
(12) STANDARD PATENT (11) Application No. AU 2012273295 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method and apparatus for distributed configuration management

(51) International Patent Classification(s)
G06F 17/30 (2006.01)

(21) Application No: 2012273295 (22) Date of Filing: 2012.06.13

(87) WIPO No: WO12/177461

(30) Priority Data

(31) Number (32) Date (33) Country
13/167,365 2011.06.23 US

(43) Publication Date: 2012.12.27
(44) Accepted Journal Date: 2016.09.29

(71) Applicant(s)
SimpliVity Corporation

(72) Inventor(s)
King IlIl, James E.;Stack, Michael T.;Beaverson, Arthur J.;Bagby, Steven

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, L 16 333 Collins St, Melbourne, VIC, 3000

(56) Related Art
US 2010/0106744 Al
US 7546486 B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2012/177461 Al
27 December 2012 (27.12.2012) W I P 0 I P C T

(51) International Patent Classification: [US/US]; 37 Cobleigh Road, Boxborough, MA 01719
G06F 17/30 (2006.01) (US). BAGBY, Steven [US/US]; 97 School Street, Lex

(21) International Application Number: ington, MA 02421 (US).

PCT/US2012/042244 (74) Agent: HENDRICKS, Therese, A.; Rissman Hendricks &

(22) International Filing Date: Oliverio, LLP, 100 Cambridge Street, Suite 2101, Boston,
(22)IntenatonalFilng Dte:MA 02114 (US).

13 June 2012 (13.06.2012)
(81) Designated States (unless otherwise indicated, for every

(25) Filing Language: English kind of national protection available): A, AG, AL, AM,
(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(30) Priority Data: DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,

13/167,365 23 June 2011 (23.06.2011) US HR, IU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

(71) Applicant (fbr all designated States except US): SIM- KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,

PLIVITY CORPORATION [US/US]; 8 Technology MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
Drive, Westborough, MA 01581-1756 (US). OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(72) Inventors; and TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(75) Inventors/Applicants (for US only): KING, James, E., III

[US/US]; 26 Cutter Lane, Westford, MA 01886 (US). (84) Designated States (unless otherwise indicated, for every

STACK, Michael, T. [US/US]; 6 Amelia Drive, North kind of regional protection available): ARIPO (BW, GH,
Chelmsford, MA 01863 (US). BEAVERSON, Arthur, J. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR DISTRIBUTED CONFIGURATION MANAGEMENT

(57) Abstract: Method and apparatus for replicating data structures over a network
40 in which each data structure is assigned an owner node among a plurality of net

(eqin worked peer nodes. Preferably that owner can be ascertained through information in
the data structure. When an update to the data structure is desired by a non-owner, a

-142 request to modify the data structure is sent out on the network and when received by
Obtain Ownership Infomation the owner, the owner performs the modification. The owner node can then notify the

other nodes regarding the update. The method, implemented through a single-writer,
,4 multiple- reader paradigm, insures availability, partition tolerance and eventual con

sistency; it avoids the high overhead costs and single point of failure drawbacks of
Determine IfPeer Is Owner the prior art centralized management and locking protocols. Administrators can con

nect to any peer node in the network to manage, monitor and request modifications
1'4 to a data structure.

No

145

Send Request to Neignbor Peerm

146

Receive Response to Request

Modiy Data Strucur1

F48

OtherMtimns

FI.

W O 2 0 12/17 7 4 6 1 A 1 ||IlllI||IlI||llllllllllllII ||||I|I |||||I|||||liD||iD|||I|I|||||||||||I|||||||I||||

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK' - with international search report (Art. 21(3))
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BE, BJ, CF, CG, CI, CM, GA, GN, GQ,
OW, ML, MR, NE, SN, TD, TG).

METHOD AND APPARTUS FOR DISTRIBUTED CONFIGURATION MANAGEMENT

Field of the Invention

[001] The present invention relates to computer data structures and to methods and

apparatus for replicating data structures over a network of peer nodes.

Background

[002] According to the CAP theorem, also known as Brewer's theorem, a distributed

computer system may satisfy any two of the following guarantees at the same time,

but not all three:

- consistency (all nodes see the same data at the same time);

- availability (node failures do not prevent the surviving nodes from continuing to

operate);

- partition tolerance (nodes on both sides of a partition will continue to operate

despite message loss at the partition).

[003] In a peer-to-peer database replication topology, peers have the same table

schema and each table row has a replica on each peer. Data manipulation can occur

on any peer and will then be replicated to all other peers. However, conflicts may

occur if replicas of the same row are manipulated on different peers at the same time.

