

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
23 December 2010 (23.12.2010)

(10) International Publication Number
WO 2010/147762 A1

(51) International Patent Classification:
G02B 6/36 (2006.01)

(74) Agent: CARROLL, Michael, E., Jr.; Corning Cable
Systems LLC, 800 17th Street NW, P.O. Box 489, Hickory,
North Carolina 28603 (US).

(21) International Application Number:

PCT/US2010/037172

(22) International Filing Date:

3 June 2010 (03.06.2010)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

12/486,427 17 June 2009 (17.06.2009) US
12/486,473 17 June 2009 (17.06.2009) US

(71) Applicant (for all designated States except US): CORNING CABLE SYSTEMS LLC [US/US]; Intellectual Property Department, SP-TI-3-1, Corning, New York 14831 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BARNES, Ray, S. [US/US]; 16 Sienna Drive, Hickory, North Carolina 28601 (US). COLEMAN, John, D. [US/US]; 822 10th Avenue Drive NW, Hickory, North Carolina 28601 (US). UGOLINI, Alan, W. [US/US]; 6419 Hayden Drive, Hickory, North Carolina 28601 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: OPTICAL INTERCONNECTIONS FOR HIGH-SPEED DATA-RATE TRANSPORT SYSTEMS

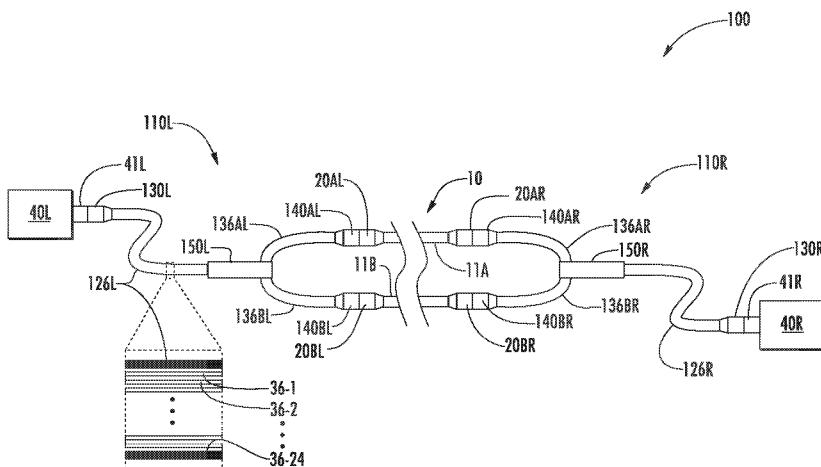


FIG. 3

(57) Abstract: A fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The assembly also has a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between transmit and receive ports of respective active assemblies. At least one of the first and second groups are optically connected without flipping the fibers, and at least one of the first and second groups are optically connected by flipping the fibers.

OPTICAL INTERCONNECTIONS FOR HIGH-SPEED DATA-RATE TRANSPORT SYSTEMS

RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Patent Application Serial Nos. 12/486,427 filed on June 17, 2009 and 12/486,473 also filed on June 17, 2009, the entire contents of which are incorporated by reference herein.

TECHNICAL FIELD

[0002] The present disclosure relates to optical fiber networks, and in particular to optical interconnection assemblies, systems and methods for high-speed data-rate optical transport systems that use multifiber connectors.

BACKGROUND ART

[0003] Some conventional optical fiber networking solutions for high-speed data-rate optical transport systems utilize 12-fiber (12f) connector assemblies and often have a point to point configuration. The conservation of fiber polarity (i.e., the matching of transmit and receive functions for a given fiber) is addressed by flipping fibers in one end of the assembly just before entering the connector in an epoxy plug, or by providing “A” and “B” type breakout modules where the fiber is flipped in the “B” module and “straight” in the “A” module. Polarity preserving optical interconnection assemblies that provide fiber optic interconnection solutions for multifiber connectors in a network environment are discussed in U.S. Patents No. 6,758,600 and 6,869,227, which patents are assigned to the present assignee or its affiliate and which patents are incorporated by reference herein.

[0004] Storage Area Networks (SANs) utilize SAN directors having high-density input/output (“I/O”) interfaces called “line cards.” Line cards hold multiple optical active assemblies such as transceivers that convert optical signals to electrical signals and *vice versa*. The line cards have connectors with transmit ports {0T, 01T, 02T,...} and receive ports {0R, 01R, 02R,...} into which network cabling is plugged. The number of ports per line card can generally vary, e.g., 16-, 24- 32- and 48-port line cards are available.

[0005] For high-speed data-rate optical transport systems, such as 100 gigabit (100G) optical fiber networks, one of the anticipated line-card connector interfaces is a 24-fiber multi-fiber push-on (MPO) connector, such as an MTP® connector. This is potentially problematic because existing network systems and some planned for high-speed data-rate optical transport systems are based on 12-fiber MPO connectors. Likewise, if 24-fiber trunk connections are implemented, 24-fiber to 24-fiber patch cords that provide a connection that maintains fiber polarity between active assemblies such as transceivers would facilitate high-speed data-rate optical transport systems implementation.

SUMMARY

[0006] An exemplary aspect of the disclosure is a fiber optic assembly for a high-speed data-rate optical transport system. The assembly includes at least first and second multifiber ferrules, with each multifiber ferrule having a mating face for mating to another mating face of an optical connector, and a termination face for receiving optical fiber. Each ferrule has a plurality of optical fiber receiving areas that are arranged in at least first and second groups of two or more fiber receiving areas. The fiber receiving areas of each ferrule have fiber receiving holes formed in each ferrule, the holes extending from the mating face to the termination face so that each the holes are associated with the at least first and second groups. Respective ends of the optical fibers are optically secured in at least some of the holes of each of the first and second groups. The fibers form respective groups of optical fibers that optically interconnect the fiber receiving areas from the termination side of the first ferrule to the termination side of the second ferrule. Some of the optical fibers extend from the first ferrule to the second ferrule in a direct orientation so that the fiber receiving areas of each ferrule are optically interconnected without flipping the fibers. Some of the optical fibers extend from the first ferrule to the second ferrule such that the optical fibers are flipped so that the orientation of the ends of the optical fibers is reversed as the fibers extend from the first ferrule to the second ferrule.

[0007] Another exemplary aspect of the disclosure is a fiber optic assembly for a high-speed data-rate optical transport system having active assemblies each with transmit and receive ports. The fiber optic assembly includes at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective

pluralities of at least first and second groups of at least two ports each. The first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The fiber optic assembly also includes a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between the transmit and receive ports of the active assemblies. At least one of the first and second groups are optically connected without flipping the fibers, and at least one of the first and second groups are optically connected by flipping the fibers.

[0008] An exemplary aspect of the disclosure is also directed to a method of forming a fiber optic assembly for high-speed data-rate optical transport system having active assemblies each with transmit and receive ports. The method includes the steps of providing at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each, wherein the first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule. The method also includes connecting the first and second ports with a plurality of optical fibers according to a pairings method that maintains polarity between the transmit and receive ports of the active assemblies, including optically connecting at least one of the first and second groups of ports without flipping the fibers, and including optically connecting at least one of the first and second groups of ports by flipping the fibers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] **FIG. 1** is a schematic diagram of a prior art twenty-four-fiber (24f) fiber optic “trunk” cable having two connectors with “key up” configurations;

[0010] **FIG. 2** is a schematic diagram similar to **FIG. 1**, but further including two 24f connectors associated with system active assemblies (not shown), illustrating how the system as shown fails to provide a connection having the proper transmit/receive polarity between the active assemblies;

[0011] **FIG. 3** is a schematic diagram of an example embodiment of an example high-speed data-rate optical transport systems that includes two 24f↔2x12f optical fiber interconnection assemblies in the form of patch cords;

[0012] **FIG. 4** is a perspective view of an example coiled 24f↔2x12f patch-cord optical fiber interconnection assembly;

[0013] **FIG. 5** is a schematic diagram of the system of **FIG. 3**, illustrating the various connector ports in more detail;

[0014] **FIG. 6** shows example harness configurations for the system of **FIG. 5** for the 24f↔2x12f assemblies;

[0015] **FIG. 7** is a perspective view of a 24f↔2x12f optical fiber interconnection assembly illustrating an example of how the optical fibers of the harness are routed in three-dimensions;

[0016] **FIG. 8** is an end-on view of active-assembly-wise 24f connector of an optical fiber interconnection assembly illustrating how the connector ports can be divided up into different groups;

[0017] **FIG. 9** is an end-on view of cable-wise 2x24f connectors of an optical fiber interconnection assembly illustrating how the connector ports can be divided up into different groups;

[0018] **FIG. 10** is an end-on, key-up view of the active-assembly-wise 24f connector of an optical fiber interconnection assembly, showing an example of how the fibers in the top and bottom rows run left to right according to the color code Blue, Orange...Aqua, i.e., “B → A”;

[0019] **FIG. 11** shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an embodiment of a multimode optical fiber;

[0020] **FIG. 12** is a schematic representation (not to scale) of a cross-sectional view of the optical fiber of **FIG. 11**;

[0021] **FIG. 13** is a schematic diagram of a high-speed data-rate optical transport system similar to that of **FIG. 3**, but that utilizes a 24f fiber optic cable and 24f patch cords;

[0022] **FIG. 14** is similar to **FIG. 5**, but represents the system of **FIG. 13**;

[0023] **FIG. 15** is a perspective view similar to **FIG. 7**, except for the case of a 24f \leftrightarrow 24f optical fiber interconnection assembly;

[0024] **FIG. 16** and **FIG. 17** are end-on views of the assembly-wise and cable-wise 24f connectors of the 24f \leftrightarrow 24f optical fiber interconnection assembly, illustrating how the connector ports can be divided up into different groups;

[0025] **FIG. 18** is a schematic diagram of a generalized 12f interconnection system in the process of being interconnected, where the system includes two 12f \leftrightarrow 12f optical interconnection assemblies;

[0026] **FIG. 19** is a schematic diagram of a high-speed data-rate optical transport system that includes two 24f \leftrightarrow 24f optical interconnection assemblies and active assemblies having twenty-four single-fiber ports; and

[0027] **FIG. 20** is a perspective view of an example modular 24f \leftrightarrow 2x12f optical interconnection assembly;

[0028] It is to be understood that both the foregoing general description and the following detailed description present embodiments of the disclosure, and are intended to provide an overview or framework for understanding the disclosure as it is claimed. The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated into and constitute a part of this specification. The drawings are not necessarily to scale.

DETAILED DESCRIPTION

[0029] Reference is now made in detail to the embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Whenever possible, like or similar reference numerals are used throughout the drawings to refer to like or similar parts. The

letters "L" and "R" in the reference numbers denote "left" and "right" to distinguish between the same or like parts in different sections of an apparatus, system, assembly or network, and are used in the same manner as "first" and "second" and thus are not intended as being limiting as to position.

[0030] It should be understood that the embodiments disclosed herein are merely examples, each incorporating certain benefits of the present disclosure. Various modifications and alterations may be made to the following examples within the scope of the present disclosure, and aspects of the different examples may be mixed in different ways to achieve yet further examples. Accordingly, the scope of the disclosure is to be understood from the entirety of the present disclosure, in view of but not limited to the embodiments described herein.

[0031] An aspect of the present disclosure is directed to optical fiber interconnection (or "conversion") assemblies configured to convert or otherwise interconnect multifiber connectors. Multifiber connectors considered herein by way of example are twenty-four-fiber ("24f") connectors and twelve-fiber ("12f") connectors. In an example embodiment, the multifiber connectors comprise multifiber ferrules. The ferrules each have a mating face for mating to another optical fiber connector and a termination side for connection to optical fibers of an optical fiber cable. One example optical fiber interconnection assembly is configured to connect a 24f connector having twenty-four ports to two 12f connectors each having twelve ports. This interconnection assembly is referred to generally as a "24f↔2x12f assembly." Another example optical fiber interconnection assembly is configured to convert or otherwise interconnect one 24f connector to another 24f connector. This interconnection assembly is referred to generally as a "24f↔24f assembly."

[0032] The optical interconnection assemblies of the present disclosure can be embodied in a variety of different forms, such as an individually formed enclosure with one or more walls in module form (e.g., a stamped-formed metal box), a flexible substrate with optical fibers associated therewith, a cable section, as an optical fiber harness or bundles of arrayed optical fibers and connectors, as an optical fiber patch cord, or in fiber-optic cabling generally. The interconnection assemblies can include combinations of the foregoing.

Aspects of the disclosure include cable systems that use the interconnection assemblies described herein.

[0033] The term “harness” as used herein means a collection of optical fibers, including fibers bound in groups or sub-groups as by a wrapping, adhesive, tying elements, or other suitable collecting fixtures or assemblies, or fibers that are unbound, for example, loose optical fibers without tying elements. The harness fibers may be arranged in the form of optical fiber ribbons, and the optical fiber ribbons are collected together by one or more tying elements or enclosed in a section of fiber optic cable.

[0034] The term “patch cord” as used herein is a collection of one or more optical fibers having a relatively short length (e.g., 2-4 meters), connectors at both ends, and that is typically used to provide for front-panel interconnections within an electronics rack, optical cross connect, or fiber distribution frame (FDF).

[0035] The term “trunk” means a fiber optic cable that carries multiple optical fibers (typically 4 to 96 fibers) and that connects assemblies over distances longer than that associated with patch cords, such as between electronics racks, rooms, buildings, central offices, or like sections of a network.

[0036] The term “port” is a fiber receiving area, i.e., a place where an optical fiber can be inserted or connected to another optical fiber.

[0037] Example multifiber connectors used in the assemblies and cables described below are epoxy and polish compatible MPO or MTP® connectors, for example, part of Corning Cable Systems’ LANscape® connector solution set. Such connectors provide a very high fiber density and contain multiple optical paths arranged in a generally planar array. The optical paths are immediately adjacent to at least one other optical path for optical alignment with the optical fibers in an optical fiber cable. The multifiber connectors are designed for multi-mode or single-mode applications, and use a push/pull design for easy mating and removal. The multifiber connectors considered herein can be the same size as a conventional SC connector, but provide greater (e.g., 12X) fiber density, advantageously saving cost and space. Multifiber connectors can include a key for proper orientation for registration with

any required optical adapters. The key can be configured as “key up” or “key down.” Certain multifiber connectors such as MTP connectors may also include guide pins and guide holes that serve to align the optical fibers when the two connectors are engaged.

[0038] An optical connector adapter (not shown) may be used to manage the fiber connections. However, other connection schemes can be used, such as a ribbon fan-out kit.

[0039] In the discussion below and in the claims, the notation $A \leftrightarrow B$ denotes connecting A to B. Likewise, the notation $\{a_1, b_1, c_1 \dots\} \leftrightarrow \{a_2, b_2, c_2 \dots\}$ denotes connecting a_1 to a_2 , b_1 to b_2 , c_1 to c_2 , etc. Also, the notation $n \leq p, q \leq m$ is shorthand for $n \leq p \leq m$ and $n \leq q \leq m$.

[0040] The assemblies, systems and methods described herein are directed generally to high-speed data-rate optical transport systems, e.g., systems that can optically transport information at rates such as between 10 gigabits (10G) and 120G. In a typical high-speed data-rate optical transport system, there are multiple channels, with each channel capable of supporting a select data rate, with the overall data rate determined by the data rate of the channels multiplied by the number of channels used. For example, a typical channel for a high-speed data-rate optical transport system can support 10G communication, so for a twelve-channel system, the communication data rate can be adjusted in multiples of 10G from 10G to 120G. With the addition of more channels, or different data rates per channels, other data rates are obtained. Thus, there is a range of options for the particular system data rate, with 40G and 100G being possibilities.

