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SYSTEMS AND METHODS FOR DECODING 
OF PARTIALLY CORRUPTED REVERSIBLE 
VARIABLE LENGTH CODE (RVLC) INTRA 
CODED MACROBLOCKS AND PARTIAL 
BLOCK DECODING OF CORRUPTED 

MACROBLOCKS IN A WIDEO DECODER 

RELATED APPLICATION 

This application claims the benefit under 35 U.S.C. S 119 
(e) of U.S. Provisional Application No. 60/273,443, filed 
Mar. 5, 2001; U.S. Provisional Application No. 60/275,859, 
filed Mar. 14, 2001; and U.S. Provisional Application No. 
60/286,280, filed Apr. 25, 2001, the entireties of which are 
hereby incorporated by reference. 

APPENDIX A 

Appendix A, which forms a part of this disclosure, is a list 
of commonly owned copending U.S. patent applications. 
Each one of the applications listed in Appendix A is hereby 
incorporated herein in its entirety by reference thereto. 

COPYRIGHT RIGHTS 

A portion of the disclosure of this patent document 
contains material which is Subject to copyright protection. 
The copyright owner has no objection to the facsimile 
reproduction by any one of the patent document or the patent 
disclosure, as it appears in the Patent and Trademark Office 
patent file or records, but otherwise reserves all copyright 
rights whatsoever. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The invention is related to Video decoding techniques. In 
particular, the invention relates to Systems and methods of 
recovering uSable video data from partially corrupted data. 

2. Description of the Related Art 
A variety of digital Video compression techniques have 

arisen to transmit or to Store a Video signal with a lower 
bandwidth or with leSS Storage Space. Such video compres 
Sion techniques include international Standards, Such as 
H.261, H.263, H.263+, H.263++, H.26L, MPEG-1, MPEG 
2, MPEG-4, and MPEG-7. These compression techniques 
achieve relatively high compression ratios by discrete cosine 
transform (DCT) techniques and motion compensation 
(MC) techniques, among others. Such video compression 
techniques permit Video bitstreams to be efficiently carried 
acroSS a variety of digital networks, Such as wireleSS cellular 
telephony networks, computer networks, cable networks, via 
Satellite, and the like. 

Unfortunately for users, the various mediums used to 
carry or transmit digital Video signals do not always work 
perfectly, and the transmitted data can be corrupted or 
otherwise interrupted. Such corruption can include errors, 
dropouts, and delayS. Corruption occurs with relative fre 
quency in Some transmission mediums, Such as in wireleSS 
channels and in asynchronous transfer mode (ATM) net 
WorkS. For example, data transmission in a wireleSS channel 
can be corrupted by environmental noise, multipath, and 
Shadowing. In another example, data transmission in an 
ATM network can be corrupted by network congestion and 
buffer overflow. 

Corruption in a data Stream or bitstream that is carrying 
Video can cause disruptions to the displayed Video. Even the 
loSS of one bit of data can result in a loSS of Synchronization 
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2 
with the bitstream, which results in the unavailability of 
Subsequent bits until a Synchronization codeword is 
received. These errors in transmission can cause frames to 
be missed, blocks within a frame to be missed, and the like. 
One drawback to a relatively highly compressed data Stream 
is an increased Susceptibility to corruption in the transmis 
Sion of the data Stream carrying the Video Signal. 

Those in the art have Sought to develop techniques to 
mitigate against the corruption of data in the bitstream. For 
example, error concealment techniques can be used in an 
attempt to hide errors in missing or corrupted blockS. 
However, conventional error concealment techniques can be 
relatively crude and unsophisticated. 

In another example, forward error correction (FEC) tech 
niques are used to recover corrupted bits, and thus recon 
struct data in the event of corruption. However, FEC tech 
niques disadvantageously introduce redundant data, which 
increases the bandwidth of the bitstream for the video or 
decreases the amount of effective bandwidth remaining for 
the Video. Also, FEC techniques are computationally com 
plex to implement. In addition, conventional FEC tech 
niques are not compatible with the international Standards, 
Such as H.261, H.263, MPEG-2, and MPEG-4, but instead, 
have to be implemented at a higher, “systems' level. 

SUMMARY OF THE INVENTION 

The invention is related to methods and apparatus that 
recover usable video data from partially corrupted data. 
Embodiments inspect corrupted data packets and identify 
the location or locations of an error, whether the corrupted 
data packet contains data expected to be error-free, and 
whether the error-free data should be used. Decoding of a 
packet in both the forward direction and the backward 
direction can be used to locate a position of an error. 
Intra-coded macroblocks can also be recovered. A decoder 
can elect to use or to drop an intra-coded macroblock 
recovered from a corrupted data packet according to further 
criteria that is applied to the recovered intra-coded macrob 
lock. One embodiment inspects Video bitstream data that has 
been encoded with an optional data partitioning feature 
enabled, and retrieves Specified data in areas of a corrupted 
packet that are expected to be free from error. 
One embodiment of the invention includes a circuit 

adapted to recover useful data from a Video packet that is at 
least partially corrupted, the circuit comprising: a decoding 
circuit configured to decode a Video packet in a forward 
direction and in a backward direction, where the decoding 
circuit detects bit locations of errors first encountered in the 
forward direction and in the backward direction; a counter 
adapted to maintain a count of complete macroblocks 
decoded in the forward direction and in the backward 
direction; and a control circuit adapted to discard at least a 
portion of the Video packet that corresponds to an overlap 
ping region, where the control circuit is further configured to 
further discard additional data corresponding to a backtrack 
ing amount when there is no overlapping region, where the 
control circuit is further configured to discard information in 
incomplete macroblocks, and where the control circuit is 
adapted to permit use of at least a portion of the remaining 
data. 
One embodiment of the invention includes a circuit 

adapted to recover useful data from a Video packet that is at 
least partially corrupted, the circuit comprising: a data 
parsing circuit adapted to determine whether a Video packet 
is encoded with data partitioning enabled; an error checking 
circuit configured to determine whether an error exists ahead 
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of a motion marker of the Video packet; and a decoder 
coupled to the data parsing circuit and to the error checking 
circuit, where the decoder is adapted to decode at least a 
portion of the data in the corrupted Video packet ahead of the 
motion marker when data parsing circuit indicates that the 
Video packet is encoded with data partitioning enabled and 
when the error checking circuit indicates that the error does 
not exist ahead of the motion marker. 
One embodiment of the invention includes a circuit 

adapted to recover useful data from a Video packet that is at 
least partially corrupted, the circuit comprising: means for 
receiving the Video packet; means for ending without recov 
ering data when corruption is detected in at least one of a 
Video packet header of the Video packet, a DC portion of the 
Video packet, and a motion vector portion of the Video 
packet; means for initiating decoding of the Video packet in 
a forward direction; means for maintaining a first count of a 
number of macroblocks decoded without error in the for 
ward direction; means for Storing codewords decoded in the 
forward direction; means for Storing a first bit location when 
an error is first detected in the forward direction; means for 
initiating decoding of the Video packet in a reverse direction; 
means for maintaining a Second count of a number of 
macroblockS decoded without error in the reverse direction; 
means for Storing codewords decoded in the reverse direc 
tion; means for Storing a Second bit location when an error 
is first detected in the reverse direction; means for deter 
mining if there is an overlapping region, where the over 
lapping region corresponds to a region identified in both the 
forward direction and in the reverse direction as having an 
error, means for discarding the data in the Overlapping 
region and for using the data in a remaining portion of the 
Video packet if there is an overlapping region; and means for 
discarding the data between a first backtracking amount 
ahead of the first error location in the forward direction and 
a Second backtracking amount behind the Second error 
location in the first location, and for recovering the remain 
ing portion of the Video packet if there is no overlapping 
region. 
One embodiment of the invention includes a method of 

recovering useful data from a video packet that has been 
corrupted, the method comprising: receiving the Video 
packet, ending without recovering data when corruption is 
detected in a Video packet header of the Video packet, ending 
without recovering data when corruption is detected in a DC 
portion of the Video packet; ending without recovering data 
when corruption is detected in a motion vector portion of the 
Video packet; initiating decoding of the Video packet in a 
forward direction; maintaining a first count of a number of 
macroblocks decoded without error in the forward direction; 
Storing codewords decoded in the forward direction; Storing 
a first bit location when an error is first detected in the 
forward direction; initiating decoding of the Video packet in 
a reverse direction; maintaining a Second count of a number 
of macroblocks decoded without error in the reverse direc 
tion; Storing codewords decoded in the reverse direction; 
Storing a Second bit location when an error is first detected 
in the reverse direction; determining if there is an overlap 
ping region, where the overlapping region corresponds to a 
region identified in both the forward direction and in the 
reverse direction as having an error; if there is an overlap 
ping region, discarding the data in the Overlapping region 
and using the data in a remaining portion of the Video 
packet, and if there is no overlapping region, discarding the 
data between a first backtracking amount ahead of the first 
error location in the forward direction and a Second back 
tracking amount behind the Second error location in the first 
location, and recovering the remaining portion of the Video 
packet. 

1O 
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4 
One embodiment of the invention includes method for 

recovering data in a corrupted Video packet comprising: 
inspecting the Video packet to determine whether the Video 
packet was encoded with data partitioning enabled; deter 
mining whether an error exists ahead of a motion marker of 
the Video packet; and decoding at least a portion of the data 
in the corrupted Video packet ahead of the motion marker 
when the Video packet was encoded with data partitioning 
enabled and when the error does not exist ahead of the 
motion marker. 

BRIEF DESCRIPTION OF THE DRAWINGS 

These and other features of the invention will now be 
described with reference to the drawings Summarized below. 
These drawings and the associated description are provided 
to illustrate preferred embodiments of the invention and are 
not intended to limit the Scope of the invention. 

FIG. 1 illustrates a networked System for implementing a 
Video distribution System in accordance with one embodi 
ment of the invention. 

FIG. 2 illustrates a Sequence of frames. 
FIG. 3 is a flowchart generally illustrating a process of 

concealing errors or missing data in a Video bitstream. 
FIG. 4 illustrates a process of temporal concealment of 

missing motion vectors. 
FIG. 5 is a flowchart generally illustrating a process of 

adaptively concealing errors in a Video bitstream. 
FIG. 6 is a flowchart generally illustrating a process that 

can use weighted predictions to compensate for errors in a 
video bitstream. 

FIG. 7A illustrates a sample of a video packet with DC 
and AC components for an I-VOP. 

FIG. 7B illustrates a video packet for a P-VOP. 
FIG. 8 illustrates an example of discarding a corrupted 

macroblock. 

FIG. 9 is a flowchart that generally illustrates a process 
according to an embodiment of the invention of partial 
RVLC decoding of discrete cosine transform (DCT) portions 
of corrupted packets 

FIGS. 10-13 illustrate partial RVLC decoding strategies. 
FIG. 14 illustrates a partially corrupted video packet with 

at least one intra-coded macroblock. 

FIG. 15 illustrates a sequence of macroblocks with AC 
prediction. 

FIG. 16 illustrates a bit structure for an MPEG-4 data 
partitioning packet. 

FIG. 17 illustrates one example of a tradeoff between 
block error rate (BER) correction capability versus over 
head. 

FIG. 18 illustrates a video bitstream with systematic FEC 
data. 

FIG. 19 is a flowchart generally illustrating a process of 
decoding Systematically encoded FEC data in a Video bit 
Stream. 

FIG. 20 is a block diagram generally illustrating one 
process of using a ring buffer in error resilient decoding of 
Video data. 

DETAILED DESCRIPTION OF PREFERRED 
EMBODIMENTS 

Although this invention will be described in terms of 
certain preferred embodiments, other embodiments that are 
apparent to those of ordinary skill in the art, including 
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embodiments that do not provide all of the benefits and 
features Set forth herein, are also within the Scope of this 
invention. Accordingly, the Scope of the invention is defined 
only by reference to the appended claims. 