Resolving such conflicts may be difficult, time consuming and/or involve significant

overhead.

[004] Traditional databases use locking protocols or master-slave relationships to

keep data synchronized between multiple systems (e.g., on a network of nodes).

However, distributed locking protocols require considerable overhead, e.g., a node

must send a request for the lock, wait until the lock becomes available, make the

modification, release the lock, and distribute the update. Master/slave relationships

require complete connectivity between nodes and also generate substantial network

traffic.

[004a] The discussion of the background to the invention included herein including

reference to documents, acts, materials, devices, articles and the like is included to

explain the context of the present invention. This is not to be taken as an admission or

1

a suggestion that any of the material referred to was published, known or part of the

common general knowledge in Australia or in any other country as at the priority date

of any of the claims.

Summary of the Invention

[004b] According to a first aspect, the present invention provides a computer

implemented method comprising utilizing a single replication method for replicating, on

a network of peer nodes, each of the following data structures an updated data

structure; a request data structure; a response data structure; wherein the single

replication method is implemented by a replication manager at each peer node

operable to achieve eventual consistency among the data structures maintained

across the peer nodes, including among peer nodes that are not directly connected on

the network, and wherein the method is operable both during a partition that divides

the network into multiple network partitions, and after the partition ends, without a

change of ownership of the data structures; wherein the single replication method

comprises designating, for each data structure, a single exclusive peer node as an

owner node of the data structure, wherein only the designated owner node is permitted

to update the data structure; when any one of the peer nodes desires to update one of

the data structures, a one peer node desiring to update the one data structure

determines whether it is the owner node of the one data structure and if the one peer

node determines it is the owner node of the one data structure, the one peer node

updates the one data structure and requests that the updated data structure be

replicated by propagation to all of the other peer nodes on the network by the

replication managers; if the one peer node determines it is not the owner node of the

one data structure, the one peer node generates a request data structure, the request

data structure being owned by the one peer node and being similarly replicated by

propagation to all of the other peer nodes on the network by the replication managers,

wherein the request data structure comprises a request to update the one data

structure; the owner node, upon receiving the request, executes the request by

updating the one data structure and generating a response data structure, the

response data structure being owned by the owner node and being similarly replicated

by propagation to all of the other peer nodes on the network by the replication

2

managers, wherein the response data structure includes the updated one data

structure.

[004c] According to a second aspect, the present invention provides in a computing

environment, an apparatus on each of a plurality of peer nodes in a network

comprising a replication manager operable to participate in replicating a data structure

across the peer nodes; an update manager operable to update a data structure on a

peer node; and a configuration manager operable to determine whether a peer node is

an owner node of a data structure, wherein the replication manager, update manager

and configuration manager include program instructions stored on memory and

operable to be executed on a processor to perform a method comprising utilizing a

single replication method among the peer nodes for replicating each of the following

data structures an updated data structure; a request data structure; a response data

structure; wherein the single replication method is implemented by a replication

manager at each peer node operable to achieve eventual consistency among the data

structures maintained across the peer nodes, including among peer nodes that are not

directly connected on the network, and wherein the method is operable both during a

partition that divides the network into multiple network partitions, and after the partition

ends, without a change of ownership of the data structures; wherein the single

replication method comprises designating, for each data structure, a single exclusive

peer node as an owner node of the data structure, wherein only the designated owner

node is permitted to update the data structure; when any one of the peer nodes

desires to update one of the data structures, a one peer node desiring to update the

one data structure determines whether it is the owner node of the one data structure

and if the one peer node determines it is the owner node of the one data structure, the

one peer node updates the one data structure and requests that the updated data

structure be replicated by propagation to all of the other peer nodes on the network by

the replication managers; if the one peer node determines it is not the owner node of

the one data structure, the one peer node generates a request data structure, the

request data structure being owned by the one peer node and being similarly

replicated by propagation to all of the other peer nodes on the network by the

replication managers, wherein the request data structure comprises a request to

update the one data structure; the owner node, upon receiving the request, executes

2a

the request by updating the one data structure and generating a response data

structure, the response data structure being owned by the owner node and being

similarly replicated by propagation to all of the other peer nodes on the network by the

replication managers, wherein the response data structure includes the updated one

data structure.

[005] A method of replicating data structures over a network is provided in which

each data structure is assigned an owner node among a plurality of networked peer

nodes. Preferably that owner can be ascertained through information in the data

structure. When an update to the data structure is desired by a non-owner, a request

to modify the data structure is sent out on the network and when received by the

owner, the owner performs the modification. The owner node can then notify the other

nodes regarding the update.

