer nodes 110.

[0193] In at least some embodiments, since the connection publishing packets are randomly
distributed to the load balancer nodes 110 by the load balancer modules, the load balancer nodes
110 that receive the connection publishing packets are responsible for distributing the active
connection information in the connection publishing packets to the correct
ingress/primary/secondary nodes 110 for the connections. Figure 19B and Figures 21 and 22
illustrate methods for distributing the active connection information that may be used in at least
some embodiments.

[0194] Figure 19B illustrates distributing the active connection information among the load
balancer nodes 110, according to at least some embodiments. When a load balancer node 110
receives a connection publishing packet from a load balancer module 132, the load balancer node
110 may analyze the information for each TCP flow indicated therein to determine the ingress
node and the primary and secondary flow tracker nodes for that flow. If the load balancer node
110 is serving in one of those roles for a flow, the load balancer node 110 consumes the
information for the flow (e.g., by updating its cache of state information). In at least some

embodiments, the load balancer node 110 may also put the information for the flow in packet(s)

54



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

to be sent to the one or more other nodes 110 that are serving in the other roles for the flow. For
the remaining flows indicated by the connection publishing packet, the load balancer node 110
splits the active connection information into two or more smaller packets and sends each packet
to one or more other load balancer nodes 110. For example, in at least some embodiments, a
packet containing active connection information for one or more flows may be sent to the load
balancer nodes 110 that are serving as the ingress server 112, primary flow tracker 116A, and
secondary flow tracker 116B for the flow(s).

[0195] Figure 21 is a flowchart of a method for distributing the active connection information
received in a connection publishing packet to target load balancer nodes 110, according to at
least some embodiments. As indicated at 520, a load balancer node 110 receives a connection
publishing packet from a load balancer module 132. The load balancer module 132 generated
the packet and seclected the load balancer node 110 to receive the packet, for example as
described above in reference to Figures 19A and 20. The connection publishing packet may
include information identifying the server node 130 from which the packet was received (e.g., an
IP address of the load balancer module 132 on the server node 130) and a list of entries
identifying active TCP connections (e.g., a 4-tuple consisting of: the client IP address, client port,
server (public) IP address, and server port for each connection).

[0196] In elements 522-530 of Figure 21, the load balancer module 110 iteratively processes
the active TCP connection information indicated in the received connection publishing packet.
As indicated at 522, the load balancer node 110 analyzes the entry for a next TCP flow in the
packet to determine the ingress node 110 and the primary and secondary flow tracker nodes 110
for the respective TCP flow. In at least some embodiments, the load balancer node 110 gets the
identity of the ingress node 110 from the connection publishing entry. In at least some
embodiments, the primary and secondary flow tracker nodes 110 for the TCP flow may be
determined according to the consistent hash function. At 524, if the load balancer node 110 is
serving in one of the roles for the TCP flow being examined, then at 526 the load balancer node
110 consumes the information for the flow, for example by updating its cache of state
information. As indicated at 528, the load balancer node 110 may add the connection publishing
entry for the TCP flow to a packet being constructed that is to be sent to another load balancer
node 110. At 530, if there are more connection publishing entries for flows in the connection
publishing packet, then the method returns to 522 to process the next entry. Otherwise, the load
balancer node sends the newly constructed packet(s) each containing a subset of the connection
publishing entries from the original connection publishing packet to target load balancer nodes

110 for the packets, as indicated at 532. In at least some embodiments, the packets sent to the
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target load balancer nodes 110 are stateless packet, for example UDP packets. In some
embodiments, the packets may be compressed prior to sending the packets to the target load
balancer nodes 110.

[0197] Thus, in at least some embodiments, in elements 522-528 of Figure 21, the flow
tracker node 110 constructs one or more packets (e.g., UDP packets) each to be sent to a
particular one of the other nodes 110 according to the information determined at 522 from the
connection publishing entries in the received connection publishing packet. In at least some
embodiments, a packet sent to another node 110 contains entries for TCP flows for which the
target node 110 is serving as the ingress node 110, primary flow tracker node 110, or secondary
flow tracker node110. Note that in some embodiments a given load balancer node 110 may serve
as both the ingress and primary flow tracker node for a TCP flow, or as both the ingress and
secondary flow tracker node for a TCP flow.

[0198] Figure 22 illustrates an alternative method for distributing the active connection
information received in a connection publishing packet to target load balancer nodes 110,
according to at least some embodiments. As indicated at 550, a load balancer node 110 receives
a connection publishing packet from a load balancer module 132. In this method, as indicated at
552, a process on the load balancer module 110 analyzes the connection publishing entries in the
packet and splits the received packet into one or more smaller packets accordingly. The load
balancer module 110 does not locally consume the flow information during this process. Once
the connection publishing packet has been split into one or more packets, the packets are then
processed as indicated at 554-560. At 554, if the target node 110 for the packet is this load
balancer node 110, then the load balancer node 110 locally consumes the packet as indicated at
556. Otherwise, the packet is sent to the target load balancer node 110. At 560, if there are more
packets to be processed, then the method returns to 554. Otherwise, the method is done.

[0199] Thus, the load balancer node 110 that receives a connection publishing packet from a
load balancer module 132 may split the connection publishing packet into two or more smaller
packets that are specific to particular ones of the other load balancer nodes 110 and distribute the
packets accordingly, while internally consuming flow information for any TCP flows currently
being handled by the load balancer node 110. In the meantime, other load balancer nodes 110
may also be receiving connection publishing packets from the load balancer modules 132,
splitting the connection publishing entries in multiple smaller packets, and sending the smaller
packets to target nodes 110 to thus distribute the active connection information among the nodes
110.

Connection publishing triggers
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[0200] In at least some embodiments, a connection publishing may be triggered on a load
balancer module 132 by one or more different events. As previously noted, in some
embodiments, a connection publishing packet may be generated and sent to a randomly selected
load balancer node 110 according to a connection publishing interval, for example at 100ms or
one second intervals, to renew the leases for the TCP connections on the load balancer nodes
110. In some embodiments, a change in membership of the load balancer nodes 110 may trigger
an immediate connection publishing event. In at least some embodiments, the load balancer
module 132 may learn about the change from the list of healthy load balancer nodes 110 sent
from one of the load balancer nodes 110 that health checks the respective server node 130. Upon
detecting the change according to the list (either a deletion or an addition), the load balancer
module 132 may generate a connection publishing packet and send to a load balancer node 110
so that TCP connections affected by the change may be more quickly recovered by the load
balancer nodes 110.

Preventing packet loops

[0201] Connection publishing packet loops may occur if the load balancer layer membership
changes while processing a connection publishing packet. A first node 110 may receive a
connection publishing packet from a load balancer module 132 and send a smaller packet to a
second node 110. However, if the membership has changed, the second node 110 may determine
that the packet should go to the first node 110, and may thus forward the packet to the first node
110. In at least some embodiments, to prevent this loop from happening, different port numbers
may be used for connection publishing packets received from load balancer modules 132 and
those received from load balancer nodes 110, and the load balancer nodes 110 do not redistribute
connection publishing packets received from other load balancer nodes 110.