[0041] **FIG. 1** is a schematic diagram of a fiber optic cable **10** in the form of a 24f trunk cable (“24f trunk”) having two multifiber connectors **20**, e.g., right and left connectors **20R** and **20L**. Each connector **20** has ports **22** arranged in two rows of twelve and that are color-coded using industry-accepted color-coding scheme $\{B, O, G, Br, S, W, R, Bk, Y, V, Ro, A\} = \{\text{Blue, Orange, Green, Brown, Slate, White, Red, Black, Yellow, Violet, Rose and Aqua}\}$. The direction of the color-coding scheme is indicated in **FIG. 1** (as well as in **FIG. 2**) by the notation “ $B \rightarrow A$ ”. Ports **22** are connected by corresponding color-coded optical fiber sections (“fibers”) **36**, with only two fibers being shown for the sake of illustration.

[0042] Connectors **20** have keys **32**, and the two connectors **20L** and **20R** are configured “key up to key up.” Fiber optic cable **10** is configured “key up to key up,” so that the top and bottom rows of each connector **20** are respectively connected to their matching color-coded port **22** via fibers **36**. Where necessary, individual fibers **36** are identified as **36-1**, **36-2**, etc. Connectors **20R** and **20L** have respective ports **22L** and **22R**.

[0043] **FIG. 2** is a schematic diagram similar to **FIG. 1**, but further including two active assembly connectors **41** (e.g., **41R** and **41L**) associated with respective active assemblies (not shown), such as transceivers. Active assembly connectors **41L** and **41R** are arranged adjacent respective left and right connectors **20L** and **20R**. In one example, active assembly connectors **41** are or otherwise include medium dependent interface (MDI) connectors. Active assembly connectors **41** have ports **42**. The upper row of twelve active assembly ports **42** are receive ports {0R, 1R,...11R}, while the lower row of active assembly ports **42** are transmit ports {0T, 1T,...11T}. Active assembly connectors **41** are by necessity arranged “key down” so that they can mate with the respective “key up” fiber optic cable connectors **20**. The color-coding is thus A → B left to right. However, this configuration prevents fiber optic cable connectors **20** from patching directly into active assembly connectors **41** because the polarity of the connections between the transmit and receive ports of the active assembly connectors will not be maintained. A similar problem arises when trying to use a fiber optic cable **10** having two 12f cable sections and two 12f connectors at each cable end.

High-speed data-rate optical transport system with 24f↔2x12f interconnections

[0044] **FIG. 3** is a schematic diagram of an example embodiment of an example high-speed data-rate optical transport system (“system”) **100** that includes two example 24f↔2x12f assemblies **110**. System **100** includes respective active assemblies **40** with the aforementioned connectors **41**, and a fiber optic cable **10** having two 12f cable sections **11A** and **11B** each terminated at their respective ends by multifiber connectors **20A** and **20B** having respective twelve ports **22A** and **22B**. System **100** may be, for example, part of an optical fiber network, such as a LAN or a SAN at an optical telecommunications data center. An example active assembly is a transceiver, such as multichannel, high-data-rate (e.g., 10G/channel) transceiver.

[0045] System **100** includes first and second 24f \leftrightarrow 2x12f assemblies **110L** and **110R** shown by way of example in the form of patch cords (also referred to hereinafter as “patch cord **110L**” and “patch cord **110R**”, or more generally as “patch cord **110**”) that each connect the two 12f cable sections **11A** and **11B** to their respective active assembly connectors **41**. **FIG. 4** is a perspective view of an example coiled 24f \leftrightarrow 2x12f patch cord. Each patch cord **110** includes a 24f cable section **126** terminated by a multifiber connector **130** configured to connect to active assembly connector **41**. Patch cord connector **130** and its ports (described below) are thus referred to as being “active-assembly-wise.” Each patch cord **110** also includes first and second 12f cable sections **136A** and **136B** terminated at respective ends by multifiber connectors **140A** and **140B** configured to connect with fiber optic cable connectors **20A** and **20B** in a key-up to key-down configuration (with connectors **140A** and **140B** being key up). Patch cord connector **140** and its ports (described below) are thus referred to as being “cable-wise.” First and second 12f cable sections **136A** and **136B** are operably connected to first 24f cable section **126** via a furcation member **150**. The 24f cable section **126** carries twenty-four fibers **36** (see inset in **FIG. 3**) while 12f cable sections **136A** and **136B** each carry twelve fibers **36**. In example embodiments, furcation member **150** is a rigid ferrule or a flexible tube having about the same diameter as 24f cable section **126**.

[0046] The fibers **36** in patch cords **110L** and **110R** is configured in a select manner so that the fiber polarity is maintained between active assemblies **40L** and **40R** at the respective ends of system **100**. The twenty-four fibers **36** in patch cords **110L** and **110R** constitute respective harnesses **112L** and **112R** configured for 24f \leftrightarrow 2x12f polarity- preserving interconnections. Further, patch cords **110** are configured so that they can be used at either end of system **100**, i.e., patch cords **110L** and **110R** are interchangeable so that only one type of patch cord is needed for system **100**. Example patch cords **110** are described in greater detail below. In an example embodiment, fibers **36** are bend-insensitive (or alternatively “bend resistant”) fibers, as described in greater detail below.

[0047] **FIG. 5** is a schematic diagram of system **100**, wherein active assembly **40L** includes connector **41**, such as 24f non-pinned MPO connectors, and wherein fiber optic cable **10** includes two pairs of connectors: **20AL** and **20BL** at one end and **20AR** and **20BR** at the other end. In an example embodiment, connectors **20** are 12f pinned MPO connectors. In an example embodiment, connectors **20** include multifiber ferrules **21**.

[0048] Active assembly connector **41L** is connected to fiber optic cable connectors **20AL** and **20BL** via patch cord **110L**, and active assembly connector **41R** is connected to fiber optic cable connectors **20AR** and **20BR** via patch cord **110R**. Patch-cord connector **130L** connects to active assembly connector **41L**, and patch-cord connector **130R** connects to MPO active assembly connector **41R**. Patch-cord connectors **140AL** and **140BL** connect to fiber optic cable connectors **20AL** and **20BL**, while patch-cord connectors **140AR** and **140BR** connect to fiber optic cable connectors **20AR** and **20BR**. In an example embodiment, active assembly connectors **41** include a multifiber ferrule **43**, and patch-cord connectors **130** and **140** include respective multifiber ferrules **131** and **141**.

[0049] Patch-cord connector **130L** has ports **24NP(x_L)** and patch-cord connector **130R** has ports **24NP(x_R)**, where x_L, x_R denote the port numbers, for $1 \leq x_L, x_R \leq 24$. Likewise, fiber optic cable connectors **20AL** and **20BL** have respective ports **12PAL(y_{AL})** and **12PBL(y_{BL})** for $1 \leq y_{AL}, y_{BL} \leq 12$, while fiber optic cable connectors **20AR** and **20BR** have respective ports **12PAR(y_{AR})** and **12PBR(y_{BR})** for $1 \leq y_{AR}, y_{BR} \leq 12$. The letters “NP” and “P” in the connector reference numbers can in one example embodiment be understood to represent the case where the connectors having “no pins” and “pins,” respectively. Generally, however, the letters “NP” and “P” are simply used to distinguish between the ports of the different connectors without regard to the pin configuration.

[0050] The method of establishing a suitable universal port configuration for harnesses **112** in patch cords **110** is now described with reference to **FIG. 5**. First, an initial (fiber) connection is made in patch cord **110L** between any active-assembly-wise port **24NPL(x_L)** and any cable-wise port **12PAL(y_{AL})** or **12PBL(y_{BL})**. An end-to-end pairings method between active-assembly-wise ports **24NPL(x_L)** and **24NPR(x_R)** of respective patch-cord connectors **130L** and **130R** (which is based on a select pairing method between transceiver ports **42L ↔ 42R**, i.e., **01T ↔ 01R**, **02T ↔ 02R**, etc.) allows for the initial port connections to be carried through from active assembly connector **41L** to active assembly connector **41R**, i.e., from active-assembly-wise ports **24NPL(x_L)** of patch cord **110L** to the corresponding active-assembly-wise ports **24NPR(x_R)** of patch cord **110R**.

[0051] Note that fiber optic cable **10** maps cable-wise ports **12PAL(y_{AL})** and **12PBL(y_{BL})** of patch cord **110L** to ports **12PAR(y_{AR})** and **12PBR(y_{BR})** of patch cord **110R**

so that each cable-wise port in one patch cord is connected to a corresponding cable-wise port of the other patch cord.

[0052] Set out in Table 1 is an example active assembly pairings method that defines how active-assembly-wise ports **24NPL(x_L)** of patch-cord connector **130L** are mapped to active-assembly-wise ports **24NPR(x_R)** of patch-cord connector **130R** in a manner that maintains polarity based on mapping the transmit and receive transceiver ports (**01T↔01R**, **02T↔02R**, etc.) between active assemblies **40L** and **40R**. An aspect of the assembly includes determining the pairings method if one already exists, or establishing a pairings method if one does not already exist.

Table 1 – PAIRINGS TABLE				
24NPL(x_L)	24NPR(x_R)	///	24NPL(x_L)	24NPR(x_R)
1	13	///	13	1
2	14	///	14	2
3	15	///	15	3
4	16	///	16	4
5	17	///	17	5
6	18	///	18	6
7	19	///	19	7
8	20	///	20	8
9	21	///	21	9
10	22	///	22	10
11	23	///	23	11
12	24	///	24	12

[0053] The pairings method can be expressed as follows:

24NPL(x_L)↔24NPR(x_R) for $1 \leq x_L \leq 12$ and $13 \leq x_R \leq 24$ and

24NPL(x_L)↔24NPR(x_R) for $13 \leq x_L \leq 24$ and $1 \leq x_R \leq 12$.

[0054] From the pairings method, it is seen, for example, that patch cord port **24NPL(4)**, which is associated with active assembly port **03R** of active assembly connector **41L**, is connected to patch cord port **24NPR(16)** of active assembly connector **41R** which is associated with active assembly port **03T** (see also **FIG. 4**). Thus, a fiber **36** from active-assembly-wise patch cord port **24NPL(4)** that connects to cable-wise patch cord port **12PBL(4)** is traced from patch cord port **12PBL(4)** through fiber optic cable **10** over to cable-wise patch cord port **12PBR(9)** and is then connected by another fiber **36** to active-

assembly-wise patch cord port **24NPR**(16). This connection pathway is then repeated in the opposite direction from active-assembly-wise patch cord port **24NPR**(4) to active-assembly-wise patch cord port **24NPL**(16) to form a corresponding connection pathway. This process is repeated for the unused ports until there are no more port connections to be made. The result is a polarity preserving universal optical connection between active assemblies **40L** and **40R**.

[0055] **FIG. 6** shows an example configuration of harness **112** for system **100** of **FIG. 5** as established using the above-described method. The two harnesses **112L** and **112R** appear to have different configurations in the schematic representation shown **FIG. 5**. This is due to using a 2-dimensional representation to describe what is in fact a 3-dimensional embodiment. However, one skilled in the art will understand that the harness configurations are in fact the same, so that patch cords **110L** and **110R** are the same and provide a universal connection for fiber optic cable **10**. This is illustrated in **FIG. 7**, which is a perspective view of an example harness **112** that connects multifiber patch-cord connectors **130** and **140**.

[0056] In the example configuration of patch cord **110L** of **FIG. 6**, fibers **36-7** through **36-12** and **36-19** through **36-24** are routed to 12f cable section **136A** and fibers **36-1** through **36-6** and **36-13** through **36-18** are routed to 12f cable section **136B**.

[0057] In an example embodiment, patch-cord connectors **140A** and **140B** are installed on respective 12f cable sections **136A** and **136B** with the following port configurations. In cable section **136A**, fibers **36-7** through **36-12** are connected to patch-cord connector ports **12PAL**(6) through **12PAL**(1), respectively, and fibers **36-19** through **36-24** are connected to patch-cord connector ports **12PAL**(7) through **12PAL**(12), respectively. Similarly, in cable section **136B**, fibers **36-1** through **36-6** connected to patch-cord connector ports **12PBL**(1) through **12PAL**(6), respectively, and fibers **36-13** through **36-18** are connected to patch-cord connector ports **12PAL**(12) through **12PAL**(7), respectively. This is the configuration shown schematically in **FIG. 6**. In an example embodiment, patch-cord connectors **130**, **140A** and **140B** are processed (e.g., polished) in accordance with the particular connector preparation techniques.

[0058] **FIG. 8** is an end-on view of active-assembly-wise 24f connector **130** illustrating how the connector ports **24NP** can be divided up into a number of different groups **G**, such

as groups **G1** through **G4**. There are at least two ports per group **G**. Likewise, **FIG. 9** is an end-on view of cable-wise 12f connectors **140A** and **140B** illustrating how the connector ports **12PA** and **12PB** can be divided up into different groups **G'** and **G''**, such as groups **G1'** and **G2'**, and **G1''** and **G2''**. A variety of different groups **G**, **G'** and **G''** are can be made, such as pairs of connector ports, as shown by groups **GP** and **GP''** in **FIG. 8**. Also, two rows of six ports **12PA** and two rows of six ports **12PB** are shown for respective connectors **140A** and **140B** by way of illustration. Other port configurations are contemplated herein, such as one or both connectors **140A** and **140B** each having a single row of twelve ports.

[0059] Also, the various groups **G**, **G'** and **G''** can be combined into larger groups. For example, groups **G1** and **G3** of multifiber ferrule **131L** can be combined to form an upper group **GU**, and groups **G2** and **G4** can be combined to form a lower receiving area **GL**.

[0060] With reference to **FIG. 5** through **FIG. 9**, an example embodiment of the invention is fiber optic assembly **110** having a multifiber ferrule **131** at one end and two multifiber ferrules **141A** and **141B** at the other end. Multifiber ferrule **131** has one or more groups **G** of ports **24NP**, while multifiber ferrules **141A** and **141B** respectively have one or more groups **G'** and **G''** of ports **12PA** and **12PB**. Multifiber ferrule **131** is arranged relative to multifiber ferrules **141A** and **141B** such that fibers **36** can optically connect ports **24NP** to ports **12PA** or **12PB**. In an example embodiment, multifiber ferrule **131R** has upper and lower groups **GU** and **GL** of twelve ports **24PL**, while multifiber ferrules **141A** and **141B** respectively have upper and lower groups **G1'** and **G2'** and **G1''** and **G2''** of six ports **12PA** and six ports **12PB**.

[0061] In an example embodiment, at least one group **G**, at least one group **G'** and at least one group **G''** has six ports. In an example embodiment, at least one group **G**, at least one group **G'** and at least one group **G''** has two ports. In an example embodiment, at least one group **G** has twelve ports.

[0062] Groups **G** are said to be “directly facing” corresponding groups **G'** and **G''** if multifiber ferrule **131** can be arranged substantially in opposition to multifiber ferrules **141A** and **141B**. This may mean, for example, that harness **112** may be flexible (e.g., part of an optical fiber cable) and thus capable of being bent such that multifiber ferrule **131** and multifiber ferrules **141A** and **141B** can be placed in a number of relative orientations,

including in opposition. Thus, in some cases fibers **36** can be connected to directly facing ports (e.g., port **24NPL(1)** to **12PBL(1)**; see **FIG. 6**) without having to “flip” the fiber, i.e., without having to connect the fiber to a non-directly facing group. In other cases, fibers **36** are connected to non-directly facing ports by “flipping” the fibers (e.g., port **24NPL(7)** to **12PAL(6)**; see **FIG. 6**).

[0063] In an example embodiment, ports **24NP** of multifiber ferrule **131** generally face ports **12PA** and **12PB** of multifiber ferrules **141A** and **141B**. The various groups **G** can be aligned with each other from one ferrule to the other, with fibers **36** extending from at least two groups **G** of multifiber ferrule **131** to at least two groups **G'** and/or **G''** of multifiber ferrules **141A** and/or **141B**, thereby defining at least two groups of fibers **36** for harness **112**.