[006] In contrast to prior art methods that require two round-trip communications,

i.e., one to change ownership and another to modify the data, there is only one, and

thus this is a far more efficient protocol. Further, where the data structure represents

anode resource, the node that modifies the data structure will also modify the

resource. Still further, preferably the request (from a non-owner node) to modify the

data structure, and the response (from the owner node), are also both data structures

that can be replicated on the network in the same manner as the modified data

structure.

[007] A method of replicating data structures on a network of peer nodes may be

provided, wherein data structures are replicated to all nodes on the network, the

method including steps of:

designating a single peer node as owner of a data structure;

permitting only the designated owner node to modify the data structure; and

when one peer node desires to modify the data structure and determines it

is not the owner node, the one peer node initiates a request to modify the

data structure, the request comprises one of the data structures and is

owned by the one peer node, and the request is transmitted to all nodes on

the network;

the owner node receives and executes the request to modify the data structure.

2b

[008] The invention may be distinguished from distributed management systems

achieved via a centralized server, wherein the centralized server provides a single

point of failure, there is no inherent (built-in) data redundancy, and connectivity is

required between the management server and all other managed nodes. In contrast, in

the present invention every peer node provides access to the entire group of nodes,

there is data redundancy, and direct connectivity between all nodes is not required.

For example, a user can connect to any participating node and manage the entire

group. All data in the network is replicated to all participating nodes. The participating

nodes require only partial connectivity to the entire group. The data structures will

eventually

2c

WO 2012/177461 PCT/US2012/042244

be consistent across all participating nodes through the described mechanisms. By

following a strict single-writer, multiple-reader protocol, update collisions are impossible

and transactional consistency is ensured.

[009] Consistency, as defined by the CAP theorem, requires all nodes to be consistent

with each other at all times. Here, each data structure has an exclusive owner node

and each owner node maintains consistency with respect to the data structures it owns.

All peer nodes achieve eventual consistency with respect to unowned data structures

through the replication process. Availability (per the CAP theorem) is achieved because

each node maintains consistency on its set of replica data structures, and can therefore

operate in isolation. Partition tolerance (per the CAP theorem) is achieved because

exclusive data structure ownership and node local consistency allows each node to run

in isolation or in the presence of a group partition. Data ownership also ensures that

data collision will not occur when the partitions merge.

[010] In one example, a relational database is replicated on each peer node. The

database includes atable in which one column (field) contains an identifier of the owner

of thetable row. Only the owner of the row is allowed to modify the row. Whenan

instance of the row is changed, e.g., created, modified or deleted, the database

command that is generated to make the change is stored in a transaction log. When an

application deems all updates are transactionallycomplete, the changes are sent to all

peer nodes throughout the network.

[011] In one example, data structures are replicated by propagation to all nodes on the

network. When an update (change) arrives ata receiving node, the node checks to see if

it already has the update. If it does, the update is dropped. If it does not, the update is

processed and sent to all directly connected nodes. This ensures that if nodes A and B

are connected, and nodes B and C are connected, then an update from node A will

reach node C. This update mechanism is operable in networks where all nodes are not

directly connected to one another.

[012] In one example, the method allows for rolling updates among peers, including

schema updates. For example, when a peer node is at a lesser schema revision than

an update that arrives at the node, it will queue the updates until such time that the

node is updated to match that schema revision, at which point it will apply all pending,

3

schema-matching updates. When a peer node is at a lesser schema revision than an

update that arrives, it ignores that revision. Peer nodes may be requested to send any

missing updates to anode which does not yet have them. In this way, data stored within

the database is eventually consistent across all peer nodes, even across software

updates.

[013] A computer-readable medium is provided containing executable program

instructions for a method of replicating data structures, the method comprising:

on a network of peer nodes, wherein data structures are replicated to all nodes on

the network;

designating a single peer node as owner of a data structure;

permitting only the designated owner node to modify the data structure; and

when one peer node desires to modify the data structure and determines it is not

the owner node, the one peer node initiates a request to modify the data

structure, the request comprises one of the data structures and is owned by

the one peer node, and the request is transmitted to all nodes on the

network; and

the owner node receives and executes the request to modify the data structure.

[014] The method may include:

the owner node initiates a response regarding the modified data structure, the

response is one of the data structures and is owned by the owner node, and

the response is replicated on the network.

