(54) Title: CHANGING IMS SUPPLEMENTARY SERVICE DATA IN AN IMS NETWORK

(57) Abstract: A method of authenticating a request to change IMS supplementary service data stored at an application server within an IMS network, the method comprising sending (22) from a user equipment to the application server a request for current IMS supplementary service data, on receipt (23) by the user equipment of a response containing the IMS supplementary data in an XML configuration document, and an indication that an access code is required to change the supplementary service data, constructing (24) an amended XML configuration document, incorporating (25) the amended XML document into an XCAP message, incorporating the access code into an XCAP message at a location external to the XML document, and transmitting (27) the XCAP message from the user equipment to the application server.
Changing IMS Supplementary Service Data in an IMS Network

Technical Field

The present invention relates to changing IMS supplementary service data in an IMS network.

Background

The Third Generation Partnership Project, 3GPP, has specified Multimedia Telephony services (MMTel) as a service framework used within converged cellular and fixed networks based on IP (Internet Protocol) technology and with the Session Initiation Protocol (SIP) as the signaling protocol. Associated with telephony services are a number of supplementary services such as call waiting, call diversion and call barring. Within MMTel, these services can be configured by the user using Hypertext Transfer Protocol (HTTP) over the Ut interface. In order to protect the configuration some services could need a password to allow configuration. As an example, a parent might pay for their children’s subscriptions and want to bar some services, e.g. expensive services or services with adult content. In existing technology, such as GSM and 3G systems, a password can be used for such configuration.

In MMTel, the configuration data consists of a specified XML document with a standardized content. The configuration consists of manipulating this document using XCAP mechanisms as described in IETF RFC 4825.

There is currently no option for the provision of a password or personal identification number across the Ut interface between the user equipment and the application server. The obvious solution to the problem would be the inclusion of the password or PIN into the XML document. However, this leads to a problem in that everyone who has reading rights to the XML document would also have access to the password or PIN.

Summary

Accordingly in a first aspect of the present invention, there is provided a method of changing IMS supplementary service data stored at an application server within an IMS network. The method comprises sending from a user equipment to the application server a request for current IMS supplementary service data. On receipt by the user equipment of a response containing the IMS supplementary data in an XML configuration document, and an indication that an access
code is required to change the supplementary service data, the user equipment constructs an amended XML configuration document which incorporates the amended XML document into an Extensible Mark-up Language, XML, Configuration Access Protocol, XCAP, message. An access code is then incorporated into the XCAP message at a location external to the XML document and the XCAP message is transmitted from the user equipment to the application server.

Preferably, the method further comprises receiving at the application server the request for current IMS supplementary service data, providing in the response to the request the IMS supplementary data in an XML configuration document and an indication that an access code is required to change the supplementary service data. When the application server receives an XCAP message containing the amended XML document and an access code in a location external to the XML document, the access code is extracted from the XCAP message and the amended XML document is implemented, if the access code corresponds to a code required for changing the supplementary service data.

Preferably the access code is part of an HTTP header.

Preferably the access code is part of a Uniform Resource Indicator, URI.

Preferably the access code is part of the XCAP User Identity, XUI.

Preferably the access code is provided across a Ut interface.

Preferably, the service framework of the supplementary service is Multimedia Telephony Services.

Optionally the method further comprises storing a hash of the access code at the application server and, on receipt of an access code and comparing a hash of the received code with a hash of the stored code.

In a second aspect of the present invention, there is provided an apparatus for use in User Equipment, UE, in a communications network comprising an IMS network. The apparatus comprises processor circuitry, a storage unit storing instructions executable by the processor circuitry, a transmitter and a receiver whereby the apparatus is operative to send to an application server a request for current IMS supplementary service data and receive a response containing the IMS supplementary service data in an XML configuration document and an indication that an access code is required to change the supplementary service data. The
apparatus is further configured to construct an amended XML configuration document, to incorporate the amended XML document into an Extensible Mark-up Language, XML, Configuration Access Protocol, XCAP, message, to incorporate an access code into the XCAP message at a location external to the XML document and to transmit the XCAP message from the user equipment to the application server.

In a third aspect of the present invention, there is provided user equipment comprising an apparatus according to the second aspect.

In a fourth aspect of the present invention, there is provided an apparatus for use in an application server, AS, in an IMS network. The apparatus comprises processor circuitry, a storage unit storing instructions executable by the processor circuitry, a transmitter and a receiver, whereby the user equipment is operative to receive a request from a user equipment for current IMS supplementary service data and to provide a response containing the IMS supplementary service data in an XML configuration document, and an indication that an access code is required to change the supplementary service data. The apparatus is further configured to receive an XCAP message containing an amended XML document and an access code located in the XCAP message external to the XML document, to extract from the XCAP message the access code and to implement the amended XML document, if the access code corresponds to a code required for changing the supplementary service data.