[0064] In an example embodiment, fibers **36** connect at least one group **G** to a directly facing group **G'** or **G''** without having to cross or “flip” the fibers. In addition, at least one group **G** is flipped as it extends to group **G'** or **G''**. In other embodiments, at least one of groups **G** is connected directly across to an essentially directly facing group **G'** or **G''**, but the faces of the ferrules need not be parallel to each other. In yet other embodiments, at least one subgroup **G** is connected to at least one other group **G'** or **G''** wherein the connecting fibers **36** are flipped, and the connected group **G'** or **G''** is not a directly facing group.

[0065] With reference again to **FIG. 3**, in an example embodiment of patch cord **110**, the **24f** cable section **126** is a small-diameter interconnect cable containing twenty-four color-coded, e.g. 250 μm outside diameter, fibers **36**. Fibers **36** are arranged within patch-cord connector **130** (e.g., within a connector ferrule, not shown) so that when viewing patch-cord connector **130** end on, such as shown in **FIG. 10**, key-up fibers **36-1** through **36-12** that make up the top row and run left to right (from Blue, Orange...Aqua, i.e., “B \rightarrow A”) while fibers **36-13** through **36-24** make up the bottom row and also run left to right as B \rightarrow A.

[0066] As mentioned above, in an example embodiment, fibers **36** for the various optical interconnection assemblies considered herein may comprise bend-resistant (bend insensitive) optical fibers. Such fibers are advantageous because they preserve and provide optical performance not attainable with conventional fibers. In an example embodiment, fibers **36** can be multimode fibers, for example bend-resistant fibers, which provide stability for higher order modes that are otherwise unstable even for short fiber lengths. Consequently, bend-

resistant fibers 36 allow for bending for installation, routing, slack storage, higher density and the like, thereby allowing rugged installations both by the craft and untrained individuals.

[0067] **FIG. 11** shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an embodiment of an exemplary multimode, bend-resistant optical fiber 36 comprising a glass core 37 and a glass cladding 42, the cladding comprising an inner annular portion 38, a depressed-index annular portion 39, and an outer annular portion 40. **FIG. 12** is a schematic representation (not to scale) of a cross-sectional view of the optical fiber of **FIG. 11**. The core 37 has outer radius R1 and maximum refractive index delta $\Delta 1\text{MAX}$. The inner annular portion 38 has width W2 and outer radius R2. Depressed-index annular portion 39 has minimum refractive index delta percent $\Delta 3\text{MIN}$, width W3 and outer radius R3. The depressed-index annular portion 39 is shown offset, or spaced away, from the core 37 by the inner annular portion 38. The annular portion 39 surrounds and contacts the inner annular portion 38. The outer annular portion 40 surrounds and contacts the annular portion 39. The clad layer 42 is surrounded by at least one coating 44, which may in some embodiments comprise a low modulus primary coating and a high modulus secondary coating.

[0068] The inner annular portion 38 has a refractive index profile $\Delta 2(r)$ with a maximum relative refractive index $\Delta 2\text{MAX}$, and a minimum relative refractive index $\Delta 2\text{MIN}$, where in some embodiments $\Delta 2\text{MAX} = \Delta 2\text{MIN}$. The depressed-index annular portion 39 has a refractive index profile $\Delta 3(r)$ with a minimum relative refractive index $\Delta 3\text{MIN}$. The outer annular portion 40 has a refractive index profile $\Delta 4(r)$ with a maximum relative refractive index $\Delta 4\text{MAX}$, and a minimum relative refractive index $\Delta 4\text{MIN}$, where in some embodiments $\Delta 4\text{MAX} = \Delta 4\text{MIN}$. Preferably, $\Delta 1\text{MAX} > \Delta 2\text{MAX} > \Delta 3\text{MIN}$.

[0069] In some embodiments, the inner annular portion 38 has a substantially constant refractive index profile, as shown in **FIG. 11** with a constant $\Delta 2(r)$; in some of these embodiments, $\Delta 2(r) = 0\%$. In some embodiments, the outer annular portion 40 has a substantially constant refractive index profile, as shown in **FIG. 10** with a constant $\Delta 4(r)$; in some of these embodiments, $\Delta 4(r) = 0\%$. The core 37 has an entirely positive refractive index profile, where $\Delta 1(r) > 0\%$. R1 is defined as the radius at which the refractive index

delta of the core first reaches value of 0.05%, going radially outwardly from the centerline. Preferably, the core **37** contains substantially no fluorine, and more preferably the core **37** contains no fluorine.

[0070] In some embodiments, the inner annular portion **38** preferably has a relative refractive index profile $\Delta 2(r)$ having a maximum absolute magnitude less than 0.05%, and $\Delta 2\text{MAX} < 0.05\%$ and $\Delta 2\text{MIN} > -0.05\%$, and the depressed-index annular portion **39** begins where the relative refractive index of the cladding first reaches a value of less than -0.05%, going radially outwardly from the centerline. In some embodiments, the outer annular portion **40** has a relative refractive index profile $\Delta 4(r)$ having a maximum absolute magnitude less than 0.05%, and $\Delta 4\text{MAX} < 0.05\%$ and $\Delta 4\text{MIN} > -0.05\%$, and the depressed-index annular portion **39** ends where the relative refractive index of the cladding first reaches a value of greater than -0.05%, going radially outwardly from the radius where $\Delta 3\text{MIN}$ is found.

[0071] Example optical fibers **36** considered herein are multimode and comprise a graded-index core region and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index relative to another portion of the cladding. The depressed-index annular portion of the cladding is preferably spaced apart from the core. Preferably, the refractive index profile of the core has a curved shape, for one example, a generally parabolic shape.

[0072] The depressed-index annular portion may, for example, comprise a) glass comprising a plurality of voids, or b) glass doped with one or more down dopants such as fluorine, boron, individually or mixtures thereof. The depressed-index annular portion may have a refractive index delta less than about -0.2 % and a width of at least about 1 micron, the depressed-index annular portion being spaced from said core by at least about 0.5 microns.

[0073] In some embodiments, the multimode optical fibers comprise a cladding with voids, the voids in some preferred embodiments are non-periodically located within the depressed-index annular portion. “Non-periodically located” means that if one takes a cross section (such as a cross section perpendicular to the longitudinal axis) of the optical fiber, the

non-periodically disposed voids are randomly or non-periodically distributed across a portion of the fiber (e.g. within the depressed-index annular region). Similar cross sections taken at different points along the length of the fiber will reveal different randomly distributed cross-sectional hole patterns, i.e., various cross sections will have different hole patterns, wherein the distributions of voids and sizes of voids do not exactly match for each such cross section. That is, the voids are non-periodic, i.e., they are not periodically disposed within the fiber structure. These voids are disposed (elongated) along the length (i.e. generally parallel to the longitudinal axis) of the optical fiber, but do not necessarily extend the entire length of the entire fiber for typical lengths of transmission fiber. It is believed that at least some of the voids extend along the length of the fiber a distance less than about 20 meters, more preferably less than about 10 meters, even more preferably less than about 5 meters, and in some embodiments less than 1 meter.

[0074] The multimode optical fiber disclosed herein exhibits very low bend induced attenuation, in particular very low macrobending induced attenuation. In some embodiments, high bandwidth is provided by low maximum relative refractive index in the core, and low bend losses are also provided. Consequently, the multimode optical fiber may comprise a graded index glass core; and an inner cladding surrounding and in contact with the core, and a second cladding comprising a depressed-index annular portion surrounding the inner cladding, said depressed-index annular portion having a refractive index delta less than about -0.2 % and a width of at least 1 micron, wherein the width of said inner cladding is at least about 0.5 microns and the fiber further exhibits a 1 turn, 10 mm diameter mandrel wrap attenuation increase of less than or equal to about 0.4 dB/turn at a wavelength of 850 nm (“850 nm”), a numerical aperture (NA) of greater than 0.14, more preferably greater than 0.17, even more preferably greater than 0.18, and most preferably greater than 0.185, and an overfilled bandwidth greater than 1.5 GHz-km at 850 nm. By way of example, the numerical aperture for the multimode optical fiber **36** is between about 0.185 and about 0.215.

[0075] Multimode fibers **36** having a 50 micron diameter core **37** can be made to provide (a) an overfilled (OFL) bandwidth of greater than 1.5 GHz-km, more preferably greater than 2.0 GHz-km, even more preferably greater than 3.0 GHz-km, and most preferably greater than 4.0 GHz-km at an 850nm wavelength. By way of example, these high bandwidths can

be achieved while still maintaining a 1 turn, 10 mm diameter mandrel wrap attenuation increase at an 850nm wavelength of less than 0.5 dB, more preferably less than 0.3 dB, even more preferably less than 0.2 dB, and most preferably less than 0.15 dB. These high bandwidths can also be achieved while also maintaining a 1 turn, 20 mm diameter mandrel wrap attenuation increase at an 850nm wavelength of less than 0.2 dB, more preferably less than 0.1 dB, and most preferably less than 0.05 dB, and a 1 turn, 15 mm diameter mandrel wrap attenuation increase at an 850nm wavelength, of less than 0.2 dB, preferably less than 0.1 dB, and more preferably less than 0.05 dB. Such fibers are further capable of providing a numerical aperture (NA) greater than 0.17, more preferably greater than 0.18, and most preferably greater than 0.185. Such fibers are further simultaneously capable of exhibiting an OFL bandwidth at 1300 nm which is greater than about 500 MHz-km, more preferably greater than about 600 MHz-km, even more preferably greater than about 700 MHz-km. Such fibers are further simultaneously capable of exhibiting minimum calculated effective modal bandwidth (Min EMBC) bandwidth of greater than about 1.5 MHz-km, more preferably greater than about 1.8 MHz-km and most preferably greater than about 2.0 MHz-km at 850 nm.

[0076] Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 3 dB/km at 850 nm, preferably less than 2.5 dB/km at 850 nm, even more preferably less than 2.4 dB/km at 850 nm and still more preferably less than 2.3 dB/km at 850 nm. Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 1.0 dB/km at a wavelength of 130 nm (“1300 nm”), preferably less than 0.8 dB/km at 1300 nm, even more preferably less than 0.6 dB/km at 1300 nm.

[0077] In some embodiments, the core extends radially outwardly from the centerline to a radius R1, wherein $10 \leq R1 \leq 40$ microns, more preferably $20 \leq R1 \leq 40$ microns. In some embodiments, $22 \leq R1 \leq 34$ microns. In some preferred embodiments, the outer radius of the core is between about 22 to 28 microns. In some other preferred embodiments, the outer radius of the core is between about 28 to 34 microns.

[0078] In some embodiments, the core has a maximum relative refractive index, less than or equal to 1.2% and greater than 0.5%, more preferably greater than 0.8%. In other

embodiments, the core has a maximum relative refractive index, less than or equal to 1.1% and greater than 0.9%.

[0079] In some embodiments, the optical fiber exhibits a 1 turn, 10 mm diameter mandrel attenuation increase of no more than 1.0 dB, preferably no more than 0.6 dB, more preferably no more than 0.4 dB, even more preferably no more than 0.2 dB, and still more preferably no more than 0.1 dB, at all wavelengths between 800 nm and 1400 nm. An example optical fiber **36** is also disclosed in U.S. Pat. App. Ser. Nos. 12/250,987 filed on October 14, 2008 and 12/333,833 filed on December 12, 2008, the disclosures of which are incorporated herein by reference.

High-speed data-rate optical transport system with 24f↔24f interconnections

[0080] **FIG. 13** is a schematic diagram of system **100** similar to that of **FIG. 3**, but that utilizes a 24f fiber optic cable **10** with 24f connectors **20L** and **20R**, and 24f single-cable patch cords **110**. Each patch cord **110** is terminated at its ends with respective 24f connectors **130**. Patch-cord connector **130NP** connects to active assembly connector **41**, while patch-cord connector **130P** connects to fiber optic cable connector **20**.

[0081] **FIG. 14** is similar to **FIG. 5**, but represents system **100** of **FIG. 13**. The ports of patch-cord connector **130NPL** are denoted **24NPL(x_L)** as above, while the ports of patch-cord connector **130PL** are denoted **24PL(y_L)**, where $1 \leq x_L, y_L \leq 24$. Likewise, the ports of patch-cord connector **130NPR** are denoted **24NPR(x_R)** as above, while the ports of patch-cord connector **130PR** are denoted **24PR(y_R)** where $1 \leq x_R, y_R \leq 24$.

[0082] The method of establishing a suitable universal port configuration for harness **112** for patch cord **110** is similar to that as described above in connection with the 24f↔2x12f assemblies. With reference to **FIG. 8**, first, an initial optical connection (e.g., with an optical fiber **36**) is made in patch cord **110L** between any active-assembly-wise patch cord port **24NPL(x_L)** and any cable-wise patch cord port **12PL(y_L)**. The pairings method between patch cord ports **24NPL(x_L)** of patch cord **110L** and patch cord ports **24NPR(x_R)** of patch cord **110R**, along with the correspondence between cable-wise ports of the patch cords via fiber optic cable **10**, allows for the initial port connection to be carried through from active assembly connector **41L** to active assembly connector **41R**.

[0083] From the pairings method as described above, it is seen for example that active-assembly-wise patch-cord port **24NPL**(4) associated with active assembly receive port **03R** is connected to active-assembly-wise patch-cord port **24NPR**(16) associated with active assembly transmit port **03T**. Thus, a fiber **36** from active-assembly-wise patch-cord port **24NPL**(4) that connects to cable-wise patch-cord port **12PBL**(4) is traced through fiber optic cable **10** over to cable-wise patch-cord port **12PBR**(9) and is then connected by another fiber **36** to active-assembly-wise patch-cord port **24NPR**(16). This connection pathway is then repeated in the opposite direction from active-assembly-wise patch-cord port **24NPL**(4) to active-assembly-wise patch-cord port **24NPL**(16) to form a corresponding connection pathway. This process can be repeated in partially connecting the available ports until all desired ports are connected, or in a full connecting method such that all existing ports are connected. **FIG. 14** shows an example configuration for harnesses **112L** and **112R** for respective patch cords **110L** and **110R** as established using this method.

[0084] **FIG. 15** is a perspective view similar to **FIG. 7**, except for the case of a 24f↔24f optical fiber interconnection assembly **100**. Note that the port configuration on the hidden face of connector **130NP** is shown on the near face for the sake of illustration. **FIG. 16** and **FIG. 17** are end-on views of the assembly-wise and cable-wise 24f connectors **130NP** and **130P** of the 24f↔24f optical fiber interconnection assembly **100**, illustrating how the connector ports **24NP** and **24P** can be respectively divided up into a variety of different groups **G** and **G'** of two or more ports similar to the case of the 24f↔2x12f assembly described above.

[0085] Also, the various groups **G** and **G'** can be combined into larger groups. For example, groups **G1** and **G3** of multifiber ferrule **131** can be combined to form an upper group **GU**, and groups **G2** and **G4** can be combined to form a lower group **GL**.

[0086] With reference to **FIG. 13** through **FIG. 17**, an example embodiment of the invention is fiber optic assembly **110** having a multifiber ferrule **131NP** at one end and a multifiber ferrule **131P** at the other end. Multifiber ferrule **131NP** has one or more groups **G** of ports **24NP**, while multifiber ferrule **131P** has one or more groups **G'** of ports **24P**. Multifiber ferrule **131NP** is arranged relative to multifiber ferrule **131P** such that fibers **36** can optically connect ports **24NP** to ports **24P**. In an example embodiment, multifiber ferrule **131NP**

has upper and lower groups **GU** and **GL** of twelve ports **24NP**, while multifiber ferrule **131P** respectively has upper and lower groups **GU'** and **GL'** of twelve ports **24P**.