The display of Video can consume a relatively large 
amount of bandwidth, especially when the video is dis 
played in real time. Moreover, when the video bitstream is 
wirelessly transmitted or is transmitted over a congested 
network, packets may be lost or unacceptably delayed. Even 
when a packet of data in a Video bitstream is received, if the 
packet is not timely received due to network congestion and 
the like, the packet may not be usable for decoding of the 
video bitstream in real time. Embodiments of the invention 
advantageously compensate for and conceal errors that 
occur when packets of data in a video bitstream are delayed, 
dropped, or lost. Some embodiments reconstruct the original 
data from other data. Other embodiments conceal or hide the 
result of errorS So that a corresponding display of the Video 
bitstream exhibits relatively fewer errors, thereby effectively 
increasing the Signal-to-noise ratio (SNR) of the System. 
Further advantageously, embodiments of the invention can 
remain downward compatible with video bitstreams that are 
compliant with existing video encoding Standards. 

FIG. 1 illustrates a networked System for implementing a 
Video distribution System in accordance with one embodi 
ment of the invention. An encoding computer 102 receives 
a Video signal, which is to be encoded to a relatively 
compact and robust format. The encoding computer 102 can 
correspond to a variety of machine types, including general 
purpose computers that execute Software and to Specialized 
hardware. The encoding computer 102 can receive a video 
Sequence from a wide variety of Sources, Such as via a 
satellite receiver 104, a video camera 106, and a video 
conferencing terminal 108. The video camera 106 can 
correspond to a variety of camera types, Such as Video 
camera recorders, Web cams, cameras built into wireleSS 
devices, and the like. Video Sequences can also be stored in 
a data store 110. The data store 110 can be internal to or 
external to the encoding computer 102. The data store 110 
can include devices Such as tapes, hard disks, optical disks, 
and the like. It will be understood by one of ordinary skill 
in the art that a data store, Such as the data store 110 
illustrated in FIG. 1, can Store unencoded Video, encoded 
Video, or both. In one embodiment, the encoding computer 
102 retrieves unencoded video from a data store, Such as the 
data Store 110, encodes the unencoded Video, and Stores the 
encoded Video to a data Store, which can be the same data 
Store or another data Store. It will be understood that a Source 
for the Video can include a Source that was originally taken 
in a film format. 

The encoding computer 102 distributes the encoded video 
to a receiving device, which decodes the encoded Video. The 
receiving device can correspond to a wide variety of devices 
that can display Video. For example, the receiving devices 
shown in the illustrated networked System include a cell 
phone 112, a personal digital assistant (PDA) 114, a laptop 
computer 116, and a desktop computer 118. The receiving 
devices can communicate with the encoding computer 102 
through a communication network 120, which can corre 
spond to a variety of communication networks including a 
wireless communication network. It will be understood by 
one of ordinary skill in the art that a receiving device, Such 
as the cell phone 112, can also be used to transmit a Video 
Signal to the encoding computer 102. 

The encoding computer 102, as well as a receiving device 
or decoder, can correspond to a wide variety of computers. 
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6 
For example, the encoding computer 102 can be any micro 
processor or processor (hereinafter referred to as processor) 
controlled device, including, but not limited to a terminal 
device, Such as a personal computer, a WorkStation, a Server, 
a client, a mini computer, a main-frame computer, a laptop 
computer, a network of individual computers, a mobile 
computer, a palm top computer, a hand held computer, a Set 
top box for a TV, an interactive television, an interactive 
kiosk, a personal digital assistant (PDA), an interactive 
wireless communications device, a mobile browser, a Web 
enabled cellphone, or a combination thereof. The computer 
may further possess input devices Such as a keyboard, a 
mouse, a trackball, a touchpad, or a touch Screen and output 
devices Such as a computer Screen, printer, Speaker, or other 
input devices now in existence or later developed. 
The encoding computer 102, as well as a decoder, 

described can correspond to a uniprocessor or multiproces 
Sor machine. Additionally, the computers can include an 
addressable Storage medium or computer accessible 
medium, Such as random access memory (RAM), an elec 
tronically erasable programmable read-only memory 
(EEPROM), hard disks, floppy disks, laser disk players, 
digital video devices, Compact Disc ROMs, DVD-ROMs, 
Video tapes, audio tapes, magnetic recording tracks, elec 
tronic networks, and other techniques to transmit or Store 
electronic content Such as, by way of example, programs and 
data. In one embodiment, the computers are equipped with 
a network communication device Such as a network inter 
face card, a modem, Infra-Red (IR) port, or other network 
connection device Suitable for connecting to a network. 
Furthermore, the computers execute an appropriate operat 
ing System, Such as Linux, Unix, Microsoft(R) WindowS(R) 
3.1, Microsoft(R) Windows(R 95, Microsoft(R) Windows(R 98, 
Microsoft(R) Windows(R) NT, Microsoft(R) Windows(E) 2000, 
Microsoft(R) Windows(R) Me, Microsoft(R) Windows(E) XP, 
Apple(R) MacOS(R), IBM(R) OS/2(R), Microsoft(R) Windows(R) 
CE, or Palm OS(R). As is conventional, the appropriate 
operating System may advantageously include a communi 
cations protocol implementation, which handles all incom 
ing and outgoing message traffic passed over the network, 
which can include a wireleSS network. In other 
embodiments, while the operating System may differ 
depending on the type of computer, the operating System 
may continue to provide the appropriate communications 
protocols necessary to establish communication links with 
the network. 

FIG. 2 illustrates a Sequence of frames. A video Sequence 
includes multiple video frames taken at intervals. The rate at 
which the frames are displayed is referred to as the frame 
rate. In addition to techniques used to compress Still video, 
motion video techniques relate a frame at time k to a frame 
at time k-1 to further compress the Video information into 
relatively small amounts of data. However, if the frame at 
time k-1 is not available due to an error, Such as a trans 
mission error, conventional Video techniques may not be 
able to properly decode the frame at time k. As will be 
explained later, embodiments of the invention advanta 
geously decode the Video Stream in a robust manner Such 
that the frame at time k can be decoded even when the frame 
at time k-1 is not available. 
The frames in a Sequence of frames can correspond to 

either interlaced frames or to non-interlaced frames, i.e., 
progressive frames. In an interlaced frame, each frame is 
made of two Separate fields, which are interlaced together to 
create the frame. No Such interlacing is performed in a 
non-interlaced or progressive frame. While illustrated in the 
context of non-interlaced or progressive Video, the skilled 
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artisan will appreciate that the principles and advantages 
described herein are applicable to both interlaced Video and 
non-interlaced video. In addition, while certain embodi 
ments of the invention may be described only in the context 
of MPEG-2 or only in the context of MPEG-4, the principles 
and advantages described herein are applicable to a broad 
variety of video standards, including H.261, H.263, MPEG 
2, and MPEG-4, as well as video standards yet to be 
developed. In addition, while certain embodiments of the 
invention may describe error concealment techniques in the 
context of, for example, a macroblock, the skilled practitio 
ner will appreciate that the techniques described herein can 
apply to blocks, macroblocks, Video object planes, lines, 
individual pixels, groups of pixels, and the like. 

The MPEG-4 standard is defined in “Coding of Audio 
Visual Objects: Systems,” 14496-1, ISO/IEC JTC1/SC29/ 
WG11 N2501, November 1998, and “Coding of Audio 
Visual Objects: Visual,” 14496-2, ISO/IEC JTC1/SC29/ 
WG 11 N2502, November 1998, and the MPEG-4 Video 
Verification Model is defined in ISO/IEC JTC 1/SC 29/WG 
11, “MPEG-4 Video Verification Model 17.0, ISO/IEC 
JTC1/SC29/WG 11 N3515, Beijing, China, July 2000, the 
contents of which are incorporated herein in their entirety. 

In an MPEG-2 system, a frame is encoded into multiple 
blocks, and each block is encoded into Six macroblockS. The 
macroblocks include information, Such as luminance and 
color, for composing a frame. In addition, while a frame may 
be encoded as a still frame, i.e., an intra-coded frame, frames 
in a Sequence of frames can be temporally related to each 
other, i.e., predictive-coded frames, and the macroblockS can 
relate a Section of one frame at one time to a Section of 
another frame at another time. 

In an MPEG-4 System, a frame in a Sequence of frames is 
further encoded into a number of video objects known as 
video object planes (VOPs). A frame can be encoded into a 
single VOP or in multiple VOPs. In one system, such as a 
wireless system, each frame includes only one VOP So that 
a VOP is a frame. The VOPs are transmitted to a receiver, 
where they are decoded by a decoder back into video objects 
for display. A VOP can correspond to an intra-coded VOP 
(I-VOP), to a predictive-coded VOP (P-VOP) to a 
bidirectionally-predictive coded VOP (B-VOP), or to a 
sprite VOP (S-VOP). An I-VOP is not dependent on infor 
mation from another frame or picture, i.e., an I-VOP is 
independently decoded. When a frame consists entirely of 
I-VOPs, the frame is called an I-Frame. Such frames are 
commonly used in Situations Such as a Scene change. 
Although the lack of dependence on content from another 
frame allows an I-VOP to be robustly transmitted and 
received, an I-VOP disadvantageously consumes a relatively 
large amount of data or data bandwidth as compared to a 
P-VOP or B-VOP. To efficiently compress and transmit 
video, many VOPs in video frames correspond to P-VOPs. 
AP-VOP efficiently encodes a video object by referencing 

the video object to a past VOP, i.e., to a video object 
(encoded by a VOP) earlier in time. This past VOP is 
referred to as a reference VOP. For example, where an object 
in a frame at time k is related to an object in a frame at time 
k-1, motion compensation encoded in a P-VOP can be used 
to encode the video object with less information than with an 
I-VOP. The reference VOP can be either an I-VOP or a 
P-VOP. 

A B-VOP uses both a past VOP and a future VOP as 
reference VOPS. In a real-time video bitstream, a B-VOP 
should not be used. However, the principles and advantages 
described herein can also apply to a Video bitstream with 
B-VOPs. An S-VOP is used to display animated objects. 
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The encoded VOPs are organized into macroblocks. A 

macroblock includes Sections for Storing luminance 
(brightness) components and Sections for Storing chromi 
nance (color) components. The macroblocks are transmitted 
and received via the communication network 120. It will be 
understood by one of ordinary skill in the art that the 
communication of the data can further include other com 
munication layers, Such as modulation to and demodulation 
from code division multiple access (CDMA). It will be 
understood by one of ordinary skill in the art that the video 
bitstream can also include corresponding audio information, 
which is also encoded and decoded. 

FIG. 3 is a flowchart 300 generally illustrating a process 
of concealing errors or missing data in a Video bitstream. 
The errors can correspond to a variety of problems or 
unavailability including a loSS of data, a corruption of data, 
a header error, a Syntax error, a delay in receiving data, and 
the like. Advantageously, the process of FIG. 3 is relatively 
unsophisticated to implement and can be executed by rela 
tively slow decoders. 
Upon the detection of an error, the process Starts at a first 

decision block 304. The first decision block 304 determines 
whether the error relates to intra-coding or predictive 
coding. It will be understood by the skilled practitioner that 
the intra-coding or predictive-coding can refer to frames, to 
macroblocks, to video object planes (VOPs), and the like. 
While illustrated in the context of macroblocks, the skilled 
artisan will appreciate that the principles and advantages 
described in FIG.3 also apply to video object planes and the 
like. The process proceeds from the first decision block 304 
to a first state 308 when the error relates to an intra-coded 
macroblock. When the error relates to a predictive-coded 
macroblock, the process proceeds from the first decision 
block 304 to a second decision block 312. It will be 
understood that the error for a predictive-coded macroblock 
can arise from a missing macroblock in a present frame at 
time t, or from an error in a reference frame at time t-1 from 
which motion is referenced. 