Connection publishing packet distribution alternatives

[0202] In the connection publishing methods described above, the load balancer module 132
randomly selects a load balancer node 110 to which a connection publishing packet is sent.
However, in some embodiments, other methods may be used to select a load balancer node 110.
For example, in some embodiments, the load balancer node 132 may construct one or more
connection publishing packets that are each targeted to a particular ingress node 110 that handles
one or more of the active TCP flows, and sent the packet(s) to the target ingress node(s) 110.
The ingress node(s) 110 would then redistribute the active connection information to the primary
and secondary flow trackers for the connections. As another example, in some embodiments,

instead of sending the connection publishing packet to a single, randomly selected node 110,
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cach connection publishing packet may be sent by the load balancer module 132 to two or more
of the healthy nodes 110, or to all of the healthy nodes 110.

Load balancer node architecture

[0203] Figure 23 illustrates example software stack architecture for a load balancer node 110
according to at least some embodiments, and is not intended to be limiting. In this example
software stack architecture, the load balancer node 110 runs within a single Java™ technology
process 1102 that uses Java Native Interface (JNI™) 1104 technology to manage a layer of
native code that may include load balancer server native code 1106 and core packet processing
code 1108, for example Intel™ Dataplane Development Kit (DPDK) technology code. The
native code may interface to two network interface controllers (NICs 1114A and 1114B). A first
NIC (NIC 1114A) may face “north”; that is, towards the edge router 104. A second NIC (NIC
1114B) may face “south”; that is, towards the server nodes 130. In at least some embodiment,
NICs 1114A and 1114B may not maintain TCP stacks. Thus, at least some embodiments may
include a third NIC 1114C that does support TCP connections so that the load balancer node 110
can communicate with processes via a control plane, and vice versa. Alternatively, in some
embodiments, only the first, north-facing NIC 1114A and the second, south-facing NIC 111B
may be implemented in the load balancer node 110, and the second, south-facing NIC 1114B
may implement a TCP stack via which the load balancer node 110 may communicate with
processes via the control plane. Load balancer node 110 also includes operating system (OS)
technology software 1112, e.g. a Linux™ kernel, and a Java Virtual Machine (JVM™)
technology software 1110 layer on top of OS technology software 1112 and JNI 1104
technology.

[0204] In at least some embodiments, the load balancer nodes 110 in the distributed load
balancing system may each need to concurrently process many data flows at high packet rates.
In at least some embodiments, to achieve the required level of throughput, the load balancer
nodes 110 may leverage Intel™ Dataplane Development Kit (DPDK) technology for high
performance packet processing. DPDK technology permits a userspace program to read/write
packets directly to and from a network interface controller (NIC) and bypasses the many layers
of the Linux kernel networking stack (except for the Linus ixgbe base NIC driver). The DPDK
approach to packet processing rejects interrupt handler-based input in favor of dedicated CPU
cores that directly poll the NIC hardware in a busy loop. This approach may allow for much
higher packet rates, at the expense of increasing thermal output by continuously running
dedicated CPU cores in a busy loop. DPDK technology may also provide tools for packet

processing including CPU core management, lock-free queues, memory pools, and
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synchronization primitives. As shown in Figure 24, in DPDK technology, a dedicated CPU core
600 may be used for each particular task, and work is passed from one CPU core 600A to another
CPU core 600B using non-blocking queues 602.

[0205] The DPDK queues 602 may be implemented using fast power-of-two ring buffers,
and may support single and multiple producer/consumer variants. The multiple
producer/consumer variants are not truly lock-free, since they do contain a compare-and-swap
(CAS) loop to synchronize access. All packet buffer memory may be pre-allocated in memory
pools, so that only pointers to the buffers are read and written to the queues 602. The memory
pools may be implemented as queues, may be optimized to distribute memory across memory
channel and rank, and may support non-uniform memory access (NUMA) optimized allocation.
In at least some embodiments, the packet buffers may use a method such as an Mbuf paradigm
that over-allocates enough headroom and tailroom in each packet buffer to support
encapsulate/decapsulate operations that may add/remove outer network layer headers without
requiring buffer copies.

[0206] In at least some embodiments of the load balancer nodes 110, a core packet
processing architecture may be implemented that leverages DPDK technology. Each load
balancer node 110 may include at least one multicore packet processor implemented according to
the core packet processing architecture. The core packet processing architecture may use a
single producer / single consumer paradigm for packet flow through the queues and cores of the
multicore packet processor. In this paradigm, each queue inputs to one and only one core, and
cach core outputs to one and only one core for each other core that it feeds packets to. In
addition, memory used by the cores in the multicore packet processor is not shared; each core has
its own, separate memory region. Thus, there is no memory or queue sharing between cores, no
memory or queue contention, and no need for memory or queue sharing mechanisms such as
request for ownership (RFO) or compare-and-swap (CAS). Figures 25 and 26 illustrate example
multicore packet processors implemented according to the core packet processing architecture.
[0207] Figure 25 illustrates an example multicore packet processor implemented according to
the core packet processing architecture that leverages DPDK technology for processing data
flows, according to at least some embodiments. The core packet processing architecture may be
implemented as a multicore packet processor according to a single producer / single consumer
paradigm. In at least some embodiments, as illustrated in Figures 23, the load balancer nodes
110 each have two network interface controllers (NICs) — a north-facing NIC 1114A that faces
the border network/edge router 104 and a south-facing NIC 1114B that faces the production

network/server nodes 130. In at least some embodiments, the NICs 1114 may be 10Gpbs NICs.
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The majority of packets flowing through a load balancer node 110 are received on one of these
two NICs (either NIC 1114A or 1114B), processed (e.g., encapsulated or decapsulated), and
transmitted out the other NIC (either NIC 1114B or 1114A).

[0208] Referring to Figure 25, in at least some embodiments a load balancer node 110 spins
up two CPU cores, a receive (RX) core 610 and a transmit (TX) core 630, for each NIC 1114.
The load balancer node 110 also spins up a number of worker cores 620 that process packets for
both NICs 1114 in both directions; in this example four worker cores 620A through 620D are
used. The receive cores 610 read batches of incoming packets from their input queues as they
arrive on the NIC 1114 and distribute the packets to the worker cores 620 that perform the bulk
of the work for each packet, with each receive core 610 feeding packets into a respective worker
input queue 612 for each worker core 620. In at least some embodiment, a receive core 610 may
perform a layer 4 “flow-hash” technique on each incoming packet (similar to the per-flow hashed
multipath routing technique that may be used by the edge router 104 as previously described) to
distribute the packets to the worker cores 620 while ensuring that any particular client connection
(distinguished by its IP address and port) will be processed by the same worker core 620. This
means that each worker core 620 may always see the same subset of the packets, and eliminates
contention on state data managed by the worker core 620 so that no locks are required. The
pointers to the received packets may be distributed across the worker queues 622 that the worker
cores 620 continuously monitor for new input. The worker cores 620 are responsible for
managing the state (e.g. the assigned server node 130) for each connection, and may perform
UDP encapsulation or decapsulation on the packet before forwarding the packet to one of their
outbound queues 632. The transmit cores 630 cycle through the worker core 620 outbound
queues 632 and write the output packets to their corresponding NIC 1114 as they appear on the
queues 632.