[0087] In an example embodiment, at least one group **G** and at least one group **G'** has twelve ports. In another example embodiment, at least one group **G** and at least one group **G'** has six ports. In another example embodiment, at least one group **G** and at least one group **G'** has two ports.

[0088] Groups **G** are said to be “directly facing” corresponding groups **G'** if multifiber ferrule **131NP** can be arranged substantially in opposition to multifiber ferrules **131P**. This may mean, for example, that harness **112** may be flexible (e.g., part of an optical fiber cable) and thus capable of being bent such that multifiber ferrule **131NP** and multifiber ferrule **131P** can be placed in a number of relative orientations, including in opposition. Thus, in some cases fibers **36** can be connected to directly facing ports (e.g., port **24NPL(6)** to **24PL(7)**; see **FIG. 14**) without having to “flip” the fiber, i.e., without having to connect the fiber to a non-directly facing group. In other cases, fibers **36** are connected to non-directly facing ports by “flipping” the fibers (e.g., port **24NPL(7)** to **24PL(19)**; see **FIG. 14**).

[0089] In an example embodiment, ports **24NP** of multifiber ferrule **131NP** generally face ports **24P** of multifiber ferrule **131P**. The various groups **G** and **G'** can be aligned with each other from one ferrule to the other, with fibers **36** extending from at least two groups **G** of multifiber ferrule **131NP** to at least two groups **G'** of multifiber ferrule **131P**, thereby defining at least two groups of fibers **36** for harness **112**.

[0090] In an example embodiment, fibers **36** connect at least one group **G** to a directly facing subgroup **G'** without having to cross or “flip” the fibers. In addition, at least one group **G** is flipped as it extends to group **G'**. In other embodiments, at least one of groups **G** is connected directly across to an essentially directly facing group **G'**, though the faces of the ferrules need not be parallel to each other. In yet other embodiments, at least one group **G** is connected to at least one other group **G'**, wherein the connecting fibers **36** are flipped, and the connected group **G'** is not a directly facing group.

[0091] Note that for the 24f↔24f assemblies **110** discussed here as well as for the case of the 24f↔2x12f assemblies discussed above, correspondingly labeled groups (**G1**, **G1'**, etc.) need not directly face one another, and may not face one another depending on how one

chooses to label the various groups for the two connectors. For example, with reference to **FIGS. 16 and 17**, the groups for connectors **130NP** and **130P** are labeled in a corresponding manner when each is viewed face on. However, when these connectors are placed face to face, groups **G1** and **G3** respectively face group **G3'** and **G1'** along the top row, and groups **G2** and **G4** respectively face groups **G4'** and **G2'** along the bottom row.

Generalized method

[0092] **FIG. 18** is a schematic diagram of a generalized 12f interconnection system **200** that includes two 12f \leftrightarrow 12f assemblies **110L** and **110R** shown in the process of being interconnected with fibers **36**. The 12f \leftrightarrow 12f assembly **110L** includes at the active assembly end a connector **130AL** with single-fiber ports **12NPL(x_L)**, and at the fiber optic cable end a connector **130BL** with ports **12PL(y_L)**, for $1 \leq x_L, y_L \leq 12$. Likewise, 12f \leftrightarrow 12f assembly **110R** includes at the active assembly end a connector **130AR** with single-fiber ports **12NPL(x_R)**, and at the fiber optic cable end a connector **130BR** with ports **12PR(y_R)**, for $1 \leq x_R, y_R \leq 12$. Cable-wise patch-cord connectors **130BL** and **130BR** are optically connected via fiber optic cable **10**. Active-assembly-wise single-fiber ports **12NP** within each active-assembly-wise connector **130AL** and **130AR** may be paired, i.e., $\{12NPL(1), 12NPL(2)\}$, $\{12NPL(3), 12NPL(4)\}$.

[0093] An example pairings method between active-assembly-wise ports **12NPL(x_L)** and active-assembly-wise ports **12NPR(x_R)** based on a polarity-preserving connection between the active assemblies (not shown) is provided in the pairings table below (Table 2):

Table 2– Single-port pairings	
12NPL(x_L)	12NPR(x_R)
1	2
2	1
3	4
4	3
5	6
6	5
7	8
8	7
9	10
10	9
11	12
12	11

[0094] The pairings method can be expressed as follows:

12NPL(x_L) ↔ 12NPR(x_R) for $1 \leq x_L \leq 12$ ODD and $1 \leq x_R \leq 12$ EVEN and

12NPL(x_L) ↔ 12NPR(x_R) for $1 \leq x_L \leq 12$ EVEN and $1 \leq x_R \leq 12$ ODD.

[0095] Active-assembly-wise ports **12NPL(x_L)** and **12NPR(x_R)** are connected with fibers **36** using the following rule: When in assembly **110L**, active-assembly-wise port **12NPL(x_L)** is routed to cable-wise patch-cord port **12PL(y_L = n)**, then active-assembly-wise port **12NPR(x_R)** (as determined from the established pairings) in assembly **110R** is be connected (routed) to cable-wise port **12PR(y_R = m+1-n)**, where m is the total number of active assembly ports or fibers **36** (e.g., $m = 12$ in this example). This process is repeated for all the remaining connector ports.

[0096] Thus, with reference to **FIG. 19**, active-assembly-wise assembly port **12NPL(4)** in assembly **110L** is paired to active-assembly-wise assembly port **12NPR(3)** in assembly **110R** via the given pairings method, so that $y_L = n = 3$. Active-assembly-wise assembly port **12NPL(4)** is connected to cable-wise port **12PL(8)** by choice, so that $y_L = n = 8$. Thus, active-assembly-wise port **12NPR(y=3)** in assembly **110R** is connected to cable-wise port **12PR(y_R = 12+1-8) = 12PR(5)**, as shown. Likewise, active-assembly-wise port **12NPL(3)** in assembly **110R** is paired to active-assembly-wise port **12NPR(4)** in assembly **110L**. Thus, active-assembly-wise port **12NPL(3)** is connected to cable-wise port **12PL(7)** by choice, so that $y_L = n = 7$. Thus, active-assembly-wise port **12NPR(4)** is connected to cable-wise port **12PR(y_R = 12+1-7) = 12PR(6)**, as shown.

[0097] The above interconnection method has been described in connection with a 12f interconnection system for the sake of illustration. One skilled in the art will appreciate that the method applies in principle to interconnection systems and interconnection assemblies that use any reasonable number m of fibers .

[0098] Thus, in the general case of active-assembly-wise assembly ports **mNPL(x_L)** and **mNPR(x_R)**, where m is an even number of ports (i.e., $m = 12$ or 24 in the above examples), the pairings method is generally expressed as:

mNPL(x_L) ↔ mNPR(x_R) for $1 \leq x_L \leq m$ ODD and $1 \leq x_R \leq m$ EVEN and

mNPL(x_L) ↔ mNPR(x_R) for $1 \leq x_L \leq m$ EVEN and $1 \leq x_R \leq m$ ODD.

24f universal module with single-fiber ports

[0099] **FIG. 19** is a schematic diagram of a high-speed data-rate optical transport system **100** that includes two 24f \leftrightarrow 24f optical interconnection assemblies **110** and active assemblies **40** having single-fiber ports **24**. In an example embodiment, the two optical interconnection assemblies **110** include a modular enclosure called a “breakout module.” Optical interconnection assemblies **110** are connected by a 24f fiber optic cable **10**. Optical interconnection assemblies **110L** and **110R** respectively include a set of twenty-four active-assembly-wise single-fiber ports **24L(x_L)** and **24R(x_R)** that are mapped to (i.e., correspond to) each other via the pairings method as set out in Table 3 below:

Table 3 – PAIRINGS TABLE				
24L(x_L)	24R(x_R)	-	24L(x_L)	24R(x_R)
1	2	-	13	14
2	1	-	14	13
3	4	-	15	16
4	3	-	16	15
5	6	-	17	18
6	5	-	18	17
7	8	-	19	20
8	7	-	20	19
9	9	-	21	22
10	10	-	22	21
11	12	-	23	24
12	11	-	24	23

[00100] The above pairings method can also be expressed as follows:

24L(x_L) \leftrightarrow **24R(x_R)** for $1 \leq x_L \leq 24$ ODD and $1 \leq x_R \leq 24$ EVEN and

24L(x_L) \leftrightarrow **24R(x_R)** for $1 \leq x_L \leq 24$ EVEN and $1 \leq x_R \leq 24$ ODD.

[00101] The same general interconnection method as described above for configuring the harnesses **112** of the 24f patch cords **110** is used here to configure harnesses **112L** and **112R** in optical interconnection assemblies **110**. First, an initial (fiber) connection is made in optical interconnection assembly **110L** between any single-fiber active-assembly-wise port **24L(x_L)** and any cable-wise port **24PL(y_L)**. From the pairings method it is seen, for example, that active-assembly-wise single-fiber port **24L(4)** associated with active assembly receive port **03R** in assembly **110L** is be connected to active-assembly-wise port **24R(3)**

associated with active assembly transmit port **03T** in assembly **110R**. Thus, a fiber **36** from active-assembly-wise port **24L(7)** that connects to cable-wise port **24PL(1)** in assembly **110L** is traced through fiber optic cable **10** over to optical interconnection assembly **110R** and cable-wise port **24PR(12)**. This cable-wise port is then connected by another fiber **36** to active-assembly-wise port **24NPR(8)** in optical interconnection assembly **110R**.

[00102] Note that the optical connection is from transmit port **03T** to receive port **03R** in respective active assembly connectors **41L** and **41R** so that the polarity of the connection is preserved. This connection pathway is then repeated in the opposite direction from active-assembly-wise port **24R(7)** in optical interconnection assembly **110R** to active-assembly-wise port **24L(8)** in optical interconnection assembly **110L**, thereby connecting transmit port **03T** of active assembly connector **41R** to receive port **03R** of active assembly connector **41L**.

[00103] This method is repeated for the unused ports until there are no more port connections to be made. **FIG. 19** shows example configurations for completed harnesses **112L** and **112R** in respective optical interconnection assemblies **110** established using this iterative approach.

[00104] **FIG. 20** is a perspective view of an example modular 24f↔2x12f optical interconnection assembly **110**. Assembly **110** includes a housing **220** having first and second ends **222** and **224** and that defines an interior **230**. Housing **220** may be made of metal, such comprise a stamped-formed metal box. Housing first end **222** includes active-assembly-wise 24f connector **130R** with ports **24NPR**, and housing second end **224** includes cable-wise connectors **140AR** and **140BR**. Connectors **140AR** and **140BR** are connected to connector **130R** by fibers **36** that span housing interior **230** and that are configured using the methods described above.

[00105] The disclosure in other embodiments includes a fiber optic assembly with multifiber connectors each having a multifiber ferrule disposed therein so that the assembly has first and second multifiber ferrules. A group of ports is optically connected without flipping the optical fibers, and a group of ports is optically connected by flipping the optical fibers. The ports are each arranged in rows formed in each ferrule, with the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row

being an upper row. See for example **FIGS. 7-9** and **FIGS. 15-17** and the disclosure relating thereto. At least one group of ports is optically connected by flipping the optical fibers having a first group of flipped optical fibers. The assembly can further have a second group of flipped optical fibers extending from the termination side of the first ferrule to the termination side of the second ferrule. The first and second groups of flipped optical fibers cross each other as the groups extend from the first ferrule to the second ferrule. The at least one group of ports that is optically connected without flipping the optical fibers can be located on a lower row of the first ferrule, and the group of ports that is optically connected by flipping the optical fibers can be located on an upper row of the first ferrule. The group of ports that is optically connected without flipping the optical fibers can be located on an upper row of the first ferrule, and the at least one group of ports that are optically connected by flipping the optical fibers can be located on an lower row of the first ferrule. The group of ports that are optically connected without flipping the optical fibers and the group of ports that are optically connected by flipping the optical fibers can be located on one of the same rows of a ferrule or different rows of a ferrule. Other combinations within the disclosure of the present invention are possible as well.

[00106] The present disclosure has been described with reference to the foregoing embodiments, which embodiments are intended to be illustrative of the present inventive concepts rather than limiting. Persons of ordinary skill in the art will appreciate that variations and modifications of the foregoing embodiments may be made without departing from the scope of the appended claims.

What is claimed is:

1. A fiber optic assembly for a high-speed data-rate optical transport system, comprising:
 - a) at least first and second multifiber ferrules, each multifiber ferrule having a mating face for mating to another mating face of an optical connector, and a termination face for receiving optical fibers, each ferrule having a plurality of optical fiber receiving areas being arranged in at least first and second groups of two or more fiber receiving areas;
 - b) the fiber receiving areas of each ferrule comprising fiber receiving holes formed in each ferrule, the holes extending from the mating face to the termination face so that each the holes are associated with the at least first and second groups, and respective ends of the optical fibers being optically secured in at least some of the holes of each of the first and second groups, the fibers extending thereby forming respective groups of optical fibers optically interconnecting the fiber receiving areas from the termination side of the first ferrule to the termination side of the second ferrule;
 - c) some of the optical fibers extending from the first ferrule to the second ferrule in a direct orientation so that the fiber receiving areas of each ferrule are optically interconnected without flipping the fibers; and
 - d) some of the optical fibers extending from the first ferrule to the second ferrule such that the optical fibers are flipped so that the orientation of the ends of the optical fibers is reversed as the fibers extend from the first ferrule to the second ferrule.
2. The fiber optic assembly of claim 1, wherein the termination sides of the ferrules are arranged substantially in facing opposition to each other so that some of the groups of optical fibers are essentially facing groups of fiber receiving areas, and wherein the optical fibers that are flipped not directly facing groups.
3. The fiber optic assembly of claim 1, wherein at least one of the first and second groups comprises a row of fiber receiving areas.
4. The fiber optic assembly of claim 1, wherein at least one of the first groups and at least one of the second groups respectively comprise two fiber receiving areas.

5. The fiber optic assembly of claim 1, wherein at least one of the first groups and at least one of the second groups respectively comprise six fiber receiving areas.
6. The fiber optic assembly of claim 1, wherein at least one of the first groups and at least one of the second groups respectively comprise twelve fiber receiving areas.
7. The fiber optic assembly of claim 1, wherein transmit and receive pairs of fiber receiving areas are associated with channels of the high-speed data-rate optical transport system, wherein the channels have a corresponding data rate, and wherein the fiber optic assembly supports a data rate corresponding to the channel data rate multiplied by the number of pairs of fiber receiving areas in the first group.
8. The fiber optic assembly of claim 7, wherein the channel data rate is about 10 gigabits/s.
9. The fiber optic assembly of claim 8, wherein the number of transmit and receive pairs of fiber receiving areas in the first group is twelve.
10. The fiber optic assembly of claim 9, wherein ten of the twelve transmit and receive pairs of fiber receiving areas are used so as to support about a 100 gigabit/s data rate.
11. The fiber optic assembly of claim 1, comprising:
 - a third multifiber ferrule having a plurality of fiber receiving areas that are dividable into third groups of two or more fiber receiving areas; and
 - wherein the fiber receiving areas of the first group are connected to fiber receiving areas of the second and/or third groups without flipping the fibers, and wherein the fiber receiving areas of the first group are connected with the second and/or third groups by flipping the fibers.
12. The fiber optic assembly of claim 11, wherein the first multifiber ferrule has a total

of twenty-four fiber receiving areas, and the second and third multifiber ferrules each have a total of twelve fiber receiving areas.

13. The fiber optic assembly of claim 11, wherein the first, second and third multifiber ferrules are optically connected to respective first, second and third active assemblies.

14. The fiber optic assembly of claim 1, wherein the plurality of optical fibers are contained in one of an optical fiber cable and a modular housing.

15. The fiber optic assembly of claim 1, wherein the first and second multifiber ferrules are optically connected to respective first and second active assemblies.