In the first state 308, the process interpolates or spatially 
conceals the error in the intra-coded macroblock, termed a 
missing macroblock. In one embodiment, the proceSS con 
ceals the error in the missing macroblock by linearly inter 
polating data from an upper macroblock that is intended to 
be displayed "above' the missing macroblock in the image, 
and from a lower macroblock that is intended to be displayed 
“below the missing macroblock in the image. Techniques 
other than linear interpolation can also be used. 

For example, the proceSS can vertically linearly interpo 
late using a line denoted lb copied from the upper macrob 
lock and a line denotedlt copied from the lower macroblock. 
In one embodiment, the proceSS uses the lowermost line of 
the upper macroblock as Ib and the topmost line of the lower 
macroblock as lt. 

Depending on the circumstances, the upper macroblock 
and/or the lower macroblock may also not be available. For 
example, the upper macroblock and/or the lower macrob 
lock may have an error. In addition, the missing macroblock 
may be located at the upper boundary of an image or at the 
lower boundary of the image. 
One embodiment of the invention uses the following rules 

to conceal errors in the missing macroblock when linear 
interpolation between the upper macroblock and the lower 
macroblock is not applicable. 
When the missing macroblock is at the upper boundary of 

the image, the topmost line of the lower macroblock is used 
as lb. If the lower macroblock is also missing, the topmost 
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line of the next-lower macroblock in the image is used as lb, 
and so forth, if further lower macroblocks are missing. If all 
the lower macroblocks are missing, a gray line is used as lb. 
When the missing macroblock is at the lower boundary of 

the image or the lower macroblock is missing, lb, the 
lowermost line of the upper macroblock, is also used as lt. 
When the missing macroblock is neither at the upper 

boundary of the image nor at the lower boundary of the 
image, and interpolation between the upper macroblock and 
the lower macroblock is not applicable, one embodiment of 
the invention replaces the missing macroblock with gray 
pixels (Y=U=V=128 value). 

According to one decoding Standard, MPEG-4, pixels that 
are associated with a block with an error are stored as a “0.” 
which corresponds to green pixels in a display. Gray pixels 
can be closer than green to the colors associated with a 
missing block, and simulation tests have observed a 0.1 dB 
improvement over the green pixels with relatively little or no 
increase in complexity. For example, the gray pixel color can 
be implemented by a copy instruction. When the Spatial 
concealment is complete, the process ends. 
When the error relates to a predictive-coded macroblock, 

the second decision block 312 determines whether another 
motion vector is available to be used for the missing 
macroblock. For example, the Video bitstream may also 
include another motion vector, Such as a redundant motion 
vector, which can be used instead of a Standard motion 
vector in the missing macroblock. In one embodiment, a 
redundant motion vector is estimated by doubling the Stan 
dard motion vector. One embodiment of the redundant 
motion vector references motion in the present frame at time 
t to a frame at time t-2. When both the frame at time t-2 and 
the redundant motion vector are available, the proceSS 
proceeds from the Second decision block 312 to a Second 
State 316, where the process reconstructs the missing mac 
roblock from the redundant motion vector and the frame at 
time t-2. Otherwise, the proceSS proceeds from the Second 
decision block 312 to a third decision block 320. 

In the third decision block 320, the process determines 
whether the error is due to a predictive-coded macroblock 
missing in the present frame, i.e., missing motion vectors. 
When the motion vectors are missing, the proceSS proceeds 
from the third decision block 320 to a third state 324. 
Otherwise, the proceSS proceeds from the third decision 
block 320 to a fourth decision block 328. 

In the third State 324, the proceSS Substitutes the missing 
motion vectors in the missing macroblock to provide tem 
poral concealment of the error. One embodiment of temporal 
concealment of missing motion vectors is described in 
greater detail later in connection with FIG. 4. The process 
advances from the third state 324 to the fourth decision 
block 328. 

In the fourth decision block 328, the process determines 
whether an error is due to a missing reference frame, e.g., the 
frame at time t-1. If the reference frame is available, the 
process proceeds from the fourth decision block 328 to a 
fourth state 332, where the process uses the reference frame 
and the Substitute motion vectors from the third state 324. 
Otherwise, the process proceeds to a fifth state 336. 

In the fifth state 336, the process uses a frame at time t-k 
as a reference frame. Where the frame corresponds to the 
previous-previous frame, k can equal 2. In one embodiment, 
the proceSS multiplies the motion vectors that were received 
in the macroblock or substituted in the third state 324 by a 
factor, Such as 2 for linear motion, to conceal the error. The 
skilled practitioner will appreciate that other appropriate 
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10 
factors may be used depending on the motion characteristics 
of the Video imageS. The proceSS proceeds to end until the 
next error is detected. 

FIG. 4 illustrates an exemplary process of temporal con 
cealment of missing motion vectors. In one embodiment, a 
macroblock includes four motion vectors. In the illustrated 
temporal concealment technique, the missing motion vectors 
of a missing macroblock 402 are substituted with motion 
vectors copied from other macroblocks. In another 
embodiment, which will be described later, the missing 
motion vectors of the missing macroblock 402 are substi 
tuted with motion vectors interpolated from other macrob 
lockS. 

When the missing macroblock 402 is below and above 
other macroblockS in the image, the process copies motion 
vectors from an upper macroblock 404, which is above the 
missing macroblock 402, and copies motion vectors from a 
lower macroblock 406, which is below the missing macrob 
lock 402. 
The missing macroblock 402 corresponds to a first miss 

ing motion vector 410, a Second missing motion vector 412, 
a third missing motion vector 414, and a fourth missing 
motion vector 416. The upper macroblock 404 includes a 
first upper motion vector 420, a Second upper motion vector 
422, a third upper motion vector 424, and a fourth upper 
motion vector 426. The lower macroblock 406 includes a 
first lower motion vector 430, a second lower motion vector 
432, a third lower motion vector 434, and a fourth lower 
motion vector 436. 

When both the upper macroblock 404 and the lower 
macroblock 406 are available and include motion vectors, 
the illustrated process uses the third upper motion vector 424 
as the first missing motion vector 410, the fourth upper 
motion vector 426 as the Second missing motion vector 412, 
the first lower motion vector 430 as the third missing motion 
vector 414, and the second lower motion vector 432 as the 
fourth missing motion vector 416. 
When the missing macroblock 402 at the upper boundary 

of the image, the process Sets both the first missing motion 
vector 410 and the second missing motion vector 412 to the 
Zero vector (no motion). The process uses the first lower 
motion vector 430 as the third missing motion vector 414, 
and the second lower motion vector 432 as the fourth 
missing motion vector 416. 
When the lower macroblock 406 is corrupted or otherwise 

unavailable and/or the missing macroblock 402 is at the 
lower boundary of the image, the process Sets the third 
missing motion vector 414 equal to the value used for the 
first missing motion vector 410, and the proceSS Sets the 
fourth missing motion vector 416 equal to the value used for 
the Second missing motion vector 412. 

In one embodiment, the missing motion vectors of the 
missing macroblock 402 are substituted with motion vectors 
interpolated from other macroblockS. A variety of tech 
niques for interpolation exist. In one example, the first 
missing motion vector 410 is substituted with a vector Sum 
of the first upper motion vector 420 and 3 times the third 
upper motion vector 424, i.e., V1 o=V1+(3)(V3). In 
another example, the third missing motion vector 414 can be 
Substituted with a vector Sum of the third lower motion 
vector 434 and 3 times the first lower motion vector 430, i.e., 
V3 =(3)(V1)+V3. 

FIG. 5 is a flowchart 500 generally illustrating a process 
of adaptively concealing errors in a Video bitstream. 
Advantageously, the process of FIG. 5 adaptively Selects a 
concealment mode Such that the error-concealed or recon 
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Structed images can correspond to relatively less distorted 
image. Simulation tests predict improvements of up to about 
1.5 decibels (dB) in peak signal to noise ratio. The process 
of FIG. 5 can be used to select an error concealment mode 
even when data for a present frame is received without an 
CO. 

For example, the process can receive three consecutive 
frames. A first frame is cleanly received. A Second frame is 
received with a relatively high-degree of corruption. Data 
for a third frame is cleanly received, but reconstruction of a 
portion of the third frame depends on portions of the Second 
frame, which was received with a relatively high-degree of 
corruption. Under certain conditions, it can be advantageous 
to conceal portion of the third frame because portions of the 
third frame depend on a portions of a corrupted frame. The 
process illustrated in FIG. 5 can advantageously identify 
when error concealment techniques should be invoked even 
when Such error concealment techniques would not be 
needed by Standard Video decoders to provide a display of 
the corresponding image. 

The process starts in a first state 504, where the process 
receives data from the Video bitstream for the present frame, 
i.e., the frame at time t. A portion of the received data may 
be missing, due to an error, Such as a dropout, corruption, 
delay, and the like. The proceSS advances from the first State 
504 to a first decision block 506. 

In the first decision block 506, the process determines 
whether the data under analysis corresponds to an intra 
coded video object plane (I-VOP) or to a predictive-coded 
VOP (P-VOP). It will be understood by one of ordinary skill 
in the art that the process can operate at different levels, Such 
as on macroblocks or frames, and that a VOP can be a frame. 
The process proceeds from the first decision block 506 to a 
Second decision block 510 when the VOP is an I-VOP. 
Otherwise, i.e., the VOP is a P-VOP, the process proceeds to 
a third decision block 514. 

In the second decision block 510, the process determines 
whether there is an error in the received data for the I-VOP. 
The process proceeds from the second decision block 510 to 
a second state 518 when there is an error. Otherwise, the 
proceSS proceeds to a third State 522. 

In the second state 518, the process conceals the error 
with Spatial concealment techniques, Such as the Spatial 
concealment techniques described earlier in connection with 
the first state 308 of FIG. 3. The process advances from the 
Second state 518 to a fourth state 526. 

In the fourth state 526, the process sets an error value to 
an error predicted for the concealment technique used in the 
Second state 518. One embodiment normalizes the error to 
a range between 0 and 255, where 0 corresponds to no error, 
and 255 corresponds to a maximum error. For example, 
where gray pixels replace a pixel in an error concealment 
mode, the error value can correspond to 255. In one 
embodiment, the error value is retrieved from a table of 
pre-calculated error estimates. In Spatial interpolation, the 
pixels adjacent to error-free pixels are typically more faith 
fully concealed than the pixels that are farther away from the 
error-free pixels. In one embodiment, an error value is 
modeled as 97 for pixels adjacent to error-free pixels, while 
other pixels are modeled with an error value of 215. The 
error values can be maintained in a memory array on a 
per-pixel basis, can be maintained for only a Selection of 
pixels, can be maintained for groups of pixels, and So forth. 

In the third state 522, the process has received an error 
free I-VOP and clears (to zero) the error value for the 
corresponding pixels of the VOP. Of course, other values can 
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be arbitrarily selected to indicate an error-free state. The 
process advances from the third state 522 to a fifth state 530, 
where the process constructs the VOP from the received data 
and ends. The process can be reactivated to process the next 
VOP received. 

Returning to the third decision block 514, the process 
determines whether the P-VOP includes an error. When 
there is an error, the proceSS proceeds from the third decision 
block 514 to a fourth decision block 534. Otherwise, the 
process proceeds to an optional Sixth State 538. 

In the fourth decision block 534, the process determines 
whether the error values for the corresponding pixels are 
Zero or not. If the error values are Zero and there is no error 
in the data of the present P-VOP, then the process proceeds 
to the fifth State 520 and constructs the VOP with the 
received data as this corresponds to an error-free condition. 
The process then ends or waits for the next VOP to be 
processed. If the error values are non-Zero, then the proceSS 
proceeds to a seventh state 542. 

