
USOO6876705B2

(12) United States Patent (10) Patent No.: US 6,876,705 B2
Katsavounidis et al. (45) Date of Patent: Apr. 5, 2005

(54) SYSTEMS AND METHODS FOR DECODING 5,936,674. A 8/1999 Kim
OF PARTIALLY CORRUPTED REVERSIBLE 5,995,171. A 11/1999 Enari et al.
VARIABLE LENGTH CODE (RVLC) INTRA- 6,141,448 A 10/2000 Khansari et al.
CODED MACROBLOCKS AND PARTIAL 6,148,026. A 11/2000 Puri et al.
BLOCK DECODING OF CORRUPTED OTHER PUBLICATIONS
MACROBLOCKS IN A WIDEO DECODER

U.S. Appl. No. 10/092,366, filed Mar. 5, 2002, Kim et al.
(75) Inventors: Ioannis Katsavounidis, Pasadena, CA U.S. Appl. No. 10/092,353, filed Mar. 5, 2002, Katsavouni

(US); Chang-Su Kim, Seoul (KR); dis et al.
Jong Won Kim, GwangJu (KR) U.S. Appl. No. 10/092,384, filed Mar. 5, 2002, Kim et al.

U.S. Appl. No. 10/092,340, filed Mar. 5, 2002, Kim et al.
(73) Assignee: Intervideo, Inc., Fremont, CA (US) U.S. Appl. No. 10/092.375, filed Mar. 5, 2002, Kim et al.

- U.S. Appl. No. 10/092,345, filed Mar. 5, 2002, Kim et al.
(*) Notice: Subject to any disclaimer, the term of this U.S. Appl. No. 10/092392, filed Mar. 5, 2002, Katsavouni

patent is extended or adjusted under 35 dis et al.
U.S.C. 154(b) by 358 days. U.S. Appl. No. 10/092,383, filed Mar. 5, 2002, Zhao et al.

U.S. Appl. No. 10/092,373, filed Mar. 5, 2002, Kim et al.
(21) Appl. No.: 10/092,376 U.S. Appl. No. 10/092,339, filed Mar. 5, 2002, Kim et al.
(22) Filed: Mar. 5, 2002 Appl. No. 10/092,394, filed Mar. 5, 2002, Katsavouni

IS et al.
(65) Prior Publication Data

Primary Examiner Shawn S. An
US 2002/0181594 A1 Dec. 5, 2002 (74) Attorney, Agent, or Firm-Rosenberg, Klein & Lee

Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 60/273,443, filed on Mar. 5,

2001, provisional application No. 60/275,859, filed on Mar. The invention is related to methods and apparatus that
14, 2001, and provisional application No. 60/286,280, filed recover usable video data from partially corrupted data.
on Apr. 25, 2001. Embodiments inspect corrupted data packets and identify

(51) Int. Cl." .. H04B 1/66 the location or locations of an error, whether the corrupted
(52) U.S. Cl. 375,24028; 375,240.27; data packet contains data expected to be error-free, and

375/240.25; 375/240.26; 714/799; 714/798; whether the error-free data should be used. Decoding of a
370/498; 370/479; 370/503; 370/510; 370/512; packet in both the forward direction and the backward

370/514; 709/247 direction can be used to locate a position of an error.
(58) Field of Search 375.202s, 240.27. Intra-coded macroblocks can also be recovered. A decoder

375/240.25, 240.26; 709/247; 714,709. can elect to use or to drop an intra-coded macroblock
798: 370/49s 510 512 51 4. 479 503 recovered from a corrupted data packet according to further

s s s s s s criteria that is applied to the recovered intra-coded macrob
(56) References Cited lock. One embodiment inspects Video bitstream data that has

been encoded with an optional data partitioning feature
U.S. PATENT DOCUMENTS enabled, and retrieves Specified data in areas of a corrupted

5,436,664 A 7/1995 Henry packet that are expected to be free from error.
5,502,573 A 3/1996 Fujinami
5,912,707 A 6/1999 Kim 9 Claims, 20 Drawing Sheets

ANOTHERSE MTON WECTOR
AWAABE

>

3s

" - (NTERPOLATE

use other MOTION
WECTOR

-sa-2

SUBSTUTE
CTION WECTOR

- -ice

-- a
US FRAME AT I k

No

-33
s

REFERENCE
FRAME AT T-k

MISSING

YES

SE FRAMEAT -k,
ADJUST MOTION

WECTORS
END

U.S. Patent Apr. 5, 2005 Sheet 1 of 20 US 6,876,705 B2

s

U.S. Patent Apr. 5, 2005 Sheet 2 of 20 US 6,876,705 B2

r)

it (N
..Y CS

E

i

U.S. Patent Apr. 5, 2005 Sheet 3 of 20 US 6,876,705 B2

--CO
START)

324 365

f.p. or 'Py" NTERPOLATE
?

"P"

572 376
S

ANOTHER MofoN VECTOR)YES - USE QEMOTION
AVAILABLE

2

NO

32O2 3247

MOTION VECTORYYES SUBSTITUTE
MISSING MOTON VECTOR

?o

NO

M 3.25 |S - 332

REFERENCEN
MSSING

2

YES 336

USE FRAME AT T- k,
ADJUST MOTION

VECTORS
END

A76, 5

U.S. Patent Apr. 5, 2005 Sheet 4 of 20 US 6,876,705 B2

-4O4
UPPER MB

-402
MISSING MB

-4O6
OWER MB

U.S. Patent

RECEIVE DATA FOR
PRESENT FRAME

4- 5.3as
- - - - - - - -

COMPUTE I
PROJECTED ERROR

WITH VARIOUS
ERROR RESLIENCE

| TECHNOUES
as m in

RESENCE
APPLY ERROR

TECHN QUE

-566

-362
UPDATE ERROR

WALUES

Apr. 5, 2005 Sheet 5 of 20

/1 -50

ef

ERRORYES
?

NO 322

US 6,876,705 B2

CLEAR ERROR CONCEAL ERROR
634 VALUE

ARE ERROR NYES
VALUES ZERO

2

NO 522

COMPUTE
PROJECTED ERROR
WTH RECEIVED

DATA

COMPUTE
PROJECTED ERROR

WTH ERROR
RESENCE

55(7

SELECT
2.54

UPDATE ERROR
VALUES

53 a26

USE RECEIVED SET ERROR
DATA VALUE

END

A7G 5

US 6,876,705 B2 U.S. Patent

8 W

(2942
STEXÍCH TV/2}ONOO

U.S. Patent Apr. 5, 2005 Sheet 7 of 20 US 6,876,705 B2

727

WP HEADER DCM

722 zz- zos / ze
A/C 74

2 N

VP HEADER
--

22- 24/ 726 2a: u/

A72 7

Aº 32/-/

US 6,876,705 B2 Sheet 8 of 20 Apr. 5, 2005 U.S. Patent

US 6,876,705 B2 U.S. Patent

CZ ZA

US 6,876,705 B2 Sheet 13 of 20 Apr. 5, 2005 U.S. Patent

(72/7 2/22/2%-Z)
! |

———ZT pup | T1
| | ?ró24T/|

US 6,876,705 B2 Sheet 14 of 20

H

U.S. Patent

zº / 22/-/

2ør.

US 6,876,705 B2 Sheet 15 of 20 Apr. 5, 2005 U.S. Patent

US 6,876,705 B2 Sheet 16 of 20 Apr. 5, 2005 U.S. Patent

US 6,876,705 B2 Sheet 17 of 20 Apr. 5, 2005 U.S. Patent

ZO --BOO, G

ZOZOZOZO -2300'Ç
|

(242 /-

ZO -300"|

%00 °C)?

——————

Z Z 32/z/

OWHAO NOc 623 ZA

U.S. Patent Apr. 5, 2005 Sheet 18 of 20 US 6,876,705 B2

O O. O. DATA FEC DATA

fas 77 u/ z520- ato- 7.5.27

A 7C2 725

U.S. Patent Apr. 5, 2005 Sheet 19 of 20 US 6,876,705 B2

79CO
A1

RECACULATE
SYNCHRONIZATION:

US 6,876,705 B2 Sheet 20 of 20 Apr. 5, 2005

| 96762,

U.S. Patent

(2, 22/-/

9/62,

US 6,876,705 B2
1

SYSTEMS AND METHODS FOR DECODING
OF PARTIALLY CORRUPTED REVERSIBLE
VARIABLE LENGTH CODE (RVLC) INTRA
CODED MACROBLOCKS AND PARTIAL
BLOCK DECODING OF CORRUPTED

MACROBLOCKS IN A WIDEO DECODER

RELATED APPLICATION

This application claims the benefit under 35 U.S.C. S 119
(e) of U.S. Provisional Application No. 60/273,443, filed
Mar. 5, 2001; U.S. Provisional Application No. 60/275,859,
filed Mar. 14, 2001; and U.S. Provisional Application No.
60/286,280, filed Apr. 25, 2001, the entireties of which are
hereby incorporated by reference.

APPENDIX A

Appendix A, which forms a part of this disclosure, is a list
of commonly owned copending U.S. patent applications.
Each one of the applications listed in Appendix A is hereby
incorporated herein in its entirety by reference thereto.

COPYRIGHT RIGHTS

A portion of the disclosure of this patent document
contains material which is Subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by any one of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention is related to Video decoding techniques. In
particular, the invention relates to Systems and methods of
recovering uSable video data from partially corrupted data.

2. Description of the Related Art
A variety of digital Video compression techniques have

arisen to transmit or to Store a Video signal with a lower
bandwidth or with leSS Storage Space. Such video compres
Sion techniques include international Standards, Such as
H.261, H.263, H.263+, H.263++, H.26L, MPEG-1, MPEG
2, MPEG-4, and MPEG-7. These compression techniques
achieve relatively high compression ratios by discrete cosine
transform (DCT) techniques and motion compensation
(MC) techniques, among others. Such video compression
techniques permit Video bitstreams to be efficiently carried
acroSS a variety of digital networks, Such as wireleSS cellular
telephony networks, computer networks, cable networks, via
Satellite, and the like.

Unfortunately for users, the various mediums used to
carry or transmit digital Video signals do not always work
perfectly, and the transmitted data can be corrupted or
otherwise interrupted. Such corruption can include errors,
dropouts, and delayS. Corruption occurs with relative fre
quency in Some transmission mediums, Such as in wireleSS
channels and in asynchronous transfer mode (ATM) net
WorkS. For example, data transmission in a wireleSS channel
can be corrupted by environmental noise, multipath, and
Shadowing. In another example, data transmission in an
ATM network can be corrupted by network congestion and
buffer overflow.