In a fifth aspect of the present invention there is provided an application server comprising an apparatus according to the fourth aspect.

In a sixth aspect of the present invention there is provided computer program, comprising instructions which, when executed on at least one processor, cause the at least one processor to carry out a method according to the first aspect of the invention.

In a seventh aspect of the present invention there is provided a computer program product comprising a computer program according to the sixth aspect of the invention.

In an eighth aspect of the present invention there is provided a carrier containing a computer program according to the seventh aspect of the present invention, wherein the carrier optionally includes an electrical signal, an optical signal, a radio signal, a magnetic tape or disk, an optical disk or a memory stick.
Brief description of the drawings

Figure 1 is a schematic diagram of a typical network comprising an IP Multimedia Subsystem on which the present invention may be implemented;

Figure 2 is a schematic diagram of the Ut Interface;

Figure 3 is a signalling diagram showing the signalling between the user equipment and the application server across the UT interface;

Figure 4 is a typical layout of an XCAP message comprising a configuration document;

Figure 5 is a flowchart of a method implemented at a user equipment according to an embodiment;

Figure 6 is a flowchart of a method implemented at an application server according to an embodiment;

Figure 7 is a schematic diagram of apparatus according to an embodiment for use in a user equipment; and

Figure 8 is a schematic diagram of apparatus according to an embodiment for use in an application server.

Detailed description

Embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments are shown. However, other embodiments in many different forms are possible within the scope of the present disclosure. Rather, the following embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art.

In order to overcome the problems concerned with the use of the XML configuration file to hold the password or personal identification number, PIN, described above, a mechanism for transferring the password or PIN outside of the configuration document for the service is described. Reference will be made to an access code. Access code refers to a PIN or password, and can be any encodable sequence used for identification of a user.
The mechanism disclosed herein provides for an adaptation of the signaling messages conventionally used for changing the configuration of a supplementary service in an IMS network. The signaling conventionally comprises an XML configuration document incorporated into an XCAP message. The network nodes involved in the signaling, the logical interface over which the signaling is performed and the signaling sequence remain substantially unaltered. Figures 1, 2 and 3 respectively show the network layout, the logical interface and the signaling according to the prior art and used in an embodiment.

Figure 1 is a schematic view of an Internet Protocol (IP) Multimedia Sub-system (IMS) (1) and related network nodes and systems on which the present invention may be implemented. For simplicity only the signaling traffic (3) is shown. The first point of contact for a UE (2) with the IMS (5) is the Proxy Call Session Control Function (P-CSCF) (7), which together with the Serving Call Session Control Function (S-CSCF) (8) forms the Call Session Control Function (CSCF) (6). The P-CSCF is accessed via the Packet Data Network (PDN) Gateway (PGW) (4). The P-CSCF (7) receives requests from the UE (2) and transfers the requests to the S-CSCF (8), which forwards them to the application server (AS) (10). The application server provides the “value-added” services of IMS, such as presence, call forwarding, call barring etc. Control signaling passes from the S-CSCF to the AS and back again, to enable the implementation of these services. The S-CSCF (8) may then transfer signaling to the Breakout Gateway Control Function (BGCF) (9) for transfer to other networks and user equipment, or alternatively to an Interconnection Border Control Function (IBCF) or directly to a destination network. Although for simplicity only one BGCF and one AS are shown, both multiple BGCF’s and multiple application servers may be used.

The configuration of IMS services requires communication between the UE and the AS. This is performed over the Ut interface. Figure 2 is a schematic diagram of this Interface. The Ut interface (11) is a logical interface between the user equipment (2) and an application server (10). This interface enables the user to manage information related to his services, such as creation and assignment of Public Service Identities, management of authorization policies that are used e.g. by Presence service, conference policy management, call barring, call forwarding etc.

The configuration of such services requires signaling across the Ut interface between the UE and the AS. Figure 3 is a signalling diagram showing the signalling sequence between a user equipment (2) and an application server (10) when an IMS supplementary service configuration
is changed. The first step (12) comprises an HTTP GET message sent by the UE to the AS. This is a request for the current supplementary service settings. This request is rejected as unauthorised by the AS using an HTTP 401 UNAUTHORIZED message (13). This is essentially a request for authentication. This is provided in a second HTTP GET message (14), which contains the requested authentication and allows the AS to proceed with the request. The AS responds with an HTTP 200 (OK) message (15). This message comprises the current settings for the supplementary service. On receipt of the HTTP OK message, the UE responds with an HTTP PUT message (16), containing the new configuration settings in an XML document. This is transmitted to the AS, which responds with an HTTP OK message (17).

