特許協力条約に基づいて公開された国際出願

世界知的所有権機関

国際事務局

国際公開番号

WO 2018/061877 A1

優先権データ:

特願 2016-193987 2016年9月30日 (30.09.2016) JP

出願人: 栃木化学株式会社 (EIKEN KAGAKU KABUSHIKI KAISHA) [JP/JP]; 〒110-8408 東京都港区港台4丁目1番9号 (Tokyo, JP).

発明者: 藤井 俊広 (YONEKAWA Toshihiro); 〒3290114 栃木県下都賀郡野木町野木143 栃木化学株式会社野木事業所内Tochigi (JP).

代理人: 高谷 芳樹, (HASEGAWA Yoshihiko et al.); 〒1000005 東京都千代田区丸の内二丁目1番1号丸の内 M Y P L A Z A (明治安田生命ビル) 9階 創英国際特許法律事務所 (Tokyo, JP).

添付公開書類:

- 国際調査報告 (条約第21条 (3))
- 明細書の別冊の部分として表し, 附記リスト (原則5.2 (a))

Title: NUCLEIC ACID EXTRACTION METHOD AND KIT USING SAME

発明の名称: 核酸を抽出する方法及びそれに用いるキット

ADStract: Disclosed is a method for extracting a nucleic acid from a biological sample. This method is provided with: (i) a step for mixing a biological sample, an anionic surfactant, and a chaotrop compound; (ii) a step for mixing the solution, an alkaloid having a boiling point exceeding 75°C, a chaotrop compound, and silica particles; (iii) a step for rinsing the silica particles on which the nucleic acid is adsorbed using a rinsing liquid; and (iv) a step for eluting the nucleic acid adsorbed on the silica particles using an eluting liquid, at least steps (i) and (ii) being performed at a temperature exceeding 75 C.

要約: 生体試料から核酸を抽出する方法を開示する。かかる方法は、(i) 生体試料と陰イオン性界面活性剤とカオントロピック化合物を混合して、溶解液を得る過程と、(ii) 溶解液と沸点が75℃を超えるアルカノールとカオントロピック化合物とシリカ粒子を混合し、核酸をシリカ粒子に吸着させる工程と、(iii) 核酸を吸着したシリカ粒子を洗浄液により洗浄する工程と、(iv) シリカ粒子に吸着した核酸を溶出液により溶出する工程と、を備え、少なくとも工程 (i) 及び (ii) を75℃を超える温度で行う。
明細書

発明の名称：核酸を抽出する方法及びそれに用いるキット

技術分野

[0001] 本発明は、核酸を抽出する方法及びそれに用いるキットに関する。

背景技術

[0002] 生体試料から核酸を抽出する方法の一つとして、ＢＯＯＭ法がある（例えば、特許文献1を参照）。この方法では、核酸などの生体高分子から水和水を奪い当該生体分子の高次構造を不安定化させる物質であるカオトロビック化合物の存在下で、核酸をシリカ粒子に吸着させ、生体試料から核酸を単離する。

[0003] ＢＯＯＭ法を利用した方法として、例えば、生体試料を溶解する工程と、カオトロビック化合物及び/又はアルカノールの存在下で、シリカ等と核酸とを固定化する工程とを備える方法であって、当該核酸の固定化を３６〜７５℃の温度範囲で実施する方法が挙げられる（例えば、特許文献2を参照）。

先行技術文献

特許文献

[0004] 特許文献1：特開平２８９５９６号公報
特許文献2：特表２００８－５２９５０９号公報

発明の概要

発明が解決しようとする課題

[0005] 核酸を抽出するには、細胞の膜構造を破壊し、内容物を細胞外に放出させる溶解工程が必要である。溶解方法の一つとしてタンパク質分解酵素による酵素的溶解法が、市販の核酸抽出キットでは広く採用されている。また、微生物の中でもグラム陽性菌や真菌など特殊な細胞壁を有する細胞から核酸を抽出する場合には、リソチームやツイモリアーゼなどの細胞壁分解酵素による前処理が別途必要となる。このため生物材料の種類に応じて、一般的に
対応するキットあるいはプロトコールは異なる。

また酵素的溶解法を採用しているキットの多くは、核酸抽出の全工程時間に対して、溶解工程に大部分の時間を割いている。また、さらに遠心分離工程が必要な場合が多い。よって、迅速性が求められるようなアプリケーションには適していない。

本発明は、このような実情に鑑みてなされたものであり、したがって、本発明の目的は、生体試料から、核酸を抽出するために要する時間を短縮することができる、核酸を抽出する方法及びそれに用いるキットを提供することである。