Corruption in a data Stream or bitstream that is carrying
Video can cause disruptions to the displayed Video. Even the
loSS of one bit of data can result in a loSS of Synchronization

15

25

35

40

45

50

55

60

65

2
with the bitstream, which results in the unavailability of
Subsequent bits until a Synchronization codeword is
received. These errors in transmission can cause frames to
be missed, blocks within a frame to be missed, and the like.
One drawback to a relatively highly compressed data Stream
is an increased Susceptibility to corruption in the transmis
Sion of the data Stream carrying the Video Signal.

Those in the art have Sought to develop techniques to
mitigate against the corruption of data in the bitstream. For
example, error concealment techniques can be used in an
attempt to hide errors in missing or corrupted blockS.
However, conventional error concealment techniques can be
relatively crude and unsophisticated.

In another example, forward error correction (FEC) tech
niques are used to recover corrupted bits, and thus recon
struct data in the event of corruption. However, FEC tech
niques disadvantageously introduce redundant data, which
increases the bandwidth of the bitstream for the video or
decreases the amount of effective bandwidth remaining for
the Video. Also, FEC techniques are computationally com
plex to implement. In addition, conventional FEC tech
niques are not compatible with the international Standards,
Such as H.261, H.263, MPEG-2, and MPEG-4, but instead,
have to be implemented at a higher, “systems' level.

SUMMARY OF THE INVENTION

The invention is related to methods and apparatus that
recover usable video data from partially corrupted data.
Embodiments inspect corrupted data packets and identify
the location or locations of an error, whether the corrupted
data packet contains data expected to be error-free, and
whether the error-free data should be used. Decoding of a
packet in both the forward direction and the backward
direction can be used to locate a position of an error.
Intra-coded macroblocks can also be recovered. A decoder
can elect to use or to drop an intra-coded macroblock
recovered from a corrupted data packet according to further
criteria that is applied to the recovered intra-coded macrob
lock. One embodiment inspects Video bitstream data that has
been encoded with an optional data partitioning feature
enabled, and retrieves Specified data in areas of a corrupted
packet that are expected to be free from error.
One embodiment of the invention includes a circuit

adapted to recover useful data from a Video packet that is at
least partially corrupted, the circuit comprising: a decoding
circuit configured to decode a Video packet in a forward
direction and in a backward direction, where the decoding
circuit detects bit locations of errors first encountered in the
forward direction and in the backward direction; a counter
adapted to maintain a count of complete macroblocks
decoded in the forward direction and in the backward
direction; and a control circuit adapted to discard at least a
portion of the Video packet that corresponds to an overlap
ping region, where the control circuit is further configured to
further discard additional data corresponding to a backtrack
ing amount when there is no overlapping region, where the
control circuit is further configured to discard information in
incomplete macroblocks, and where the control circuit is
adapted to permit use of at least a portion of the remaining
data.
One embodiment of the invention includes a circuit

adapted to recover useful data from a Video packet that is at
least partially corrupted, the circuit comprising: a data
parsing circuit adapted to determine whether a Video packet
is encoded with data partitioning enabled; an error checking
circuit configured to determine whether an error exists ahead

US 6,876,705 B2
3

of a motion marker of the Video packet; and a decoder
coupled to the data parsing circuit and to the error checking
circuit, where the decoder is adapted to decode at least a
portion of the data in the corrupted Video packet ahead of the
motion marker when data parsing circuit indicates that the
Video packet is encoded with data partitioning enabled and
when the error checking circuit indicates that the error does
not exist ahead of the motion marker.
One embodiment of the invention includes a circuit

adapted to recover useful data from a Video packet that is at
least partially corrupted, the circuit comprising: means for
receiving the Video packet; means for ending without recov
ering data when corruption is detected in at least one of a
Video packet header of the Video packet, a DC portion of the
Video packet, and a motion vector portion of the Video
packet; means for initiating decoding of the Video packet in
a forward direction; means for maintaining a first count of a
number of macroblocks decoded without error in the for
ward direction; means for Storing codewords decoded in the
forward direction; means for Storing a first bit location when
an error is first detected in the forward direction; means for
initiating decoding of the Video packet in a reverse direction;
means for maintaining a Second count of a number of
macroblockS decoded without error in the reverse direction;
means for Storing codewords decoded in the reverse direc
tion; means for Storing a Second bit location when an error
is first detected in the reverse direction; means for deter
mining if there is an overlapping region, where the over
lapping region corresponds to a region identified in both the
forward direction and in the reverse direction as having an
error, means for discarding the data in the Overlapping
region and for using the data in a remaining portion of the
Video packet if there is an overlapping region; and means for
discarding the data between a first backtracking amount
ahead of the first error location in the forward direction and
a Second backtracking amount behind the Second error
location in the first location, and for recovering the remain
ing portion of the Video packet if there is no overlapping
region.
One embodiment of the invention includes a method of

recovering useful data from a video packet that has been
corrupted, the method comprising: receiving the Video
packet, ending without recovering data when corruption is
detected in a Video packet header of the Video packet, ending
without recovering data when corruption is detected in a DC
portion of the Video packet; ending without recovering data
when corruption is detected in a motion vector portion of the
Video packet; initiating decoding of the Video packet in a
forward direction; maintaining a first count of a number of
macroblocks decoded without error in the forward direction;
Storing codewords decoded in the forward direction; Storing
a first bit location when an error is first detected in the
forward direction; initiating decoding of the Video packet in
a reverse direction; maintaining a Second count of a number
of macroblocks decoded without error in the reverse direc
tion; Storing codewords decoded in the reverse direction;
Storing a Second bit location when an error is first detected
in the reverse direction; determining if there is an overlap
ping region, where the overlapping region corresponds to a
region identified in both the forward direction and in the
reverse direction as having an error; if there is an overlap
ping region, discarding the data in the Overlapping region
and using the data in a remaining portion of the Video
packet, and if there is no overlapping region, discarding the
data between a first backtracking amount ahead of the first
error location in the forward direction and a Second back
tracking amount behind the Second error location in the first
location, and recovering the remaining portion of the Video
packet.

1O

15

25

35

40

45

50

55

60

65

4
One embodiment of the invention includes method for

recovering data in a corrupted Video packet comprising:
inspecting the Video packet to determine whether the Video
packet was encoded with data partitioning enabled; deter
mining whether an error exists ahead of a motion marker of
the Video packet; and decoding at least a portion of the data
in the corrupted Video packet ahead of the motion marker
when the Video packet was encoded with data partitioning
enabled and when the error does not exist ahead of the
motion marker.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will now be
described with reference to the drawings Summarized below.
These drawings and the associated description are provided
to illustrate preferred embodiments of the invention and are
not intended to limit the Scope of the invention.

FIG. 1 illustrates a networked System for implementing a
Video distribution System in accordance with one embodi
ment of the invention.

FIG. 2 illustrates a Sequence of frames.
FIG. 3 is a flowchart generally illustrating a process of

concealing errors or missing data in a Video bitstream.
FIG. 4 illustrates a process of temporal concealment of

missing motion vectors.
FIG. 5 is a flowchart generally illustrating a process of

adaptively concealing errors in a Video bitstream.
FIG. 6 is a flowchart generally illustrating a process that

can use weighted predictions to compensate for errors in a
video bitstream.

FIG. 7A illustrates a sample of a video packet with DC
and AC components for an I-VOP.

FIG. 7B illustrates a video packet for a P-VOP.
FIG. 8 illustrates an example of discarding a corrupted

macroblock.

FIG. 9 is a flowchart that generally illustrates a process
according to an embodiment of the invention of partial
RVLC decoding of discrete cosine transform (DCT) portions
of corrupted packets

FIGS. 10-13 illustrate partial RVLC decoding strategies.
FIG. 14 illustrates a partially corrupted video packet with

at least one intra-coded macroblock.

FIG. 15 illustrates a sequence of macroblocks with AC
prediction.

FIG. 16 illustrates a bit structure for an MPEG-4 data
partitioning packet.

FIG. 17 illustrates one example of a tradeoff between
block error rate (BER) correction capability versus over
head.

FIG. 18 illustrates a video bitstream with systematic FEC
data.

FIG. 19 is a flowchart generally illustrating a process of
decoding Systematically encoded FEC data in a Video bit
Stream.

FIG. 20 is a block diagram generally illustrating one
process of using a ring buffer in error resilient decoding of
Video data.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Although this invention will be described in terms of
certain preferred embodiments, other embodiments that are
apparent to those of ordinary skill in the art, including

US 6,876,705 B2
S

embodiments that do not provide all of the benefits and
features Set forth herein, are also within the Scope of this
invention. Accordingly, the Scope of the invention is defined
only by reference to the appended claims.

The display of Video can consume a relatively large
amount of bandwidth, especially when the video is dis
played in real time. Moreover, when the video bitstream is
wirelessly transmitted or is transmitted over a congested
network, packets may be lost or unacceptably delayed. Even
when a packet of data in a Video bitstream is received, if the
packet is not timely received due to network congestion and
the like, the packet may not be usable for decoding of the
video bitstream in real time. Embodiments of the invention
advantageously compensate for and conceal errors that
occur when packets of data in a video bitstream are delayed,
dropped, or lost. Some embodiments reconstruct the original
data from other data. Other embodiments conceal or hide the
result of errorS So that a corresponding display of the Video
bitstream exhibits relatively fewer errors, thereby effectively
increasing the Signal-to-noise ratio (SNR) of the System.
Further advantageously, embodiments of the invention can
remain downward compatible with video bitstreams that are
compliant with existing video encoding Standards.

FIG. 1 illustrates a networked System for implementing a
Video distribution System in accordance with one embodi
ment of the invention. An encoding computer 102 receives
a Video signal, which is to be encoded to a relatively
compact and robust format. The encoding computer 102 can
correspond to a variety of machine types, including general
purpose computers that execute Software and to Specialized
hardware. The encoding computer 102 can receive a video
Sequence from a wide variety of Sources, Such as via a
satellite receiver 104, a video camera 106, and a video
conferencing terminal 108. The video camera 106 can
correspond to a variety of camera types, Such as Video
camera recorders, Web cams, cameras built into wireleSS
devices, and the like. Video Sequences can also be stored in
a data store 110. The data store 110 can be internal to or
external to the encoding computer 102. The data store 110
can include devices Such as tapes, hard disks, optical disks,
and the like. It will be understood by one of ordinary skill
in the art that a data store, Such as the data store 110
illustrated in FIG. 1, can Store unencoded Video, encoded
Video, or both. In one embodiment, the encoding computer
102 retrieves unencoded video from a data store, Such as the
data Store 110, encodes the unencoded Video, and Stores the
encoded Video to a data Store, which can be the same data
Store or another data Store. It will be understood that a Source
for the Video can include a Source that was originally taken
in a film format.