16. A fiber optic assembly for a high-speed data-rate optical transport system having active assemblies each with transmit and receive ports, comprising:

at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and second groups of at least two ports each, wherein the first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule; and

a plurality of optical fibers that connect the first and second ports according to a pairings method that maintains polarity between the transmit and receive ports of the active assemblies, wherein at least one of the first and second groups are optically connected without flipping the fibers, and wherein at least one of the first and second groups are optically connected by flipping the fibers.

17. The fiber optic assembly of claim 16, wherein at least one of the first groups and at least one of the second groups include six ports.

18. The fiber optic assembly of claim 16, wherein at least one of the first groups and at least one of the second groups include twelve ports.

19. The fiber optic assembly of claim 16, wherein the first and second multifiber connectors each support a total of twenty-four ports.
20. The fiber optic assembly of claim 16, further including:
a third multifiber connector having a plurality of third ports that define a pluralities of third groups of at least two ports each, and wherein the first groups of ports face the second and third groups of ports.
21. The fiber optic assembly of claim 20, wherein the first multifiber connector supports twenty-four ports, and wherein the second and third multifiber connectors each supports twelve ports.
22. The fiber optic assembly of claim 16, wherein pairs of connector ports are associated with respective channels of the high-speed data-rate optical transport system, wherein the channels have a corresponding data rate, and wherein the fiber optic assembly supports a data rate corresponding to the channel data rate multiplied by the number of pairs of fiber ports in the first group.
23. The fiber optic assembly of claim 22, wherein the channel data rate is about 10 gigabits/s.
24. The fiber optic assembly of claim 23, wherein the number of pairs of ports in the first group is twelve.
25. The fiber optic assembly of claim 24, wherein ten of the twelve ports are used so as to support about a 100 gigabit/s data rate.
26. The fiber optic assembly of claim 16, wherein the at least one first group and at least one second group respectively include an entire row of ports.
27. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected without flipping the optical fibers is located on a lower row of the first ferrule, and

d) the at least one group of ports being optically connected by flipping the optical fibers is located on an upper row of the first ferrule.

28. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected without flipping the optical fibers is located on an upper row of the first ferrule, and

d) the at least one group of ports being optically connected by flipping the optical fibers is located on an lower row of the first ferrule.

29. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally

parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected without flipping the optical fibers and the at least one group of ports being optically connected by flipping the optical fibers are located on the same row of the first ferrule.

30. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected without flipping the optical fibers and the at least one group of ports being optically connected by flipping the optical fibers are located on different rows of the first ferrule.

31. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected without flipping the optical fibers extend from a lower row of the first ferrule to a lower row of the second ferrule.

32. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected by flipping the optical fibers extend from a lower row of the first ferrule to an upper row of the second ferrule.

33. The fiber optic assembly of claim 16 wherein,

a) each connector comprising at least one a multifiber ferrule disposed therein so that the assembly comprises first and second multifiber ferrules;

b) the at least one group of ports being optically connected without flipping the optical fibers, and the at least one group of ports being optically connected by flipping the optical fibers, are each arranged in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

c) the at least one group of ports being optically connected by flipping the optical fibers comprising a first group of flipped optical fibers;

d) the assembly further comprising a second group of flipped optical fibers extending from the termination side of the first ferrule to the termination side of the second ferrule; and

e) the first and second groups of flipped optical fibers cross each other as the groups extend from the first ferrule to the second ferrule.

34. A method of forming a fiber optic assembly for a high-speed data-rate optical transport system having active assemblies each with transmit and receive ports, comprising:

providing at least first and second multifiber connectors each having respective pluralities of first and second ports that define respective pluralities of at least first and

second groups of at least two ports each, wherein the first and second multifiber connectors are capable of being disposed so that the at least first and second groups of ports are located on respective termination sides of each ferrule; and

connecting the first and second ports with a plurality of optical fibers according to a pairings method that maintains polarity between the transmit and receive ports of the active assemblies, including optically connecting at least one of the first and second groups of ports without flipping the fibers, and including optically connecting at least one of the first and second groups of ports by flipping the fibers.

35. The method of claim 34, further comprising:

- a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;
- b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;
- c) locating the at least one of the first and second groups of ports that is optically connected without flipping the optical fibers on a lower row of the first ferrule; and
- d) locating the at least one of the first and second groups of ports that is optically connected by flipping the optical fibers on an upper row of the first ferrule.

36. The method of claim 34, further comprising:

- a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;
- b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;
- c) locating the at least one of the first and second groups of ports that is optically

connected without flipping the optical fibers on an upper row of the first ferrule; and

d) locating the at least one of the first and second groups of ports that is optically connected by flipping the optical fibers on a lower row of the first ferrule.

37. The method of claim 34, further comprising:

a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;

b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row; and

c) locating the at least one of the first and second groups of ports that is optically connected without flipping the optical fibers and the at least one of the first and second groups of ports that is optically connected by flipping the optical fibers on the same row of the first ferrule.

38. The method of claim 34, further comprising:

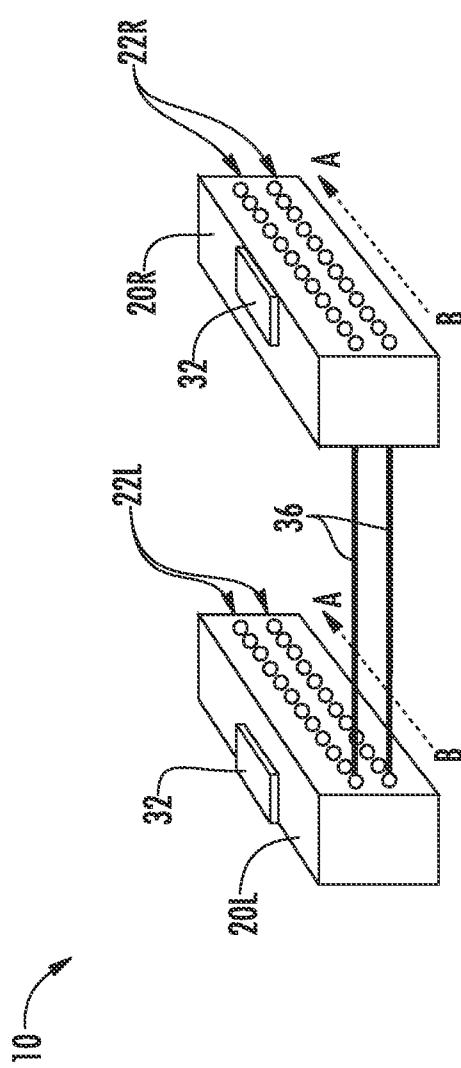
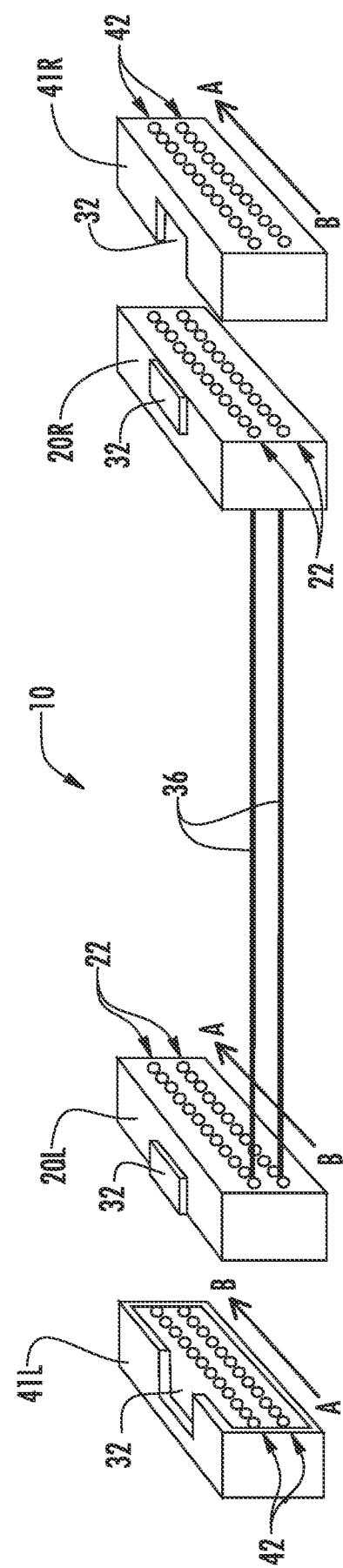
a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;

b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row; and

c) locating the at least one of the first and second groups of ports that is optically connected without flipping the optical fibers and the at least one of the first and second groups of ports that is optically connected by flipping the optical fibers on different rows of the first ferrule.

39. The method of claim 34, further comprising:

- a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;
- b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row; and
- c) extending the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers from a lower row of the first ferrule to a lower row of the second ferrule.



40. The method of claim 34, further comprising:

- a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;
- b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row; and
- c) extending the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers from a lower row of the first ferrule to an upper row of the second ferrule.

41. The method of claim 34, further comprising:

- a) disposing within each connector at least one multifiber ferrule so that the fiber optic assembly comprises first and second multifiber ferrules;
- b) arranging the at least one of the first and second groups of ports that are optically connected without flipping the optical fibers, and the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers in rows formed in each ferrule, the rows being generally parallel to each other, such that each ferrule has a row being a lower row and a row being an upper row;

- c) the at least one of the first and second groups of ports that are optically connected by flipping the optical fibers comprising a first group of flipped optical fibers;
- d) extending a second group of flipped optical fibers from the termination side of the first ferrule to the termination side of the second ferrule; and
- e) crossing the first and second groups of flipped optical fibers as the groups extend from the first ferrule to the second ferrule.

FIG. 1
(PRIOR ART)FIG. 2
(PRIOR ART)