課題を解決するための手段

本発明は、生体試料から核酸を抽出する方法であって、(i) 生体試料と陰イオン性界面活性剤とカオトロピック化合物とを混合して、溶解液を得る工程と、(i i) 溶解液と沸点が75℃を超えるアルカノールとカオトロピック化合物とシリカ粒子とを混合し、核酸をシリカ粒子に吸着させる工程と、(i i i) 核酸を吸着したシリカ粒子を洗浄液により洗浄する工程と、(i v) シリカ粒子に吸着した核酸を溶出液により溶出する工程と、を備え、少なくとも工程 (i) 及び (i i) を75℃を超える温度で行う方法を提供する。

上記方法では、好ましくは、工程 (i v) を75℃を超える温度で行う。

沸点が75℃を超えるアルカノールは、1_ プロパノールであってよい。

陰イオン性界面活性剤は、好ましくはトリデシル硫酸リチウムである。

カオトロピック化合物は、エアジニウム塩であってよい。

本発明はまた、陰イオン性界面活性剤を含む第一の溶解用溶液と、カオトロピック化合物を含む第二の溶解用溶液と、沸点が75℃を超えるアルカノールとカオトロピック化合物とシリカ粒子とを含む吸着液と、を含む、核酸抽出キットを提供する。

キットにおいて、沸点が75℃を超えるアルカノールは、1_ プロパノールであってよい。
キットにおいて、陰イオン性界面活性剤は、好ましくはドデシル硫酸リチウムである。

キットにおいて、カオトロピック化合物は、グアニジニウム塩であってよい。

発明の効果

本発明によれば、生体試料から、核酸を抽出するために要する時間を短縮することができる、核酸を抽出する方法及びそれに用いるキットを提供することが可能となる。

図面の簡単な説明

[001 8] [図1]図 1 (a) ~ (e) は、それぞれ全自動核酸抽出機による核酸の抽出量を示す図である。（a）は肺炎球菌を含む試料を用いた場合、（b）は百日咳菌を含む試料を用いた場合、（c）は酵母菌を含む試料を用いた場合、（d）はヒトアデノウィルス2型を含む試料を用いた場合、（e）はA型インフルエンザウィルスを含む試料を用いた場合の結果を表す図である。

[図2]図 2 (a)，(b) は、それぞれ全自動核酸抽出機による核酸の抽出量を示す図である。（a）は健常人由来検体に肺炎球菌を含む検体を添加した試料を用いた場合、（b）は健常人由来検体にヒトアデノウィルス2型を含む検体を添加した試料を用いた場合の結果を表す図である。

[図3]図 3 (a)，(b) は、それぞれ溶出温度と核酸の抽出量との関係を示す図である。（a）は肺炎球菌を含む試料を用いた場合、（b）はA型インフルエンザウィルスを含む試料を用いた場合の結果を表す図である。

発明を実施するための形態

以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。

本実施形態に係る、生体試料から核酸を抽出する方法は、(i) 生体試料と陰イオン性界面活性剤とカオトロピック化合物とを混合して、溶解液を得る工程を備える。

[図4]溶解液は、例えば、ヒートブロック上に配置されたマイクロチューブに、
生体試料、陰イオン性界面活性剤を含む第一の溶解用溶液、及びカオトロピック化合物を含む第二の溶解用溶液を入れて混合し、加熱することにより得られる。

[0022] 生体試料と陰イオン性界面活性剤を含む第一の溶解用溶液とカオトロピック化合物を含む第二の溶解用溶液を同時に混合してもよく、生体試料と陰イオン性界面活性剤を含む第一の溶解用溶液又はカオトロピック化合物を含む第二の溶解用溶液のいずれかの溶液とを混合して混合液を得た後、当該混合液及びもう一方の溶液を混合してもよい。

[0023] 本明細書において「生体試料」とは、核酸の抽出に供される検体をいい、具体的には、ウィルス、ファージ、細菌、真菌、生物の細胞、組織及び器官の一部又は全部であり、生体から直接採取するものの他、水、土壌、空気等の環境から得られる検体も含む。生体試料としては、例えば、血液、咽喉スワブ、鼻咽喉スワブ、唾液、頭液、尿、糞便、唾液等が挙げられる。

[0024] 核酸は、DNA及びRNAなどの天然に存在する核酸であってよい。

[0025] 陰イオン性界面活性剤としては、例えば、ドデシル硫酸リチウム（Lithium Dodecyl Sulfate、LDS）、ドデシル硫酸ナトリウム等が挙げられる。陰イオン性界面活性剤は、低温で析出しにくいことから、好ましくはドデシル硫酸リチウム（Lithium Dodecyl Sulfate、LDS）である。

[0026] カオトロピック化合物としては、例えば、グアニジニウム塩等が挙げられる。グアニジニウム塩は、例えば、（イソ）チョシアン酸グアニジニウム（GuSCN）及び塩酸グアニジニウムであってよい。