The encoding computer 102 distributes the encoded video
to a receiving device, which decodes the encoded Video. The
receiving device can correspond to a wide variety of devices
that can display Video. For example, the receiving devices
shown in the illustrated networked System include a cell
phone 112, a personal digital assistant (PDA) 114, a laptop
computer 116, and a desktop computer 118. The receiving
devices can communicate with the encoding computer 102
through a communication network 120, which can corre
spond to a variety of communication networks including a
wireless communication network. It will be understood by
one of ordinary skill in the art that a receiving device, Such
as the cell phone 112, can also be used to transmit a Video
Signal to the encoding computer 102.

The encoding computer 102, as well as a receiving device
or decoder, can correspond to a wide variety of computers.

15

25

35

40

45

50

55

60

65

6
For example, the encoding computer 102 can be any micro
processor or processor (hereinafter referred to as processor)
controlled device, including, but not limited to a terminal
device, Such as a personal computer, a WorkStation, a Server,
a client, a mini computer, a main-frame computer, a laptop
computer, a network of individual computers, a mobile
computer, a palm top computer, a hand held computer, a Set
top box for a TV, an interactive television, an interactive
kiosk, a personal digital assistant (PDA), an interactive
wireless communications device, a mobile browser, a Web
enabled cellphone, or a combination thereof. The computer
may further possess input devices Such as a keyboard, a
mouse, a trackball, a touchpad, or a touch Screen and output
devices Such as a computer Screen, printer, Speaker, or other
input devices now in existence or later developed.
The encoding computer 102, as well as a decoder,

described can correspond to a uniprocessor or multiproces
Sor machine. Additionally, the computers can include an
addressable Storage medium or computer accessible
medium, Such as random access memory (RAM), an elec
tronically erasable programmable read-only memory
(EEPROM), hard disks, floppy disks, laser disk players,
digital video devices, Compact Disc ROMs, DVD-ROMs,
Video tapes, audio tapes, magnetic recording tracks, elec
tronic networks, and other techniques to transmit or Store
electronic content Such as, by way of example, programs and
data. In one embodiment, the computers are equipped with
a network communication device Such as a network inter
face card, a modem, Infra-Red (IR) port, or other network
connection device Suitable for connecting to a network.
Furthermore, the computers execute an appropriate operat
ing System, Such as Linux, Unix, Microsoft(R) WindowS(R)
3.1, Microsoft(R) Windows(R 95, Microsoft(R) Windows(R 98,
Microsoft(R) Windows(R) NT, Microsoft(R) Windows(E) 2000,
Microsoft(R) Windows(R) Me, Microsoft(R) Windows(E) XP,
Apple(R) MacOS(R), IBM(R) OS/2(R), Microsoft(R) Windows(R)
CE, or Palm OS(R). As is conventional, the appropriate
operating System may advantageously include a communi
cations protocol implementation, which handles all incom
ing and outgoing message traffic passed over the network,
which can include a wireleSS network. In other
embodiments, while the operating System may differ
depending on the type of computer, the operating System
may continue to provide the appropriate communications
protocols necessary to establish communication links with
the network.

FIG. 2 illustrates a Sequence of frames. A video Sequence
includes multiple video frames taken at intervals. The rate at
which the frames are displayed is referred to as the frame
rate. In addition to techniques used to compress Still video,
motion video techniques relate a frame at time k to a frame
at time k-1 to further compress the Video information into
relatively small amounts of data. However, if the frame at
time k-1 is not available due to an error, Such as a trans
mission error, conventional Video techniques may not be
able to properly decode the frame at time k. As will be
explained later, embodiments of the invention advanta
geously decode the Video Stream in a robust manner Such
that the frame at time k can be decoded even when the frame
at time k-1 is not available.
The frames in a Sequence of frames can correspond to

either interlaced frames or to non-interlaced frames, i.e.,
progressive frames. In an interlaced frame, each frame is
made of two Separate fields, which are interlaced together to
create the frame. No Such interlacing is performed in a
non-interlaced or progressive frame. While illustrated in the
context of non-interlaced or progressive Video, the skilled

US 6,876,705 B2
7

artisan will appreciate that the principles and advantages
described herein are applicable to both interlaced Video and
non-interlaced video. In addition, while certain embodi
ments of the invention may be described only in the context
of MPEG-2 or only in the context of MPEG-4, the principles
and advantages described herein are applicable to a broad
variety of video standards, including H.261, H.263, MPEG
2, and MPEG-4, as well as video standards yet to be
developed. In addition, while certain embodiments of the
invention may describe error concealment techniques in the
context of, for example, a macroblock, the skilled practitio
ner will appreciate that the techniques described herein can
apply to blocks, macroblocks, Video object planes, lines,
individual pixels, groups of pixels, and the like.

The MPEG-4 standard is defined in “Coding of Audio
Visual Objects: Systems,” 14496-1, ISO/IEC JTC1/SC29/
WG11 N2501, November 1998, and “Coding of Audio
Visual Objects: Visual,” 14496-2, ISO/IEC JTC1/SC29/
WG 11 N2502, November 1998, and the MPEG-4 Video
Verification Model is defined in ISO/IEC JTC 1/SC 29/WG
11, “MPEG-4 Video Verification Model 17.0, ISO/IEC
JTC1/SC29/WG 11 N3515, Beijing, China, July 2000, the
contents of which are incorporated herein in their entirety.

In an MPEG-2 system, a frame is encoded into multiple
blocks, and each block is encoded into Six macroblockS. The
macroblocks include information, Such as luminance and
color, for composing a frame. In addition, while a frame may
be encoded as a still frame, i.e., an intra-coded frame, frames
in a Sequence of frames can be temporally related to each
other, i.e., predictive-coded frames, and the macroblockS can
relate a Section of one frame at one time to a Section of
another frame at another time.

In an MPEG-4 System, a frame in a Sequence of frames is
further encoded into a number of video objects known as
video object planes (VOPs). A frame can be encoded into a
single VOP or in multiple VOPs. In one system, such as a
wireless system, each frame includes only one VOP So that
a VOP is a frame. The VOPs are transmitted to a receiver,
where they are decoded by a decoder back into video objects
for display. A VOP can correspond to an intra-coded VOP
(I-VOP), to a predictive-coded VOP (P-VOP) to a
bidirectionally-predictive coded VOP (B-VOP), or to a
sprite VOP (S-VOP). An I-VOP is not dependent on infor
mation from another frame or picture, i.e., an I-VOP is
independently decoded. When a frame consists entirely of
I-VOPs, the frame is called an I-Frame. Such frames are
commonly used in Situations Such as a Scene change.
Although the lack of dependence on content from another
frame allows an I-VOP to be robustly transmitted and
received, an I-VOP disadvantageously consumes a relatively
large amount of data or data bandwidth as compared to a
P-VOP or B-VOP. To efficiently compress and transmit
video, many VOPs in video frames correspond to P-VOPs.
AP-VOP efficiently encodes a video object by referencing

the video object to a past VOP, i.e., to a video object
(encoded by a VOP) earlier in time. This past VOP is
referred to as a reference VOP. For example, where an object
in a frame at time k is related to an object in a frame at time
k-1, motion compensation encoded in a P-VOP can be used
to encode the video object with less information than with an
I-VOP. The reference VOP can be either an I-VOP or a
P-VOP.

A B-VOP uses both a past VOP and a future VOP as
reference VOPS. In a real-time video bitstream, a B-VOP
should not be used. However, the principles and advantages
described herein can also apply to a Video bitstream with
B-VOPs. An S-VOP is used to display animated objects.

15

25

35

40

45

50

55

60

65

8
The encoded VOPs are organized into macroblocks. A

macroblock includes Sections for Storing luminance
(brightness) components and Sections for Storing chromi
nance (color) components. The macroblocks are transmitted
and received via the communication network 120. It will be
understood by one of ordinary skill in the art that the
communication of the data can further include other com
munication layers, Such as modulation to and demodulation
from code division multiple access (CDMA). It will be
understood by one of ordinary skill in the art that the video
bitstream can also include corresponding audio information,
which is also encoded and decoded.

FIG. 3 is a flowchart 300 generally illustrating a process
of concealing errors or missing data in a Video bitstream.
The errors can correspond to a variety of problems or
unavailability including a loSS of data, a corruption of data,
a header error, a Syntax error, a delay in receiving data, and
the like. Advantageously, the process of FIG. 3 is relatively
unsophisticated to implement and can be executed by rela
tively slow decoders.
Upon the detection of an error, the process Starts at a first

decision block 304. The first decision block 304 determines
whether the error relates to intra-coding or predictive
coding. It will be understood by the skilled practitioner that
the intra-coding or predictive-coding can refer to frames, to
macroblocks, to video object planes (VOPs), and the like.
While illustrated in the context of macroblocks, the skilled
artisan will appreciate that the principles and advantages
described in FIG.3 also apply to video object planes and the
like. The process proceeds from the first decision block 304
to a first state 308 when the error relates to an intra-coded
macroblock. When the error relates to a predictive-coded
macroblock, the process proceeds from the first decision
block 304 to a second decision block 312. It will be
understood that the error for a predictive-coded macroblock
can arise from a missing macroblock in a present frame at
time t, or from an error in a reference frame at time t-1 from
which motion is referenced.

In the first state 308, the process interpolates or spatially
conceals the error in the intra-coded macroblock, termed a
missing macroblock. In one embodiment, the proceSS con
ceals the error in the missing macroblock by linearly inter
polating data from an upper macroblock that is intended to
be displayed "above' the missing macroblock in the image,
and from a lower macroblock that is intended to be displayed
“below the missing macroblock in the image. Techniques
other than linear interpolation can also be used.

For example, the proceSS can vertically linearly interpo
late using a line denoted lb copied from the upper macrob
lock and a line denotedlt copied from the lower macroblock.
In one embodiment, the proceSS uses the lowermost line of
the upper macroblock as Ib and the topmost line of the lower
macroblock as lt.

Depending on the circumstances, the upper macroblock
and/or the lower macroblock may also not be available. For
example, the upper macroblock and/or the lower macrob
lock may have an error. In addition, the missing macroblock
may be located at the upper boundary of an image or at the
lower boundary of the image.
One embodiment of the invention uses the following rules

to conceal errors in the missing macroblock when linear
interpolation between the upper macroblock and the lower
macroblock is not applicable.
When the missing macroblock is at the upper boundary of

the image, the topmost line of the lower macroblock is used
as lb. If the lower macroblock is also missing, the topmost

US 6,876,705 B2

line of the next-lower macroblock in the image is used as lb,
and so forth, if further lower macroblocks are missing. If all
the lower macroblocks are missing, a gray line is used as lb.
When the missing macroblock is at the lower boundary of

the image or the lower macroblock is missing, lb, the
lowermost line of the upper macroblock, is also used as lt.
When the missing macroblock is neither at the upper

boundary of the image nor at the lower boundary of the
image, and interpolation between the upper macroblock and
the lower macroblock is not applicable, one embodiment of
the invention replaces the missing macroblock with gray
pixels (Y=U=V=128 value).