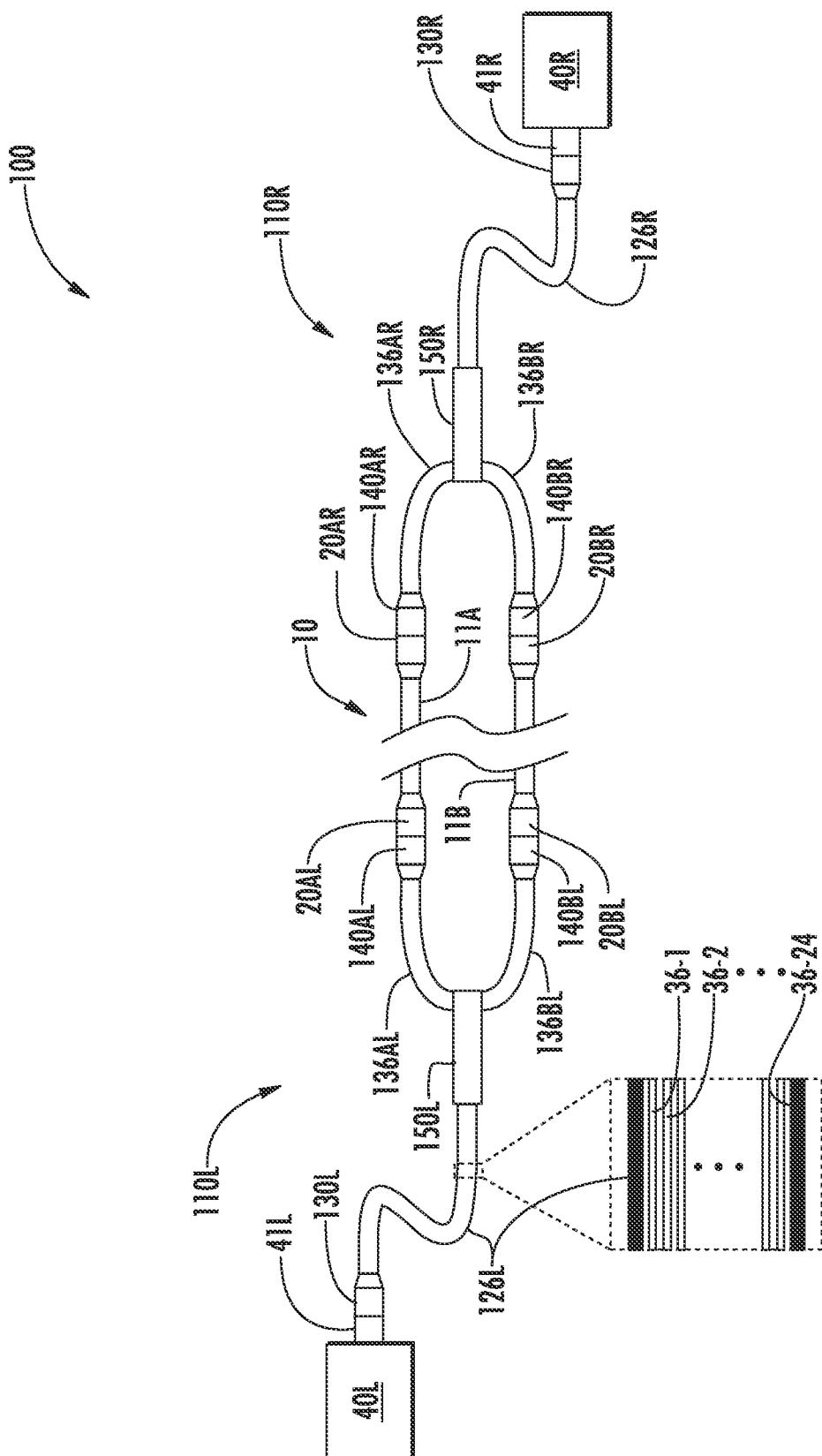


FIG. 3

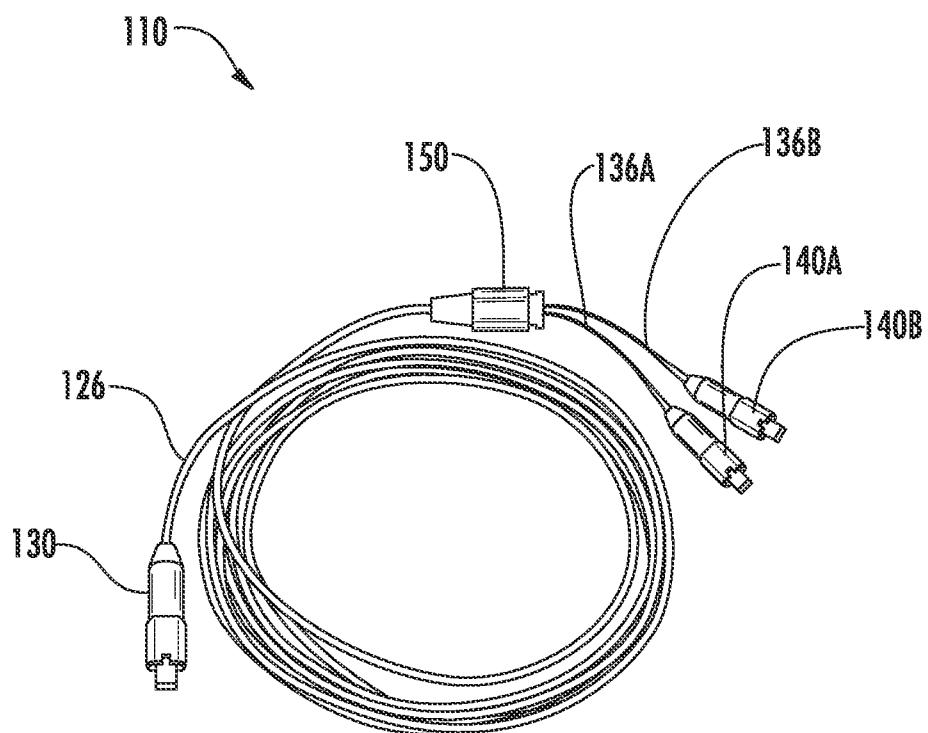
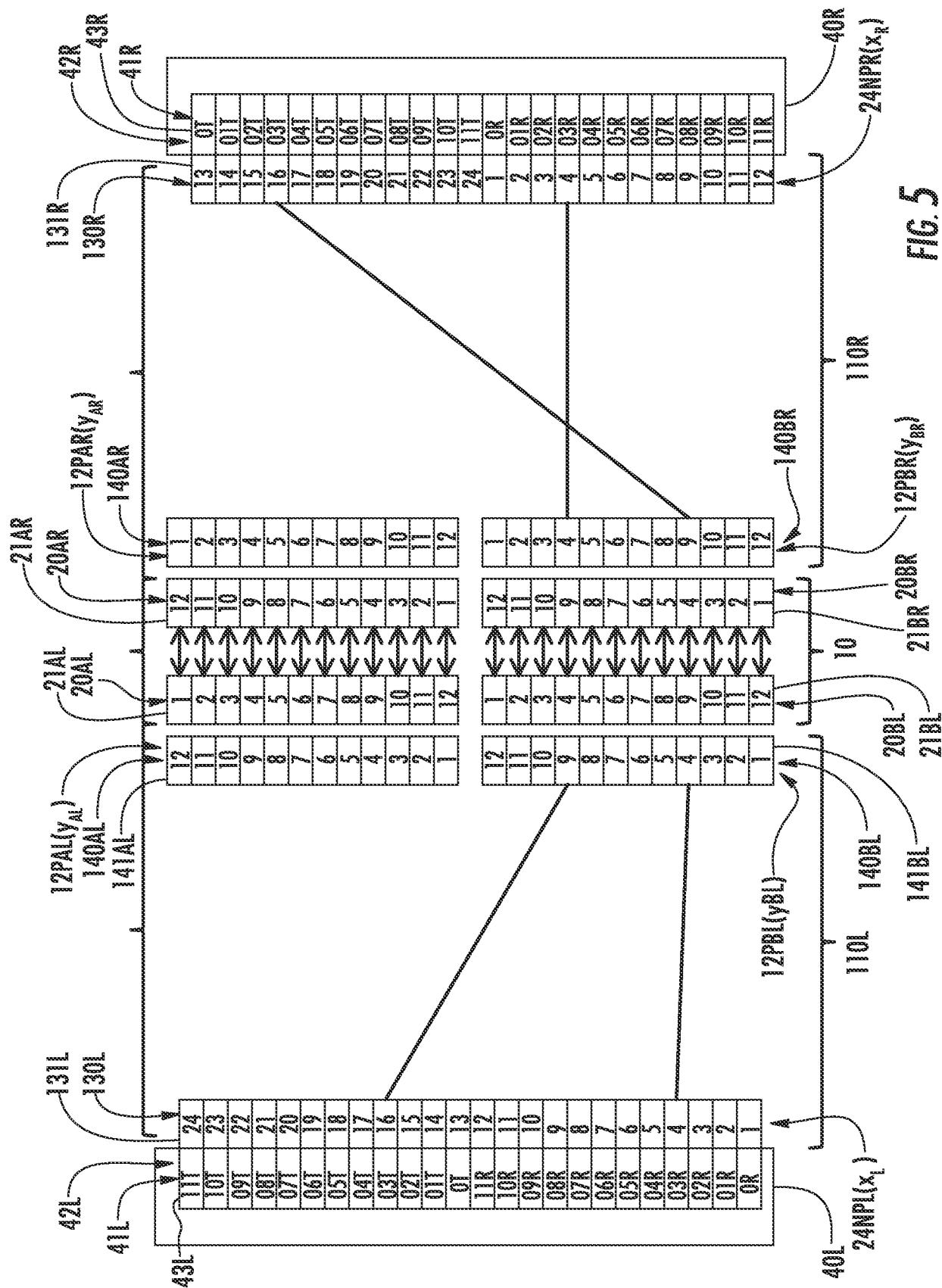



FIG. 4

5

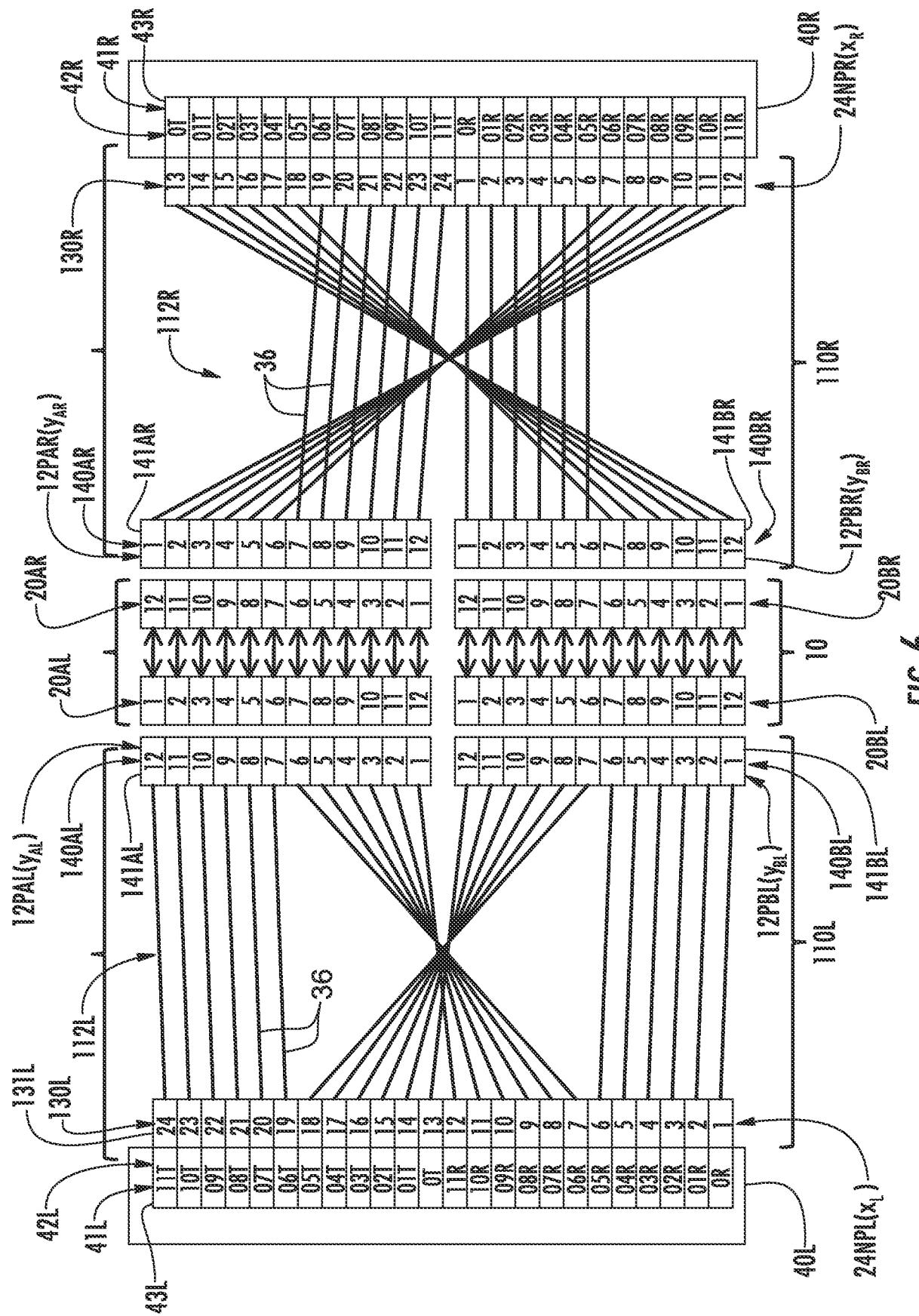
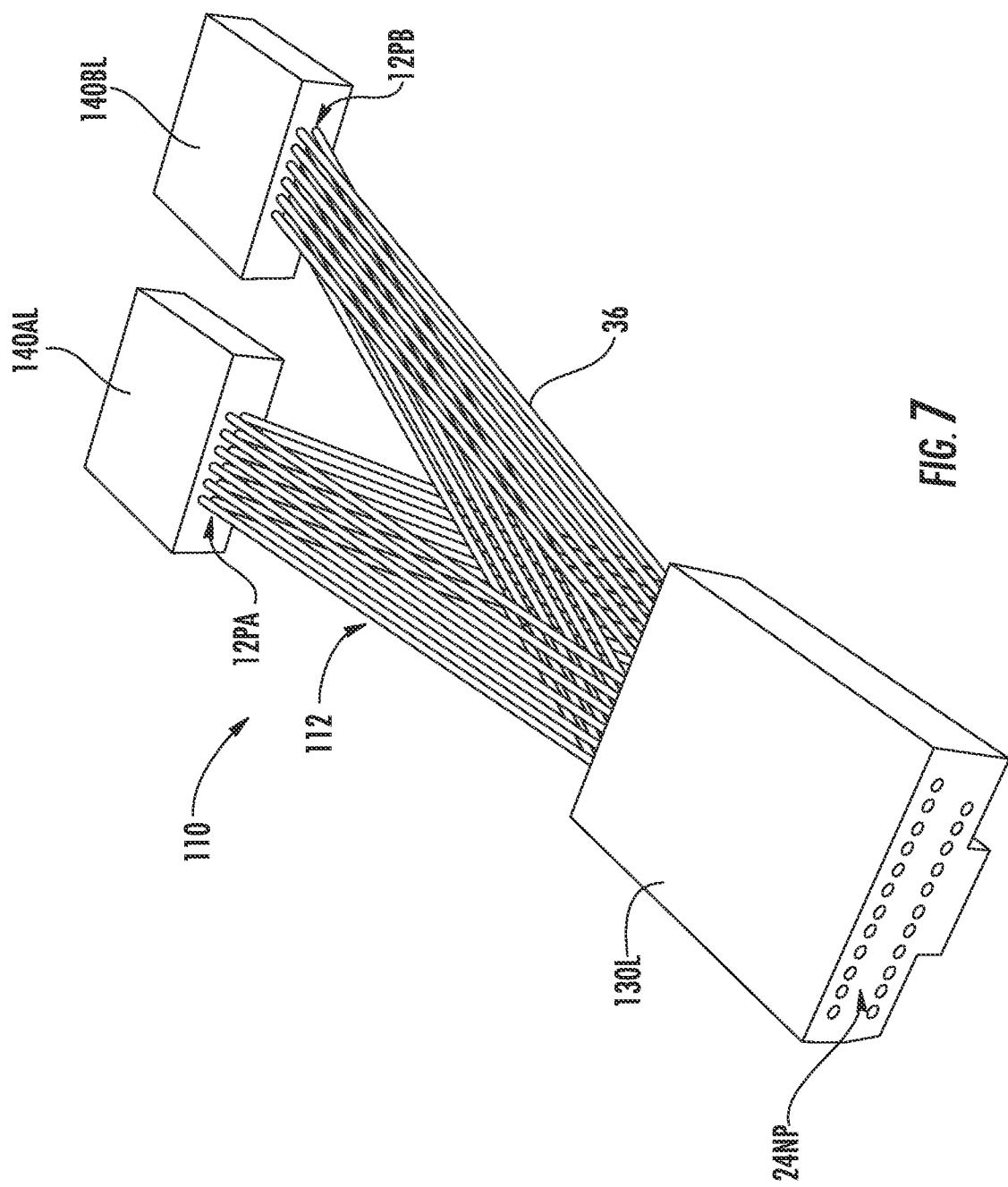