[0209] Figure 26 illustrates another example multicore packet processor implemented
according to the core packet processing architecture that leverages DPDK technology for
processing data flows, according to at least some embodiments. The core packet processing
architecture may be implemented as a multicore packet processor according to a single producer /
single consumer paradigm. In at least some embodiments, in addition to processing the high-
throughput client TCP flows, the DPDK core architecture on a load balancer node 110 may also
be used to send and receive packets on the north- and south-facing NICs 1114 for other protocols
such as ARP, DHCP, and BGP. In the embodiment shown in Figure 26, a worker core 620A is
dedicated to handling the packets for these other protocols. This worker core 620A may be

referred to as a "slow" worker core, since the processing of these packets generally happens at a
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slower rate than the client TCP flows, while the other worker cores 620B-620D that process only

the client TCP flows may be referred to as fast worker cores. The receive cores 610A and 610B
handling incoming packets on the north-facing and south-facing NICs 1114, respectively, may
identify packets that are to be handled by the slow worker core 620A and direct the packets to
input queues 622 for the slow worker core 620A. The slow worker core 620A may also monitor
an input queue 622 for packets generated by Java/INI, and an output queue 634 for output
packets to Java/JNI. The slow worker core 620A also outputs to an input queue 622 for each of
the fast worker cores 620B through 620D so that the slow worker core 620A can send packets to
cach of the fast worker cores 620B through 620D, for example connection publishing packets.
The slow worker core 620A also has an outbound queue 632 feeding into each of transmit cores
630A and 630B.

[0210] In at least some embodiments, the third input queue 622 of cach fast worker core
620B through 620D is an output queue from the slow worker core 620A. In at least some
embodiments, this third input queue 622 may, for example, be used for receiving and processing
connection publishing packets, each containing connection state information, by the fast worker
queues 620B through 620D. For at least some of these connection publishing packets, there may
be no output to the transmit cores 630. Instead, the connection state information in the packets
may be consumed by the fast worker core 620, for example by updating the stored state for one
or more packet flows that the respective fast worker core 620 maintains. Thus, the output
queues from the slow worker core 620A that input to the fast worker cores 620B through 620D
may provide a path other than an input queue 622 directly from a receive core 610 for updating
the fast worker cores’ stored states.

[0211] In at least some embodiments, the multicore packet processors of Figures 25 and 26
may filter incoming packets and only process and output packets that are valid. For example, in
at least some embodiments, the receive cores 610 may filter out packets that are of a protocol not
supported by any of the worker cores 620 and thus not send the packets to the worker cores 620.
In at least some embodiments, the worker cores 620, when processing packets, may each first
analyze the packets read from their respective worker input queues 622 to determine if the
packets are to be accepted for further processing and output to the transmit cores 630, and may
only complete the processing and output of packets to the transmit cores 630 that are accepted;
the non-accepted packets may be discarded. For example, the worker cores 620 may look at the
address information for each packet and only accept packets that are targeted at valid addresses
that are being load-balanced, discarding any other packets.

Handling Border Gateway Protocol (BGP) data
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[0212] In at least some embodiments, packet flows associated with a BGP client in and out of
the core architecture may be handled as follows. Since the NICs 1114A and 1114B are not bound
to the Linux kernel, the TCP connection to the edge router 104 is intercepted by core architecture
as illustrated in Figure 26 and processed by the slow worker core 622A, which passes the BGP
packets up into Java space via output queue 634. These TCP packets are further processed by one
or more modules on the load balancer node 110 before being delivered to the BGP client,
including processing by the Linux kernel to manage the TCP connection and effectively translate
the packets into a TCP stream. This design allows the BGP client to be written using standard
Java TCP socket libraries.

[0213] Figure 27 illustrates processing of incoming BGP TCP packets by a load balancer
(LB) node process 650, according to at least some embodiments. A packet from the edge router
104 arrives at the north-facing NIC 640 and goes into input queue 640 for the receive core 652.
The receive core 652 reads the packet from the queue 640, identified the packet as a BGP packet,
and places the packet on an input queue 654 for the slow worker core 656. The slow worker core
656 validates the packet and places it on the JNI output queue 658. JINI packet receiver 660
reads the packet from the queue 658 via JNI, mangles the source/destination addresses, and
writes the packet to a raw socket 644. The Linux kernel 646 receives the raw packet, handles it
according to the TCP protocol, and appends the payload data to the TCP socket InputStream. The
data from the packet is then delivered to the Java TCP socket in the BGP client 662.

[0214] Figure 28 illustrates processing of outgoing BGP TCP packets by a load balancer
(LB) node process 650, according to at least some embodiments. The BGP client 662 writes data
to a Java TCP socket of Linux kernel 646. The Linux kernel 646 handles the data according to
the TCP protocol and converts the data into TCP packet(s). In at least some embodiments, the
TCP packet(s) match a 127.x.x.x iptables rule. The TCP packet(s) are placed on an output queue
648, for example a Netfilter LOCAL OUT queue. A Java thread of JNI packet receiver 670
monitoring the queue 648 via JNI receives the TCP packet(s) and marks each NF_STOLEN to
make the kernel 646 forget about them. The Java thread mangles the source/destination addresses
and adds the packets(s) to a JNI input queue 672 for slow worker core 656 via JNI. The slow
worker core 656 receives the TCP packet(s) from its JNI input queue 672 and places the packets
on the outbound queue 664 for the north-facing NIC 640 transmit core 666. Transmit core 666
reads the TCP packets(s) from its input queue 664 and writes them to the north-facing NIC 640.
The TCP packets are sent by NIC 640 the edge router 104
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Distributed load balancer simulation and testing

[0215] The load balancer described herein is a distributed system that requires the interaction
of many independent components (e.g., routers, load balancer nodes, load balancer modules,
etc.). To perform testing of the distributed components, logic, and protocols, as well as to
simulate scenarios such as node failures, message drops, and delays, embodiments of a test
system are described that enable the distributed load balancer to be run in a single process where
the interactions can be tested without requiring the code to be deployed to multiple hosts in a
complex network topology (e.g., a production network). To accomplish this, a software
mechanism referred to as a message bus is described that enables multiple load balancer
components to be configured and executed in or as a single process; the single process may be
executed on a single host system. The message bus mechanism allows the distributed load
balancer system to be tested as a single process, for example on a single host system, while to the
load balancer components (e.g., the load balancer nodes and load balancer modules) it appears
that they are running on an actual production network.

[0216] The message bus provides a framework that allows the distributed load balancer to
run as a single process. Each of one or more message bus layers in the process simulates a
network (e.g., Ethernet) segment between components of the distributed load balancer. The
software components of the distributed load balancer system do not have to be written in a
special fashion to allow the components to operate within the message bus environment. Instead,
the message bus framework provides a component (which may be referred to as a message bus
NIC or packet adapter) that intercepts the packets the components of the distributed load balancer
system produce, directs the packets into the simulated network provided by a message bus layer
instead of into a real physical network, and delivers the packets to the target components. The
message bus layers do not implement TCP/IP stack(s) for communications between the
components. Instead, the message bus layers interface with the host system’s operating system
(OS) and use the host system’s TCP/IP stack. The message bus layers leverage the TCP/IP stack
provided by the OS to convert the TCP streams that the clients and servers expect to and from the
individual packets that the message bus intercepts and delivers.

[0217] In at least some embodiments, to interface with the message bus, load balancer
components may be provided with at least one message bus network interface controller (NIC),
cach with a valid media access control (MAC) address, which sends packets to and receives
packets from the message bus simulated network environment instead of to and from a physical
network. A message bus NIC is a virtual network interface controller that attaches to the

message bus instead of to a physical network. Each load balancer component that needs to
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communicate through the message bus requires a least one message bus NIC. A message bus
NIC serves as a pipeline exit to the message bus and as a pipeline entrance to the component.
Components can instantiate multiple message bus network interfaces to each message bus NIC.
[0218] A message bus network interface is a mechanism for components to attach to a
message bus via a message bus NIC. A message bus network interface may be synonymous to
an interface configuration (ifconfig) interface in Linux technology, with a difference being that
the message bus network interface attaches to the message bus instead of to a physical network.
A message bus network interface has an IP address, and sits on top of a message bus NIC. The
message bus network interface exposes a packet source interface, which can be used by the
component to receive packets from the message bus, and a packet sink interface that can be used
by the component to send packets into the message bus.