According to one decoding Standard, MPEG-4, pixels that
are associated with a block with an error are stored as a “0.”
which corresponds to green pixels in a display. Gray pixels
can be closer than green to the colors associated with a
missing block, and simulation tests have observed a 0.1 dB
improvement over the green pixels with relatively little or no
increase in complexity. For example, the gray pixel color can
be implemented by a copy instruction. When the Spatial
concealment is complete, the process ends.
When the error relates to a predictive-coded macroblock,

the second decision block 312 determines whether another
motion vector is available to be used for the missing
macroblock. For example, the Video bitstream may also
include another motion vector, Such as a redundant motion
vector, which can be used instead of a Standard motion
vector in the missing macroblock. In one embodiment, a
redundant motion vector is estimated by doubling the Stan
dard motion vector. One embodiment of the redundant
motion vector references motion in the present frame at time
t to a frame at time t-2. When both the frame at time t-2 and
the redundant motion vector are available, the proceSS
proceeds from the Second decision block 312 to a Second
State 316, where the process reconstructs the missing mac
roblock from the redundant motion vector and the frame at
time t-2. Otherwise, the proceSS proceeds from the Second
decision block 312 to a third decision block 320.

In the third decision block 320, the process determines
whether the error is due to a predictive-coded macroblock
missing in the present frame, i.e., missing motion vectors.
When the motion vectors are missing, the proceSS proceeds
from the third decision block 320 to a third state 324.
Otherwise, the proceSS proceeds from the third decision
block 320 to a fourth decision block 328.

In the third State 324, the proceSS Substitutes the missing
motion vectors in the missing macroblock to provide tem
poral concealment of the error. One embodiment of temporal
concealment of missing motion vectors is described in
greater detail later in connection with FIG. 4. The process
advances from the third state 324 to the fourth decision
block 328.

In the fourth decision block 328, the process determines
whether an error is due to a missing reference frame, e.g., the
frame at time t-1. If the reference frame is available, the
process proceeds from the fourth decision block 328 to a
fourth state 332, where the process uses the reference frame
and the Substitute motion vectors from the third state 324.
Otherwise, the process proceeds to a fifth state 336.

In the fifth state 336, the process uses a frame at time t-k
as a reference frame. Where the frame corresponds to the
previous-previous frame, k can equal 2. In one embodiment,
the proceSS multiplies the motion vectors that were received
in the macroblock or substituted in the third state 324 by a
factor, Such as 2 for linear motion, to conceal the error. The
skilled practitioner will appreciate that other appropriate

5

15

25

35

40

45

50

55

60

65

10
factors may be used depending on the motion characteristics
of the Video imageS. The proceSS proceeds to end until the
next error is detected.

FIG. 4 illustrates an exemplary process of temporal con
cealment of missing motion vectors. In one embodiment, a
macroblock includes four motion vectors. In the illustrated
temporal concealment technique, the missing motion vectors
of a missing macroblock 402 are substituted with motion
vectors copied from other macroblocks. In another
embodiment, which will be described later, the missing
motion vectors of the missing macroblock 402 are substi
tuted with motion vectors interpolated from other macrob
lockS.

When the missing macroblock 402 is below and above
other macroblockS in the image, the process copies motion
vectors from an upper macroblock 404, which is above the
missing macroblock 402, and copies motion vectors from a
lower macroblock 406, which is below the missing macrob
lock 402.
The missing macroblock 402 corresponds to a first miss

ing motion vector 410, a Second missing motion vector 412,
a third missing motion vector 414, and a fourth missing
motion vector 416. The upper macroblock 404 includes a
first upper motion vector 420, a Second upper motion vector
422, a third upper motion vector 424, and a fourth upper
motion vector 426. The lower macroblock 406 includes a
first lower motion vector 430, a second lower motion vector
432, a third lower motion vector 434, and a fourth lower
motion vector 436.

When both the upper macroblock 404 and the lower
macroblock 406 are available and include motion vectors,
the illustrated process uses the third upper motion vector 424
as the first missing motion vector 410, the fourth upper
motion vector 426 as the Second missing motion vector 412,
the first lower motion vector 430 as the third missing motion
vector 414, and the second lower motion vector 432 as the
fourth missing motion vector 416.
When the missing macroblock 402 at the upper boundary

of the image, the process Sets both the first missing motion
vector 410 and the second missing motion vector 412 to the
Zero vector (no motion). The process uses the first lower
motion vector 430 as the third missing motion vector 414,
and the second lower motion vector 432 as the fourth
missing motion vector 416.
When the lower macroblock 406 is corrupted or otherwise

unavailable and/or the missing macroblock 402 is at the
lower boundary of the image, the process Sets the third
missing motion vector 414 equal to the value used for the
first missing motion vector 410, and the proceSS Sets the
fourth missing motion vector 416 equal to the value used for
the Second missing motion vector 412.

In one embodiment, the missing motion vectors of the
missing macroblock 402 are substituted with motion vectors
interpolated from other macroblockS. A variety of tech
niques for interpolation exist. In one example, the first
missing motion vector 410 is substituted with a vector Sum
of the first upper motion vector 420 and 3 times the third
upper motion vector 424, i.e., V1 o=V1+(3)(V3). In
another example, the third missing motion vector 414 can be
Substituted with a vector Sum of the third lower motion
vector 434 and 3 times the first lower motion vector 430, i.e.,
V3 =(3)(V1)+V3.

FIG. 5 is a flowchart 500 generally illustrating a process
of adaptively concealing errors in a Video bitstream.
Advantageously, the process of FIG. 5 adaptively Selects a
concealment mode Such that the error-concealed or recon

US 6,876,705 B2
11

Structed images can correspond to relatively less distorted
image. Simulation tests predict improvements of up to about
1.5 decibels (dB) in peak signal to noise ratio. The process
of FIG. 5 can be used to select an error concealment mode
even when data for a present frame is received without an
CO.

For example, the process can receive three consecutive
frames. A first frame is cleanly received. A Second frame is
received with a relatively high-degree of corruption. Data
for a third frame is cleanly received, but reconstruction of a
portion of the third frame depends on portions of the Second
frame, which was received with a relatively high-degree of
corruption. Under certain conditions, it can be advantageous
to conceal portion of the third frame because portions of the
third frame depend on a portions of a corrupted frame. The
process illustrated in FIG. 5 can advantageously identify
when error concealment techniques should be invoked even
when Such error concealment techniques would not be
needed by Standard Video decoders to provide a display of
the corresponding image.

The process starts in a first state 504, where the process
receives data from the Video bitstream for the present frame,
i.e., the frame at time t. A portion of the received data may
be missing, due to an error, Such as a dropout, corruption,
delay, and the like. The proceSS advances from the first State
504 to a first decision block 506.

In the first decision block 506, the process determines
whether the data under analysis corresponds to an intra
coded video object plane (I-VOP) or to a predictive-coded
VOP (P-VOP). It will be understood by one of ordinary skill
in the art that the process can operate at different levels, Such
as on macroblocks or frames, and that a VOP can be a frame.
The process proceeds from the first decision block 506 to a
Second decision block 510 when the VOP is an I-VOP.
Otherwise, i.e., the VOP is a P-VOP, the process proceeds to
a third decision block 514.

In the second decision block 510, the process determines
whether there is an error in the received data for the I-VOP.
The process proceeds from the second decision block 510 to
a second state 518 when there is an error. Otherwise, the
proceSS proceeds to a third State 522.

In the second state 518, the process conceals the error
with Spatial concealment techniques, Such as the Spatial
concealment techniques described earlier in connection with
the first state 308 of FIG. 3. The process advances from the
Second state 518 to a fourth state 526.

In the fourth state 526, the process sets an error value to
an error predicted for the concealment technique used in the
Second state 518. One embodiment normalizes the error to
a range between 0 and 255, where 0 corresponds to no error,
and 255 corresponds to a maximum error. For example,
where gray pixels replace a pixel in an error concealment
mode, the error value can correspond to 255. In one
embodiment, the error value is retrieved from a table of
pre-calculated error estimates. In Spatial interpolation, the
pixels adjacent to error-free pixels are typically more faith
fully concealed than the pixels that are farther away from the
error-free pixels. In one embodiment, an error value is
modeled as 97 for pixels adjacent to error-free pixels, while
other pixels are modeled with an error value of 215. The
error values can be maintained in a memory array on a
per-pixel basis, can be maintained for only a Selection of
pixels, can be maintained for groups of pixels, and So forth.

In the third state 522, the process has received an error
free I-VOP and clears (to zero) the error value for the
corresponding pixels of the VOP. Of course, other values can

15

25

35

40

45

50

55

60

65

12
be arbitrarily selected to indicate an error-free state. The
process advances from the third state 522 to a fifth state 530,
where the process constructs the VOP from the received data
and ends. The process can be reactivated to process the next
VOP received.

Returning to the third decision block 514, the process
determines whether the P-VOP includes an error. When
there is an error, the proceSS proceeds from the third decision
block 514 to a fourth decision block 534. Otherwise, the
process proceeds to an optional Sixth State 538.

In the fourth decision block 534, the process determines
whether the error values for the corresponding pixels are
Zero or not. If the error values are Zero and there is no error
in the data of the present P-VOP, then the process proceeds
to the fifth State 520 and constructs the VOP with the
received data as this corresponds to an error-free condition.
The process then ends or waits for the next VOP to be
processed. If the error values are non-Zero, then the proceSS
proceeds to a seventh state 542.

In the Seventh State 542, the process projects the estimate
error value, i.e., a new error value, that would result if the
process uses the received data. For example, if a previous
frame contained an error, that error may propagate to the
present frame by decoding and using the P-VOP of the
present frame. In one embodiment, the estimated error value
is about 103 plus an error propagation term, which depends
on the previous error value. The error propagation term can
also include a “leaky' value, such as 0.93, to reflect a slight
loSS in error propagation per frame. The process advances
from the seventh state 542 to an eighth state 546.