[015] The method includes:

when the response is received by a non-owner node, the receiving node

determines whether it has already received the response and if so, drops

the response, and if not, it processes the response.

[016] In one embodiment the response includes an identifier for the modified data

structure.

[017] In one embodiment the request includes a tag uniquely identifying the request.

[018] In one embodiment the method includes:

when one peer node desires to modify the data structure and determines it is the

owner node, the one peer node modifies the data structure.

4

[019] In one embodiment when a partition divides the network into multiple network

partitions, the replication on each network partition remains operable.

[020] In one embodiment when the partition ends, the replication across the partition

resumes

[021] In one embodiment the network is a network in which all nodes are not directly

connected.

[022] In one embodiment the data structure includes an identifier of the owner node.

[023] In one embodiment the data structure contains an identifier which is globally

unique across all of the nodes.

[024] In one embodiment the data structure is stored in a database.

[025] In one embodiment the method implements a relational database.

[026] In one embodiment the data structure is a row in a database table.

[027] In one embodiment the data structure describes a network interface, a file

system, or a file system snapshot.

[028] In one embodiment the data structure, request and response are replicated by

propagation to all nodes on the network.

[029] A method implemented by a computer network is provided, the method

comprising;

obtaining information in a replica of a data structure that is replicated on multiple

peer nodes, the information indicating one of the peer nodes as an owner

node that has exclusive rights to update the data structure;

determining if a peer node is the owner node via the information;

if the peer node is not the owner node, performing actions comprising:

sending a request to update the data structure to all directly connected peer

nodes to propagate the request;

the owner node receiving the request, updating the data structure after

receiving the request and sending an update regarding the updated

data structure to all directly connected peer nodes to propagate the

update.

5

[030] In a computing environment, an apparatus may be provided on each of a plurality

of peer nodes in a network comprising:

a replication manager operable to participate in replicating a data structure across

the peer nodes;

an update manager operable to update the replica of the data structure on the

peer node; and

a configuration manager operable to: determine whether a peer node is an owner

node of the data structure based on information included in the data

structure; initiate a request to modify the data structure if the peer node is

not the owner node; and process a response to the request regarding the

modified data structure, wherein the owner node has exclusive rights to

update the data structure and the request and response are also data

structures replicated across the peer nodes.

Brief Description of the Drawings

[031] The invention can be more fully understood by reference to the detailed

description of various embodiments, in conjunction with the following figures, wherein:

Fig. 1 is a schematic block diagram of a plurality of networked peer nodes for practicing

one embodiment of the invention;

Fig. 2 is a block diagram of exemplary actions involving replicas of a data structure in

accordance with one embodiment of the invention;

Fig. 3 is a block diagram of an apparatus configured as a peer node in accordance with

one embodiment of the invention;

Fig. 4 is a flow diagram of actions that may occur on a peer node seeking to modify a

data structure in accordance with one embodiment of the invention;

Fig. 5 is a flow diagram of actions that may occur on a peer node receiving a request to

modify a data structure according to one embodiment of the invention; and

Fig. 6 is a block diagram of a computing system environment in which various

embodiments of the invention may be implemented.

6

WO 2012/177461 PCT/US2012/042244

Detailed Description

[032] Fig. 1 is a schematic diagram of a plurality of peer nodes 101 (labeled A, B, C, D,
E, F) in a network 100 for illustrating one embodiment of the invention. Each peer node

has a globally unique identifier (GUID) so that each peer node can identify which node it
is communicating with via messages transmitted on the network. The peer nodes are

arranged in a configuration in which only some of the nodes are directly connected to
other nodes. Node A is directly connected to nodes B and D; node D is directly

connected nodes A, C and E; node B is directly connected to nodes A and C; node C is
directly connected to nodes B and D; node E is directly connected to nodes D and F;

and node F is directly connected to node E. In this example the network may be
partitioned (at some point in time) as indicated by the dashed line 103, wherein nodes

A-D are located on onenetwork partition 104 (left hand side of the partition) and nodes
E-F on another network partition 105 (right hand side of the partition). Also illustrated in
Fig. 1 is a user 106, such as an administrator, who may view one peer node (e.g., node

A) of the network, thus having a local view 107, or alternatively may view the entire

plurality of nodes and have a global view 108.

[033] In various embodiments, the network may comprise one or more local area

networks, wide area networks, direct connections, virtual connections, private networks,
virtual private networks, the internet, some combination of the above, and the like.