In the Seventh State 542, the process projects the estimate 
error value, i.e., a new error value, that would result if the 
process uses the received data. For example, if a previous 
frame contained an error, that error may propagate to the 
present frame by decoding and using the P-VOP of the 
present frame. In one embodiment, the estimated error value 
is about 103 plus an error propagation term, which depends 
on the previous error value. The error propagation term can 
also include a “leaky' value, such as 0.93, to reflect a slight 
loSS in error propagation per frame. The process advances 
from the seventh state 542 to an eighth state 546. 

In the eighth State 546, the proceSS projects the estimated 
error value that would result if the process used an error 
resilience technique. The error resilience technique can 
correspond to a wide variety of techniques, Such as an error 
concealment technique described in connection with FIGS. 
3 and 4, the use of additional motion vectors that reference 
other frames, and the like. Where the additional motion 
vector references the previous-previous frame, one embodi 
ment uses an error value of 46 plus the propagated error. It 
will be recognized that a propagated error in a previous 
frame can be different than a propagated error in a previous 
previous frame. In one embodiment, the process projects the 
estimated error values that would result from a plurality of 
error resilience techniques. The process advances from the 
eighth state 546 to a ninth state 550. 

In the ninth state 550, the process selects between using 
the received data and using an error resilience technique. In 
one embodiment, the proceSS Selects between using the 
received data and using one of multiple error resilience 
techniques. The construction, concealment, or reconstruc 
tion technique that provides the lowest projected estimated 
error value is used to construct the corresponding portion of 
the image. The process advances from the ninth state 550 to 
a tenth state 554, where the process updates the affected 
error values according to the Selected received data or error 
resilience technique used to generate the frame, and the 
process ends. It will be understood that the proceSS can then 
wait until the next VOP is received, and the process can 
reactivate to process the next VOP. 

In the optional sixth state 538, the process computes the 
projected error values with multiple error resilience tech 
niques. The error resilience technique that indicates the 
lowest projected estimated error value is Selected. The 
process advances from the optional sixth state 538 to an 
eleventh State 558. 

In the eleventh state 558, the process applies the error 
resilience technique selected in the optional sixth state 538. 
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Where the proceSS uses only one error resilience technique 
to conceal errors for P-VOPs, the skilled practitioner will 
appreciate that the optional sixth state 538 need not be 
present, and the process can apply the error resilience 
technique in the eleventh state 558 without a selection 
process. The proceSS advances from the from the eleventh 
state 558 to a twelfth state 562, where the process updates 
the corresponding error values in accordance with the error 
resilience technique applied in the eleventh state 558. The 
process then ends and can be reactivated to process future 
VOPS. 

FIG. 6 is a flowchart 600 generally illustrating a process 
that can use weighted predictions to compensate for errors in 
a Video bitstream. One embodiment of the proceSS is rela 
tively less complex to implement than adaptive techniques. 
The illustrated process receives a frame of data and pro 
ceSSes the data one macroblock at a time. It will be under 
stood that when errors in transmission arise, the process may 
not receive an entire frame of data. Rather, the process can 
Start processing the present frame upon other conditions, 
Such as determining that the timeframe for receiving the 
frame has expired, or receiving data for the Subsequent 
frame, and the like. 

The process starts in a first decision block 604, where the 
process determines whether the present frame is a 
predictive-coded frame (P-frame) or is an intra-coded frame 
(I-frame). The process proceeds from the first decision block 
604 to a second decision block 608 when the present frame 
corresponds to an I-frame. When the present frame corre 
sponds to a P-frame, the proceSS proceeds from the first 
decision block 604 to a third decision block 612. 

In the Second decision block 608, the process determines 
whether the macroblock under analysis includes an error. 
The macroblock under analysis can correspond to the first 
macroblock of the frame and end with the last macroblock 
of the frame. However, the order of analysis can vary. The 
error can correspond to a variety of anomalies, Such as 
missing data, Syntax errors, checksum errors, and the like. 
The process proceeds from the second decision block 608 to 
a first state 616 when no error is detected in the macroblock. 
If an error is detected in the macroblock, the proceSS 
proceeds to a Second State 620. 

In the first state 616, the process decodes the macroblock. 
All macroblocks of an intra-coded frame are intra-coded. An 
intra-coded macroblock can be decoded without reference to 
other macroblockS. The process advances from the first State 
616 to a third state 624, where the process resets an error 
variance (EV) value corresponding to a pixel in the mac 
roblock to Zero. The error variance relates to a predicted or 
expected amount of error propagation. Since the intra-coded 
macroblock does not depend on other macroblocks, an 
error-free intra-coded macroblock can be expected to have 
an error variance of Zero. It will be understood by one of 
ordinary skill in the art that any number can be arbitrarily 
selected to represent Zero. It will also be understood that the 
error variance can be tracked in a broad variety of ways, 
including on a per pixel basis, on groups of pixels, on 
Selected pixels, per macroblock, and the like. The proceSS 
advances from the third state 624 to a fourth decision block 
628. 

In the fourth decision block 628, the process determines 
whether it has processed the last macroblock in the frame. 
The process returns from the fourth decision block 628 to the 
Second decision block 608 when there are further macrob 
locks in the frame to be processed. When the last macrob 
lock has been processed, the process ends and can be 
reactivated when for the Subsequent frame. 
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14 
In the Second State 620, the process conceals the error 

with Spatial concealment techniques, Such as the Spatial 
concealment techniques described earlier in connection with 
the first state 308 of FIG. 3. In one embodiment, the process 
fills the pixels of the macroblock with gray, which is 
encoded as 128. The proceSS advances from the Second State 
620 to a fourth state 632, where the process sets the 
macroblock's corresponding error variance, O, f, to a pre 
determined value, O, f. In one embodiment, the error 
variance, O, f, is normalized to a range between 0 and 255. 
The predetermined value can be obtained by, for example, 
Simulation results, real world testing, and the like. In 
addition, the predetermined value can depend on the con 
cealment technique. In one embodiment, where the conceal 
ment technique is to fill the macroblock with gray, the 
predetermined value, Off, is 255. The process advances 
from the fourth state 632 to the fourth decision block 628. 

When the frame is a P-frame, the process proceeds from 
the first decision block 604 to the third decision block 612. 
In the third decision block 612, the process determines 
whether the macroblock under analysis includes an error. 
The process proceeds from the third decision block 612 to a 
fifth decision block 636 when no error is detected. When an 
error is detected, the proceSS proceeds from the third deci 
Sion block 612 to a fifth state 640. 

A macroblock in a P-frame can correspond to either an 
inter-coded macroblock or to an intra-coded macroblock. In 
the fifth decision block 636, the process determines whether 
the macroblock corresponds to an inter-coded macroblock or 
to an intra-coded macroblock. The process proceeds from 
the fifth decision block 636 to a sixth state 644 when the 
macroblock corresponds to an intra-coded macroblock. 
When the macroblock corresponds to an inter-coded 
macroblock, the process proceeds to a Seventh State 648. 

In the Sixth State 644, the proceSS proceeds to decode the 
intra-coded macroblock that was received without an error. 
The intra-coded macroblock can be decoded without refer 
ence to another macroblock. The process advances from the 
sixth state 644 to an eighth state 652, where the process 
resets the corresponding error variances maintained for the 
macroblock to Zero. The process advances from the eighth 
state 652 to a sixth decision block 664. 

In the sixth decision block 664, the process determines 
whether it has processed the last macroblock in the frame. 
The process returns from the sixth decision block 664 to the 
third decision block 612 when there are further macroblocks 
in the frame to be processed. When the last macroblock has 
been processed, the process ends and can be reactivated for 
the Subsequent frame. 

In the seventh state 648, the process reconstructs the 
pixels of the macroblock even when the macroblock was 
received without error. Reconstruction in this circumstance 
can improve image quality because a previous-previous 
frame may exhibit leSS corruption than a previous-frame. 
One embodiment of the process selects between a first 
reconstruction mode and a Second reconstruction mode 
depending on which mode is expected to provide better error 
concealment. In another embodiment, weighted Sums are 
used to combine the two modes. In one example, the weights 
used correspond to the inverse of estimated errorS So that the 
process decodes with minimal mean squared error (MMSE). 

In the first reconstruction mode, the proceSS reconstructs 
the macroblock based on the received motion vector and the 
corresponding portion in the previous frame. The recon 
Structed pixel, d, as reconstructed by the first reconstruction 
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mode, is expressed in Equation 1. In Equation 1, f is a 
prediction residual. 

(i.p. 1+f (Eq. 1) 

In the Second reconstruction mode, the proceSS recon 
Structs the macroblock by doubling the amount of motion 
Specified by the motion vectors of the macroblock, and the 
process uses a corresponding portion of the previous 
previous frame, i.e., the frame at time k-2. 

The error variance of a pixel reconstructed by the first 
reconstruction mode, Op., is expressed in Equation 2, 
where k indicates the frame, e.g., k=0 for the present frame. 
The error variance of a pixel reconstructed by the Second 
reconstruction mode, Op. 2, is expressed in Equation 3. 

i. = E(p. 1 - p. 2). (Eq. 3) 
a E{(p. p. 2): -- E(p. 1 P-2) 

2 = Oio + Oil, 

In one embodiment, the process Selects the Second recon 
struction mode when Op-f>O, ef+Op-2. In another 
embodiment, weighted Sums are used to combine the recon 
Struction techniques. In one example, the weights used 
correspond to the inverse of predicted errors So that the 
process decodes with minimal mean squared error (MMSE). 
With weighted Sums, the process combines the two predic 
tions to reconstruct the pixel, q. In one embodiment, the 
pixel q is reconstructed by d, as expressed in Equation 4. 

q=f3P+(1-f)P +f (Eq. 4 

In one embodiment, the weighting coefficient, B, is cal 
culated from Equation 5. 

2 2 Ciro + O. (Eq. 5) 
Oio + C , , +O; 

The process advances from the seventh state 648 to a 
ninth state 656. In the ninth state 656, the process updates 
the corresponding error variances for the macroblock based 
on the reconstruction applied in the seventh state 648. The 
process advances from the from the ninth state 656 to the 
sixth decision block 664. In one embodiment, the error 
variance is calculated from expression in Equation 6. 

- 'i (?io" i. 2) (Eq. 6) 
"k Oio + (i. -- i, 2 

In the fifth state 640, the process conceals the errors in the 
macroblock. A variety of concealment techniques can be 
applied. In one embodiment, the proceSS uses temporal 
concealment, regardless of whether the macroblock is intra 
coded or inter-coded. It will be understood that in other 
embodiments, the type of coding used in the macroblock can 
be used as a factor in the Selection of a concealment 
technique. 
One embodiment of the process selects between a first 

concealment mode based on a previous frame and a Second 
concealment mode based on a previous-previous frame in 
the fifth state 640. In the first concealment mode, the process 
generates an inter-coded macroblock for the missing mac 
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roblock using the motion vectors extracted from a macrob 
lock that is above the missing macroblock in the image. If 
the macroblock that is above the missing macroblock has an 
error, the motion vectors can be set to Zero vectors. The 
corresponding portion of the frame is reconstructed with the 
generated inter-coded macroblock and the corresponding 
reference information from the previous frame, i.e., the 
frame at t-1. 

In the Second concealment mode, the proceSS generates an 
inter-coded macroblock for the missing macroblock by 
copying and multiplying by 2 the motion vectors extracted 
from a macroblock that is above the missing macroblock in 
the image. If the macroblock above the missing macroblock 
has an error, the motion vectors can be set to Zero vectors. 
The corresponding portion of the frame is reconstructed with 
the generated inter-coded macroblock and the corresponding 
reference information from the previous-previous frame, 
i.e., the frame at t-2. 
The error variance can be modeled as a Sum of the 

asSociated propagation error and concealment error. In one 
embodiment, the first concealment mode has a lower con 
cealment error than the Second concealment mode, but the 
Second concealment mode has a lower propagation error 
than the first concealment mode. 