In the eighth State 546, the proceSS projects the estimated
error value that would result if the process used an error
resilience technique. The error resilience technique can
correspond to a wide variety of techniques, Such as an error
concealment technique described in connection with FIGS.
3 and 4, the use of additional motion vectors that reference
other frames, and the like. Where the additional motion
vector references the previous-previous frame, one embodi
ment uses an error value of 46 plus the propagated error. It
will be recognized that a propagated error in a previous
frame can be different than a propagated error in a previous
previous frame. In one embodiment, the process projects the
estimated error values that would result from a plurality of
error resilience techniques. The process advances from the
eighth state 546 to a ninth state 550.

In the ninth state 550, the process selects between using
the received data and using an error resilience technique. In
one embodiment, the proceSS Selects between using the
received data and using one of multiple error resilience
techniques. The construction, concealment, or reconstruc
tion technique that provides the lowest projected estimated
error value is used to construct the corresponding portion of
the image. The process advances from the ninth state 550 to
a tenth state 554, where the process updates the affected
error values according to the Selected received data or error
resilience technique used to generate the frame, and the
process ends. It will be understood that the proceSS can then
wait until the next VOP is received, and the process can
reactivate to process the next VOP.

In the optional sixth state 538, the process computes the
projected error values with multiple error resilience tech
niques. The error resilience technique that indicates the
lowest projected estimated error value is Selected. The
process advances from the optional sixth state 538 to an
eleventh State 558.

In the eleventh state 558, the process applies the error
resilience technique selected in the optional sixth state 538.

US 6,876,705 B2
13

Where the proceSS uses only one error resilience technique
to conceal errors for P-VOPs, the skilled practitioner will
appreciate that the optional sixth state 538 need not be
present, and the process can apply the error resilience
technique in the eleventh state 558 without a selection
process. The proceSS advances from the from the eleventh
state 558 to a twelfth state 562, where the process updates
the corresponding error values in accordance with the error
resilience technique applied in the eleventh state 558. The
process then ends and can be reactivated to process future
VOPS.

FIG. 6 is a flowchart 600 generally illustrating a process
that can use weighted predictions to compensate for errors in
a Video bitstream. One embodiment of the proceSS is rela
tively less complex to implement than adaptive techniques.
The illustrated process receives a frame of data and pro
ceSSes the data one macroblock at a time. It will be under
stood that when errors in transmission arise, the process may
not receive an entire frame of data. Rather, the process can
Start processing the present frame upon other conditions,
Such as determining that the timeframe for receiving the
frame has expired, or receiving data for the Subsequent
frame, and the like.

The process starts in a first decision block 604, where the
process determines whether the present frame is a
predictive-coded frame (P-frame) or is an intra-coded frame
(I-frame). The process proceeds from the first decision block
604 to a second decision block 608 when the present frame
corresponds to an I-frame. When the present frame corre
sponds to a P-frame, the proceSS proceeds from the first
decision block 604 to a third decision block 612.

In the Second decision block 608, the process determines
whether the macroblock under analysis includes an error.
The macroblock under analysis can correspond to the first
macroblock of the frame and end with the last macroblock
of the frame. However, the order of analysis can vary. The
error can correspond to a variety of anomalies, Such as
missing data, Syntax errors, checksum errors, and the like.
The process proceeds from the second decision block 608 to
a first state 616 when no error is detected in the macroblock.
If an error is detected in the macroblock, the proceSS
proceeds to a Second State 620.

In the first state 616, the process decodes the macroblock.
All macroblocks of an intra-coded frame are intra-coded. An
intra-coded macroblock can be decoded without reference to
other macroblockS. The process advances from the first State
616 to a third state 624, where the process resets an error
variance (EV) value corresponding to a pixel in the mac
roblock to Zero. The error variance relates to a predicted or
expected amount of error propagation. Since the intra-coded
macroblock does not depend on other macroblocks, an
error-free intra-coded macroblock can be expected to have
an error variance of Zero. It will be understood by one of
ordinary skill in the art that any number can be arbitrarily
selected to represent Zero. It will also be understood that the
error variance can be tracked in a broad variety of ways,
including on a per pixel basis, on groups of pixels, on
Selected pixels, per macroblock, and the like. The proceSS
advances from the third state 624 to a fourth decision block
628.

In the fourth decision block 628, the process determines
whether it has processed the last macroblock in the frame.
The process returns from the fourth decision block 628 to the
Second decision block 608 when there are further macrob
locks in the frame to be processed. When the last macrob
lock has been processed, the process ends and can be
reactivated when for the Subsequent frame.

15

25

35

40

45

50

55

60

65

14
In the Second State 620, the process conceals the error

with Spatial concealment techniques, Such as the Spatial
concealment techniques described earlier in connection with
the first state 308 of FIG. 3. In one embodiment, the process
fills the pixels of the macroblock with gray, which is
encoded as 128. The proceSS advances from the Second State
620 to a fourth state 632, where the process sets the
macroblock's corresponding error variance, O, f, to a pre
determined value, O, f. In one embodiment, the error
variance, O, f, is normalized to a range between 0 and 255.
The predetermined value can be obtained by, for example,
Simulation results, real world testing, and the like. In
addition, the predetermined value can depend on the con
cealment technique. In one embodiment, where the conceal
ment technique is to fill the macroblock with gray, the
predetermined value, Off, is 255. The process advances
from the fourth state 632 to the fourth decision block 628.

When the frame is a P-frame, the process proceeds from
the first decision block 604 to the third decision block 612.
In the third decision block 612, the process determines
whether the macroblock under analysis includes an error.
The process proceeds from the third decision block 612 to a
fifth decision block 636 when no error is detected. When an
error is detected, the proceSS proceeds from the third deci
Sion block 612 to a fifth state 640.

A macroblock in a P-frame can correspond to either an
inter-coded macroblock or to an intra-coded macroblock. In
the fifth decision block 636, the process determines whether
the macroblock corresponds to an inter-coded macroblock or
to an intra-coded macroblock. The process proceeds from
the fifth decision block 636 to a sixth state 644 when the
macroblock corresponds to an intra-coded macroblock.
When the macroblock corresponds to an inter-coded
macroblock, the process proceeds to a Seventh State 648.

In the Sixth State 644, the proceSS proceeds to decode the
intra-coded macroblock that was received without an error.
The intra-coded macroblock can be decoded without refer
ence to another macroblock. The process advances from the
sixth state 644 to an eighth state 652, where the process
resets the corresponding error variances maintained for the
macroblock to Zero. The process advances from the eighth
state 652 to a sixth decision block 664.

In the sixth decision block 664, the process determines
whether it has processed the last macroblock in the frame.
The process returns from the sixth decision block 664 to the
third decision block 612 when there are further macroblocks
in the frame to be processed. When the last macroblock has
been processed, the process ends and can be reactivated for
the Subsequent frame.

In the seventh state 648, the process reconstructs the
pixels of the macroblock even when the macroblock was
received without error. Reconstruction in this circumstance
can improve image quality because a previous-previous
frame may exhibit leSS corruption than a previous-frame.
One embodiment of the process selects between a first
reconstruction mode and a Second reconstruction mode
depending on which mode is expected to provide better error
concealment. In another embodiment, weighted Sums are
used to combine the two modes. In one example, the weights
used correspond to the inverse of estimated errorS So that the
process decodes with minimal mean squared error (MMSE).

In the first reconstruction mode, the proceSS reconstructs
the macroblock based on the received motion vector and the
corresponding portion in the previous frame. The recon
Structed pixel, d, as reconstructed by the first reconstruction

US 6,876,705 B2
15

mode, is expressed in Equation 1. In Equation 1, f is a
prediction residual.

(i.p. 1+f (Eq. 1)

In the Second reconstruction mode, the proceSS recon
Structs the macroblock by doubling the amount of motion
Specified by the motion vectors of the macroblock, and the
process uses a corresponding portion of the previous
previous frame, i.e., the frame at time k-2.

The error variance of a pixel reconstructed by the first
reconstruction mode, Op., is expressed in Equation 2,
where k indicates the frame, e.g., k=0 for the present frame.
The error variance of a pixel reconstructed by the Second
reconstruction mode, Op. 2, is expressed in Equation 3.

i. = E(p. 1 - p. 2). (Eq. 3)
a E{(p. p. 2): -- E(p. 1 P-2)

2 = Oio + Oil,

In one embodiment, the process Selects the Second recon
struction mode when Op-f>O, ef+Op-2. In another
embodiment, weighted Sums are used to combine the recon
Struction techniques. In one example, the weights used
correspond to the inverse of predicted errors So that the
process decodes with minimal mean squared error (MMSE).
With weighted Sums, the process combines the two predic
tions to reconstruct the pixel, q. In one embodiment, the
pixel q is reconstructed by d, as expressed in Equation 4.

q=f3P+(1-f)P +f (Eq. 4

In one embodiment, the weighting coefficient, B, is cal
culated from Equation 5.

2 2 Ciro + O. (Eq. 5)
Oio + C , , +O;

The process advances from the seventh state 648 to a
ninth state 656. In the ninth state 656, the process updates
the corresponding error variances for the macroblock based
on the reconstruction applied in the seventh state 648. The
process advances from the from the ninth state 656 to the
sixth decision block 664. In one embodiment, the error
variance is calculated from expression in Equation 6.

- 'i (?io" i. 2) (Eq. 6)
"k Oio + (i. -- i, 2

In the fifth state 640, the process conceals the errors in the
macroblock. A variety of concealment techniques can be
applied. In one embodiment, the proceSS uses temporal
concealment, regardless of whether the macroblock is intra
coded or inter-coded. It will be understood that in other
embodiments, the type of coding used in the macroblock can
be used as a factor in the Selection of a concealment
technique.
One embodiment of the process selects between a first

concealment mode based on a previous frame and a Second
concealment mode based on a previous-previous frame in
the fifth state 640. In the first concealment mode, the process
generates an inter-coded macroblock for the missing mac

15

25

35

40

45

50

55

60

65

16
roblock using the motion vectors extracted from a macrob
lock that is above the missing macroblock in the image. If
the macroblock that is above the missing macroblock has an
error, the motion vectors can be set to Zero vectors. The
corresponding portion of the frame is reconstructed with the
generated inter-coded macroblock and the corresponding
reference information from the previous frame, i.e., the
frame at t-1.

In the Second concealment mode, the proceSS generates an
inter-coded macroblock for the missing macroblock by
copying and multiplying by 2 the motion vectors extracted
from a macroblock that is above the missing macroblock in
the image. If the macroblock above the missing macroblock
has an error, the motion vectors can be set to Zero vectors.
The corresponding portion of the frame is reconstructed with
the generated inter-coded macroblock and the corresponding
reference information from the previous-previous frame,
i.e., the frame at t-2.
The error variance can be modeled as a Sum of the

asSociated propagation error and concealment error. In one
embodiment, the first concealment mode has a lower con
cealment error than the Second concealment mode, but the
Second concealment mode has a lower propagation error
than the first concealment mode.