[034] Each of the peer nodes may be implemented on or as one or more computers,

such as the computer described in conjunction with Fig. 6. A peer node 101 may

include one or more processes that request access, either directly or indirectly, todata

stored in a database. A peer node may include one or more processes that request

access, either directly or indirectly, to data stored on a data store. A peer node may

include a file system or the like for organizing and representing access to data.

[035] In one example, a database comprises a repository that is capable of storing

data in a structured format. The term data is understood broadly to include anything

that may be stored on a computer storage medium. Some examples of data include

information, program code, program state, program data, other data, and the like.

7

WO 2012/177461 PCT/US2012/042244

[036] Data stored in the database may be organized in tables, records, objects, or

other data structures, and the like. The database may comprise a relational database,

object-oriented database, hierarchical database, network database, or other type of

database, some combination or extension of the above, and the like.

[037] The database may be accessed via a database management system (DBMS),

comprising one or more programs that control the organization, storage, management

and retrieval of data in a database. The DBMS may receiverequests to access data in

the database and may perform the operations needed to provide this access. Access

may include reading data, writing data, deleting data, updating data, a combination

including one or more of the above, and the like.The database may be stored on a data

store, comprising any storage media capable of storing data. The data store upon

which the database is stored may be external, internal, or include components that are

both internal, external to the peer nodes.

[038] Returning to Fig. 1, in one example of the present invention a user 106 located at

node A initiates a command for a snapshot (snap) of file system one (FS-1) located on

node C. Node A determines that it is not the owner of FS-1 and thus initiates a request

for a snapshot of FS-1 which it sends to all directly connected nodes, i.e., nodes D and

B on the network 100. The receiving nodes D and B further propagate the request to all

directly connected nodes, whereby two copies of the request will be received at node C

fromboth of nodes B and D. Similarly, nodes E and F (assuming no partition) will

receive the request via node D.

[039] When node C receives the first request, node C determines that it is the owner

node regarding FS-1. Therefore it executes the request, generating a snapshot of FS-1.

Node C then initiates a response regarding the file system snapshot which it sends to all

directly connected nodes, i.e., nodes B and D, which further propagate the response by

sending the response to all directly connected nodes. In this manner, the originator of

the request, node A, receives the response. Node A can now provide the snapshot FS

1 to the user 106. When node C receives the second request, it simply ignores it. In a

similar manner, when node A receives responses from both nodes B and D, it simply

ignores the second response.

8

WO 2012/177461 PCT/US2012/042244

(040] In an alternative embodiment, the user 106 that previously requested the

snapshot of FS-1 on node A, can move to node B and here await the response and the

snapshot FS-1. Alternatively, the administrator 106 could have initiated the request

from node B, rather than node A. Thus, the administrator can connect to any one of the

participating nodes and effectively manage the entire group of nodes.

[041] In an alternative example, rather than a file system snapshot, one of the nodes

may initiate a request for a file system integrity check. The owner node will then send a

response, or periodic responses, regarding to the requested integrity check.

(042] The embodiments described can be used to synchronize relational databases

across multiple nodes. In a relational database, a row in a table is a data structure. By

limiting updates to any given row to a single owner node, the need for distributed locks

has been eliminated. Only the node owning the data structure is allowed to change it,

and all other peer nodes must request that the ownernode change the data structure for

them. Thus, ownership of the data structure is exclusive.

[043] By limiting the ability to modify a data structure to one owner, and requiring non

owners to request modifications be made by the owner, collisions are impossible during

replication and transactional consistency can be maintained. Preferably, each peer

node maintains records of each modification of the data structure and each peer node

applies the transactional changes not in the order they are received, but in the order

that they are created. When a peer node is unable to apply changes because an

update is missing from the stream of transactional changes, the node is responsible for

asking its peer nodes for the missing transactions. In one embodiment, a transaction

may consist of :

1. amonotonically increasing transaction number that is also owned by the

originating node (that requests the change);

2. the schema revision that the changes were applied to; and

3. a record of all changes made to the data structure.

Still further, if a network becomes partitioned e.g., due to a node going offline or a link

between nodes going down, the multiple network partitions on opposite sides of the

partition continue to operate, even though data loss occurs at the partition. Each node

continues to receive requests and responses and data structure updates from nodes on

9

WO 2012/177461 PCT/US2012/042244

its side of the partition. Then, when the partition is removed (e.g., the node comes back
online or the link resumes operation)and the former network partitions become joined,
both sides will now receive the new responses, requests and updates, and because
each node keeps track of updates (e.g., by the time of origination) it can determine
which updates it is missing, ask the other nodes to send the missing updates, and then
apply all updates in the proper order so that nodes on both sides of the (former) partition
come back into sync.