[0027] 工程（i）の後、(i) 溶解液と沸点が75℃を超えるアルカノールとカオトロピック化合物とシリカ粒子を混合し、核酸をシリカ粒子に吸着させる。

[0028] 核酸をシリカ粒子に吸着させるには、例えば、ヒートプロック上に設置され、上記溶解液が入っているマイクロチューブに、沸点が75℃を超えるアルカノール、カオトロピック化合物及びシリカ粒子を含む吸着液を加えて混
合し、加熱する。

[0029] 工程 (i) 及び工程 (ii) の実施温度は、溶解から吸着までに要する時間短縮する観点から、75℃を超える温度であり、好ましくは80℃以上、より好ましくは85℃以上である。工程 (i) 及び工程 (ii) の実施温度は、好ましく100℃以下、より好ましくは98℃以下、更に好ましくは95℃以下である。工程 (i) 及び工程 (ii) の実施温度は、例えば、75〜100℃、75〜98℃、75〜95℃、80〜100℃、80〜98℃、80〜95℃、85〜100℃、85〜98℃、又は85〜95℃である。

[0030] 工程 (i) 及び工程 (ii) の実施温度をともに75℃を超える温度にすることによって、液温の温度変化に要する時間を短縮することができる。そのため、生体試料の溶解から核酸の吸着までに要する時間を短縮することができる。その結果、核酸の抽出に要する時間（生体試料の溶解から核酸の溶出までに要する時間）をも短縮できる。

[0031] 工程 (ii) に使用されるアルカノールの沸点は、75℃を超える温度であり、好ましくは80℃以上、より好ましくは85℃以上である。工程 (ii) に使用されるアルカノールの沸点は、好ましくは120℃以下、より好ましくは110℃以下、更に好ましくは100℃以下である。工程 (iii) に使用されるアルカノールの沸点は、例えば、75〜120℃、75〜110℃、75〜100℃、80〜120℃、80〜110℃、80〜100℃、85〜120℃、85〜110℃、又は85〜100℃である。

[0032] 沸点が75℃を超えるアルカノールは、例えば、1_プロパノール、エタノール、イソプロパンノール等である。

[0033] カオトロピック化合物の具体例は、工程 (i) におけるカオトロピック化合物の具体例と同様である。

[0034] シリカ粒子としては、アルキルシリカ、ケイ酸アルミニウム（ゼオライト」ともいう）、アミノ基を有するシリカ等から構成される粒子が挙げられる。シリカ粒子は、集積を容易にする観点から、好ましくは磁性シリカ粒子
ある。

[0035] 工程 (i ii) の後、 (i ii i) 核酸を吸着したシリカ粒子を洗浄液により洗浄する。

[0036] 工程 (i ii i) は、例えば、核酸を吸着したシリカ粒子に、アルコール及び陰イオン性界面活性剤を含む第一の洗浄液を加えて攪拌した後、核酸を吸着したシリカ粒子及び第一の洗浄液を分離する工程、及び分離後のシリカ粒子に、ポリエチレングリコール (Polyethylene Glycol) を含む第二の洗浄液を加えて攪拌した後、核酸を吸着したシリカ粒子及び第二の洗浄液を分離する工程を備えてよい。

[0037] アルコールは、2_プロパノール、1_プロパノール又はエタノールであってよい。アルコールは、これらの混合物でもよい。

[0038] 陰イオン性界面活性剤は、例えば、ドデシル硫酸ナトリウム (Sodium Dodecyl Sulfate, SDS) であってもよく、ドデシル硫酸リチウムであってもよい。陰イオン性界面活性剤は、これらの混合物であってもよい。

[0039] ポリエチレングリコール (Polyethylene Glycol) の平均分子量は、200〜10000であってよい。このようなポリエチレングリコール (Polyethylene Glycol) としては、例えば、ポリエチレングリコール 4000 (Polyethylene Glycol 4000, PEG4000) が挙げられる。本明細書において、ポリエチレングリコールの平均分子量とは、第十六改正日本薬局方に記載の各マクロゴール (ポリエチレングリコール) の平均分子量試験に従って測定された値を意味する。

[0040] 工程 (i i i) の後、 (i v) シリカ粒子に吸着した核酸を溶出液により溶出する。

[0041] 核酸は、例えば、次的方法により溶出できる。すなわち、まず、核酸を吸着したシリカ粒子及び溶出液を混合して攪拌した後、加熱する。再度攪拌した後、シリカ粒子と溶液とを分離することにより、核酸を溶出できる。
工程（i v）の実施温度は、吸着した核酸を短時間で、効率よく溶出する観点から、75°Cを超える温度であり、好ましくは80°C以上、より好ましくは85°C以上である。工程（i v）の実施温度は、好ましく100°C以下、より好ましくは98°C以下、更に好ましくは95°C以下である。工程（i v）の実施温度は、例えば、75〜100°C、75〜98°C、75〜95°C、80〜100°C、80〜98°C、80〜95°C、85〜100°C、85〜98°C、又は85〜95°Cである。