In an embodiment, the access code is incorporated into an HTTP header. In another embodiment, the access code is incorporated into the Uniform Resource Indicator, URI. Figure 4 shows a typical layout of a layout of an Extensible Mark-up Language (XML) Configuration Access Protocol (XCAP) message. The message comprises HTTP headers (18), comprising the URI (19) and the remaining header (20). In addition to the header, an XCAP message, as used in an embodiment, comprises a configuration document (21).

The authentication of a user using the method of the present invention commences with a user attempting to access a supplementary service in an IMS. The first step of this access process begins with the user equipment retrieving from the application server the current settings held in the configuration document for the service. On receipt of the request, the application server provides the configuration data in the form of an XML document, together with an indication that an access code is required to modify the service data. Figures 5 and 6 are flow charts which illustrate the steps in the method according to an embodiment, which take place at the user equipment and the application server respectively. Referring to Figure 5, the first step (22) consists of sending a request from the user equipment to the application server to ask for the current supplementary service data. When a response is received (23) with a copy of the XML configuration document presently stored at the server and an indication that an access code is required to change the supplementary service data, the user constructs (24) an amended XML document and incorporates (25) the XML document into an XCAP message. In addition to XML document, the required access code is incorporated into this message (26) and the message is then transmitted (27) to the application server. In an embodiment, the access code is incorporated into the Uniform Resource Indicator (URI). In another embodiment, the access code is provided in the XCAP User Identity, XUI. In yet another embodiment the access code is provide in another part of the HTTP header. The person skilled in the art will appreciate that
there are many alternative methods of sending the access code, so long as it is not within the XML document itself. Subject to this and the requirement that the access code not be stored in a manner to which all users have access, the invention is not limited to any one method for providing the access code. For example, in an alternative embodiment, separate XCAP messages may be used for sending the access code and the XML configuration document.

Figure 6 is a flow chart illustrating the steps that take place at the application server. The server receives (28) from a user equipment a request for its current supplementary service data. In response, the application server provides (29) an XML document containing the supplementary service data, together with a indication that a password is required to change the service data. On receipt of an XCAP message (30) containing an amended XML configuration document, the application server extracts (31) the access code and, if the access code corresponds to that required for changing the supplementary service configuration, the application server implements (32) the XML document. In an embodiment, the application server stores the code as a hash of the access code. When an access code is provided, the hash function is applied to the received access code and if the output of the hash function is the same as the hash value stored by the server, the access code is considered to be correct and the requested changes to the supplementary service data are accepted. In an embodiment, an MD-5 hash is used. The person skilled in the art will appreciate that there are many different options for storing and processing the access code and the invention is not limited to any one method. If the access code is correct, then in an embodiment, the process is completed by the sending (33) of a confirmation that a successful change in the XML document has been made. In an embodiment, this is performed by means of an HTTP 200 (OK) message. In an embodiment, if the access code is not correct, or it is missing, then an indication of this is sent to the user equipment. In an embodiment this is performed using an HTTP 409 (conflict) response. In an embodiment, an explicit indication that an access code is required. In an embodiment, this would use the extension method described in the IETF standard RFC 4825. The person skilled in the art will appreciate that there are many different options for indicating to the user that an access code is needed or that the access code provided is incorrect, and the invention is not limited to any one method.

Figure 7 is a schematic diagram illustrating a typical arrangement for apparatus (34) in user equipment for implementing a method according to the invention. It comprises processor circuitry (35), a storage unit (36) for storing instructions executable by the processor circuitry, transmitter (37) and receiver (38).
The corresponding application server apparatus (39) is illustrated schematically in Figure 8. This apparatus comprises processor circuitry (40), a storage unit (41) for storing instructions executable by the processor circuitry, a transmitter (42) and a receiver (43).

Modifications and other embodiments of the disclosed invention will come to mind to one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the embodiments are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of this disclosure. Although specific terms may be employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Claims

1. A method of authenticating a request to change IMS supplementary service data stored at an application server within an IMS network, the method comprising:
 sending (22) from a user equipment to the application server a request for current IMS supplementary service data;
 on receipt (23) by the user equipment of a response containing the IMS supplementary data in an XML configuration document, and an indication that an access code is required to change the supplementary service data:
 constructing (24) an amended XML configuration document;
 incorporating (25) the amended XML document into an Extensible Mark-up Language, XML, Configuration Access Protocol, XCAP, message;
 incorporating (26) an access code into the XCAP message at a location external to the XML document; and
 transmitting (27) the XCAP message from the user equipment to the application server.

2. A method as claimed in claim 1, further comprising the steps of:
 receiving at the application server the request for current IMS supplementary service data (28);
 providing (29) in the response to the request the IMS supplementary data in an XML configuration document and an indication that an access code is required to change the supplementary service data;
 receiving (30) at the application server the XCAP message containing the amended XML document and an access code in a location external to the XML document;
 extracting (31) from the XCAP message the access code; and
 implementing (32) the amended XML document, if the access code corresponds to a code required for changing the supplementary service data.