[044] The requests and responses generated are preferably data structures
themselves, replicated on the peer nodes, e.g., by propagation to all directly connected
nodes for eventual receipt by all nodes. Thus, not only is the modified data structure

(generated by the owner node) replicated on the network, but the request and response
are also data structures that can be similarly replicated. This simplifies implementation

of the requests and responses by utilizing the existing process of replication. In
addition, by designating the originator of the request, as the owner of the request data
structure, and designating the originator of the response, as the owner of the response
data structure, no other (non-owner) node can modify the request or response.

[045] Fig. 2 illustrates one example of a method of modifying a data structure. Here
three peer nodes labeled P1, P2, and P3, each maintain a replica of a data structure. In
this example, the data structure has three fields, a first field with an index key k, a
second field with a value x, and a third field with an identifier ofthe owner of the data
structure. Here the node 3 (P3) is designated the owner node and thus is the only node
that can modify the data structure. As shown in Fig. 2, upon receiving a request from
another node, or upon its own initiative, node P3 modifies the second data field to
change x to y. The owner node P3 then replicates this modification to the other nodes
P1 and P2. Following the replication, all 3 nodes contain the same data in each field.
[046] Fig. 3 illustrates one embodiment of an apparatus 120 for implementing a peer
node. The apparatus includes various program modules 122, a data store 124, and a
communications mechanism 126. The program modules may include a replication

manager 130, an update manager 132, and a configuration manager 134. The
communications mechanism 126 allows the apparatus to communicate with the other
nodes on the network. The communications mechanism may be a network interface or

10

WO 2012/177461 PCT/US2012/042244

adapter, modem, or any other mechanism for establishing communications with the

other nodes.

[047] The data store 124 is any storage media capable of storing data. The store may

comprise a file system or database. The store may be external, internal or include

components that are both internal and external to the apparatus 120.

[048] The replication manager 130 is operable to participate in replicating data

structures across the peer nodes. This can be done by transmitting the data structure,

changes to the data structure, actions involved in changing the data structure, or a

variety of other ways as understood by those skilled in the art. For example, after the

update manager 132 updates the data structure, the modification (update) to the replica

may be replicated to the other peer nodes via the replication manager 130.

[049] The configuration manager 134 implements the requests and responses to

modify a data structure, as previously described.

[050] Figs. 4-5 are flow diagrams that generally represent actions that may occur in

accordance with various embodiments of the invention. It is to be understood that the

flow charts are not limiting and the actions illustrated may be performed in another

order, with additional actions present or one or more actions deleted.

[051] Fig. 4 is a flow diagram 140 generally representing actions that may occur on a

peer node that desires to modify a data structure. At a first block 141, the actions begin.

At a next block 142, ownership information of the data structure is obtained, e.g., from

within the data structure itself. At a next block 143, the peer node determines whether it

is the owner of the data structure, for example, utilizing the configuration manager 134

of Fig 3. The peer node may determine that it is the owner of the data structure (block

144). If not, then at the next block 145 the peer node initiates a request that is sent to all

of its neighboring (directly connected) peer nodes, e.g., via the communication

mechanism 126 of Fig. 3. At a next block 146, a response to the request is received

from the owner node. The peer node then processes the response and modifies the

data structure accordingly (next block 147); this may be performed by the update

manager 132 of Fig. 3. At a next block 148, other actions, if any, are performed.

[052] Alternatively, if the node originating the desired change determines that it is the

owner node of the data structure (at block 144), then it proceeds immediately to modify

11

WO 2012/177461 PCT/US2012/042244

the data structure (block 147). Here there is no need to send a request. In this case,
the owner node will subsequently generate a message regarding the modified data

structure which is sent (block 148) to all directly connected nodes and propagated on

the network for replicating the modified data structure on all peer nodes.

[053] Fig. 5 is a flow diagram 150 generally representing actions that may occur on a
peer node that receives a request to modify a data structure. At a first block 151, the
actions begin. At a next block 152, the peer node receives a request to modify a data

structure. At a next block 154, the peer determines whether it is the owner node of the
data structure, for example utilizing the configuration manager 134 of Fig. 3. If the node

determines it is the owner of the data structure, in a next block 155 the node modifies
the data structure, for example utilizing the update manager 132 of Fig. 3. The owner

node then sends a response regarding the modified data structure to all other nodes on
the network by sending the response directly to all directly connected nodes which is
then propagated to the other nodes (block 156). At block 157, other actions, if any, are
performed.