工程（i v）の実施温度を、工程（i i）の実施温度と同様に75°Cを超える温度に設定することによって、ヒートブロック等のヒーターの加熱条件を変えることなく、核酸の抽出（生体試料の溶解から核酸の溶出まで）を行うことができる。そのため、ヒーター内及び溶液の温度変化に要する時間を短縮し、核酸の抽出に要する時間（生体試料の溶解から核酸の溶出までに要する時間）を更に短縮することができる。

工程（i）、工程（i i）及び工程（i v）の実施温度をともに75°Cを超える温度にすることによって、高収量の核酸を、短時間で、生体試料から得ることが可能となる。また、工程（i）、工程（i i）及び工程（i v）の実施温度がともに75°Cを超える温度であれば、同程度の温度条件にて工程（i）、工程（i i）及び工程（i v）の実施が可能であることから、ヒーターは単一でよく、異なる温度設定の、複数のヒーターを必要としない。

溶出液は、例えば、滅菌水、低塩濃度の緩衝液等が挙げられる。低塩濃度の緩衝液は、例えば、10 mMのトリス塩酸（Tris HCl）を含む緩衝液である。

上記工程（i）から工程（i v）までを、手動で行ってよく、核酸抽出機を用いて全自動で行ってもよい。

本実施形態に係る方法に必要な各溶液は、予めパッケージングして、核酸抽出キットとして利用できる。すなわち、核酸抽出キットは、陰イオン性界面活性剤を含む第一の溶解用溶液を含む。陰イオン性界面活性剤の具体例は、生体試料から核酸を抽出する方法の工程（i）における陰イオン性界面活
性剤の具体例と同様である。

[0048] 陰イオン性界面活性剤の濃度は、生体試料及び第一の溶解用溶液の混合液中の濃度として、好ましくは0.01～10質量%、より好ましくは0.1～5質量%、更に好ましくは0.5～3質量%である。

[0049] 第一の溶解用溶液は、トリス塩酸（Tris _ HCl）及びエチレンジアミン四酢酸（Ethylene diaminetetraacetic Acid、EDTA）を更に含有してよい。

[0050] 核酸抽出キットは、カオトロピック化合物を含む第二の溶解用溶液を更に含む。

[0051] カオトロピック化合物の具体例は、生体試料から核酸を抽出する方法の工程（i）におけるカオトロピック化合物の具体例と同様である。

[0052] 第二の溶解用溶液に含まれるカオトロピック化合物の濃度は、生体試料、第一の溶解用溶液及び第二の溶解用溶液の混合液中の濃度として、好ましくは0.01～5M、より好ましくは0.1～4.5M、更に好ましくは1～4Mである。

[0053] 第二の溶解用溶液は、トリス塩酸（Tris _ HCl）を更に含有してよい。

[0054] 核酸抽出キットは、沸点が75℃を超えるアルカノールとカオトロピック化合物とシリカ粒子を含む吸着液を更に含む。

[0055] 沸点が75℃を超えるアルカノール、カオトロピック化合物及シリカ粒子の具体例及び好ましい態様は、生体試料から核酸を抽出する方法における、沸点が75℃を超えるアルカノール、カオトロピック化合物及シリカ粒子の具体例及び好ましい態様と同様である。

[0056] 沸点が75℃を超えるアルカノールの濃度は、上記溶解液及び吸着液の混合液中における濃度として、好ましくは1～99質量%、より好ましくは10～90質量%、更に好ましくは20～70質量%である。

[0057] 吸着液に含まれるカオトロピック化合物の濃度は、上記溶解液及び吸着液の混合液中における濃度として、好ましくは0.01～5M、より好ましく
は 0.1〜4 M、更に好ましくは 1〜4.5 M である。

[0058] 核酸抽出キットは、生体試料から核酸を抽出する方法における、第一の洗浄液、第二の洗浄液及び溶出液を更に含んでよい。

[0059] 本実施形態に係る核酸抽出キットは、広範囲なアプリケーションに適用可能である。本実施形態に係る核酸抽出キットによれば、血液、咽喉スワブ、鼻咽喉スワブ、唾液、尿、糞便、唾液等の臨床試料中に含まれる細菌、真菌、ウィルス等の広範囲の生物材料からの核酸の抽出が同一のキットで可能となる。さらに、一般的な方法に比べて、抽出に要する時間を短縮することができる、核酸を抽出する方法及びそれに用いるキットを提供することが可能となる。