In one embodiment, the proceSS Selects between the first
concealment mode and the Second concealment mode based
on which one provides a lower estimated error variance. In
another embodiment, weighted Sums are used to combine
the two modes. In Equation 7, oako, denotes the error
variance of a pixel q. The value of i is equal to 1 for the first
concealment mode based on the previous frame and is equal
to 2 for the Second concealment mode based on the previous
previous frame.

- - -2 2
= OHA(i) + O.

In Equation 7, Orrao corresponds to the error variance
for the concealment mode and O. corresponds to the
propagation error Variance.

In another embodiment, the process computes weighted
Sums to further reduce the error variance of the concealment.
For example, d can be replaced by q as shown in Equation
8.

d=Cic 1+(1-C)C 2. (Eq. 8)

In one embodiment, the weighting coefficient, C, is as
expressed in Equation 9.

4k(2) (Eq.9)
C. : T -2 2 (iii) is

The process advances from the fifth state to a tenth state
660. In the tenth state 660, the process updates the corre
sponding error variances for the macroblock based on the
concealment applied in the fifth state 640, and the process
advances to the sixth decision block 664. In one embodiment
with weighted Sums, the error variance is calculated from
expression in Equation 10.

US 6,876,705 B2
17

2 . Ed. 10 O2 . . , iaio, (Eq. 10)
qk = E{(a - d.)} = -

4k(1) 4k(2)

In Some situations, an entire frame is dropped or lost. One
embodiment of the invention advantageously repeats the
previous frame, or interpolates between the previous frame
and the next frame, in response to a detection of a frame that
is missing from a frame Sequence. In a real-time application,
the display of the Sequence of frames can be slightly delayed
to allow the decoder time to receive the next frame, to
decode the next frame, and to generate the interpolated
replacement frame from the previous frame and the next
frame. The missing frame can be detected by calculating a
frame rate from received frames and by calculating an
expected time to receive a Subsequent frame. When a frame
does not arrive at the expected time, it is replaced with the
previous frame or interpolated from the previous and next
frames. One embodiment of the process further resynchro
nizes the available audio portion to correspond with the
displayed images.

Data corruption is an occasionally unavoidable occur
rence. Various techniques can help conceal errors in the
transmission or reception of Video data. However, Standard
Video decoding techniques can inefficiently declare error
free data as erroneous. For example, the MPEG-4 standard
recommends dumping an entire macroblock when an erroris
detected in the macroblock. The following techniques illus
trate that data for Some macroblocks can be reliably recov
ered and used from Video packets with corruption. For
example, a macroblock in an MPEG-4 system can contain
Six 8-by-8 image blockS. Four of the image blockS encode
luminosity, and two of the image blockS encode chromatic
ity. In one conventional System, all six of the image blockS
are discarded even if a transmission error were only to affect
one image block.

FIGS. 7A and 7B illustrate sample video packets. In an
MPEG-4 system, video packets include resynchronization
markers to indicate the Start of a Video packet. The number
of macroblocks within a video packet can vary.

FIG. 7A illustrates a sample of a video packet 700 with
DC and AC components for an I-VOP. The video packet 700
includes a video packet header 702, which includes the
reSynchronization marker and other header information that
can be used to decode the macroblocks of the packet, Such
as the macroblock number of the first macroblock in the
packet and the quantization parameter (QP) to decode the
packet. ADC portion 704 can include mcbpc, dduant, and dc
data, such as luminosity. ADC marker 706 separates the DC
portion 704 from an AC portion 708. In one embodiment, the
DC marker 706 is a 19-bit binary string “110 1011 0000
0000 0001.” The AC portion 708 can include an ac pred
flag and other textual information.

FIG. 7B illustrates a video packet 720 for a P-VOP. The
video packet 720 includes a video packet header 722 similar
to the video packet header 702 of FIG. 7A. The video packet
720 further includes a motion vector portion 724, which
includes motion data. A motion marker 726 Separates the
motion data in the motion vector portion 724 from texture
data in a DCT portion 728. In one embodiment, the motion
marker is a 17-bit binary string “11111 0000 0000 0001.”

FIG. 8 illustrates an example of discarding a corrupted
macroblock. Reversible variable length codes (RVLC) are
designed to allow data, Such as texture codes, to be read or
decoded in both a forward direction 802 and a reverse or
backward direction 804. For example, in the forward direc

15

25

35

40

45

50

55

60

65

18
tion 802 with N macroblocks, a first macroblock 806, MB
#0, is read first and a last macroblock 808, MB #N-1, is read
last. An error can be located in a macroblock 810, which can
be used to define a range of macroblocks 812 that are
discarded.

FIG. 9 is a flowchart that generally illustrates a process
according to an embodiment of the invention of partial
RVLC decoding of discrete cosine transform (DCT) portions
of corrupted packets. The process starts at a first state 904 by
reading macroblock information, Such as the macroblock
number, of the video packet header of the video packet. The
process advances from the first state 904 to a second state
908.

In the second state 908, the process inspects the DC
portion or the motion vector portion of the Video packet, as
applicable. The proceSS applies Syntactic and logic tests to
the video packet header and to the DC portion or motion
vector portion to detect errors therein. The process advances
from the second state 908 to a first decision block 912.

In the first decision block 912, the exemplary process
determines whether there was an error in the Video packet
header from the first state 904 or the DC portion or motion
vector portion from the second state 908. The first decision
block 912 proceeds to a third state 916 when the error is
detected. When the error is not detected, the proceSS pro
ceeds from the first decision block 912 to a fourth state 920.

In the third state 916, the process discards the video
packet. It will be understood by one of ordinary skill in the
art that errors in the video packet header or in the DC portion
or motion vector portion can lead to relatively Severe errors
if incorrectly decoded. In one embodiment, error conceal
ment techniques are instead invoked, and the process ends.
The process can be reactivated later to read another video
packet.

In the fourth state 920, the process decodes the video
packet in the forward direction. In one embodiment, the
process decodes the Video packet according to Standard
MPEG-4 RVLC decoding techniques. One embodiment of
the proceSS maintains a count of macroblocks in a macrob
lockS counter. The header at the beginning of the Video
packet includes a macroblock index, which can be used to
initialize the macroblockS counter. AS decoding proceeds in
the forward direction, the macroblock counter increments.
When an error is encountered, one embodiment removes one
count from the macroblockS counter Such that the macrob
lock counter contains the number of completely decoded
macroblockS.

In addition, one embodiment of the process Stores all
codewords as leaves of a binary tree. Branches of the binary
tree are labeled with either a 0 or a 1. One embodiment of
the process uses two different tree formats depending on
whether the macroblock is intra or inter coded. When
decoding in the forward direction, bits from the Video packet
are retrieved from a bit buffer containing the RVLC data, and
the process traverses the data in the tree until one of 3 events
is encountered. These events correspond to a first event
where a valid codeword is reached at a leaf-node, a Second
event where an invalid leaf of the binary tree (not corre
sponding to any RVLC codeword) is reached; and a third
event where the end of the bit buffer is reached.
The first event indicates no error. With no error, a valid

RVLC codeword is mapped, Such as via a simple lookup
table, to its corresponding leaf-node (last, run, level). In one
embodiment, this information is Stored in an array. When an
entire 8-by-8 block is decoded, as indicated by the presence
of an RVLC codeword with last=1, the process proceeds to
decode the next block until an error is encountered or the last
block is reached.

US 6,876,705 B2
19

The Second event and the third event correspond to errors.
These errors can be caused by a variety of error conditions.
Examples of error conditions include an invalid RVLC
codeword, Such as wrong marker bits in the expected
locations of ESCAPE symbols; decoded codeword from an
ESCAPE symbol results in (run, length, level) information
that should have been encoded by a regular (non-ESCAPE)
symbol; more than 64(or 63 for the case of Intra-blocks with
DC coded separately from AC) DCT coefficients in an
8-by-8 block, extra bits remaining after Successfully decod
ing all expected DCT coefficients of all 8-by-8 blocks in a
Video packet; and insufficient bits to decode all expected
8-by-8 blocks in video packet. These conditions can be
tested Sequentially. For example, when testing for extra bits
remaining, the condition is tested after all the 8-by-8 blocks
in the Video packet are processed. In another example, the
testing of the number of DCT coefficients can be performed
on a block-by-block basis. The process advances from the
fourth state 920 to a second decision block 924. However, it
will be understood by the skilled practitioner that the fourth
state 920 and the second decision block 924 can be included
in a loop, Such as a FOR loop.

In the second decision block 924, the process determines
whether there has been an error in the forward decoding of
the video packet as described in the fourth state 920 (in the
forward direction). The process proceeds from the Second
decision block 924 to a fifth state 928 when there is no error.
If there is an error in the forward decoding, the proceSS
proceeds from the second decision block 924 to a sixth state
932 and to a tenth state 948. Upon an error in forward
decoding, the proceSS terminates further forward decoding
and records the error location and type of error in the tenth
state 948. The error location in the forward direction, L, and
the number of completely decoded macroblocks in the
forward direction, N, will be described in greater detail
later in connection with FIGS. 10-13.

In the fifth state 928, the process reconstructs the DCT
coefficient blocks and ends. In one embodiment, the recon
struction proceeds according to standard MPEG-4 tech
niques. It will be understood by one of ordinary skill in the
art that the process can be reactivated to process the next
Video packet.

In the sixth state 932, the process loads the video packet
data to a bit buffer. In order to perform partial RVLC
decoding, detection of the DC (for I-VOP) or Motion (for
P-VOP) markers for each video packet should be obtained
without prior Syntax errors or data overrun. In one
embodiment, a circular buffer that reads data for the entire
packet is used to obtain the remaining bits for a Video packet
by unpacking each byte to 8 bits.

The process removes stuffing bits from the end of the
buffer, which leaves only data bits in the RVLC buffer.
During parsing of the Video packet header and motion vector
portion or DC portion of the Video packet, the expected
number of macroblocks, the type of each one macroblock
(INTRA or INTER), whether a macroblock is skipped or
not, how many and which of the expected 4 luminance and
2 chrominance 8-by-8 blocks have been coded and should
thus be present in the bitstream, and whether INTRA blocks
have 63 or 64 coefficients (i.e., whether their DC coefficient
is coded together or separate from the AC coefficients)
should be known. This information can be stored in a data
structure with the RVLC data bits. The process advances
from the sixth state 932 to a seventh state 936.