In one embodiment, the proceSS Selects between the first 
concealment mode and the Second concealment mode based 
on which one provides a lower estimated error variance. In 
another embodiment, weighted Sums are used to combine 
the two modes. In Equation 7, oako, denotes the error 
variance of a pixel q. The value of i is equal to 1 for the first 
concealment mode based on the previous frame and is equal 
to 2 for the Second concealment mode based on the previous 
previous frame. 

- - -2 2 
= OHA(i) + O. 

In Equation 7, Orrao corresponds to the error variance 
for the concealment mode and O. corresponds to the 
propagation error Variance. 

In another embodiment, the process computes weighted 
Sums to further reduce the error variance of the concealment. 
For example, d can be replaced by q as shown in Equation 
8. 

d=Cic 1+(1-C)C 2. (Eq. 8) 

In one embodiment, the weighting coefficient, C, is as 
expressed in Equation 9. 

4k(2) (Eq.9) 
C. : T -2 2 (iii) is 

The process advances from the fifth state to a tenth state 
660. In the tenth state 660, the process updates the corre 
sponding error variances for the macroblock based on the 
concealment applied in the fifth state 640, and the process 
advances to the sixth decision block 664. In one embodiment 
with weighted Sums, the error variance is calculated from 
expression in Equation 10. 
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2 . Ed. 10 O2 . . , iaio, (Eq. 10) 
qk = E{(a - d.)} = - 

4k(1) 4k(2) 

In Some situations, an entire frame is dropped or lost. One 
embodiment of the invention advantageously repeats the 
previous frame, or interpolates between the previous frame 
and the next frame, in response to a detection of a frame that 
is missing from a frame Sequence. In a real-time application, 
the display of the Sequence of frames can be slightly delayed 
to allow the decoder time to receive the next frame, to 
decode the next frame, and to generate the interpolated 
replacement frame from the previous frame and the next 
frame. The missing frame can be detected by calculating a 
frame rate from received frames and by calculating an 
expected time to receive a Subsequent frame. When a frame 
does not arrive at the expected time, it is replaced with the 
previous frame or interpolated from the previous and next 
frames. One embodiment of the process further resynchro 
nizes the available audio portion to correspond with the 
displayed images. 

Data corruption is an occasionally unavoidable occur 
rence. Various techniques can help conceal errors in the 
transmission or reception of Video data. However, Standard 
Video decoding techniques can inefficiently declare error 
free data as erroneous. For example, the MPEG-4 standard 
recommends dumping an entire macroblock when an erroris 
detected in the macroblock. The following techniques illus 
trate that data for Some macroblocks can be reliably recov 
ered and used from Video packets with corruption. For 
example, a macroblock in an MPEG-4 system can contain 
Six 8-by-8 image blockS. Four of the image blockS encode 
luminosity, and two of the image blockS encode chromatic 
ity. In one conventional System, all six of the image blockS 
are discarded even if a transmission error were only to affect 
one image block. 

FIGS. 7A and 7B illustrate sample video packets. In an 
MPEG-4 system, video packets include resynchronization 
markers to indicate the Start of a Video packet. The number 
of macroblocks within a video packet can vary. 

FIG. 7A illustrates a sample of a video packet 700 with 
DC and AC components for an I-VOP. The video packet 700 
includes a video packet header 702, which includes the 
reSynchronization marker and other header information that 
can be used to decode the macroblocks of the packet, Such 
as the macroblock number of the first macroblock in the 
packet and the quantization parameter (QP) to decode the 
packet. ADC portion 704 can include mcbpc, dduant, and dc 
data, such as luminosity. ADC marker 706 separates the DC 
portion 704 from an AC portion 708. In one embodiment, the 
DC marker 706 is a 19-bit binary string “110 1011 0000 
0000 0001.” The AC portion 708 can include an ac pred 
flag and other textual information. 

FIG. 7B illustrates a video packet 720 for a P-VOP. The 
video packet 720 includes a video packet header 722 similar 
to the video packet header 702 of FIG. 7A. The video packet 
720 further includes a motion vector portion 724, which 
includes motion data. A motion marker 726 Separates the 
motion data in the motion vector portion 724 from texture 
data in a DCT portion 728. In one embodiment, the motion 
marker is a 17-bit binary string “11111 0000 0000 0001.” 

FIG. 8 illustrates an example of discarding a corrupted 
macroblock. Reversible variable length codes (RVLC) are 
designed to allow data, Such as texture codes, to be read or 
decoded in both a forward direction 802 and a reverse or 
backward direction 804. For example, in the forward direc 
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tion 802 with N macroblocks, a first macroblock 806, MB 
#0, is read first and a last macroblock 808, MB #N-1, is read 
last. An error can be located in a macroblock 810, which can 
be used to define a range of macroblocks 812 that are 
discarded. 

FIG. 9 is a flowchart that generally illustrates a process 
according to an embodiment of the invention of partial 
RVLC decoding of discrete cosine transform (DCT) portions 
of corrupted packets. The process starts at a first state 904 by 
reading macroblock information, Such as the macroblock 
number, of the video packet header of the video packet. The 
process advances from the first state 904 to a second state 
908. 

In the second state 908, the process inspects the DC 
portion or the motion vector portion of the Video packet, as 
applicable. The proceSS applies Syntactic and logic tests to 
the video packet header and to the DC portion or motion 
vector portion to detect errors therein. The process advances 
from the second state 908 to a first decision block 912. 

In the first decision block 912, the exemplary process 
determines whether there was an error in the Video packet 
header from the first state 904 or the DC portion or motion 
vector portion from the second state 908. The first decision 
block 912 proceeds to a third state 916 when the error is 
detected. When the error is not detected, the proceSS pro 
ceeds from the first decision block 912 to a fourth state 920. 

In the third state 916, the process discards the video 
packet. It will be understood by one of ordinary skill in the 
art that errors in the video packet header or in the DC portion 
or motion vector portion can lead to relatively Severe errors 
if incorrectly decoded. In one embodiment, error conceal 
ment techniques are instead invoked, and the process ends. 
The process can be reactivated later to read another video 
packet. 

In the fourth state 920, the process decodes the video 
packet in the forward direction. In one embodiment, the 
process decodes the Video packet according to Standard 
MPEG-4 RVLC decoding techniques. One embodiment of 
the proceSS maintains a count of macroblocks in a macrob 
lockS counter. The header at the beginning of the Video 
packet includes a macroblock index, which can be used to 
initialize the macroblockS counter. AS decoding proceeds in 
the forward direction, the macroblock counter increments. 
When an error is encountered, one embodiment removes one 
count from the macroblockS counter Such that the macrob 
lock counter contains the number of completely decoded 
macroblockS. 

In addition, one embodiment of the process Stores all 
codewords as leaves of a binary tree. Branches of the binary 
tree are labeled with either a 0 or a 1. One embodiment of 
the process uses two different tree formats depending on 
whether the macroblock is intra or inter coded. When 
decoding in the forward direction, bits from the Video packet 
are retrieved from a bit buffer containing the RVLC data, and 
the process traverses the data in the tree until one of 3 events 
is encountered. These events correspond to a first event 
where a valid codeword is reached at a leaf-node, a Second 
event where an invalid leaf of the binary tree (not corre 
sponding to any RVLC codeword) is reached; and a third 
event where the end of the bit buffer is reached. 
The first event indicates no error. With no error, a valid 

RVLC codeword is mapped, Such as via a simple lookup 
table, to its corresponding leaf-node (last, run, level). In one 
embodiment, this information is Stored in an array. When an 
entire 8-by-8 block is decoded, as indicated by the presence 
of an RVLC codeword with last=1, the process proceeds to 
decode the next block until an error is encountered or the last 
block is reached. 
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The Second event and the third event correspond to errors. 
These errors can be caused by a variety of error conditions. 
Examples of error conditions include an invalid RVLC 
codeword, Such as wrong marker bits in the expected 
locations of ESCAPE symbols; decoded codeword from an 
ESCAPE symbol results in (run, length, level) information 
that should have been encoded by a regular (non-ESCAPE) 
symbol; more than 64(or 63 for the case of Intra-blocks with 
DC coded separately from AC) DCT coefficients in an 
8-by-8 block, extra bits remaining after Successfully decod 
ing all expected DCT coefficients of all 8-by-8 blocks in a 
Video packet; and insufficient bits to decode all expected 
8-by-8 blocks in video packet. These conditions can be 
tested Sequentially. For example, when testing for extra bits 
remaining, the condition is tested after all the 8-by-8 blocks 
in the Video packet are processed. In another example, the 
testing of the number of DCT coefficients can be performed 
on a block-by-block basis. The process advances from the 
fourth state 920 to a second decision block 924. However, it 
will be understood by the skilled practitioner that the fourth 
state 920 and the second decision block 924 can be included 
in a loop, Such as a FOR loop. 

In the second decision block 924, the process determines 
whether there has been an error in the forward decoding of 
the video packet as described in the fourth state 920 (in the 
forward direction). The process proceeds from the Second 
decision block 924 to a fifth state 928 when there is no error. 
If there is an error in the forward decoding, the proceSS 
proceeds from the second decision block 924 to a sixth state 
932 and to a tenth state 948. Upon an error in forward 
decoding, the proceSS terminates further forward decoding 
and records the error location and type of error in the tenth 
state 948. The error location in the forward direction, L, and 
the number of completely decoded macroblocks in the 
forward direction, N, will be described in greater detail 
later in connection with FIGS. 10-13. 

In the fifth state 928, the process reconstructs the DCT 
coefficient blocks and ends. In one embodiment, the recon 
struction proceeds according to standard MPEG-4 tech 
niques. It will be understood by one of ordinary skill in the 
art that the process can be reactivated to process the next 
Video packet. 

In the sixth state 932, the process loads the video packet 
data to a bit buffer. In order to perform partial RVLC 
decoding, detection of the DC (for I-VOP) or Motion (for 
P-VOP) markers for each video packet should be obtained 
without prior Syntax errors or data overrun. In one 
embodiment, a circular buffer that reads data for the entire 
packet is used to obtain the remaining bits for a Video packet 
by unpacking each byte to 8 bits. 

The process removes stuffing bits from the end of the 
buffer, which leaves only data bits in the RVLC buffer. 
During parsing of the Video packet header and motion vector 
portion or DC portion of the Video packet, the expected 
number of macroblocks, the type of each one macroblock 
(INTRA or INTER), whether a macroblock is skipped or 
not, how many and which of the expected 4 luminance and 
2 chrominance 8-by-8 blocks have been coded and should 
thus be present in the bitstream, and whether INTRA blocks 
have 63 or 64 coefficients (i.e., whether their DC coefficient 
is coded together or separate from the AC coefficients) 
should be known. This information can be stored in a data 
structure with the RVLC data bits. The process advances 
from the sixth state 932 to a seventh state 936. 

In the seventh state 936, the process performs reversible 
variable length code (RVLC) decoding in the backward 
direction on the Video packet. In one embodiment, the 
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process performs the backward decoding on the Video 
packet according to standard MPEG-4 RVLC decoding 
techniques. The maximum number of decoded codewords 
should be recovered in each direction. One embodiment of 
the process maintains the number of completely decoded 
macroblocks encountered in the reverse direction in a 
counter. In one embodiment, the counter is initialized with 
a value from the Video packet header that relates to the 
number of macroblockS expected in the Video packet, N, and 
the counter counts down as macroblocks are read. The 
process advances from the seventh state 936 to an eighth 
State 940. 