実施例

[0060] 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。

[0061] 以下の表 1 に示す菌及びウィルスを用いた。肺炎球菌 (S. pneumoniae、「S. P」ともいう) を、培養プレートから釣菌し、生理食塩水に懸濁し、濁度測定にて McF # 1 の菌液濃度に調整したものを検体 (1)として用いた。百日咳菌 (B. pertussis、「B. P」ともいう) を、培養プレートから釣菌し、生理食塩水に懸濁し、濁度測定にて McF #1 の菌液濃度に調整したものを検体 (2) として用いた。酵母菌 (S. cerevisiae、「S. C.」ともいう) を、培養プレートから釣菌し、生理食塩水に懸濁し、600 nm 波長における濁度測定にて OD = 6.0 に相当する菌液濃度に調整したものを検体 (3) として用いた。ヒトアデノウイルス 2 型 (Human Adenovirus 2、「ADV」ともいう) を、A549 細胞に感染培養し、培養上清から回収したものを検体 (4) として用いた。A 型インフルエンザウイルス (H3N2 型、「FluA」ともいう) を、MDCK 細胞に感染培養し、その培養上清を検体 (5) として用いた。
核酸抽出試薬として、以下に示す組成の溶液を調製した。

第一の溶解用溶液：2.33 3.3 mM Tris-HCl (pH 7.5)、23.3 mM EDTA、4.6 (w/w) % LDS

第二の溶解用溶液：1.00 mM Tris-HCl (pH 7.5)、4.2 5M GuSCN

吸着液：4.73 (w/w) % 1_プロパノール、2.5M GuSCN

、シリカ磁性粒子

第一の洗浄液：4.10 (w/w) % 2_プロパノール、1M NaCl

、1.1 (w/w) % SDS

第二の洗浄液：9.5 (w/w) % PEG4000、1M NaCl

塩出液：10mM Tris-HCl (pH 7.5)

[実施例1: 自動核酸抽出機による、核酸の抽出]

以下の手順により、核酸抽出機を用い全自动で、S. P、B. P、S. C、ADV、FluAから核酸を抽出した。すなわち、まず、生理食塩水200 μLに、S. P検体(1) 3 μLを加えて生体試料Aを得た。同様にして生理食塩水200 μLにB. P検体(2)を2 μL、S. C検体(3)を3 μL、ADV検体(4)を3 μL、FluA検体(5)を1 μL、それぞれ加えて生体試料B〜Eを得た。マイクロチューブに、生体試料A〜Eと第一の溶解用溶液150 μLを混合した後、7秒間摂拌し、その後、110℃のヒートブロック上で1分間加熱した。ヒートブロックで加熱したまま、さらに第二の溶解用溶液350 μLを加えて7秒間摂拌し、その後、110℃のヒートブロック上で1分間加熱した。ヒートブロックで加熱したまま、さらに吸着液800 μLを加えた後、7秒間摂拌した。続いて、110℃のヒートブロック上で1分間加熱した。
ロック上で1分間加熱後、7秒間攪拌し、さらに110℃のヒートブロック上で1分間加熱した。核酸を吸着したシリカ磁性粒子と溶液を分離した後、第一の洗浄液900μLを加えて7秒間攪拌した。再度、核酸を吸着したシリカ磁性粒子と溶液を分離した後、第二の洗浄液900μLを加えて7秒間攪拌した。シリカ磁性粒子を集磁して上清を廃棄した後、溶出液250μLを加えて7秒間攪拌した。110℃のヒートブロック上で2分間静置した後、7秒間攪拌し、核酸を吸着したシリカ磁性粒子と溶液を分離して、核酸抽出液I〜Vを得た。なお、液温をモニターして溶解工程、吸着工程、ならびに溶出工程において、液温が75℃を超えることを確認した。

得られた核酸抽出液I〜Vにおける核酸をテンプレートとして、PCR反応を行い核酸を定量した。すなわち、まず、以下の表2に示すプライマーセット及びプロープを用い、以下に示す試薬組成と反応条件でPCRを実施した。実施例1について、同様の抽出及び定量を3回行った。平均値と標準誤差の結果を図1 (a) 〜 (e) に示す。