[0219] Each load balancer node processes individual network packets that are delivered and
sent through an implementation of the packet source and packet sink interfaces. When running in
the message bus environment, these interfaces are implemented by the message bus network
interface that adds or removes the layer 2 Ethernet headers (for the load balancer nodes that
expect this to be performed by the kernel network stack). In a production environment as shown
in Figure 29, the implementation of the packet source and packet sink interfaces receive and
transmit packets on an actual network interface. In a message bus environment as shown in
Figure 30, the implementation of the packet source and packet sink interfaces receive packets
from and transmit packets onto a message bus layer or layers.

[0220] For the sake of simplicity, a message bus NIC and message bus interface may
collectively be referred to as a message bus packet adapter, or simply packet adapter. See, e.g.,
Figures 31 and 32.

[0221] Figure 29 illustrates a load balancing system that includes a distributed load balancer
700 in a production environment, according to at least some embodiments. The load balancer
700 has been simplified for this description. The load balancer 700 may connect to clients 742
on an external network 740 via a border router 702 of a network installation such as a data center
that implements the load balancer 700. The load balancer 700 includes several types of
components — at least one edge router 704, two or more load balancer (LB) nodes 710, two or
more load balancer (LB) modules 732 each implemented on a separate server node (not shown),
one or more networking components that form fabric 720 such as routers or switches, and in at
least some embodiments a configuration service 722. In at least some embodiments, each
component of the load balancer 700 may be implemented as or on a separate computing device,

such as a commodity rack-mounted computing device.

64



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426
[0222] Figure 30 illustrates a distributed load balancer test system 800 that incorporates a

message bus mechanism that enables multiple distributed load balancing system components to
be configured and executed in or as a single process, according to at least some embodiments. In
the load balancer 700 shown in Figure 29, cach load balancer software component is installed
and executed on a separate computing device (e.g., the load balancer software on the load
balancer nodes 710, and the load balancer modules 732 on the server nodes). To enable these
load balancer software components to execute in a single process, each load balancer software
component (shown as load balancer (LB) nodes 810 and load balancer (LB) modules 832 in
Figure 30) may include code that abstracts the network connectivity of the components so that
the packets in and out of the load balancer software component can also be intercepted and
routed through the message bus mechanism instead of being sent and received on a physical
network.

[0223] In at least some embodiments, in the distributed load balancer test system 800, the
message bus mechanism does not implement TCP stack(s) for communications between the
components. Instead, the message bus mechanism interfaces with the host system’s operating
system (OS) and uses the host system’s TCP stack. In at least some embodiments, the message
bus functionality ties in to the kernel (e.g., the Linux kernel) of the host system’s OS below the
user layer via IP tables, a functionality of the kernel. The message bus functionality hooks into
the IP tables at the kernel level, intercepts packets, and sends the packets up into the message bus
process for routing.

[0224] As shown by simulated edge router 862 and simulated fabric 864 in Figure 30, the
functionality of the physical network components (e.g., the edge router 704 and fabric 720 in
Figure 29) may be simulated in software, as can clients 860, servers 834, and configuration
service 866. Note, however, that in at least some embodiments actual rather than simulated
servers 834 may be used in the distributed load balancer test systems 800. The message bus
layers 850 in Figure 30 replace the physical network infrastructure. Thus, the load balancer
software components (load balancer nodes 810 and load balancer modules 832) may be run in the
load balancer test system 800 while unaware that they are not executing in a production network
environment as shown in Figure 29.

[0225] Some components (for example, simulated routers) may be connected to more than
one message bus layer 850 in order to pass packets to and receive packets from different message
bus layers 850 that simulate network segments.

[0226] The message bus mechanism implemented in the message bus layers 850 of the

distributed load balancing test system 800 simulates the "wire" of a network segment. In at least
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some embodiments, the message bus mechanism delivers packets to destination components in
the distributed load balancing test system 800 based on the components” MAC addresses. Thus,
cach load balancer software component (load balancer nodes 8§10 and load balancer modules
832) provides a MAC address to the message bus layer(s) 850 to which it is connected so that the
load balancer software component can receive packets that are sent to it from other components
in the distributed load balancing test system 800.

Message bus packet adapters

[0227] Figures 31 and 32 illustrate message bus packet adapters, according to at least some
embodiments. In at least some embodiments, each load balancer (LB) software component
processes individual network packets that are delivered and sent through an implementation of
the PacketSource and PacketSink interfaces. Referring to Figure 31, when running in the
distributed load balancing test system 800, these interfaces (shown as packet source interface 862
and packet sink interface 864) may be implemented by a packet adapter 860 between the
message bus layer 850 and the load balancer software component 870 that adds or removes the
layer 2 Ethernet headers for the load balancer software components 870 that expect this to be
performed by the kernel network stack. In the production environment as illustrated in Figure 29,
the implementation of PacketSource and PacketSink for the load balancer software components
receives and transmits the packets on actual network interfaces of the physical devices on which
the components are implemented.

[0228] Referring to Figure 31, in at least some embodiments, when a load balancer software
component 870 transmits a packet, the thread of execution that calls a send packet method of
packet sink interface 864 traverses a chain of functions within the packet adapter 860 and also
within the message bus layer 850 to eventually deliver the packet to the destination component
by adding the packet to that component’s input queue. In at least some embodiments, when a
load balancer software component 870 receives a packet, the load balancer software component
870 calls a receive packet method of the packet source interface 862 and reads packets from its
input queue. In at least some embodiments, the message bus mechanism does not require any
additional threads of its own to deliver packets.

Message bus packet pipelines

[0229] Referring to Figure 32, in at least some embodiments, the message bus 850 side of the
packet source interface 862 and packet sink interface 864 provides a packet pipeline feature.
When a load balancer software component 870 sends a packet via packet sink interface 864, the
packet data may traverse a series of stages (packet pipeline 880) before reaching the message bus

layer 850. These stages may modify the packet, drop the packet, duplicate the packet, delay the
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packet, etc. Once a packet traverses packet pipeline 880 and the message bus layer 850 selects a
destination component 870, a second series of pipeline stages (packet pipeline 882) associated
with the destination component 870 may also be traversed before the packet is added to the
destination component 870’s input queue.

Example provider network environments

[0230] This section describes example provider network environments in which
embodiments of the distributed load balancing methods and apparatus may be implemented.
However, these example provider network environments are not intended to be limiting.

[0231] Figure 33A illustrates an example provider network environment, according to at least
some embodiments. A provider network 1900 may provide resource virtualization to clients via
one or more virtualization services 1910 that allow clients to access, purchase, rent, or otherwise
obtain instances 1912 of virtualized resources, including but not limited to computation and
storage resources, implemented on devices within the provider network or networks in one or
more data centers. Private IP addresses 1916 may be associated with the resource instances
1912; the private IP addresses are the internal network addresses of the resource instances 1912
on the provider network 1900. In some embodiments, the provider network 1900 may also
provide public IP addresses 1914 and/or public IP address ranges (e.g., Internet Protocol version
4 (IPv4) or Internet Protocol version 6 (IPv6) addresses) that clients may obtain from the
provider 1900.