FIG. 6

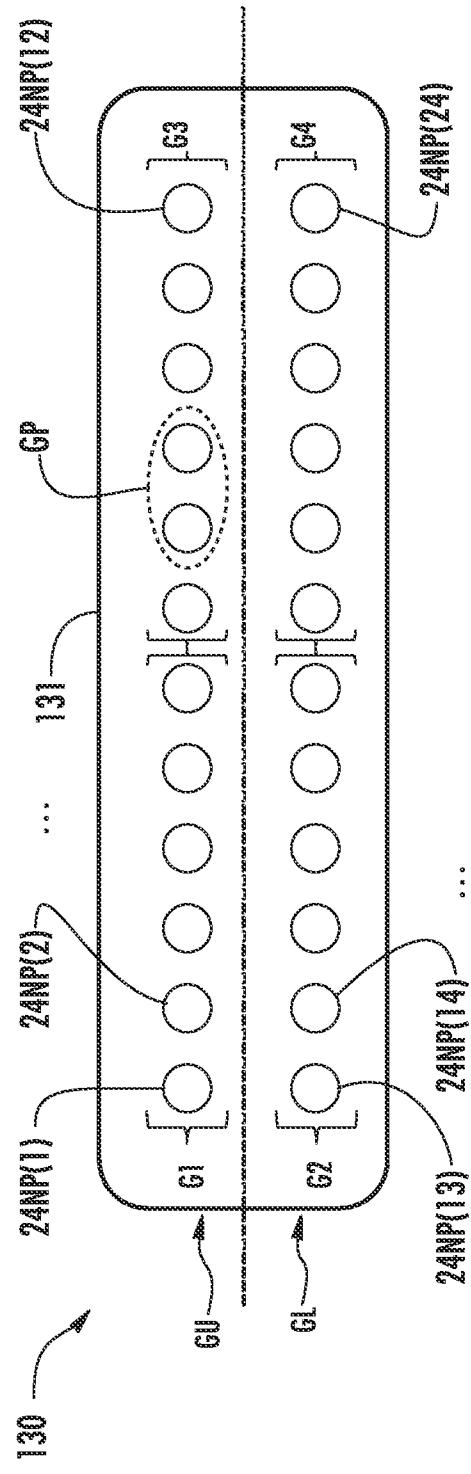


FIG. 8

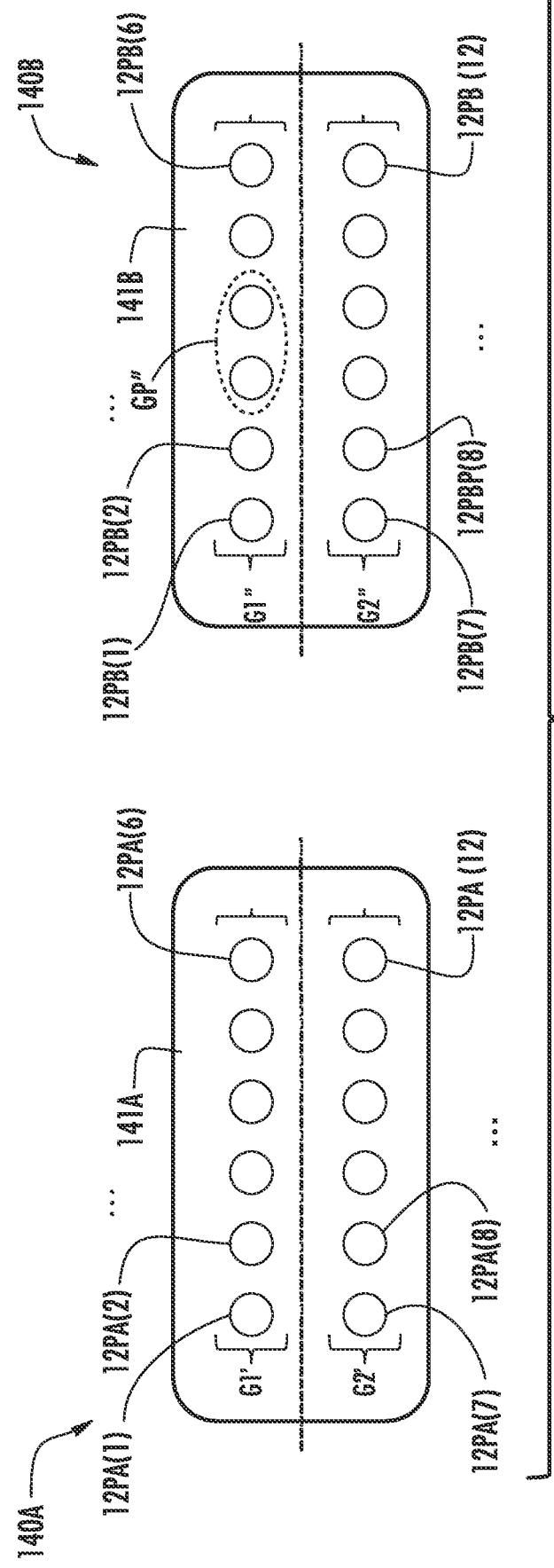


FIG. 9

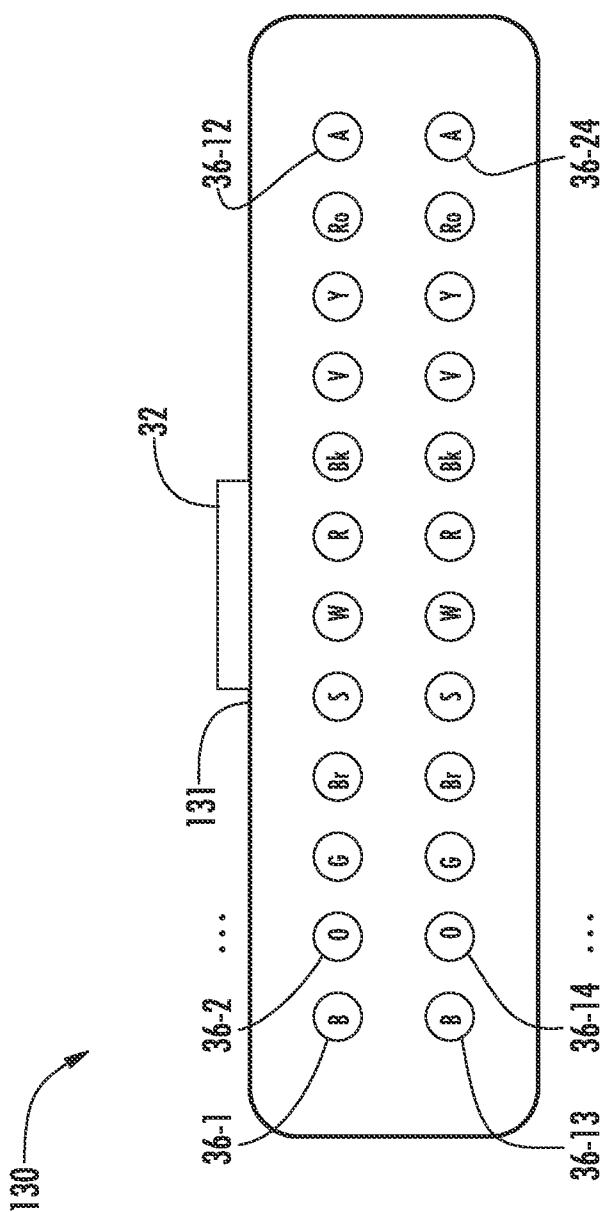


FIG. 10

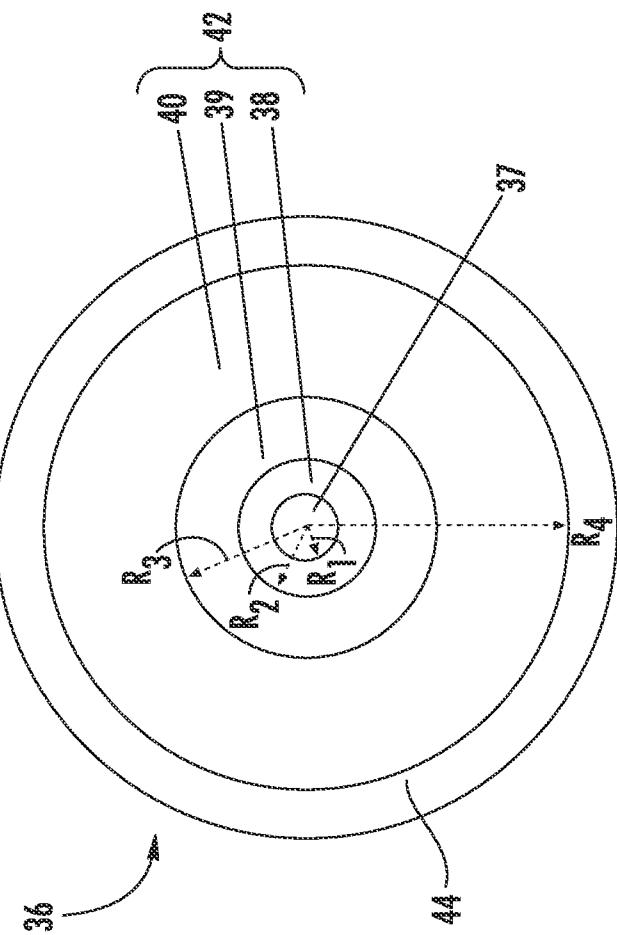


FIG. 12

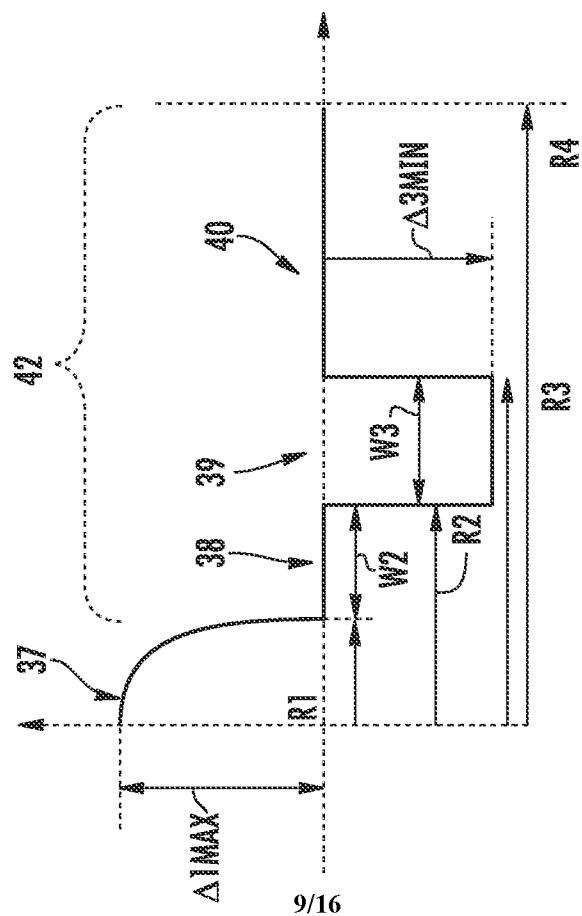


FIG. 11

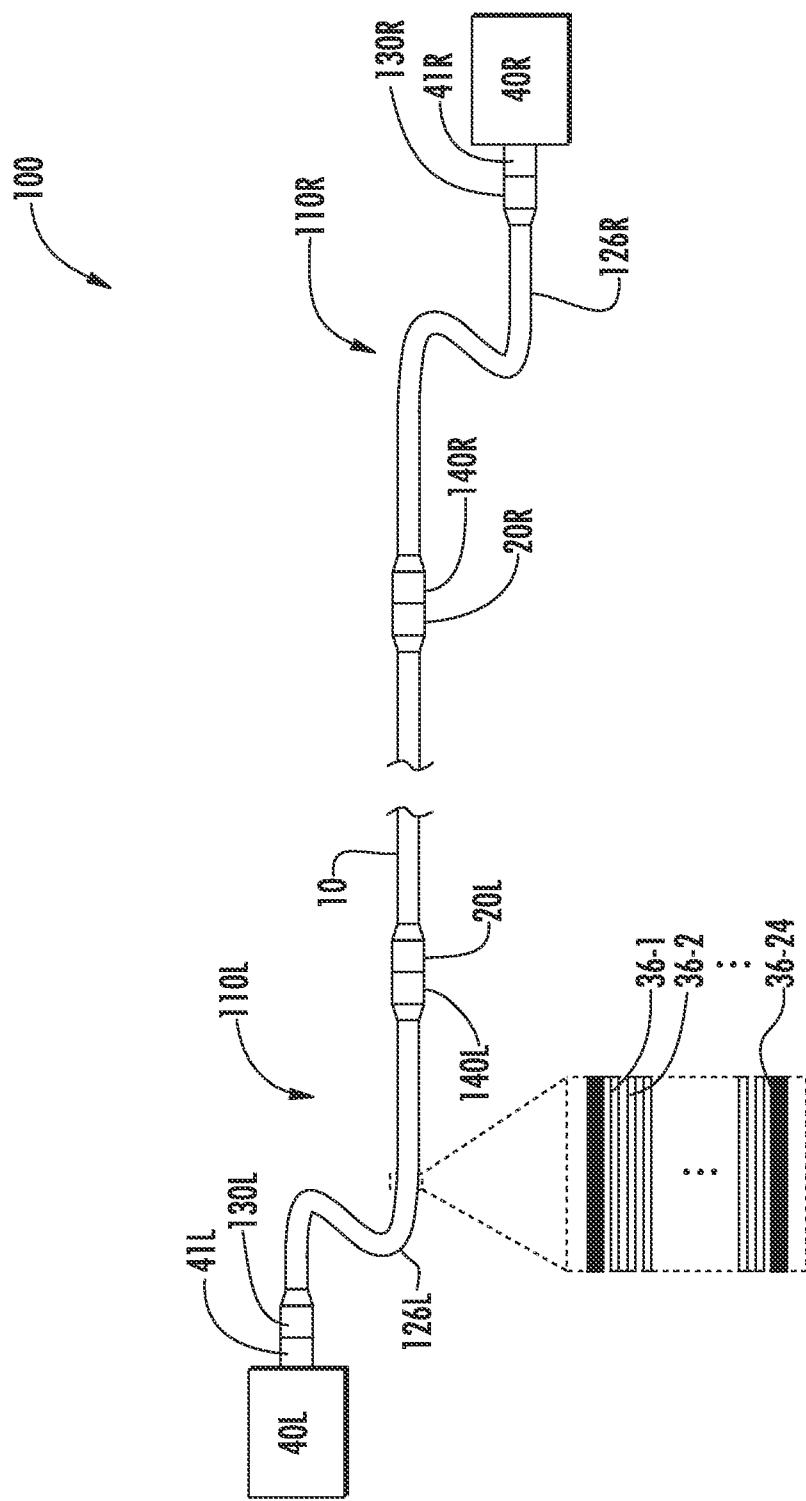
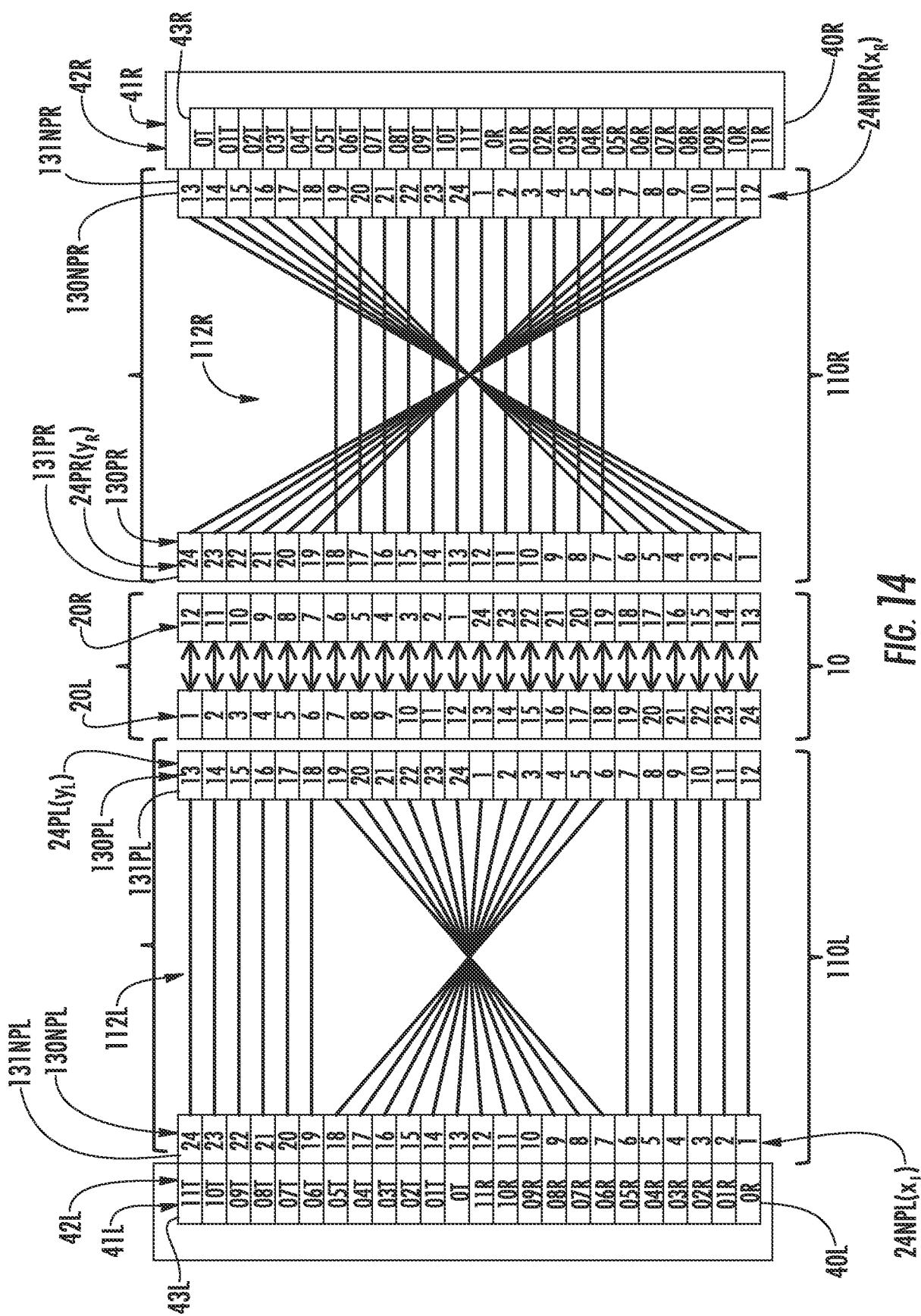