[054] Alternatively, at block 154, if the peer determines it is not the owner peer, it

refrains from responding to the request (block 158). Instead, it proceeds immediately to
any other actions (block 157), e.g., forwarding the request to all directly connected

nodes to propagate the request to the other nodes.

[055] Fig. 6 illustrates an example of a computing system (computer) at each node on

which various aspects of the subject matter of the present invention may be
implemented. This is only one example of a computing system, and it is not meant to
be limiting. Generally, the subject matter described herein may be implemented as a
general purpose or a special purpose computing system, including server computers,

multi-processor systems, network PC's, mainframe computing systems, and systems

that include any of the above systems or devices, and the like.

[056] The subject matter of the present invention may be implemented as computer
executable instructions, such as program modules, being executed by a computer.

Such program modules may include routines, programs, objects, components, data

structures, and so forth, which perform particular tasks or implement particular abstract

12

WO 2012/177461 PCT/US2012/042244

data types. The tasks may be performed by remote processing devices that are linked

through a communications network.

[057] In the example of Fig. 6, a computing apparatus 210 includes a processor 220,

memory 222, data storage 224, disk drive 225, keyboard/mouse 230, display 226, and

network interface 232. Components are coupled together via a system bus 234. The

software product(s) of the invention may be loaded into data storage 224 and during

operation are transferred into (e.g., RAM) memory 222 and executed by processor 220.

[058] The computer 210 operates in a networked environment. For example, network

interface(s) 232 may couple the system bus 234 to a local area network (LAN), which

provides access to remote computers, which may have internal or external storage.

When used in a wide area network (WAN) environment, the computer 210 may

communicate via a modem over the WAN, such as the Internet, with remote computers

and storage.

[059] As used herein, computer-readable media can be any media that can be

accessed by a computer and includes both volatile and non-volatile media, removable

and non-removable media.

[060] As used herein, computer storage media includes both volatile and non-volatile,

removable and non-removable media for storage of information such as computer

readable instructions, data structures, program modules, or other data. Computer

storage media includes RAM, ROM, EEPROM, FLASH memory or other memory

technology, CD-ROM, digital versatile disc (DVDs) or other optical disk storage,

magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage

devices, or any other medium which can be used to store desired information and which

can be accessed by the computer.

[061] A communication media linking the peer nodes on the network may include wired

media and wireless media such as acoustic, RF, infrared or other wireless media. The

communication media may transfer a modulated data signal, such as a carrier wave

encoded with information or any other transport mechanism. The term modulated data

signal means a signal that has one or more characteristic changes so as to encode

information in the signal. In a further embodiment, nodes can be connected temporarily,

e.g. allowing transfer of data structure updates by a USB key.

13

[062] As used herein, the term "includes" and its variants are to be read as open-ended

terms that mean "includes, but is not limited to." The term "or" is to be read as "and/or"

unless the context clearly dictates otherwise.

[063] It is to be understood that the foregoing description is intended to illustrate and

not limit the scope of the invention.

[064] Where the terms "comprise", "comprises", "comprised" or "comprising" are used

in this specification (including the claims) they are to be interpreted as specifying the

presence of the stated features, integers, steps or components, but not precluding the

presence of one or more other features, integers, steps or components, or group thereof.

14

The claims defining the invention are as follows:

1. A computer-implemented method comprising:

utilizing a single replication method for replicating, on a network of peer nodes,

each of the following data structures:

an updated data structure;

a request data structure;

a response data structure;

wherein the single replication method is implemented by a replication manager at

each peer node operable to achieve eventual consistency among the data structures

maintained across the peer nodes, including among peer nodes that are not directly

connected on the network, and wherein the method is operable both during a partition

that divides the network into multiple network partitions, and after the partition ends,

without a change of ownership of the data structures;

wherein the single replication method comprises:

designating, for each data structure, a single exclusive peer node as an owner

node of the data structure, wherein only the designated owner node is permitted to

update the data structure;

when any one of the peer nodes desires to update one of the data structures, a

one peer node desiring to update the one data structure determines whether it is the

owner node of the one data structure and:

if the one peer node determines it is the owner node of the one data

structure, the one peer node updates the one data structure and requests that

the updated data structure be replicated by propagation to all of the other peer

nodes on the network by the replication managers;

if the one peer node determines it is not the owner node of the one data

structure, the one peer node generates a request data structure, the request

data structure being owned by the one peer node and being similarly replicated

by propagation to all of the other peer nodes on the network by the replication

15

managers, wherein the request data structure comprises a request to update the

one data structure;

the owner node, upon receiving the request, executes the request by

updating the one data structure and generating a response data structure, the

response data structure being owned by the owner node and being similarly

replicated by propagation to all of the other peer nodes on the network by the

replication managers, wherein the response data structure includes the updated

one data structure.