In the eighth state 940, the process detects an error in the 
Video packet from the backward decoding and records the 
error and the type of error. In addition to the errors for the 
forward direction described earlier in connection with the 
fourth state 920, another error that can occur in the reverse 
decoding direction occurs when the last decoded codeword, 
i.e., the first codeword in the reverse direction, decodes to a 
codeword with last=0. Advantageously, detection of the 
location of the error in the reverse direction can reveal 
ranges of data where Such data is still usable. Use of the error 
location in the reverse or backward direction, L, and use of 
the number of completely decoded macroblocks in the 
reverse direction, N, will be described later in connection 
with FIGS. 10-13. 

In the exemplary process, different decoding trees 
(INTRA/INTER) are used for reverse decoding direction 
than in the forward decoding direction. In one embodiment, 
the reverse decoding trees are obtained by reversing the 
order of bits for each codeword. In addition, one embodi 
ment modifies the symbol decoding routine to take into 
account that a sign bit that is coming last in forward 
decoding is encountered first in backward decoding, and that 
Last=1 indicates the last codeword of an 8-by-8 block in 
forward decoding, but indicates the first codeword in reverse 
decoding. When decoding in the reverse direction, the very 
first codeword should have last=1 or otherwise an error is 
declared. 
When data is read in the reverse order, the process looks 

ahead by one symbol when decoding a block. If a codeword 
with last=1 is reached, the proceSS has reached the end of 
reverse decoding of the current 8-by-8 block, and the 
process advances to the next block. In addition, the order of 
the blockS is reversed for the same reason. For example, if 
5 INTER blocks followed by 3 INTRA blocks are expected 
in the forward direction, 3 INTRA blocks followed by 5 
INTER blocks should be expected in the reverse direction. 
The process advances from the eighth state 940 to a ninth 
State 944. 

In the ninth State 944, the process discards overlapping 
error regions from the forward and the reverse decoding 
directions. The 2 arrays of decoded Symbols are compared to 
evaluate overlap in error between the error obtained during 
forward RVLC decoding and the error obtained during 
reverse RVLC decoding to partially decode the video packet. 
Further details of partial decoding will be described in 
greater detail later in connection with FIGS. 10-13. It will 
be understood by one of ordinary skill in the art that that in 
the process described herein, the arrays contain the Success 
fully decoded codewords before any decoding error has been 
declared in each direction. If there is no overlap between 
Successfully decoded regions in forward and reverse direc 
tion at the bit-level and also at the DCT (Macroblock) level, 
then one embodiment performs a conservative backtracking 
of a predetermined number of bits, T, such as about 90 bits 
in each direction, i.e., the last 90 bits in each direction are 
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discarded. Those codewords that overlap (in the bit buffer) 
or decode to DCT coefficients that overlap (in the DCT 
buffer) are discarded. In addition, one embodiment retains 
only entire INTER macroblocks (no partial macroblock 
DCT data or Intra-coded macroblocks) in the decoding 
buffers. The remaining codewords are then used to recon 
struct the 8-by-8 DCT values for individual blocks, and the 
process ends. It will be understood that the process can be 
reactivated to process the next video packet. 

The process illustrated in FIG. 9 reveals the location of 
the error (the bit location) in the forward direction, L; the 
location of the error in the reverse direction, L, the type of 
error that was encountered in the forward direction and in 
the reverse direction; the expected length of the Video 
packet, L, the number of expected macroblocks in the Video 
packet, N, the number of completely decoded macroblockS 
in the forward direction, N.; and the number of completely 
decoded macroblocks in the reverse direction, N. 

FIGS. 10-13 illustrate partial RVLC decoding strategies. 
In one exemplary partial RVLC decoding process, a partial 
decoding Strategy for extraction of useful data from a video 
packet is Selected according to one of four outcomes. 
Processing of a first outcome, where L+L-L, and 
N+N-N, will be described later in connection with FIG. 
10. Processing of a Second outcome, where L+L-L, and 
N+N>=N, will be described later in connection with FIG. 
11. Processing of a third outcome, where L+L>=L, and 
N+N<N, will be described later in connection with FIG. 
12. Processing of a fourth outcome, where L+L>=L, and 
N+N>=N, will be described later in connection with FIG. 
13. 

FIG. 10 illustrates a partial decoding strategy used when 
L+L<L, and N+N<N. A first portion 1002 of FIG. 10 
indicates the bit error positions, L and L. A Second portion 
1004 indicates the completely decoded macroblocks in the 
forward direction, N, and in the reverse direction, N. A 
third portion 1006 indicates a backtracking of bits, T, from 
the bit error locations. It will be understood by one of 
ordinary skill in the art that the number selected for the 
backtracking of bits, T, can vary in a very broad range and 
can even be different in the forward direction and in the 
reverse direction. In one embodiment, the value of T is 90 
bits. 

The exemplary proceSS apportions the Video packet in a 
first partial packet 1010, a second partial packet 1012, and 
a discarded partial packet 1014. The first partial packet 1010 
may be used by the decoder and includes complete mac 
roblocks up to a bit position corresponding to L-T. The 
second partial packet 1012 may also be used by the decoder 
and includes complete macroblocks from a bit position 
corresponding to L-L--T to the end of the packet, L, Such 
that the Second partial packet is about La-T in size. AS 
described in greater detail later in connection with FIG. 14, 
one embodiment of the process discards intra blocks in the 
first partial packet 1010 and in the second partial packet 
1012, even if the intra blocks are identified as uncorrupted. 
The discarded partial packet 1014, which includes the 
remaining portion of the Video packet, is discarded. 

FIG. 11 illustrates a partial decoding Strategy used when 
L+L-L, and N+N>=N. A first portion 1102 of FIG. 11 
indicates the bit error positions, L and L. A second portion 
1104 indicates the completely decoded macroblocks in the 
forward direction, N, and in the reverse direction, N. 

The exemplary proceSS apportions the Video packet in a 
first partial packet 1110, a Second partial packet 1112, and a 
discarded partial packet 1114. The first partial packet 1110 
may be used by the decoder and includes complete mac 
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roblocks from the start of the video packet to the macroblock 
corresponding to N-N-1. The Second partial packet 1112 
may also be used by the decoder and includes the (N+1)th 
macroblock to the last macroblock in the Video packet, Such 
that the second partial packet 1112 is about N-N-1 in size. 
One embodiment of the process discards intra blocks in the 
first partial packet 1110 and in the Second partial packet 
1112, even if the intra blocks are identified as uncorrupted. 
The discarded partial packet 1114, which includes the 
remaining portion of the Video packet, is discarded. 

FIG. 12 illustrates a partial decoding Strategy used when 
L+L>=L, and N+N-N. A first portion 1202 of FIG. 12 
indicates the bit error positions, L and L. A Second portion 
1204 indicates the completely decoded macroblocks in the 
forward direction, N, and in the reverse direction, N. 
The exemplary proceSS apportions the Video packet in a 

first partial packet 1210, a Second partial packet 1212, and 
a discarded partial packet 1214. The first partial packet 1210 
may be used by the decoder and includes complete mac 
roblocks from the beginning of the Video packet to a 
macroblock at N-b mb(L), where b mb(L) denotes the 
macroblock at the bit position L. The Second partial packet 
1212 may also be used by the decoder and includes the 
complete macroblocks from the bit position corresponding 
to L to the end of the packet. One embodiment of the 
process discards intra blocks in the first partial packet 1210 
and in the Second partial packet 1212, even if the intra blockS 
are identified as uncorrupted. The discarded partial packet 
1214, which includes the remaining portion of the video 
packet, is discarded. 

FIG. 13 illustrates a partial decoding Strategy used when 
L+L>=L, and N+N>=N. A first portion 1302 of FIG. 13 
indicates the bit error positions, L and L. A second portion 
1304 indicates the completely decoded macroblocks in the 
forward direction, N, and in the reverse direction, N. 
The exemplary proceSS apportions the Video packet in a 

first partial packet 1310, a second partial packet 1312, and 
a discarded partial packet 1314. The first partial packet 1310 
may be used by the decoder and includes complete mac 
roblocks up to the bit position corresponding to the lesser of 
N-b mb(L), where b mb(L) denotes the last complete 
macroblock up to bit position L, and the complete mac 
roblocks up to (N-N-1)th macroblock. The second partial 
packet 1312 may also be used by the decoder and includes 
the number of complete macroblocks counting from the end 
of the Video packet corresponding to the lesser of N-f mb 
(L), where f mb(L) denotes the last macroblock in the 
reverse direction that is uncorrupted as determined by the 
forward direction, and the number of complete macroblockS 
corresponding to N-N-1. One embodiment of the process 
discards intra blocks in the first partial packet 1310 and in 
the Second partial packet 1312, even if the intra blocks are 
identified as uncorrupted. The discarded partial packet 1314, 
which includes the remaining portion of the Video packet, is 
discarded. 

FIG. 14 illustrates a partially corrupted video packet 1402 
with at least one intra-coded macroblock. In one 
embodiment, an intra-coded macroblock in a portion of a 
partially corrupted Video packet is discarded even if the 
intra-coded macroblock is in a portion of the partially 
corrupted video packet that is considered uncorrupted. 
A decoding process, Such as the process described in 

connection with FIGS. 9 to 13, allocates the partially cor 
rupted video packet 1402 to a first partial packet 1404, a 
corrupted partial packet 1406, and a Second partial packet 
1408. The first partial packet 1404 and the second partial 
packet 1408 are considered error-free and can be used. The 
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corrupted partial packet 1406 includes corrupted data and 
should not be used. 

However, the illustrated first partial packet 1404 includes 
a first intra-coded macroblock 1410, and the illustrated 
Second partial packet 1408 includes a Second intra-coded 
macroblock 1412. One process according to an embodiment 
of the invention also discards an intra-coded macroblock, 
Such as the first intra-coded macroblock 1410 or the second 
intra-coded macroblock 1412, when any error or corruption 
is detected in the Video packet, and the process advanta 
geously continues to use the recovered macroblocks corre 
sponding to error-free macroblocks. Instead, the proceSS 
conceals the intra-coded macroblocks of the partially cor 
rupted Video packets. 
One embodiment of the invention partially decodes intra 

coded macroblocks from partially corrupted packets. 
According to the MPEG-4 standard, any data from a cor 
rupted Video packet is dropped. Intra-coded macroblockS 
can be encoded in both I-VOPs and in P-VOPs. As provided 
in the MPEG-4 standard, a DC coefficient of an intra-coded 
macroblock and/or the top-row and first-column AC coef 
ficient of the intra-coded macroblock can be predictively 
coded from the intra-coded macroblock's neighboring intra 
coded macroblockS. 

Parameters encoded in the Video bitstream can indicate 
the appropriate mode of operation. A first parameter, referred 
to in MPEG-4 as “intra dc vlc thr,” is located in the VOP 
header. As set forth in MPEG-4, the first parameter, intra 
dc vlc thr, is encoded to one of 8 codes as described in 
Table I, where QP indicates a quantization parameter. 

TABLE I 

Index Meaning Code 

O Use Intra DC VLC for entire VOP OOO 
1. Switch to Intra AC VLC at running QP >= 13 OO1 
2 Switch to Intra AC VLC at running QP >= 15 O10 
3 Switch to Intra AC VLC at running QP >= 17 O11 
4 Switch to Intra AC VLC at running QP >= 19 1OO 
5 Switch to Intra AC VLC at running QP >= 21 101 
6 Switch to Intra AC VLC at running QP >= 23 110 
7 Use Intra AC VLC for entire VOP 111 

The intra dc vlc thr code of “000” corresponds to 
Separating DC coefficients from AC coefficients in intra 
coded macroblocks. With respect to an I-VOP, the setting of 
the intra dc vlc thr parameter to “000' results in the 
placement by the encoder of the DC coefficient before the 
DC marker, and the placement of the AC coefficients after 
the DC marker. 