<table>
<thead>
<tr>
<th>検核核酸</th>
<th>フォワードプライマー(F)、リバースプライマー(R)及びプロープ(P) (5’〜3’)</th>
<th>配列番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.pneumoniae (S.P)</td>
<td>(F)ACGCAATCTAGCATGAAGC (R)TGTTTGTTGTTATTGTTGC (P)TTTGCGAAAACCTTTGATACAGGG[FAM-TAMRA]</td>
<td>1</td>
</tr>
<tr>
<td>B. pertussis (B.P)</td>
<td>(F)ATCAAGCAGCGGTTAACCC (R)TTGGAGATTTCTGTTAGTGTG (P)AATGGCAAGGGCAACGCCTCCA[FAM-TAMRA]</td>
<td>4</td>
</tr>
<tr>
<td>S.cerevisiae(S.C)</td>
<td>(F)GGACTCTGGCAGATGGAAGT (R)ATACCCCTTCTTAACACGTCG</td>
<td>7</td>
</tr>
<tr>
<td>Adenovirus(ADV)</td>
<td>(F)GCCACGTTGGTCTTAACCTT (R)GCCGATGTGTTTCTTTACATGACATC</td>
<td>10</td>
</tr>
<tr>
<td>InfluenzaA(FluA)</td>
<td>(F)CCGAGTGGTAAACGTAYGTTTTCTACTTCG (R)GAGCAGTGGTCTTTATGCGCATC</td>
<td>13</td>
</tr>
</tbody>
</table>

[0067] PCR反応液の組成とPCR反応の条件

核酸抽出液I又はI V
2 X Premix Ex Taq™ (Taka ra) 12.5 µL
10 µM フォワードプライマー 0.5 µL
10 µM リバースプライマー 0.5 µL
10 µM プローブ 0.5 µL
DNase, RNase フリー水 (Sigma) 6 µL
錶型 5 µL

熱変性 95℃ 10秒 1サイクル
増幅 [95℃ 5秒 ⇒ 60℃ 20秒] 40サイクル

核酸抽出液 I I

2 X Premix Ex Taq™ (Taka ra) 10 µL
10 µM フォワードプライマー 1.8 µL
10 µM リバースプライマー 1.8 µL
10 µM プローブ 1.0 µL
DNase, RNase フリー水 (Sigma) 0.4 µL
錶型 5 µL

熱変性 95℃ 15秒 1サイクル
増幅 [95℃ 3秒 ⇒ 57℃ 30秒] 40サイクル

核酸抽出液 I I I

2 X Premix Ex Taq™ (Taka ra) 12.5 µL
50 µM フォワードプライマー 0.25 µL
50 µM リバースプライマー 0.25 µL
10 µM プローブ 0.5 µL
DNase, RNase フリー水 (Sigma) 6.5 µL
錶型 5 µL
熱変性 95℃ 10秒 1サイクル
増幅 [95℃ 5秒 ⇒ 60℃ 20秒] 40サイクル

核酸抽出液 V
2X Quant iTect Probe RT-PCR Master Mix (QIAGEN) 12.5μL
50μM フォワードプライマー 0.3μL
50μM リバースプライマー 0.3μL
5μM プローブ 0.5μL
Quant iTect RT Mix (QIAGEN) 0.25μL
20IU/μL Rnase Inhibitor 0.1μL
DNase, RNaseフリー水 (σigma) 6.05μL
錶型 5μL

逆転写 50℃ 30分 1サイクル
熱変性 95℃ 15分 1サイクル
増幅 [94℃ 15秒 ⇒ 56℃ 75秒] 45サイクル

[0068]実施例 2: 全自動核酸抽出機による、健常人由来試料中の肺炎球菌核酸の抽出

健常人由来試料に検体 (1) をスパイクして核酸を抽出した。まず、咽頭スワブ懸濁液 200μL に、検体 (1) 3μL を加えて生体試料 F を得た。
同様にして、鼻咽頭スワブ懸濁液 200μL に検体 (1) 3μL を、血清 200μL に検体 (1) 3μL を、血液 (エドテック 2K 抗凝固剤含有) 200μL に検体 (1) 3μL を、それぞれ加えて生体試料 G 〜 K を得た。実施例 1 と同様にして核酸抽出液 VI〜X を得た。

[0069]得られた核酸抽出液 VI〜X について、実施例 1 と同様にして、PCR反
応を行い核酸を定量した。
なお生体試料Hの作製には、健常人由来粉末血清を精製水で復元したものを
、健常人由来試料として用い、抽出及び定量を3回実施してN=3の結果を得た。生体試料F、G、I、J、Kの作製には、それぞれ3ドナーの健常人
試料が用いられ、抽出及び定量は1回実施し、N=3の結果とした。図2（a）にN=3の結果を平均値と標準誤差で示す。また比較対照として実施例
1における抽出溶液1の結果（生理食塩水）も示す。

[0070]（実施例3：全自動核酸抽出機による、健常人由来試料中のアデノウイルス核酸の抽出）
検体（1）の代わりに、検体（4）を用いたこと以外は、実施例2と同様
にして、核酸抽出溶液を得て、PCR反応を行い定量した。結果を図2（b）
に示す。また比較対照として実施例1における抽出溶液IVの結果（生理食塩
水）も示す。

[0071]（実施例4：溶出温度と肺炎球菌ゲノムDNAの回収効率との関係）
溶出温度を室温（25℃）、50℃、80℃又は110℃の設定環境で実
施したこと以外は、実施例1と同様にして、検体（1）の生体試料Aから抽
出液を得て、PCR反応を行い、核酸を定量した。結果を図3（a）に示す
。