[0232] Conventionally, the provider network 1900, via the virtualization services 1910, may
allow a client of the service provider (e.g., a client that operates client network 1950A) to
dynamically associate at least some public IP addresses 1914 assigned or allocated to the client
with particular resource instances 1912 assigned to the client. The provider network 1900 may
also allow the client to remap a public IP address 1914, previously mapped to one virtualized
computing resource instance 1912 allocated to the client, to another virtualized computing
resource instance 1912 that is also allocated to the client. Using the virtualized computing
resource instances 1912 and public IP addresses 1914 provided by the service provider, a client
of the service provider such as the operator of client network 1950A may, for example,
implement client-specific applications and present the client’s applications on an intermediate
network 1940, such as the Internet. Other network entities 1920 on the intermediate network
1940 may then generate traffic to a destination public IP address 1914 published by the client
network 1950A; the traffic is routed to the service provider data center, and at the data center is
routed, via a network substrate, to the private IP address 1916 of the virtualized computing

resource instance 1912 currently mapped to the destination public IP address 1914. Similarly,

67



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

response traffic from the virtualized computing resource instance 1912 may be routed via the
network substrate back onto the intermediate network 1940 to the source entity 1920.

[0233] Private IP addresses, as used herein, refer to the internal network addresses of
resource instances in a provider network. Private IP addresses are only routable within the
provider network. Network traffic originating outside the provider network is not directly routed
to private IP addresses; instead, the traffic uses public IP addresses that are mapped to the
resource instances. The provider network may include network devices or appliances that
provide network address translation (NAT) or similar functionality to perform the mapping from
public IP addresses to private IP addresses and vice versa.

[0234] Public IP addresses, as used herein, are Internet routable network addresses that are
assigned to resource instances, either by the service provider or by the client. Traffic routed to a
public IP address is translated, for example via 1:1 network address translation (NAT), and
forwarded to the respective private IP address of a resource instance.

[0235] Some public IP addresses may be assigned by the provider network infrastructure to
particular resource instances; these public IP addresses may be referred to as standard public 1P
addresses, or simply standard IP addresses. In at least some embodiments, the mapping of a
standard IP address to a private IP address of a resource instance is the default launch
configuration for all a resource instance types.

[0236] At least some public IP addresses may be allocated to or obtained by clients of the
provider network 1900; a client may then assign their allocated public IP addresses to particular
resource instances allocated to the client. These public IP addresses may be referred to as client
public IP addresses, or simply client IP addresses. Instead of being assigned by the provider
network 1900 to resource instances as in the case of standard IP addresses, client IP addresses
may be assigned to resource instances by the clients, for example via an API provided by the
service provider. Unlike standard IP addresses, client IP addresses are allocated to client
accounts and can be remapped to other resource instances by the respective clients as necessary
or desired. A client IP address is associated with a client’s account, not a particular resource
instance, and the client controls that IP address until the client chooses to release it. Unlike
conventional static IP addresses, client IP addresses allow the client to mask resource instance or
availability zone failures by remapping the client’s public IP addresses to any resource instance
associated with the client’s account. The client IP addresses, for example, enable a client to
engineer around problems with the client’s resource instances or software by remapping client IP

addresses to replacement resource instances.
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[0237] Figure 33B illustrates a distributed load balancer implementation in an example
provider network environment as shown in Figure 33A, according to at least some embodiments.
A provider network 1900 may provide a service 1910 to clients 1960, for example a virtualized
storage service. The clients 1960 may access the service 1910, for example via one or more APIs
to the service 1910, to obtain usage of resources (e.g., storage resources or computation
resources) implemented on multiple server nodes 1990 in a production network portion of the
provider network 1900. Server nodes 1990 may each implement a server (not shown), for
example a web server or application server, as well as a local load balancer (LB) module 1992.
One or more distributed load balancers 1980 may be implemented in a load balancer layer
between the border network and the production network. Border router(s) 1970 may receive
packets (e.g., TCP packets) in packet flows from clients 1960 via an intermediate network 1940
such as the Internet, and forward the packets to the edge router(s) of the distributed load
balancer(s) 1980 via the border network. The packets may be targeted at the public IP
address(es) published by the edge router(s) of the distributed load balancer(s) 1980. The edge
router of each distributed load balancer 1980 may distribute the packet flows among load
balancer nodes of the respective distributed load balancer 1980. In at least some embodiments,
cach load balancer node that serves as an ingress node advertises the same public IP address to
the edge router, and the edge router distributes the packet flows from the clients 1960 among the
ingress servers according to a per-flow hashed multipath routing technique, for example an
equal-cost multipath (ECMP) hashing technique. The load balancer nodes may use the
connection protocol described herein to determine target server nodes 1990 for the packet flows
and to facilitate connections between the servers and the clients 1960. Once a connection is
established, the ingress nodes encapsulate and send packets received for the flows to the target
server nodes 1990 on the production network, while the flow tracker nodes maintain state for the
connections. The load balancer modules 1992 on the server nodes 1990 may make the decisions
as to whether the respective servers on the server nodes 1960 accept connections. The load
balancer modules receive and decapsulate the packets from the ingress nodes, and send the
decapsulated packets (e.g., TCP packets) to the respective servers on the server nodes 1990. The
load balancer modules 1992 may also select load balancer nodes as egress nodes for the packet
flows, and encapsulate and send outgoing packets for the flows to the selected egress nodes via
the production network. The egress nodes in turn decapsulate the packets and send the
decapsulated packets onto the border network for delivery to the respective clients 1960.

[0238] Figure 34A illustrates an example physical rack implementation of the distributed

load balancer and server nodes according to at least some embodiments, and is not intended to be
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limiting. In at least some embodiments, various components of the distributed load balancer may
be implemented on or as commodity rack-mounted computing devices. Rack 190 may include
multiple computing devices each serving as a load balancer node (LB nodes 110A-110F), and
multiple computing devices each serving as a server node (server nodes 130A-130L). Rack 190
may also include at least one edge router 104, one or more rack-mounted networking devices
(routers, switches, etc.) that form fabric 120, and one or more other components 180 (other
networking devices, patch panels, power supplies, cooling systems, busses, etc.). A network 100
installation such as a data center or centers that implement provider network 1900 of Figures
33A and 33B may include one or more racks 190.

[0239] Figure 34B illustrates another example physical rack implementation of the
distributed load balancer and server nodes according to at least some embodiments, and is not
intended to be limiting. Figure 34B shows the LB nodes 110 and server nodes 130 implemented
as slot-mounted computing devices, for example blade servers, in rack 190.

[0240] Figure 35 illustrates an example networking environment in which one, two or more
distributed load balancers may be implemented in a network, with the server nodes separately
implemented, according to at least some embodiments. In this example, two distributed load
balancers 1980A and 1980B are shown. The distributed load balancers 1980 each may receive
packet flows from clients 1960 via the border network and perform the load balancing methods
described herein to distribute the packet flows across multiple server nodes 1990. In some
implementations, each distributed load balancer 1980 may be a rack implementation similar to
the racks 190 shown in Figures 34A and 34B, but without the server nodes installed in the load
balancer racks. The server nodes 1990 may be rack-mounted computing devices such as Blade
servers installed in one or more separate racks within the data center. In some implementations,
the server nodes 1990 may implement two or more different services provided by the provider
network, with each service fronted by a different one or more of the load balancers 1980.