In the seventh state 936, the process performs reversible
variable length code (RVLC) decoding in the backward
direction on the Video packet. In one embodiment, the

15

25

35

40

45

50

55

60

65

20
process performs the backward decoding on the Video
packet according to standard MPEG-4 RVLC decoding
techniques. The maximum number of decoded codewords
should be recovered in each direction. One embodiment of
the process maintains the number of completely decoded
macroblocks encountered in the reverse direction in a
counter. In one embodiment, the counter is initialized with
a value from the Video packet header that relates to the
number of macroblockS expected in the Video packet, N, and
the counter counts down as macroblocks are read. The
process advances from the seventh state 936 to an eighth
State 940.

In the eighth state 940, the process detects an error in the
Video packet from the backward decoding and records the
error and the type of error. In addition to the errors for the
forward direction described earlier in connection with the
fourth state 920, another error that can occur in the reverse
decoding direction occurs when the last decoded codeword,
i.e., the first codeword in the reverse direction, decodes to a
codeword with last=0. Advantageously, detection of the
location of the error in the reverse direction can reveal
ranges of data where Such data is still usable. Use of the error
location in the reverse or backward direction, L, and use of
the number of completely decoded macroblocks in the
reverse direction, N, will be described later in connection
with FIGS. 10-13.

In the exemplary process, different decoding trees
(INTRA/INTER) are used for reverse decoding direction
than in the forward decoding direction. In one embodiment,
the reverse decoding trees are obtained by reversing the
order of bits for each codeword. In addition, one embodi
ment modifies the symbol decoding routine to take into
account that a sign bit that is coming last in forward
decoding is encountered first in backward decoding, and that
Last=1 indicates the last codeword of an 8-by-8 block in
forward decoding, but indicates the first codeword in reverse
decoding. When decoding in the reverse direction, the very
first codeword should have last=1 or otherwise an error is
declared.
When data is read in the reverse order, the process looks

ahead by one symbol when decoding a block. If a codeword
with last=1 is reached, the proceSS has reached the end of
reverse decoding of the current 8-by-8 block, and the
process advances to the next block. In addition, the order of
the blockS is reversed for the same reason. For example, if
5 INTER blocks followed by 3 INTRA blocks are expected
in the forward direction, 3 INTRA blocks followed by 5
INTER blocks should be expected in the reverse direction.
The process advances from the eighth state 940 to a ninth
State 944.

In the ninth State 944, the process discards overlapping
error regions from the forward and the reverse decoding
directions. The 2 arrays of decoded Symbols are compared to
evaluate overlap in error between the error obtained during
forward RVLC decoding and the error obtained during
reverse RVLC decoding to partially decode the video packet.
Further details of partial decoding will be described in
greater detail later in connection with FIGS. 10-13. It will
be understood by one of ordinary skill in the art that that in
the process described herein, the arrays contain the Success
fully decoded codewords before any decoding error has been
declared in each direction. If there is no overlap between
Successfully decoded regions in forward and reverse direc
tion at the bit-level and also at the DCT (Macroblock) level,
then one embodiment performs a conservative backtracking
of a predetermined number of bits, T, such as about 90 bits
in each direction, i.e., the last 90 bits in each direction are

US 6,876,705 B2
21

discarded. Those codewords that overlap (in the bit buffer)
or decode to DCT coefficients that overlap (in the DCT
buffer) are discarded. In addition, one embodiment retains
only entire INTER macroblocks (no partial macroblock
DCT data or Intra-coded macroblocks) in the decoding
buffers. The remaining codewords are then used to recon
struct the 8-by-8 DCT values for individual blocks, and the
process ends. It will be understood that the process can be
reactivated to process the next video packet.

The process illustrated in FIG. 9 reveals the location of
the error (the bit location) in the forward direction, L; the
location of the error in the reverse direction, L, the type of
error that was encountered in the forward direction and in
the reverse direction; the expected length of the Video
packet, L, the number of expected macroblocks in the Video
packet, N, the number of completely decoded macroblockS
in the forward direction, N.; and the number of completely
decoded macroblocks in the reverse direction, N.

FIGS. 10-13 illustrate partial RVLC decoding strategies.
In one exemplary partial RVLC decoding process, a partial
decoding Strategy for extraction of useful data from a video
packet is Selected according to one of four outcomes.
Processing of a first outcome, where L+L-L, and
N+N-N, will be described later in connection with FIG.
10. Processing of a Second outcome, where L+L-L, and
N+N>=N, will be described later in connection with FIG.
11. Processing of a third outcome, where L+L>=L, and
N+N<N, will be described later in connection with FIG.
12. Processing of a fourth outcome, where L+L>=L, and
N+N>=N, will be described later in connection with FIG.
13.

FIG. 10 illustrates a partial decoding strategy used when
L+L<L, and N+N<N. A first portion 1002 of FIG. 10
indicates the bit error positions, L and L. A Second portion
1004 indicates the completely decoded macroblocks in the
forward direction, N, and in the reverse direction, N. A
third portion 1006 indicates a backtracking of bits, T, from
the bit error locations. It will be understood by one of
ordinary skill in the art that the number selected for the
backtracking of bits, T, can vary in a very broad range and
can even be different in the forward direction and in the
reverse direction. In one embodiment, the value of T is 90
bits.

The exemplary proceSS apportions the Video packet in a
first partial packet 1010, a second partial packet 1012, and
a discarded partial packet 1014. The first partial packet 1010
may be used by the decoder and includes complete mac
roblocks up to a bit position corresponding to L-T. The
second partial packet 1012 may also be used by the decoder
and includes complete macroblocks from a bit position
corresponding to L-L--T to the end of the packet, L, Such
that the Second partial packet is about La-T in size. AS
described in greater detail later in connection with FIG. 14,
one embodiment of the process discards intra blocks in the
first partial packet 1010 and in the second partial packet
1012, even if the intra blocks are identified as uncorrupted.
The discarded partial packet 1014, which includes the
remaining portion of the Video packet, is discarded.

FIG. 11 illustrates a partial decoding Strategy used when
L+L-L, and N+N>=N. A first portion 1102 of FIG. 11
indicates the bit error positions, L and L. A second portion
1104 indicates the completely decoded macroblocks in the
forward direction, N, and in the reverse direction, N.

The exemplary proceSS apportions the Video packet in a
first partial packet 1110, a Second partial packet 1112, and a
discarded partial packet 1114. The first partial packet 1110
may be used by the decoder and includes complete mac

15

25

35

40

45

50

55

60

65

22
roblocks from the start of the video packet to the macroblock
corresponding to N-N-1. The Second partial packet 1112
may also be used by the decoder and includes the (N+1)th
macroblock to the last macroblock in the Video packet, Such
that the second partial packet 1112 is about N-N-1 in size.
One embodiment of the process discards intra blocks in the
first partial packet 1110 and in the Second partial packet
1112, even if the intra blocks are identified as uncorrupted.
The discarded partial packet 1114, which includes the
remaining portion of the Video packet, is discarded.

FIG. 12 illustrates a partial decoding Strategy used when
L+L>=L, and N+N-N. A first portion 1202 of FIG. 12
indicates the bit error positions, L and L. A Second portion
1204 indicates the completely decoded macroblocks in the
forward direction, N, and in the reverse direction, N.
The exemplary proceSS apportions the Video packet in a

first partial packet 1210, a Second partial packet 1212, and
a discarded partial packet 1214. The first partial packet 1210
may be used by the decoder and includes complete mac
roblocks from the beginning of the Video packet to a
macroblock at N-b mb(L), where b mb(L) denotes the
macroblock at the bit position L. The Second partial packet
1212 may also be used by the decoder and includes the
complete macroblocks from the bit position corresponding
to L to the end of the packet. One embodiment of the
process discards intra blocks in the first partial packet 1210
and in the Second partial packet 1212, even if the intra blockS
are identified as uncorrupted. The discarded partial packet
1214, which includes the remaining portion of the video
packet, is discarded.

FIG. 13 illustrates a partial decoding Strategy used when
L+L>=L, and N+N>=N. A first portion 1302 of FIG. 13
indicates the bit error positions, L and L. A second portion
1304 indicates the completely decoded macroblocks in the
forward direction, N, and in the reverse direction, N.
The exemplary proceSS apportions the Video packet in a

first partial packet 1310, a second partial packet 1312, and
a discarded partial packet 1314. The first partial packet 1310
may be used by the decoder and includes complete mac
roblocks up to the bit position corresponding to the lesser of
N-b mb(L), where b mb(L) denotes the last complete
macroblock up to bit position L, and the complete mac
roblocks up to (N-N-1)th macroblock. The second partial
packet 1312 may also be used by the decoder and includes
the number of complete macroblocks counting from the end
of the Video packet corresponding to the lesser of N-f mb
(L), where f mb(L) denotes the last macroblock in the
reverse direction that is uncorrupted as determined by the
forward direction, and the number of complete macroblockS
corresponding to N-N-1. One embodiment of the process
discards intra blocks in the first partial packet 1310 and in
the Second partial packet 1312, even if the intra blocks are
identified as uncorrupted. The discarded partial packet 1314,
which includes the remaining portion of the Video packet, is
discarded.

FIG. 14 illustrates a partially corrupted video packet 1402
with at least one intra-coded macroblock. In one
embodiment, an intra-coded macroblock in a portion of a
partially corrupted Video packet is discarded even if the
intra-coded macroblock is in a portion of the partially
corrupted video packet that is considered uncorrupted.
A decoding process, Such as the process described in

connection with FIGS. 9 to 13, allocates the partially cor
rupted video packet 1402 to a first partial packet 1404, a
corrupted partial packet 1406, and a Second partial packet
1408. The first partial packet 1404 and the second partial
packet 1408 are considered error-free and can be used. The

US 6,876,705 B2
23

corrupted partial packet 1406 includes corrupted data and
should not be used.

However, the illustrated first partial packet 1404 includes
a first intra-coded macroblock 1410, and the illustrated
Second partial packet 1408 includes a Second intra-coded
macroblock 1412. One process according to an embodiment
of the invention also discards an intra-coded macroblock,
Such as the first intra-coded macroblock 1410 or the second
intra-coded macroblock 1412, when any error or corruption
is detected in the Video packet, and the process advanta
geously continues to use the recovered macroblocks corre
sponding to error-free macroblocks. Instead, the proceSS
conceals the intra-coded macroblocks of the partially cor
rupted Video packets.
One embodiment of the invention partially decodes intra

coded macroblocks from partially corrupted packets.
According to the MPEG-4 standard, any data from a cor
rupted Video packet is dropped. Intra-coded macroblockS
can be encoded in both I-VOPs and in P-VOPs. As provided
in the MPEG-4 standard, a DC coefficient of an intra-coded
macroblock and/or the top-row and first-column AC coef
ficient of the intra-coded macroblock can be predictively
coded from the intra-coded macroblock's neighboring intra
coded macroblockS.