[0072]（実施例5：溶出温度とインフルエンザウイルスAゲノムRNAの回収効率
との関係）
溶出温度を室温（25℃）、50℃、80℃又は110℃の設定環境で実
施したこと以外は、実施例1と同様にして、検体（1）の生体試料Aから抽
出液を得て、PCR反応を行い、核酸を定量した。結果を図3（b）に示す
。

[0073]（参考例1）
QI Amp（登録商標）DNA mini kit（QIAGEN社
製）を用いて、S、Pを含む生体試料から核酸を抽出した。すなわち、サン
プルとして透心沈渣物の代わりに検体（1）を用いたこと、及びBuffer
精製水の代わりに、10 mM Tris—HCl（pH 7.5）を用いたこと以外は、キットの推奨プロトコールに従って、核酸を抽出した。なお、キットの推奨プロトコールとは、QIAamp DNA Mini and Blood Mini Handbook (第5版)を参照の、Appendix D: Protocol I for Bacteria, isolation of genomic DNA from Gram-positive bacteria及びProtocol I: DNA purification from Tissuesである。QIAamp (登録商標) DNA mini kit (QIAGEN社製)を用いて抽出した核酸について、実施例1と同様にして、PCR反応を行い核酸を定量した。結果を図1(a)に示す。

(参考例2)

QIAamp (登録商標) DNA mini kit (QIAGEN社製)を用いて、B. Pを含む生体試料から核酸を抽出した。すなわち、サンプルとして遠心沈渣物の代わりに検体（2）を用いたこと、プロテアーゼK処理を10分間で実施したこと、及びBuffer AEあるいは精製水の代わりに、10 mM Tris—HCl（pH 7.5）を用いたこと以外は、キットの推奨プロトコールに従って、核酸を抽出した。なお、キットの推奨プロトコールとは、QIAamp DNA Mini and Blood Mini Handbook (第5版)を参照の、Appendix D: Protocol I for Bacteria, isolation of genomic DNA from Gram-positive bacteria及びProtocol I: DNA purification from Tissuesである。抽出した核酸について、参考例1と同様にして核酸を定量した。結果を図1(b)に示す。

(参考例3)

QIAamp (登録商標) DNA mini kit (QIAGEN社製)を用いて、S. Cを含む生体試料から核酸を抽出した。すなわち、サンプルとして遠心沈渣物の代わりに検体（3）をそれぞれ用いたこと、プロテアーゼK処理を10分間で実施したこと、及びBuffer AEあるいは精製水の代わりに、10 mM Tris—HCl（pH 7.5）を用いたこと以外は、キットの推奨プロトコールに従って、核酸を抽出した。なお、キ
アップの推薦プロトコールとは、QIAamp DNA Mini and Blood Mini Handbook (第5版)に記載の、Appendix E: Protocol for Yeast 及び Protocol: DNA purification from Tissues である。抽出した核酸について、参考例 1 と同様にして核酸を定量した。結果を図 1 (c) に示す。

(参考例 4)

QIAamp (登録商標) MinElute Virus Spin kit (QIAGEN社製) を用いて、ADV を含む生体試料から核酸を抽出した。すなわち、キットの推奨プロトコールに記載の血漿あるいは血清の代わりに、生理食塩水 200 μL に検体 (4) 3 μL を加えたものを用いたこと以外は、キットの推奨プロトコールに従って、核酸を抽出した。なお、キットの推奨プロトコールとは、QIAamp (登録商標) MinElute Virus Spin Handbook(2010年度版)に記載の、Protocol 5 Purification of Viral Nucleic Acids from Plasma or Serum である。

実施例 1 ～ 3 及び参考例 1 ～ 4 について、抽出に要した時間を以下の表 3 に示す。

| 表 3 |
|-----|-----|-----|-----|-----|
| | 実施例 1 ～ 3 | 参考例 1 | 参考例 2 | 参考例 3 | 参考例 4 |
| 抽出時間(分) | 14 | 95 | 40 | 75 | 40 |
請求の範囲