With respect to a P-VOP, the setting of the intra dc 
vlc thr parameter to “000” results in the encoder placing 
the DC coefficients immediately after the motion marker, 
together with the cbpy and ac pred flag information. It 
will be understood that the value of the intra dc vlc thr 
parameter is Selected at the encoding level. For error 
resilience, Video bitstreams may be relatively more robustly 
encoded with the intra dc vlc thr parameter set to 000. 
Nonetheless, one embodiment of the invention advanta 
geously detects the Setting of the intra dc vlc thr param 
eter to "000, and monitors for the motion marker and/or the 
DC marker. If the corresponding motion marker and/or is 
observed without an error, the process classifies the DC 
information received ahead of the motion marker and/or DC 
marker and uses the DC information in decoding. Otherwise, 
the DC information is dropped. 
A second parameter, referred to in MPEG-4 as “ac 

pred-flag” is located after the motion marker/DC marker, but 

15 

25 

35 

40 

45 

50 

55 

60 

65 

24 
before RVLC texture data. The “ac pred flag” parameter 
instructs the encoder to differentially encode and the decoder 
to differentially decode the top row and first column of DCT 
coefficients (a total of 14 coefficients) from a neighboring 
block that has the best match with the current block with 
regard to DC coefficients. The neighboring block with the 
Smallest difference is used as a prediction block as shown in 
FIG. 15. 

FIG. 15 illustrates a sequence of macroblocks with AC 
prediction. FIG. 15 includes a first macroblock 1502, A, a 
Second macroblock 1504, B, a third macroblock 1506, C, a 
fourth macroblock 1508, D, a fifth macroblock 1510, X, and 
a sixth macroblock 1512, Y. The fifth macroblock 1510, X, 
and the sixth macroblock 1512, Y, are encoded with AC 
prediction enabled. A first column of DCT coefficients from 
the first macroblock 1502, A, is used in the fifth macroblock 
1510, X, and the sixth macroblock 1512, Y. The top row of 
coefficients from the third macroblock 1506, C, or from the 
fourth macroblock 1508, D, is used to encode the top row of 
the fifth macroblock 1510, X, or the sixth macroblock 1512, 
Y, respectively. 

It will be understood that for error resilience, the encoder 
should disable the AC prediction or differential encoding for 
intra-coded macroblocks. With the AC prediction disabled, 
intra-coded macroblocks that correspond to either the first or 
second “good” part of the RVLC data can be used. 

In one embodiment, with AC prediction enabled, the 
intra-coded macroblocks of the “good” part of the RVLC 
data can be dropped as described earlier in connection with 
FIG. 14. 

In addition, one decoder or decoding proceSS according to 
an embodiment of the invention further determines whether 
the intra-coded macroblock, referred to as "Suspect intra 
coded macroblock' can be used even with AC prediction 
enabled. The decoder determines whether another intra 
coded macroblock exists to the immediate left or immedi 
ately above the Suspect intra-coded macroblock. When no 
Such other intra-coded macroblock exists, the Suspect intra 
coded macroblock is labeled "good,” and is decoded and 
used. 
One decoder further determines whether any of the other 

macroblocks to the immediate left or immediately above the 
Suspect intra-coded macroblock have not been decoded. If 
there are any Such macroblocks, the Suspect intra-coded 
macroblock is not used. 

FIG. 16 illustrates a bit structure for an MPEG-4 data 
partitioning packet. Data partitioning is an option that can be 
Selected by the encoder. The data partitioning packet 
includes a resync marker 1602, a macroblock number 
1604, a quant scale 1606, a header extension code (HEC) 
1608, a motion and header information 1610, a motion 
marker 1612, a texture information 1614, and a resync 
marker 1616. 
The MPEG-4 standard allows the DC portion of frame 

data to be placed in the data partitioning packet either before 
or after the AC portion of frame data. The order is deter 
mined by the encoder. When data partitioning is enabled, the 
encoder includes motion vectors together with “not-coded” 
and “mcbpc' information in the motion and header infor 
mation 1610 ahead of the motion marker 1612 as part of 
header information as shown in FIG. 16. 
When an error is detected in the receiving of a packet, but 

the error occurs after the motion marker 1612, one embodi 
ment of the invention uses the data received ahead of the 
motion marker 1612. One embodiment predicts a location 
for the motion marker 1612 and detects an error based on 
whether or not the motion marker 1612 was observed in the 
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predicted location. Depending on the nature of the Scenes 
encoded, the data included in the motion and header infor 
mation 1610 can yield a wealth amount of information that 
can be advantageously recovered. 

For example, when the “not coded” flag is Set, a macrob 
lock should be copied from the same location in the previous 
frame by the decoder. The macroblocks corresponding to the 
“not coding” flag can be reconstructed safely. The “mcbpc' 
identifies which of the 68-by-8 blocks that form a macrob 
lock (4 for luminance and 2 for chrominance) have been 
coded and thus include corresponding DCT coefficients in 
the texture information 1614. 
When RVLC is enabled, the texture information 1614 is 

further divided into a first portion and a second portion. The 
first portion immediately following the motion marker 1612 
includes “cbpy' information, which identifies which of the 
4 luminance 8-by-8 blocks are actually coded and which are 
not. The cbpy information also includes a DC coefficient for 
those intra-coded macroblocks in the packet for which the 
corresponding “Intra DC VLC encoding” has been enabled. 

The cbpy information further includes an ac pred flag, 
which indicates whether the corresponding intra-coded mac 
roblocks have been differentially encoded with AC predic 
tion by the encoder from other macroblocks that are to the 
immediate left or are immediately above the macroblock. In 
one embodiment, the decoder uses all of or a Selection of the 
cbpy information, the DC coefficient, and the ac pred flag 
in conjunction with the presence or absence of a first 
error-free portion of the DCT data in the texture information 
1614 to assess which part can be safely decoded. In one 
example, the presence of Such a good portion of data 
indicates that DC coefficients of intra macroblocks and 
cbpy-inferred non-coded Y-blocks of a macroblock can be 
decoded. 
One technique used in digital communications to increase 

the robustness of transmitted or Stored digital information is 
forward error correction (FEC) coding. FEC coding includes 
the addition of error correction information before data is 
stored or transmitted. Part of the FEC process can also 
include other techniqueS Such as bit-interleaving. Both the 
original data and the error correction information are Stored 
or transmitted, and when data is lost, the FEC decoder can 
reconstruct the missing data from the data that it received 
and the error correction information. 

Advantageously, embodiments of the invention decode 
FEC codes in an efficient and backward compatible manner. 
One drawback to FEC coding techniques is that the error 
correction information increases the amount of data that is 
stored or transmitted, referred to as overhead. FIG. 17 
illustrates one example of a tradeoff between block error rate 
(BER) correction capability versus overhead. A horizontal 
axis 1710 corresponds to an average BER correction capa 
bility. A vertical axis 1720 corresponds to an amount of 
overhead, expressed in FIG. 17 in percentage. A first curve 
1730 corresponds to a theoretical bit overhead versus BER 
correction capability. A second curve 1740 corresponds to 
one example of an actual example of overhead verSuS BER 
correction capability. Despite the Overhead costs, the ben 
efits of receiving the original data as intended can outweigh 
the drawbacks of increased data Storage or transmission, or 
the drawbacks of a revised bit allocation in a bandwidth 
limited System. 

Another disadvantage to FEC coding is that the data, as 
encoded with FEC codes, may no longer be compatible with 
Systems and/or Standards in use prior to FEC coding. Thus, 
FEC coding is relatively difficult to add to existing systems 
and/or standards, such as MPEG-4. 
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To be compatible with existing Systems, a Video bitstream 

should be compliant with a Standard Syntax, Such as 
MPEG-4 syntax. To retain compatibility with existing 
Systems, embodiments of the invention advantageously 
decode FEC coded bitstreams that are encoded only with 
Systematic FEC codes and not non-Systematic codes, and 
retrieve FEC codes from identified user data video packets. 

FIG. 18 illustrates a video bitstream with systematic FEC 
data. FEC codes can correspond to either Systematic codes 
or non-Systematic codes. A Systematic code leaves the 
original data untouched and appends the FEC codes Sepa 
rately. For example, a conventional bitstream can include a 
first data 1810, a second data 1830, and so forth. With 
Systematic coding, the original data, i.e., the first data 1810 
and the second data 1830, is preserved, and the FEC codes 
are provided Separately. An example of the Separate FEC 
code is illustrated by a first FEC code 1820 and a second 
FEC code 1840 in FIG. 18. In one embodiment, the data is 
carried in a VOP packet, and the FEC codes are carried in 
a user data packet, which follows the corresponding VOP 
packet in the bitstream. One embodiment of the encoder 
includes a packet of FEC codes in a user data Video packet 
for each VOP packet. However, it will be understood that 
depending on decisions made by the encoder, less than every 
corresponding data may be Supplemented with FEC codes. 
By contrast, in a non-Systematic code, the original data 

and the FEC codes are combined. It will be understood by 
one of ordinary skill in the art that the application of FEC 
techniques that generate non-Systematic code result in bit 
streams should be avoided where the applicable video 
Standard does not specify FEC coding. 
A wide variety of FEC coding types can be used. In one 

embodiment, the FEC coding techniques correspond to 
Bose-Chaudhuri-Hocquenghem (BCH) coding techniques. 
In one embodiment, a block size of 511 is used. In the 
illustrated configurations, the FEC codes are applied at the 
packetizer level, as opposed to another level, Such as a 
channel level. 

In the context of an MPEG-4 system, one way of includ 
ing the Separate Systematic error correction data, as shown 
by the first FEC code 1820 and the second FEC code 1840, 
is to include the error correction data in a user data Video 
packet. The user data Video packet can be ignored by a 
standard MPEG-4 decoder. In the MPEG-4 syntax, a data 
packet is identified as a user data Video packet in the Video 
bitstream by a user data Start code, which is a bit String of 
000001B2 in hexadecimal (start code value of B2), as the 
Start code of the data packet. Various data can be included 
with the FEC codes in the user data video packet. In one 
embodiment, a user data header code identifies the type of 
data in the user data Video packet. For example, a 16-bit 
code for the user data header code can identify that data in 
the user data Video packet is FEC code. In another example, 
such as in a standard yet to be defined, the FEC codes of 
Selected data are carried in a dedicated data packet with a 
unique Start code. 

It will be appreciated that error correction codes corre 
sponding to all the data in the Video bitstream can be 
included in the user data Video packet. However, this dis 
advantageously results in a relatively large amount of over 
head. One embodiment of the invention advantageously 
encodes FEC codes from only a selected portion of the data 
in the video bitstream. The user data header code in the user 
data Video packet can further identify the Selected data to 
which the corresponding FEC codes apply. In one example, 
FEC codes are provided and decoded only for data corre 
sponding to at least one of motion vectors, DC coefficients, 
and header information. 
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FIG. 19 is a flowchart 1900 generally illustrating a 
process of decoding Systematically encoded FEC data in a 
video bitstream. The process can be activated once per VOP. 
The decoding process is advantageously compatible with 
video bitstreams that include FEC coding and those that do 
not. The process starts at a first state 1904, where the process 
receives the video bitstream. The video bitstream can be 
received wirelessly, through a local or a remote network, and 
can further be temporarily stored in buffers and the like. The 
process advances from the first state 1904 to a second state 
1908. 

In the second state 1908, the process retrieves the data 
from the video bitstream. For example, in an MPEG-4 
decoder, the process can identify those portions correspond 
ing to standard MPEG-4 video data and those portions 
corresponding to FEC codes. In one embodiment, the pro 
ceSS retrieves the FEC codes from a user data Video packet. 
The process advances from the second state 1908 to a 
decision block 1912. 