Illustrative system

[0241] In at least some embodiments, a server that implements a portion or all of the
distributed load balancing methods and apparatus as described herein may include a general-
purpose computer system that includes or is configured to access one or more computer-
accessible media, such as computer system 2000 illustrated in Figure 36. In the illustrated
embodiment, computer system 2000 includes one or more processors 2010 coupled to a system
memory 2020 via an input/output (I/O) interface 2030. Computer system 2000 further includes a
network interface 2040 coupled to I/O interface 2030.
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[0242] In various embodiments, computer system 2000 may be a uniprocessor system
including one processor 2010, or a multiprocessor system including several processors 2010
(e.g., two, four, eight, or another suitable number). Processors 2010 may be any suitable
processors capable of executing instructions. For example, in various embodiments, processors
2010 may be general-purpose or embedded processors implementing any of a variety of
instruction set architectures (ISAs), such as the x86, PowerPC, SPARC, or MIPS ISAs, or any
other suitable ISA. In multiprocessor systems, each of processors 2010 may commonly, but not
necessarily, implement the same ISA.

[0243] System memory 2020 may be configured to store instructions and data accessible by
processor(s) 2010. In various embodiments, system memory 2020 may be implemented using
any suitable memory technology, such as static random access memory (SRAM), synchronous
dynamic RAM (SDRAM), nonvolatile/Flash-type memory, or any other type of memory. In the
illustrated embodiment, program instructions and data implementing one or more desired
functions, such as those methods, techniques, and data described above for the distributed load
balancing methods and apparatus, are shown stored within system memory 2020 as code 2024
and data 2026.

[0244] In one embodiment, I/O interface 2030 may be configured to coordinate 1/O traffic
between processor 2010, system memory 2020, and any peripheral devices in the device,
including network interface 2040 or other peripheral interfaces. In some embodiments, 1/O
interface 2030 may perform any necessary protocol, timing or other data transformations to
convert data signals from one component (e.g., system memory 2020) into a format suitable for
use by another component (e.g., processor 2010). In some embodiments, I/0 interface 2030 may
include support for devices attached through various types of peripheral buses, such as a variant
of the Peripheral Component Interconnect (PCI) bus standard or the Universal Serial Bus (USB)
standard, for example. In some embodiments, the function of 1/O interface 2030 may be split
into two or more separate components, such as a north bridge and a south bridge, for example.
Also, in some embodiments some or all of the functionality of I/O interface 2030, such as an
interface to system memory 2020, may be incorporated directly into processor 2010.

[0245] Network interface 2040 may be configured to allow data to be exchanged between
computer system 2000 and other devices 2060 attached to a network or networks 2050, such as
other computer systems or devices as illustrated in Figures 1 through 35, for example. In various
embodiments, network interface 2040 may support communication via any suitable wired or
wireless general data networks, such as types of Ethernet network, for example. Additionally,

network interface 2040 may support communication via telecommunications/telephony networks

71



10

15

20

25

30

WO 2014/172499 PCT/US2014/034426

such as analog voice networks or digital fiber communications networks, via storage arca
networks such as Fibre Channel SANs, or via any other suitable type of network and/or protocol.
[0246] In some embodiments, system memory 2020 may be one embodiment of a computer-
accessible medium configured to store program instructions and data as described above for
Figures 1 through 35 for implementing embodiments of a distributed load balancing system.
However, in other embodiments, program instructions and/or data may be received, sent or
stored upon different types of computer-accessible media. Generally speaking, a computer-
accessible medium may include non-transitory storage media or memory media such as magnetic
or optical media, e.g., disk or DVD/CD coupled to computer system 2000 via I/O interface 2030.
A non-transitory computer-accessible storage medium may also include any volatile or non-
volatile media such as RAM (e.g. SDRAM, DDR SDRAM, RDRAM, SRAM, etc.), ROM, etc,
that may be included in some embodiments of computer system 2000 as system memory 2020 or
another type of memory. Further, a computer-accessible medium may include transmission
media or signals such as electrical, eclectromagnetic, or digital signals, conveyed via a
communication medium such as a network and/or a wireless link, such as may be implemented
via network interface 2040.
[0247] Embodiments of the disclosure can be described in view of the following clauses:
1. A distributed load balancer system, comprising:
a plurality of load balancer nodes, wherein at least two of the plurality of load balancer
nodes are configured as ingress servers, and wherein at least two of the plurality
of load balancer nodes are configured as flow tracker nodes;
a plurality of server nodes; and
a router configured to distribute packet flows from one or more clients to the ingress
servers according to a hashed multipath routing technique;
wherein each ingress server is configured to:
receive a packet in a packet flow for a client from the router;
determine that the ingress server does not have a mapping for the packet flow to
the plurality of server nodes;

determine at least one flow tracker node for the packet flow according to a
consistent hash function applied to source and destination address
information of the packet;

obtain a mapping of a connection to a particular one of the plurality of server
nodes for the packet flow from the at least one flow tracker node; and

send one or more packets of the packet flow to the particular server node.
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2. The distributed load balancer system as recited in clause 1, wherein the packet flow
is a Transmission Control Protocol (TCP) packet flow.

3. The distributed load balancer system as recited in clause 1,

wherein at least two of the plurality of load balancer nodes are configured as egress

servers configured to send outgoing packets from the server nodes to the one or
more clients,

wherein the server node is configured to:

select one of the egress servers for the packet flow; and
send one or more outgoing packets for the packet flow to the selected egress
server;

wherein the egress server is configured to send the outgoing packets to the client; and

wherein the selected egress server for the packet flow is a different load balancer node

than the ingress server for the packet flow.

4. The distributed load balancer system as recited in clause 3, wherein the ingress
server encapsulates the one or more packets according to User Datagram Protocol (UDP) prior to
sending the packets to the server node, wherein the server node encapsulates the outgoing
packets according to UDP prior to sending the outgoing packets to the egress server, and wherein
the egress server strips the UDP encapsulation from the outgoing packets prior to sending the
outgoing packets to the client.

5. The distributed load balancer system as recited in clause 4, wherein the server node
includes a load balancer module configured to:

select the egress server for the packet flow;

receive the incoming encapsulated packets from the ingress server;

strip the UDP encapsulation from the packets and deliver the packets to a server on the

server node;

obtain the outgoing packets from the server on the server node;

encapsulate the outgoing packets according to UDP; and

send the encapsulated outgoing packets to the egress server.

6. The distributed load balancer system as recited in clause 1, wherein, to obtain a
mapping of a connection to a particular one of the plurality of server nodes for the packet flow
from the at least one flow tracker node,

the ingress server sends a message that includes information for the packet flow to a

primary flow tracker for the packet flow;
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the primary flow tracker sends a message to a secondary flow tracker for the packet flow
that includes the information for the packet flow, wherein the primary and
secondary flow trackers for the packet flow are different load balancer nodes;
the secondary flow tracker sends an acknowledgement for the packet flow to the client;
the ingress server receives an acknowledgement packet from the client and forwards the
acknowledgement packet to the primary flow tracker;
the primary flow tracker randomly selects the particular server node from among the
plurality of server nodes as the server node to receive the packet flow and sends a
message to the secondary flow tracker indicating the particular server node;
the secondary flow tracker fabricates a synchronization message and sends the fabricated
synchronization message to the particular server node;
the secondary flow tracker receives connection information for the packet flow from the
particular server node and sends a message including the connection information
to the primary flow tracker; and
the primary flow tracker sends a message including the connection information for the
packet flow to the ingress server, wherein the connection information maps the
packet flow to the particular server node.
7. The distributed load balancer system as recited in clause 6, wherein the server node
includes a load balancer module configured to:
receive the fabricated synchronization message from the secondary flow tracker;
determine that a server on the server node can accept a connection;
generate a synchronization packet according to the fabricated synchronization message
and deliver the synchronization packet to the server on the server node;
intercept an acknowledgement packet generated by the server on the server node; and
send a message including the connection information to the secondary flow tracker.
8. A method, comprising:
performing, by an ingress server on one of a plurality of load balancer nodes:
receiving a packet in a packet flow for a client, wherein the packet is received
from a router that distributes packet flows from one or more clients to the
plurality of load balancer nodes according to a consistent hash function;
determining a load balancer node that serves as a flow tracker node for the packet
flow according to a consistent hash function applied to source and