3. A method as claimed in claim 1 or claim 2, wherein the access code is in an HTTP header.

4. A method as claimed in any preceding claim, wherein the access code is part of a Uniform Resource Indicator, URI.
5. A method as claimed in any preceding claim, wherein the access code is part of the XCAP User Identity, XUI.

6. A method as claimed in any preceding claim, wherein the access code is provided across a UI interface.

7. A method as claimed in any preceding claim, wherein a service framework of the supplementary service is Multimedia Telephony Services.

8. A method as claimed in any preceding claim, further comprising storing a hash of the access code at the application server and, on receipt of an access code, comparing a hash of the received code with a hash of the stored code.

9. An apparatus (34) for use in User Equipment, UE, comprising: processor circuitry (35); a storage unit (36) storing instructions executable by the processor circuitry, a transmitter (37) and a receiver (38), whereby the apparatus is operative to:
 - send to an application server a request for current IMS supplementary service data;
 - receive a response containing the IMS supplementary service data in an XML configuration document, and an indication that an access code is required to change the supplementary service data;
 - construct an amended XML configuration document;
 - incorporate the amended XML document into an Extensible Mark-up Language, XML, Configuration Access Protocol, XCAP, message;
 - incorporate an access code into the XCAP message at a location external to the XML document; and
 - transmit the XCAP message from the user equipment to the application server.

10. An apparatus as claimed in in claim 9, configured to incorporate the access code into an HTTP header.

11. An apparatus as claimed in claim 9 or claim 10, configured to incorporate the access code into a Uniform Resource Indicator, URI.

12. An apparatus as claimed in any of claims 9 to 11, configured to incorporate the access code into an XCAP User Identity, XUI.

13. A user equipment comprising an apparatus as claimed in any of claims 9 to 12.
14. An apparatus (39) for use in an application server, AS, comprising: processor circuitry (40); a storage unit (41) storing instructions executable by the processor circuitry, a transmitter (42) and a receiver (43), whereby the user equipment is operative to:

receive a request from a user equipment for current IMS supplementary service data;

provide a response containing the IMS supplementary service data in an XML configuration document, and an indication that an access code is required to change the supplementary service data;

receive an XCAP message containing an amended XML document and an access code located in the XCAP message external to the XML document;

extract from the XCAP message the access code; and

implement the amended XML document, if the access code corresponds to a code required for changing the supplementary service data.

15. An apparatus as claimed claim 14, further configured to store a hash of the access code at the application server and, on receipt of an access code, compare a hash of the received code with the hash of the stored code.

16. An apparatus as claimed in claim 14 or claim 15 further configured to:

determine whether a correct access code has been provided; and

if no correct access code has been provided:

transmit to the UE a message indicating a conflict.

17. An apparatus as claimed in any of claims 14 to 16, configured to extract the access code from an HTTP header.

18. An apparatus as claimed in any of claims 14 to 17, configured to extract the access code from a Uniform Resource Indicator, URI.

19. An apparatus as claimed in claim 18, configured to extract the access code from an XML User Identity, XUI.

20. An application server comprising an apparatus as claimed in any of claims 14 to 19.

21. A computer program, comprising instructions which, when executed on at least one processor, cause the at least one processor to carry out a method according to any one of claims 1 to 8.
22. A computer program product comprising a computer program as claimed in claim 21.

23. A carrier containing the computer program product of claim 22 wherein the carrier optionally includes an electrical signal, an optical signal, a radio signal, a magnetic tape or disk, an optical disk or a memory stick.
INTERNATIONAL SEARCH REPORT

PCT/EP2015/059432

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04W12/06
ADD. H04L29/08 H04W4/12 H04L29/06 H04W4/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04W H04L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Special categories of cited documents :

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **Z** document member of the same patent family

Date of the actual completion of the international search

18 January 2016

Date of mailing of the international search report

25/01/2016

Name and mailing address of the ISA/IE

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-3040,
Fax. (+31-70) 340-3016

Authorized officer

Ghomrasseni, Z
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2010/325556 A1 (ZHU ZHONGWEN [CA]) 23 December 2010 (2010-12-23) the whole document figures 1-8</td>
<td>1-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2008104124 A1</td>
<td>01-05-2008</td>
<td>AT 475234 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1983683 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20080100356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008104124 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014331336 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007090332 A1</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2832065 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2015514260 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140138872 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015052422 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2013143577 A1</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 2010325556 A1</td>
<td>23-12-2010</td>
<td>US 2010325556 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010146542 A1</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2015014388 A1</td>
<td>05-02-2015</td>
<td>NONE</td>
</tr>
</tbody>
</table>