FIG. 13

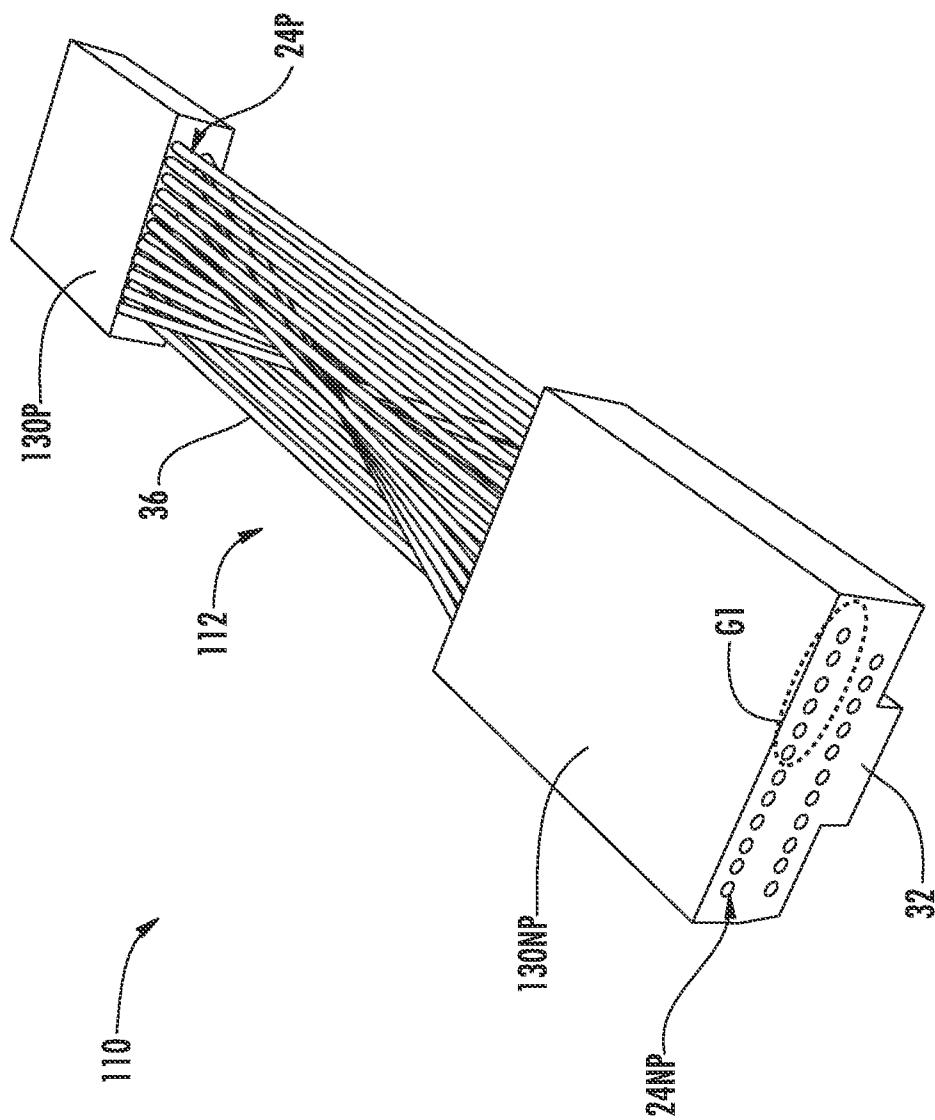


FIG. 15

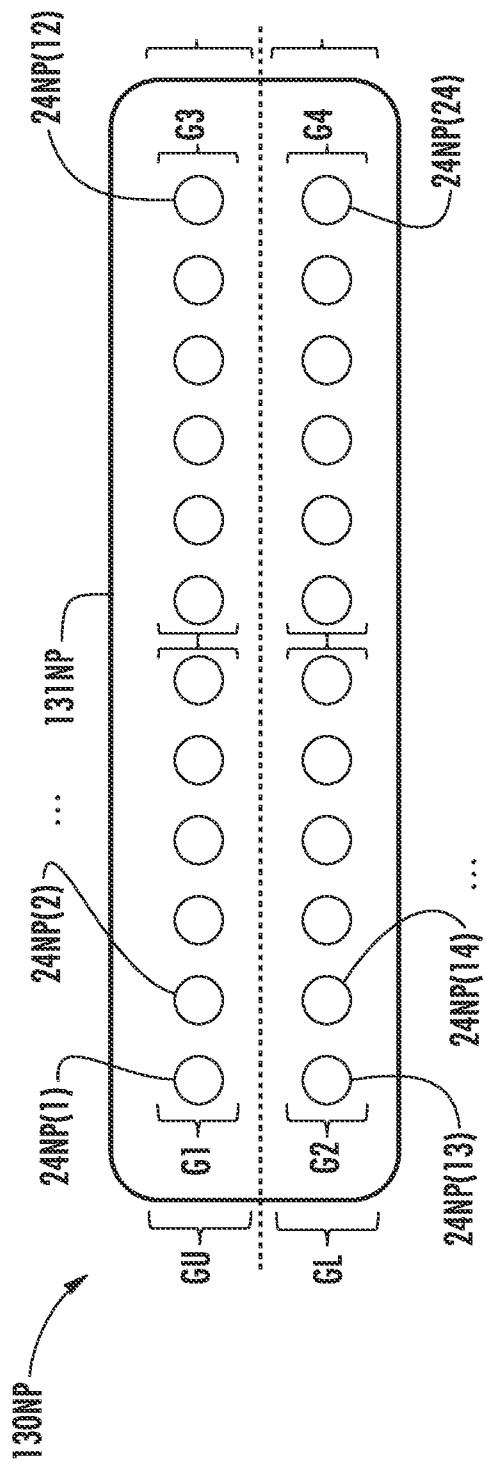


FIG. 16

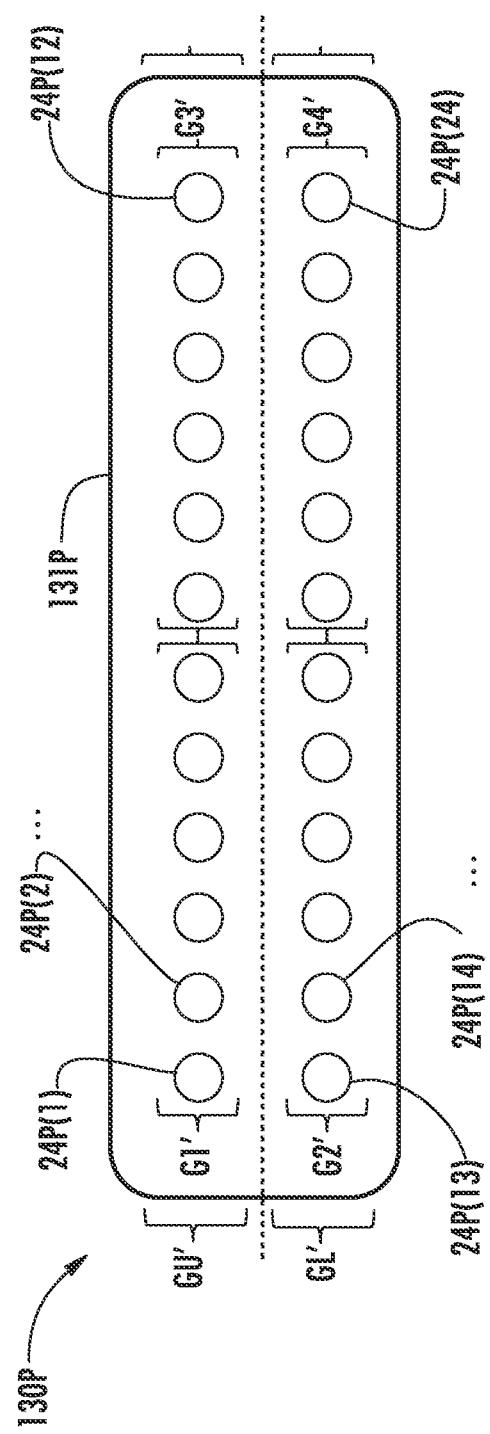


FIG. 17

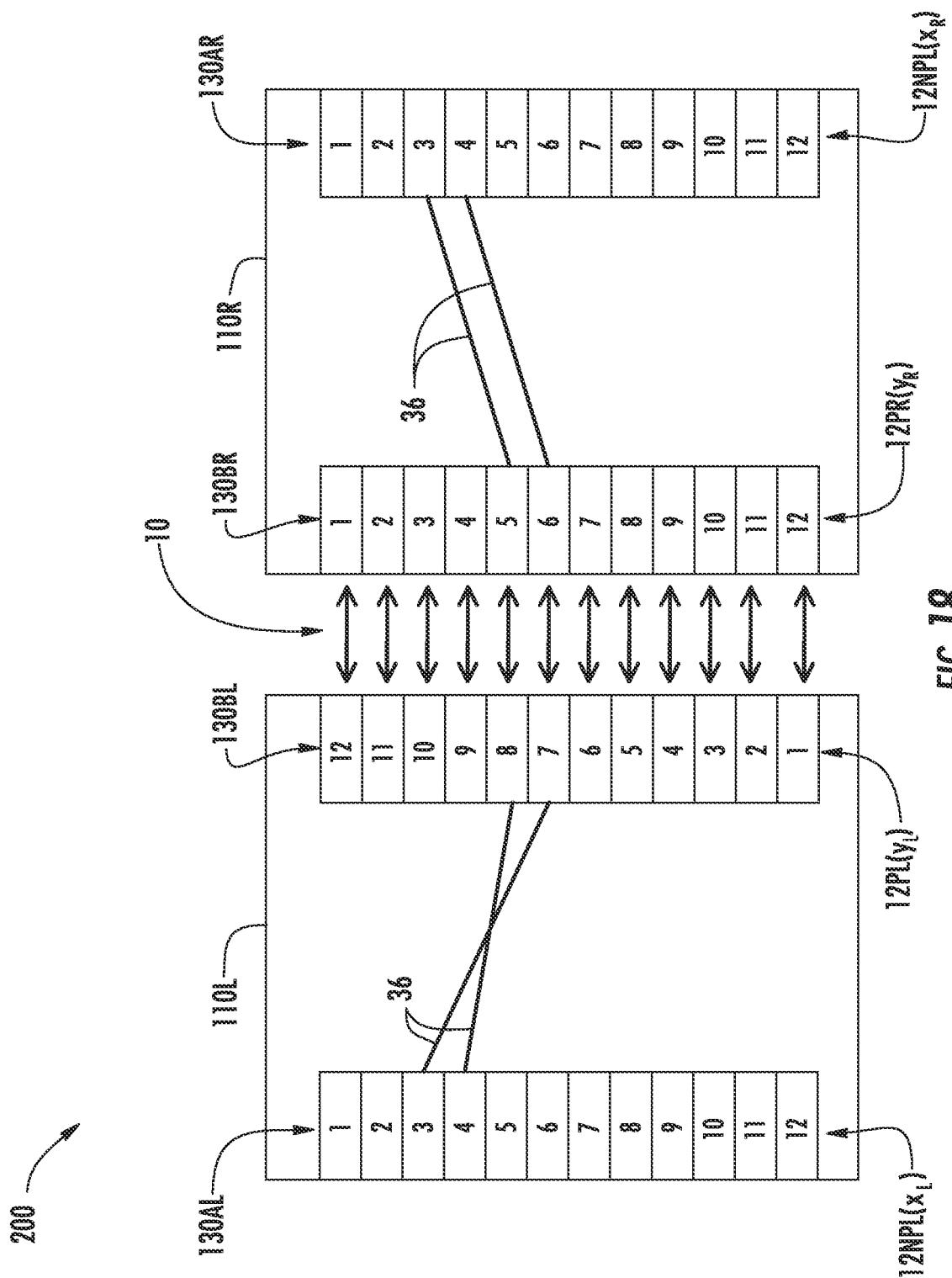


FIG. 18

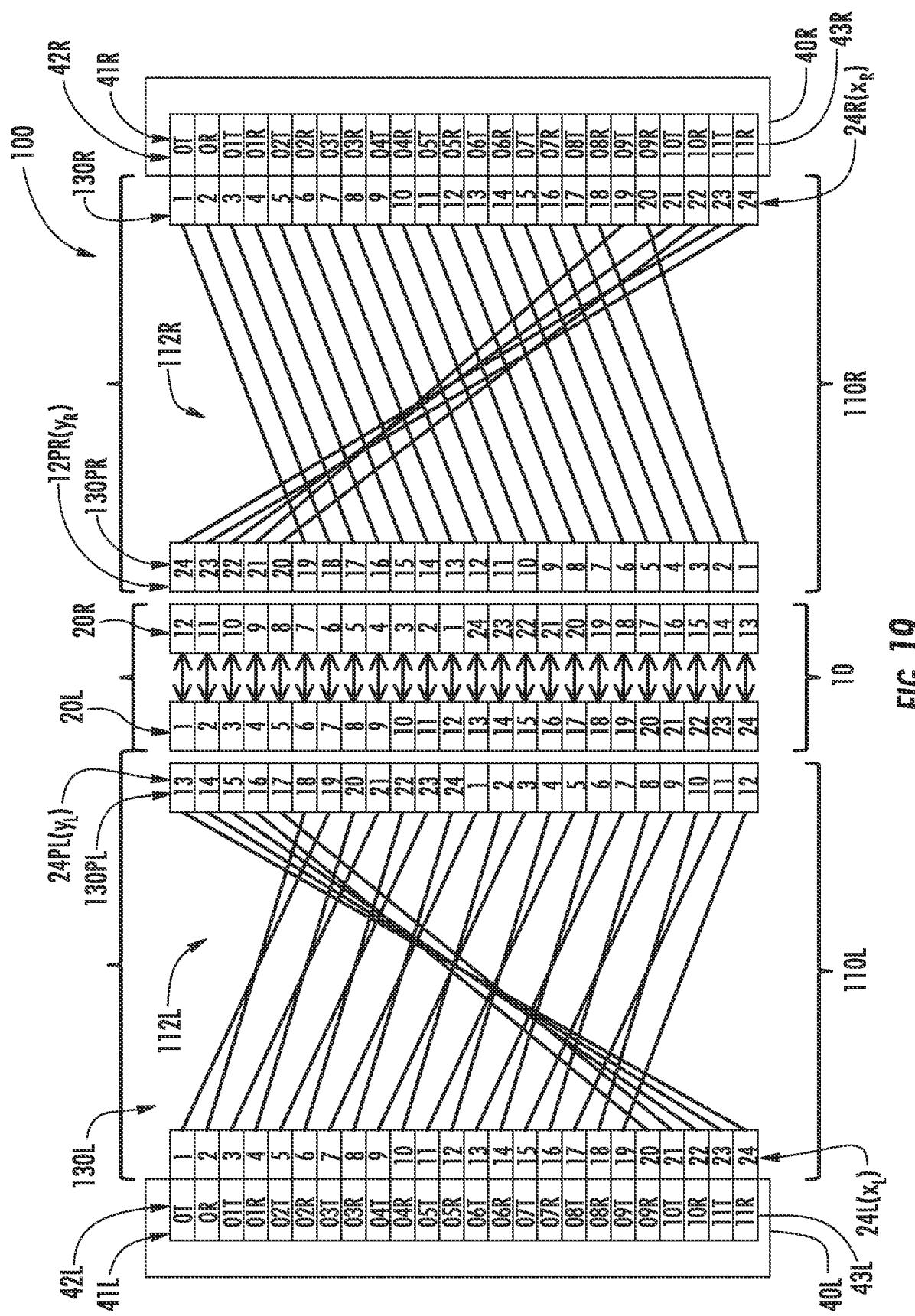


FIG. 19

FIG. 20

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 10/37172

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - G02B 6/36 (2010.01)

USPC - 385/78, 137

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

USPC: 385/78, 137

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 385/15, 47, 76, 78, 84, 86, 137 (text search - see terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PubWEST(USPT,PGPB,EPAB,JPAB); Google

Search Terms: fiber, multi fiber, multifiber, ferrule, flip, group, unflipped, crossed, uncrossed, 12f, 24f, cross connect, patch

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2006/0133736 A1 (SULLIVAN) 22 June 2006 (22.06.2006), entire document especially Abstract; Figs 2, 3; paras [0001], [0004]-[0005], [0022]-[0023], [0140]	1-41
Y	US 6,364,539 B1 (SHAHID) 02 April 2002 (02.04.2002), entire document especially col 2, Ins 2-10; col 1, Ins 31-32	1-41
Y	TYCHO Electronics, High Density PARA-OPTIX Cable Assemblies and Enclosures, Paper [online], 2007 (2007), [retrieved on 26 July 2010 (26.07.2010)], Retrieved from the Internet:<URL: http://www.ampnetconnect.com/documents/Paraoptix.pdf	1-41
Y	US 2006/0034573 A1 (GUAN et al.) 16 February 2006 (16.02.2006), entire document especially paras [0007]-[0008]	8-10, 23-25
Y	US 2005/0152640 A1 (LEMOFF) 14 July 2005 (14.07.2005), entire document especially para [0026]	10, 12, 19, 21, 25
A	US 2008/0205824 A1 (CODY et al.) 11 November 2008 (11.11.2008), entire document	1-41
A	US 2004/0179771 A1 (VERHAGEN et al.) 16 September 2004 (16.09.2004), entire document	1-41

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 July 2010 (27.07.2010)

Date of mailing of the international search report

17 AUG 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT Helpdesk: 571-272-4300

PCT OSP: 571-272-7774