2. The computer-implemented method of claim 1, wherein the single replication

method includes:

when the response data structure is received by a non-owner node, the

receiving node determines whether it has already received the response data

structure and if so, drops the response data structure, and if not, it processes the

response data structure.

3. The computer-implemented method of claim 2, wherein the response data

structure includes an identifier for the updated one data structure.

4. The computer-implemented method of any one of claims 1 to 3, wherein the

request data structure includes a tag uniquely identifying the one data structure.

5. The computer-implemented method of any one of claims 1 to 4, wherein the

network is a network in which not all peer nodes are directly connected.

6. The computer-implemented method of any one of claims 1 to 5, wherein the one

data structure includes an identifier of the owner node.

16

7. The computer-implemented method of any one of claims 1 to 6, wherein the one

data structure contains an identifier which is globally unique across all of the peer

nodes.

8. The computer-implemented method of any one of claims 1 to 7, wherein the one

data structure is stored in a database.

9. The computer-implemented method of any one of claims 1 to 8, wherein the

single replication method implements a relational database.

10. The computer-implemented method of any one of claims 1 to 9, wherein the one

data structure is a row in a database table.

11. The computer-implemented method of any one of claims 1 to 10, wherein the

one data structure describes a network interface, a file system, or a file system

snapshot.

12. In a computing environment, an apparatus on each of a plurality of peer nodes

in a network comprising:

a replication manager operable to participate in replicating a data structure

across the peer nodes;

an update manager operable to update a data structure on a peer node; and

a configuration manager operable to determine whether a peer node is an owner

node of a data structure,

wherein the replication manager, update manager and configuration manager include

program instructions stored on memory and operable to be executed on a processor

to perform a method comprising:

17

utilizing a single replication method among the peer nodes for replicating each of

the following data structures:

an updated data structure;

a request data structure;

a response data structure;

wherein the single replication method is implemented by a replication manager at

each peer node operable to achieve eventual consistency among the data structures

maintained across the peer nodes, including among peer nodes that are not directly

connected on the network, and wherein the method is operable both during a partition

that divides the network into multiple network partitions, and after the partition ends,

without a change of ownership of the data structures;

wherein the single replication method comprises:

designating, for each data structure, a single exclusive peer node as an owner

node of the data structure, wherein only the designated owner node is permitted to

update the data structure;

when any one of the peer nodes desires to update one of the data structures, a

one peer node desiring to update the one data structure determines whether it is the

owner node of the one data structure and:

if the one peer node determines it is the owner node of the one data

structure, the one peer node updates the one data structure and requests that

the updated data structure be replicated by propagation to all of the other peer

nodes on the network by the replication managers;

if the one peer node determines it is not the owner node of the one data

structure, the one peer node generates a request data structure, the request

data structure being owned by the one peer node and being similarly replicated

by propagation to all of the other peer nodes on the network by the replication

managers, wherein the request data structure comprises a request to update the

one data structure;

18

the owner node, upon receiving the request, executes the request by

updating the one data structure and generating a response data structure, the

response data structure being owned by the owner node and being similarly

replicated by propagation to all of the other peer nodes on the network by the

replication managers, wherein the response data structure includes the updated

one data structure.

13. The apparatus of claim 12, wherein the configuration manager is operable to:

when the response data structure is received by a non-owner node, the

receiving node determines whether it has already received the response data

structure and if so, drops the response data structure, and if not, it processes the

response data structure.

14. The apparatus of claim 12 or 13, wherein the network is a network in which not

all peer nodes are directly connected.

15. The apparatus of any one of claims 12 to 14, wherein the one data structure

includes an identifier of the owner node.

16. The apparatus of any one of claims 12 to 15, wherein the one data structure

contains an identifier which is globally unique across all of the peer nodes.

17. The apparatus of any one of claims 12 to 16, wherein the one data structure is

stored in a database.

18. The apparatus of any one of claims 12 to 17, wherein the program instructions

are operable to implement a relational database.

19

19. The apparatus of any one of claims 12 to 18, wherein the one data structure is

a row in a database table.

20. The apparatus of any one of claims 12 to 19, wherein the one data structure

describes a network interface, a file system, or a file system snapshot.

20

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