In the decision block 1912, the process determines 
whether FEC codes are available to be used with the other 
data retrieved in the second state 1908. When FEC codes are 
available, the process proceeds from the decision block 1912 
to a third state 1916. Otherwise, the process proceeds from 
the decision block 1912 to a fourth state 1920. In another 
embodiment, the decision block 1912 instead determines 
whether an error is present in the received Video bitstream. 
It will be understood that the corresponding portion of the 
Video bitstream that is inspected for errors can be stored in 
a buffer. When an error is detected, the process proceeds 
from the decision block 1912 to the third State 1916. When 
no error is detected, the process proceeds from the decision 
block 1912 to the fourth State 1920. 

In the third state 1916, the process decodes the FEC codes 
to reconstruct the faulty data and/or verify the correctness of 
the received data. The third state 1916 can include the 
decoding of the normal video data that is accompanied with 
the FEC codes. In one embodiment, only selected portions 
of the video data supplemented with FEC codes, and the 
proceSS reads header codes or the like, which indicate the 
data to which the retrieved FEC codes correspond. 

The process advances from the third State to an optional 
fifth state 1924. One encoding process further includes other 
data in the same packet as the FEC codes. For example, this 
other data can correspond to at least one of a count of the 
number of motion vectors, a count of the number of bits per 
packet that are encoded between the resync field and the 
motion marker field. This count allows a decoder to advan 
tageously resynchronize to a Video bitstream earlier than at 
a place in a bitstream with the next marker that permits 
reSynchronization. The process advances from the optional 
fifth state 1924 to the end. The process can be reactivated to 
process the next batch of data, such as another VOP. 

In the fourth state 1920, the process uses the retrieved 
video data. The retrieved data can be the normal video data 
corresponding to a video bitstream without embedded FEC 
codes. The retrieved data can also correspond the normal 
Video data that is maintained Separately in the Video bit 
stream from the embedded FEC codes. The process then 
ends until reactivated to process the next batch of data. 

FIG. 20 is a block diagram generally illustrating one 
process of using a ring buffer in error resilient decoding of 
Video data. Data can be transmitted and/or received in 
varying bit rates and in bursts. For example, network con 
gestion can cause delays in the receipt of packets of data. 
The dropping of data, particularly in wireleSS environments, 
can also occur. In addition, a relatively Small amount of 
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received data can be stored in a buffer until it is ready to be 
processed by a decoder. 
One embodiment of the invention advantageously uses a 

ring buffer to Store incoming Video bitstreams for error 
resilient decoding. A ring buffer is a buffer with a fixed size. 
It will be understood that the size of the ring buffer can be 
Selected in a very broad range. A ring buffer can be con 
Structed from an addressable memory, Such as a random 
access memory (RAM). Another name for a ring buffer is 
circular buffer. 
The storing of the video bitstream in the ring buffer is 

advantageous in error resilient decoding, including error 
resilient decoding of video bitstreams in a wireless MPEG-4 
compliant receiver, Such as a Video-enabled cellular tele 
phone. With error resilient decoding techniques, data from 
the video bitstream may be read from the video bitstream 
multiple times, in multiple locations, and in multiple direc 
tions. The ring buffer permits the decoder to retrieve data 
from various portions of the video bitstream in a reliable and 
efficient manner. In one test, use of the ring buffer Sped 
access to bitstream data by a factor of two. 

In contrast to other buffer implementations, data is advan 
tageously not flushed from a ring buffer. Data enters and 
exits the ring buffer in a first-in first-out (FIFO) manner. 
When a ring buffer is full, the addition of an additional 
element overwrites the first element or the oldest element in 
the ring buffer. 
The block diagram of FIG. 20 illustrates one configura 

tion of a ring buffer 2002. Data received from the video 
bitstream is loaded into the ring buffer 2002 as the data is 
received. In one embodiment, the modules of the decoder 
that decode the video bitstream do not access the video 
bitstream directly, but rather, access the Video bitstream data 
that is stored in the ring buffer 2002. Also, the skilled 
practitioner will appreciate that the ring buffer 2002 can 
reside either ahead of or behind a VOP decoder in the data 
flow. However, the placement of the ring buffer 2002 ahead 
of the VOP decoder saves memory for the ring buffer 2002, 
as the VOP is in compressed form ahead of the VOP decoder. 
The video bitstream data that is loaded into the ring buffer 

2002 is represented in FIG. 20 by a bitstream file 2004. Data 
logging information, including error logging information, 
such as error flags, is also stored in the ring buffer 2002 as 
it is generated. The data logging information is represented 
in FIG. 20 as a log file 2006. In one embodiment, a log 
interface between H.223 output and decoder input advanta 
geously Synchronizes or aligns the data logging information 
in the ring buffer 2002 with the video bitstream data. 
A first arrow 2010 corresponds to a location (address) in 

the ring buffer 2002 in which data is stored. As data is added 
to the ring buffer 2002, the ring buffer 2002 conceptually 
rotates in the clockwise direction as shown in FIG. 20. A 
second arrow 2012 indicates an illustrative position from 
which data is retrieved from the ring buffer 2002. A third 
arrow 2014 can correspond to an illustrative byte position in 
the packet that is being retrieved or accessed. Packet Start 
codes 2016 can be dispersed throughout the ring buffer 
2002. 
When data is retrieved from the ring buffer 2002 for 

decoding of a VOP with video packets enabled, one embodi 
ment of the decoder inspects the corresponding error-flag of 
each packet. When the packets are found to be corrupted, the 
decoder skips the packets until the decoder encounters a 
clean or error-free packet. When the decoder encounters a 
packet, it Stores the appropriate location information in an 
indeX table, which allows the decoder to access the packet 
efficiently without repeating a Seek for the packet. In another 
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embodiment, the decoder uses the contents of the ring buffer 
2002 to recover and use data from partially corrupted video 
packets as described earlier in connection with FIGS. 7-16. 

Table II illustrates a sample of contents of an index table, 
which allows relatively efficient access to packets Stored in 
the ring buffer 2002. 

TABLE II 

Index - Table Entry 

Initial 
Value Descriptions 

Walid O Valid flag. A value of 1 indicates that valid data 
corresponding to this entry information exists in the 
ring buffer. 

Past O Past flag, O indicates that this index has a current or 
future index. 

Pos O Start position of the packet, which indicates a position 
in the ring buffer. 

ErrorType O Error type. 
Size O Packet Size. 

Various embodiments of the invention have been 
described above. Although this invention has been described 
with reference to these specific embodiments, the descrip 
tions are intended to be illustrative of the invention and are 
not intended to be limiting. Various modifications and appli 
cations may occur to those skilled in the art without depart 
ing from the true Spirit and Scope of the invention as defined 
in the appended claims. 

APPENDIX A 

Incorporation by Reference of Commonly Owned 
Applications 

The following patent applications, commonly owned and 
filed of the same day as the present application, are hereby 
incorporated herein in their entirety by reference thereto: 

Application 
No. 

Attorney 
Title Docket No. 

SYSTEMS AND METHODS FOR 
ENHANCED ERROR 
CONCEALMENT INAVIDEO 
DECODER 
SYSTEMS AND METHODS FOR 
DECODING OF SYSTEMATIC 
FORWARDERROR CORRECTION 

(FEC) CODES OF SELECTED 
DATA INA VIDEO BITSTREAM 
SYSTEMS AND METHODS FOR 
MANAGEMENT OF DATAIN 
ARING BUFFER FORERROR 
RESILIENT DECODING OF 
A VIDEO BITSTREAM 
SYSTEMS AND METHODS FOR 
REDUCING ERROR PROPAGATION 
INAVIDEO DATASTREAM 
SYSTEMS AND METHODS FOR 
REFRESHING MARCOBLOCKS 
SYSTEMS AND METHODS FOR 
REDUCING FRAMERATES IN 
A VIDEO DATASTREAM 
SYSTEMS AND METHODS FOR 
GENERATING ERROR 
CORRECTION INFORMATION 
FOR MEDIASTREAM 
SYSTEMS AND METHODS FOR 
PERFORMING BTRATE 

10/092,366 INTV.OOSA 

10/092,353 INTV.OO7A 

10/092,384 INTV.OO8A 

10/092,340 INTV.OO9A 

10/092.375 INTV.O1OA 

10/092,345 INTV.O11A 

10/092,392 INTV.O12A 

10/092,383 INTV.O13A 
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-continued 

Application 
No. 

Attorney 
Title Docket No. 

ALLOCATING FOR A 
VIDEO DATASTREAM 
SYSTEMS AND METHODS FOR 
ENCODING REDUNDANT 
MOTION VECTORS IN 
COMPRESSED WIDEO 
BITSTREAM 
SYSTEMS AND METHODS FOR 
DECODING REDUNDANT 
MOTION VECTORS IN 
COMPRESSED WIDEO 
BITSTREAM 
SYSTEMS AND METHODS FOR 
DETECTING SCENE CHANGES 
INAVIDEO DATASTREAM 

10/092,373 INTV.O14A 

10/092,339 INTV.O15A 

10/092,394 INTV.O16A 

What is claimed is: 
1. A method of recovering useful data from a Video packet 

that has been corrupted, the method comprising: 
receiving the Video packet; 
ending without recovering data when corruption is 

detected in a Video packet header of the Video packet; 
ending without recovering data when corruption is 

detected in a DC portion of the video packet; 
ending without recovering data when corruption is 

detected in a motion vector portion of the Video packet; 
initiating decoding of the Video packet in a forward 

direction; 
maintaining a first count of a number of macroblockS 

decoded without error in the forward direction; 
Storing codewords decoded in the forward direction; 
Storing a first bit location when an error is first detected in 

the forward direction; 
initiating decoding of the Video packet in a reverse 

direction; 
maintaining a Second count of a number of macroblockS 

decoded without error in the reverse direction; 
Storing codewords decoded in the reverse direction; 
Storing a Second bit location when an error is first detected 

in the reverse direction; 
determining if there is an overlapping region, where the 

Overlapping region corresponds to a region identified in 
both the forward direction and in the reverse direction 
as having an error; 

if there is an overlapping region, discarding the data in the 
Overlapping region and using the data in a remaining 
portion of the Video packet; and 

if there is no overlapping region, discarding the data 
between a first backtracking amount ahead of the first 
error location in the forward direction and a Second 
backtracking amount behind the Second error location 
in the first location, and recovering the remaining 
portion of the Video packet. 

2. The method as defined in claim 1, wherein the first error 
location and the Second error location correspond to bit 
locations. 

3. The method as defined in claim 1, wherein the first error 
location and the Second error location correspond to mac 
roblock boundaries. 

4. The method as defined in claim 1, wherein the first 
backtracking amount and the Second backtracking amount 
are each to a next valid macroblock boundary. 
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5. The method as defined in claim 1, wherein the first 
backtracking amount and the Second backtracking amount 
are about 90 bits. 

6. The method as defined in claim 1, further comprising 
discarding recovered data from a corrupted Video packet that 
corresponds to an intra-coded macroblock. 

7. The method as defined in claim 1, further comprising: 
determining whether AC prediction was disabled by the 

encoder; 
using a recovered intra-coded macroblock if the intra 

coded macroblock is recovered from a portion of the 
video packet that is ahead of a DC marker in the 
forward direction, where the Video packet was encoded 
with AC prediction disabled; and 

32 
otherwise discarding recovered data corresponding to an 

intra-coded macroblock. 

8. The method as defined in claim 1, further comprising 
using recovered data corresponding to a first intra-coded 
macroblock only if no other intra-coded macroblock exists 
to the immediate left of the first intra-coded macroblock and 
no other intra-coded macroblock exists immediately above 
the first intra-coded macroblock in the image. 

9. The method as defined in claim 1, further comprising 
concealing errors with gray pixels for portions of the Video 
packet that were not recoverable. 
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