[請求項1] 生体試料から核酸を抽出する方法であって、

(i) 前記生体試料と陰イオン性界面活性剤とカオトロピック化合物とを混合して、溶解液を得る工程と、

(ii) 前記溶解液と沸点が75°Cを超えるアルカロールとカオトロピック化合物とシリカ粒子とを混合し、前記核酸を前記シリカ粒子に吸着させる工程と、

(iii) 前記核酸を吸着した前記シリカ粒子を洗浄液により洗浄する工程と、

(iv) 前記シリカ粒子に吸着した前記核酸を溶出液により溶出する工程と、

を備え、

少なくとも工程(i)及び(iii)を75°Cを超える温度で行う方法。

[請求項2] 前記工程(i v)を75°Cを超える温度で行う、請求項1に記載の方法。

[請求項3] 前記沸点が75°Cを超えるアルカノールが1—プロパノールである、請求項1又は2に記載の方法。

[請求項4] 前記陰イオン性界面活性剤がドデシル硫酸リチウムである、請求項1—3のいずれか一項に記載の方法。

[請求項5] 前記カオトロピック化合物がヴァニジニウム塩である、請求項1—4のいずれか一項に記載の方法。

[請求項6] 陰イオン性界面活性剤を含む第一の溶解用溶液と、

カオトロピック化合物を含む第二の溶解用溶液と、

沸点が75°Cを超えるアルカノールとカオトロピック化合物とシリカ粒子を含む吸着液と、を含む、核酸抽出キット。

[請求項7] 前記沸点が75°Cを超えるアルカノールが1—プロパノールである、請求項6に記載のキット。
[請求項8] 前記陰イオン性界面活性剤が ドデシル硫酸リチウムである、請求項6又は7に記載のキット。

[請求項9] 前記カオトロピック化合物がグァニジニュム塩である、請求項6〜8のいずれか一項に記載のキット。
[図3]

(a)

S.P

抽出された標的核酸量 (copies)

1.0E+07

室温 50℃ 80℃ 110℃

(b)

FluA

抽出された標的核酸量 (copies)

1.0E+06

室温 50℃ 80℃ 110℃
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2017/033741

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl. C12Q 1/68 (2006.01), C12N 5/09 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl. C12Q 1/68, C12N 5/09

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Published examined utility model applications of Japan 1922-1996

Published unexamined utility model applications of Japan 1971-2017

Registered utility model specifications of Japan 1996-2017

Published registered utility model applications of Japan 1994-2017

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

JSTP plus / JMEDplus / JST 7580 (JDream II), CAplus / MEDLINE / EMBASE / BIOSIS (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td></td>
<td>1-5</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

Date of the actual completion of the international search 05 December 2017

Date of mailing of the international search report 12 December 2017

Name and mailing address of the ISA

Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer

Telephone No.

See patent family annex.

* Special categories of cited documents:
 "A" - document defining the general state of the art which is not considered to be of particular relevance
 "E" - earlier application or patent but published on or after the international filing date
 "L" - document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" - document referred to in oral disclosure, use, exhibition or other means
 "P" - document published prior to the international filing date but later than the priority date claimed

"T" - later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" - document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" - document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" - document member of the same patent family

Form PCT/ISA210 (second sheet) (January 2015)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2014-030364 A (SEIKO EPSON CORPORATION) 20 February 2014 (Family: none)</td>
<td>1-9</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (IPC))
Int.Cl. C12Q1/68 (2006.01) i, C12N15/09 (2006.01) i

B. 調査を行った分野
調査を行った最小限資料 (国際特許分類 (IPC))
Int.Cl. C12Q1/68, C12N15/09

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922-1
日本国公開実用新案公報 1971-1
日本国実用新案登録公報 1996-1
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース (データベースの名稱、調査に使用した用語)
JSTplus/JMEDplus/JST7580 (JDream II), CAPplus/MEDLINE/EMBASE/BIOSIS (STN)

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X JP 2008-529509 A (キアゲン ゲゼルシャフト ミット ベシュレ)</td>
<td>2008.08.07, 特許請求の範囲, 段落 [0001-0009], [0010-0019], [0020-0029], 実施例 & Wo</td>
<td>1-9</td>
</tr>
</tbody>
</table>

* 引用文献のカテゴリ
「X」特に関連のある文献ではなく、一般的技術水準を示すもの
「Y」国際出願 日前の出願または特許であるが、国際出願日以後に公表されたもの
「Z」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
「〇」口頭による開示、使用、展示等に言及する文献
「残」国際出願 日前で、かつ優先権の主張の基礎となる出願

C欄の続きにも文献が挙げられている。

「A」同一流種ファミリーに関する別紙を参照。

国際調査を完了した日
05.12.2017

国際調査報告の発送日
12.12.2017

国際調査機関の名称及び住所
日本国特許庁 (ISA / JP)
郵便番号 100-8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官 (権限ののある職員)

布川 茜奈
電話番号 03-3581-1101 内線 3448

様式 PCT / ISA / 210 (第2ページ) (2015年1月)
国際出願番号 PCT / JP 2017/033741

<table>
<thead>
<tr>
<th>引用文献のカテゴリ*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2014-030364 A （セイコーブラック株式会社）2014. 02. 20. （ファミリーなし）</td>
<td>1-9</td>
</tr>
</tbody>
</table>

様式 PCT / ISA / 210 (第2ページの続き) (2015年1月)