destination address information of the packet;
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obtaining a mapping of a connection to one of a plurality of server nodes for the
packet flow from the flow tracker node for the packet flow; and
sending one or more packets of the packet flow to the server node indicated by the
mapping.
9. The method as recited in clause 8, wherein the packet flow is a Transmission Control
Protocol (TCP) packet flow.
10. The method as recited in clause &, further comprising the ingress server
encapsulating the packets according to User Datagram Protocol (UDP) prior to said sending the
one or more packets of the packet flow to the server node.
11. The method as recited in clause 8, further comprising:
selecting, by the server node, one of the plurality of load balancer nodes as an egress
server for the packet flow, wherein the selected egress server for the packet flow
is on a different load balancer node than the ingress server for the packet flow;

sending, by the server node, one or more outgoing packets for the packet flow to the
selected egress server; and

sending, by the egress server, the outgoing packets to the client of the packet flow.

12.  The method as recited in clause 11, further comprising:

the server node encapsulating the outgoing packets according to User Datagram Protocol

(UDP) prior to said sending the outgoing packets to the egress server; and

the egress server stripping the UDP encapsulation from the outgoing packets prior to said

sending the outgoing packets to the client.

13.  The method as recited in clause 8, wherein the flow tracker node is a primary flow
tracker node for the packet flow, and wherein a next load balancer node in a consistent hash ring
according to the consistent hash function is a secondary flow tracker node for the packet flow.

14. The method as recited in clause 13, wherein said obtaining a mapping of a
connection to one of a plurality of server nodes for the packet flow from the flow tracker node
for the packet flow comprises:

sending, by the ingress server, at least one message to the primary flow tracker node for

the packet flow, each message including a packet of the packet flow received from
the router;

selecting, by the primary flow tracker node, the server node for the packet flow from

among the plurality of server nodes;

sending, by the primary flow tracker node, packet flow information including an

indication of the selected server node to the secondary flow tracker node;
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facilitating, by the secondary flow tracker node, establishment of the connection to the
selected server node for the packet flow by communicating with the server node
and the client; and

sending, by the secondary flow tracker node, connection information for the packet flow

to the ingress server via the primary flow tracker node, wherein the connection
information maps the packet flow to the selected server node.

15. The method as recited in clause 14, wherein the server node includes a load
balancer module, wherein said facilitating establishment of the connection to the selected server
node for the packet flow by communicating with the server node and the client comprises:

sending, by the secondary flow tracker node, a fabricated synchronization message to the

load balancer module on the server node; and

performing, by the load balancer module on the server node:

determining that a server on the server node can accept a connection;

generating a synchronization packet according to the fabricated synchronization
message;

delivering the synchronization packet to the server on the server node;

intercepting an acknowledgement packet generated by the server on the server
node; and

sending a message including the connection information to the secondary flow
tracker node.

16. A non-transitory computer-accessible storage medium storing program instructions
computer-executable to implement an ingress server and a flow tracker on each of a plurality of
load balancer nodes, each ingress server configured to:

receive a packet in a packet flow for a client, wherein the packet is received from a router

that distributes packet flows from one or more clients to the plurality of load
balancer nodes according to a consistent hash function;

determine one of the plurality of load balancer nodes that serves as a flow tracker node

for the packet flow according to a consistent hash function applied to source and
destination address information of the packet;

obtain a mapping of a connection to one of a plurality of server nodes for the packet flow

from the flow tracker node for the packet flow; and

send one or more packets of the packet flow to the server node indicated by the mapping.

17. The non-transitory computer-accessible storage medium as recited in clause 16,

wherein the program instructions are further computer-executable to implement an egress server
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on cach of the load balancer nodes and a load balancer module on each of the plurality of server
nodes, each load balancer module configured to:

select one of the plurality of load balancer nodes as an egress server for a packet flow,

wherein the selected egress server for the packet flow is on a different load
balancer node than an ingress server for the packet flow; and

send one or more outgoing packets for the packet flow to the selected egress server;

wherein each egress server is configured to send outgoing packets in a packet flow

received from a load balancer module to a client of the packet flow.

18. The non-transitory computer-accessible storage medium as recited in clause 17,

wherein each ingress server is further configured to encapsulate the packets according to

User Datagram Protocol (UDP) prior to said sending the one or more packets of
the packet flow to the server node;

wherein each load balancer module is further configured to:

strip the UDP encapsulation from the packets received from an ingress server and
deliver the packets to a server on the respective server node;

intercept the outgoing packets from the server on the respective server node; and

encapsulate the outgoing packets according to UDP prior to said sending the
outgoing packets to an egress server;

wherein each egress server is further configured to strip the UDP encapsulation from the

outgoing packets prior to said sending the outgoing packets to the client of the
packet flow.

19.  The non-transitory computer-accessible storage medium as recited in clause 16,
wherein the flow tracker node is a primary flow tracker node for the packet flow, and wherein a
next load balancer node in a consistent hash ring according to the consistent hash function is a
secondary flow tracker node for the packet flow, and wherein, to obtain a mapping of a
connection to one of a plurality of server nodes for the packet flow from the flow tracker node
for the packet flow:

the ingress server is configured to send at least one message to the primary flow tracker

node for the packet flow, ecach message including a packet of the packet flow
received from the router;

the primary flow tracker node is configured to:

select the server node for the packet flow from among the plurality of server

nodes; and
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send packet flow information including an indication of the selected server node
to the secondary flow tracker node;

the secondary flow tracker node is configured to:

facilitate establishment of the connection to the selected server node for the packet
flow by communicating with the server node and the client; and

send connection information for the packet flow to the ingress server via the
primary flow tracker node, wherein the connection information maps the
packet flow to the selected server node.

20.  The non-transitory computer-accessible storage medium as recited in clause 19,
wherein the program instructions are further computer-executable to implement a load balancer
module on each of the plurality of server nodes, and wherein, to facilitate establishment of the
connection to the selected server node for the packet flow by communicating with the server
node and the client:

the secondary flow tracker node is configured to send a fabricated synchronization

message to the load balancer module on the server node; and

the load balancer module on the server node is configured to:

determine that a server on the server node can accept a connection;
generate a synchronization packet according to the fabricated synchronization
message;
deliver the synchronization packet to the server on the server node;
intercept an acknowledgement packet generated by the server on the server node;
and
send a message including the connection information to the secondary flow
tracker node.
Conclusion
[0248] Various embodiments may further include receiving, sending or storing instructions
and/or data implemented in accordance with the foregoing description upon a computer-
accessible medium. Generally speaking, a computer-accessible medium may include storage
media or memory media such as magnetic or optical media, e.g., disk or DVD/CD-ROM, volatile
or non-volatile media such as RAM (e.g. SDRAM, DDR, RDRAM, SRAM, ctc.), ROM, etc, as
well as transmission media or signals such as electrical, electromagnetic, or digital signals,
conveyed via a communication medium such as network and/or a wireless link.
[0249] The various methods as illustrated in the Figures and described herein represent

exemplary embodiments of methods. The methods may be implemented in software, hardware,
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or a combination thereof. The order of method may be changed, and various elements may be
added, reordered, combined, omitted, modified, etc.

[0250] Various modifications and changes may be made as would be obvious to a person
skilled in the art having the benefit of this disclosure. It is intended to embrace all such
modifications and changes and, accordingly, the above description to be regarded in an

illustrative rather than a restrictive sense.
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WHAT IS CLAIMED IS:

1. A distributed load balancer system, comprising:
a plurality of load balancer nodes, wherein at least two of the plurality of load balancer
nodes are configured as ingress servers, and wherein at least two of the plurality
of load balancer nodes are configured as flow tracker nodes;
a plurality of server nodes; and
a router configured to distribute packet flows from one or more clients to the ingress
servers according to a hashed multipath routing technique;
wherein each ingress server is configured to:
receive a packet in a packet flow for a client from the router;
determine that the ingress server does not have a mapping for the packet flow to
the plurality of server nodes;

determine at least one flow tracker node for the packet flow according to a
consistent hash function applied to source and destination address
information of the packet;

obtain a mapping of a connection to a particular one of the plurality of server
nodes for the packet flow from the at least one flow tracker node; and

send one or more packets of the packet flow to the particular server node.

2. The distributed load balancer system as recited in claim 1, wherein the packet

flow is a Transmission Control Protocol (TCP) packet flow.

3. The distributed load balancer system as recited in claim 1,
wherein at least two of the plurality of load balancer nodes are configured as egress
servers configured to send outgoing packets from the server nodes to the one or
more clients,
wherein the server node is configured to:
select one of the egress servers for the packet flow; and
send one or more outgoing packets for the packet flow to the selected egress
server;
wherein the egress server is configured to send the outgoing packets to the client; and
wherein the selected egress server for the packet flow is a different load balancer node

than the ingress server for the packet flow.
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4. The distributed load balancer system as recited in claim 3, wherein the ingress
server encapsulates the one or more packets according to User Datagram Protocol (UDP) prior to
sending the packets to the server node, wherein the server node encapsulates the outgoing
packets according to UDP prior to sending the outgoing packets to the egress server, and wherein
the egress server strips the UDP encapsulation from the outgoing packets prior to sending the

outgoing packets to the client.

5. The distributed load balancer system as recited in claim 4, wherein the server
node includes a load balancer module configured to:

select the egress server for the packet flow;

receive the incoming encapsulated packets from the ingress server;

strip the UDP encapsulation from the packets and deliver the packets to a server on the

server node;
obtain the outgoing packets from the server on the server node;
encapsulate the outgoing packets according to UDP; and

send the encapsulated outgoing packets to the egress server.

6. The distributed load balancer system as recited in claim 1, wherein, to obtain a
mapping of a connection to a particular one of the plurality of server nodes for the packet flow
from the at least one flow tracker node,

the ingress server sends a message that includes information for the packet flow to a

primary flow tracker for the packet flow;

the primary flow tracker sends a message to a secondary flow tracker for the packet flow

that includes the information for the packet flow, wherein the primary and
secondary flow trackers for the packet flow are different load balancer nodes;

the secondary flow tracker sends an acknowledgement for the packet flow to the client;

the ingress server receives an acknowledgement packet from the client and forwards the

acknowledgement packet to the primary flow tracker;

the primary flow tracker randomly selects the particular server node from among the

plurality of server nodes as the server node to receive the packet flow and sends a
message to the secondary flow tracker indicating the particular server node;

the secondary flow tracker fabricates a synchronization message and sends the fabricated

synchronization message to the particular server node;
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the secondary flow tracker receives connection information for the packet flow from the
particular server node and sends a message including the connection information
to the primary flow tracker; and

the primary flow tracker sends a message including the connection information for the
packet flow to the ingress server, wherein the connection information maps the

packet flow to the particular server node.

7. The distributed load balancer system as recited in claim 6, wherein the server
node includes a load balancer module configured to:
receive the fabricated synchronization message from the secondary flow tracker;
determine that a server on the server node can accept a connection;
generate a synchronization packet according to the fabricated synchronization message
and deliver the synchronization packet to the server on the server node;
intercept an acknowledgement packet generated by the server on the server node; and

send a message including the connection information to the secondary flow tracker.

8. A method, comprising:
performing, by an ingress server on one of a plurality of load balancer nodes:
receiving a packet in a packet flow for a client, wherein the packet is received
from a router that distributes packet flows from one or more clients to the
plurality of load balancer nodes according to a consistent hash function;
determining a load balancer node that serves as a flow tracker node for the packet
flow according to a consistent hash function applied to source and
destination address information of the packet;
obtaining a mapping of a connection to one of a plurality of server nodes for the
packet flow from the flow tracker node for the packet flow; and

sending one or more packets of the packet flow to the server node indicated by the

mapping.

9. The method as recited in claim 8, wherein the packet flow is a Transmission

Control Protocol (TCP) packet flow.
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10. The method as recited in claim 8, further comprising the ingress server
encapsulating the packets according to User Datagram Protocol (UDP) prior to said sending the

one or more packets of the packet flow to the server node.

11.  The method as recited in claim 8, further comprising:

selecting, by the server node, one of the plurality of load balancer nodes as an egress
server for the packet flow, wherein the selected egress server for the packet flow
is on a different load balancer node than the ingress server for the packet flow;

sending, by the server node, one or more outgoing packets for the packet flow to the
selected egress server; and

sending, by the egress server, the outgoing packets to the client of the packet flow.

12.  The method as recited in claim 11, further comprising:

the server node encapsulating the outgoing packets according to User Datagram Protocol
(UDP) prior to said sending the outgoing packets to the egress server; and

the egress server stripping the UDP encapsulation from the outgoing packets prior to said

sending the outgoing packets to the client.

13.  The method as recited in claim 8, wherein the flow tracker node is a primary flow
tracker node for the packet flow, and wherein a next load balancer node in a consistent hash ring

according to the consistent hash function is a secondary flow tracker node for the packet flow.

14.  The method as recited in claim 13, wherein said obtaining a mapping of a
connection to one of a plurality of server nodes for the packet flow from the flow tracker node
for the packet flow comprises:

sending, by the ingress server, at least one message to the primary flow tracker node for

the packet flow, each message including a packet of the packet flow received from
the router;

selecting, by the primary flow tracker node, the server node for the packet flow from

among the plurality of server nodes;

sending, by the primary flow tracker node, packet flow information including an

indication of the selected server node to the secondary flow tracker node;
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facilitating, by the secondary flow tracker node, establishment of the connection to the
selected server node for the packet flow by communicating with the server node
and the client; and

sending, by the secondary flow tracker node, connection information for the packet flow
to the ingress server via the primary flow tracker node, wherein the connection

information maps the packet flow to the selected server node.

15. The method as recited in claim 14, wherein the server node includes a load
balancer module, wherein said facilitating establishment of the connection to the selected server
node for the packet flow by communicating with the server node and the client comprises:

sending, by the secondary flow tracker node, a fabricated synchronization message to the

load balancer module on the server node; and

performing, by the load balancer module on the server node:

determining that a server on the server node can accept a connection;

generating a synchronization packet according to the fabricated synchronization
message;

delivering the synchronization packet to the server on the server node;

intercepting an acknowledgement packet generated by the server on the server
node; and

sending a message including the connection information to the secondary flow

tracker node.
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