Parameters encoded in the Video bitstream can indicate
the appropriate mode of operation. A first parameter, referred
to in MPEG-4 as “intra dc vlc thr,” is located in the VOP
header. As set forth in MPEG-4, the first parameter, intra
dc vlc thr, is encoded to one of 8 codes as described in
Table I, where QP indicates a quantization parameter.

TABLE I

Index Meaning Code

O Use Intra DC VLC for entire VOP OOO
1. Switch to Intra AC VLC at running QP >= 13 OO1
2 Switch to Intra AC VLC at running QP >= 15 O10
3 Switch to Intra AC VLC at running QP >= 17 O11
4 Switch to Intra AC VLC at running QP >= 19 1OO
5 Switch to Intra AC VLC at running QP >= 21 101
6 Switch to Intra AC VLC at running QP >= 23 110
7 Use Intra AC VLC for entire VOP 111

The intra dc vlc thr code of “000” corresponds to
Separating DC coefficients from AC coefficients in intra
coded macroblocks. With respect to an I-VOP, the setting of
the intra dc vlc thr parameter to “000' results in the
placement by the encoder of the DC coefficient before the
DC marker, and the placement of the AC coefficients after
the DC marker.

With respect to a P-VOP, the setting of the intra dc
vlc thr parameter to “000” results in the encoder placing
the DC coefficients immediately after the motion marker,
together with the cbpy and ac pred flag information. It
will be understood that the value of the intra dc vlc thr
parameter is Selected at the encoding level. For error
resilience, Video bitstreams may be relatively more robustly
encoded with the intra dc vlc thr parameter set to 000.
Nonetheless, one embodiment of the invention advanta
geously detects the Setting of the intra dc vlc thr param
eter to "000, and monitors for the motion marker and/or the
DC marker. If the corresponding motion marker and/or is
observed without an error, the process classifies the DC
information received ahead of the motion marker and/or DC
marker and uses the DC information in decoding. Otherwise,
the DC information is dropped.
A second parameter, referred to in MPEG-4 as “ac

pred-flag” is located after the motion marker/DC marker, but

15

25

35

40

45

50

55

60

65

24
before RVLC texture data. The “ac pred flag” parameter
instructs the encoder to differentially encode and the decoder
to differentially decode the top row and first column of DCT
coefficients (a total of 14 coefficients) from a neighboring
block that has the best match with the current block with
regard to DC coefficients. The neighboring block with the
Smallest difference is used as a prediction block as shown in
FIG. 15.

FIG. 15 illustrates a sequence of macroblocks with AC
prediction. FIG. 15 includes a first macroblock 1502, A, a
Second macroblock 1504, B, a third macroblock 1506, C, a
fourth macroblock 1508, D, a fifth macroblock 1510, X, and
a sixth macroblock 1512, Y. The fifth macroblock 1510, X,
and the sixth macroblock 1512, Y, are encoded with AC
prediction enabled. A first column of DCT coefficients from
the first macroblock 1502, A, is used in the fifth macroblock
1510, X, and the sixth macroblock 1512, Y. The top row of
coefficients from the third macroblock 1506, C, or from the
fourth macroblock 1508, D, is used to encode the top row of
the fifth macroblock 1510, X, or the sixth macroblock 1512,
Y, respectively.

It will be understood that for error resilience, the encoder
should disable the AC prediction or differential encoding for
intra-coded macroblocks. With the AC prediction disabled,
intra-coded macroblocks that correspond to either the first or
second “good” part of the RVLC data can be used.

In one embodiment, with AC prediction enabled, the
intra-coded macroblocks of the “good” part of the RVLC
data can be dropped as described earlier in connection with
FIG. 14.

In addition, one decoder or decoding proceSS according to
an embodiment of the invention further determines whether
the intra-coded macroblock, referred to as "Suspect intra
coded macroblock' can be used even with AC prediction
enabled. The decoder determines whether another intra
coded macroblock exists to the immediate left or immedi
ately above the Suspect intra-coded macroblock. When no
Such other intra-coded macroblock exists, the Suspect intra
coded macroblock is labeled "good,” and is decoded and
used.
One decoder further determines whether any of the other

macroblocks to the immediate left or immediately above the
Suspect intra-coded macroblock have not been decoded. If
there are any Such macroblocks, the Suspect intra-coded
macroblock is not used.

FIG. 16 illustrates a bit structure for an MPEG-4 data
partitioning packet. Data partitioning is an option that can be
Selected by the encoder. The data partitioning packet
includes a resync marker 1602, a macroblock number
1604, a quant scale 1606, a header extension code (HEC)
1608, a motion and header information 1610, a motion
marker 1612, a texture information 1614, and a resync
marker 1616.
The MPEG-4 standard allows the DC portion of frame

data to be placed in the data partitioning packet either before
or after the AC portion of frame data. The order is deter
mined by the encoder. When data partitioning is enabled, the
encoder includes motion vectors together with “not-coded”
and “mcbpc' information in the motion and header infor
mation 1610 ahead of the motion marker 1612 as part of
header information as shown in FIG. 16.
When an error is detected in the receiving of a packet, but

the error occurs after the motion marker 1612, one embodi
ment of the invention uses the data received ahead of the
motion marker 1612. One embodiment predicts a location
for the motion marker 1612 and detects an error based on
whether or not the motion marker 1612 was observed in the

US 6,876,705 B2
25

predicted location. Depending on the nature of the Scenes
encoded, the data included in the motion and header infor
mation 1610 can yield a wealth amount of information that
can be advantageously recovered.

For example, when the “not coded” flag is Set, a macrob
lock should be copied from the same location in the previous
frame by the decoder. The macroblocks corresponding to the
“not coding” flag can be reconstructed safely. The “mcbpc'
identifies which of the 68-by-8 blocks that form a macrob
lock (4 for luminance and 2 for chrominance) have been
coded and thus include corresponding DCT coefficients in
the texture information 1614.
When RVLC is enabled, the texture information 1614 is

further divided into a first portion and a second portion. The
first portion immediately following the motion marker 1612
includes “cbpy' information, which identifies which of the
4 luminance 8-by-8 blocks are actually coded and which are
not. The cbpy information also includes a DC coefficient for
those intra-coded macroblocks in the packet for which the
corresponding “Intra DC VLC encoding” has been enabled.

The cbpy information further includes an ac pred flag,
which indicates whether the corresponding intra-coded mac
roblocks have been differentially encoded with AC predic
tion by the encoder from other macroblocks that are to the
immediate left or are immediately above the macroblock. In
one embodiment, the decoder uses all of or a Selection of the
cbpy information, the DC coefficient, and the ac pred flag
in conjunction with the presence or absence of a first
error-free portion of the DCT data in the texture information
1614 to assess which part can be safely decoded. In one
example, the presence of Such a good portion of data
indicates that DC coefficients of intra macroblocks and
cbpy-inferred non-coded Y-blocks of a macroblock can be
decoded.
One technique used in digital communications to increase

the robustness of transmitted or Stored digital information is
forward error correction (FEC) coding. FEC coding includes
the addition of error correction information before data is
stored or transmitted. Part of the FEC process can also
include other techniqueS Such as bit-interleaving. Both the
original data and the error correction information are Stored
or transmitted, and when data is lost, the FEC decoder can
reconstruct the missing data from the data that it received
and the error correction information.

Advantageously, embodiments of the invention decode
FEC codes in an efficient and backward compatible manner.
One drawback to FEC coding techniques is that the error
correction information increases the amount of data that is
stored or transmitted, referred to as overhead. FIG. 17
illustrates one example of a tradeoff between block error rate
(BER) correction capability versus overhead. A horizontal
axis 1710 corresponds to an average BER correction capa
bility. A vertical axis 1720 corresponds to an amount of
overhead, expressed in FIG. 17 in percentage. A first curve
1730 corresponds to a theoretical bit overhead versus BER
correction capability. A second curve 1740 corresponds to
one example of an actual example of overhead verSuS BER
correction capability. Despite the Overhead costs, the ben
efits of receiving the original data as intended can outweigh
the drawbacks of increased data Storage or transmission, or
the drawbacks of a revised bit allocation in a bandwidth
limited System.

Another disadvantage to FEC coding is that the data, as
encoded with FEC codes, may no longer be compatible with
Systems and/or Standards in use prior to FEC coding. Thus,
FEC coding is relatively difficult to add to existing systems
and/or standards, such as MPEG-4.

15

25

35

40

45

50

55

60

65

26
To be compatible with existing Systems, a Video bitstream

should be compliant with a Standard Syntax, Such as
MPEG-4 syntax. To retain compatibility with existing
Systems, embodiments of the invention advantageously
decode FEC coded bitstreams that are encoded only with
Systematic FEC codes and not non-Systematic codes, and
retrieve FEC codes from identified user data video packets.

FIG. 18 illustrates a video bitstream with systematic FEC
data. FEC codes can correspond to either Systematic codes
or non-Systematic codes. A Systematic code leaves the
original data untouched and appends the FEC codes Sepa
rately. For example, a conventional bitstream can include a
first data 1810, a second data 1830, and so forth. With
Systematic coding, the original data, i.e., the first data 1810
and the second data 1830, is preserved, and the FEC codes
are provided Separately. An example of the Separate FEC
code is illustrated by a first FEC code 1820 and a second
FEC code 1840 in FIG. 18. In one embodiment, the data is
carried in a VOP packet, and the FEC codes are carried in
a user data packet, which follows the corresponding VOP
packet in the bitstream. One embodiment of the encoder
includes a packet of FEC codes in a user data Video packet
for each VOP packet. However, it will be understood that
depending on decisions made by the encoder, less than every
corresponding data may be Supplemented with FEC codes.
By contrast, in a non-Systematic code, the original data

and the FEC codes are combined. It will be understood by
one of ordinary skill in the art that the application of FEC
techniques that generate non-Systematic code result in bit
streams should be avoided where the applicable video
Standard does not specify FEC coding.
A wide variety of FEC coding types can be used. In one

embodiment, the FEC coding techniques correspond to
Bose-Chaudhuri-Hocquenghem (BCH) coding techniques.
In one embodiment, a block size of 511 is used. In the
illustrated configurations, the FEC codes are applied at the
packetizer level, as opposed to another level, Such as a
channel level.

In the context of an MPEG-4 system, one way of includ
ing the Separate Systematic error correction data, as shown
by the first FEC code 1820 and the second FEC code 1840,
is to include the error correction data in a user data Video
packet. The user data Video packet can be ignored by a
standard MPEG-4 decoder. In the MPEG-4 syntax, a data
packet is identified as a user data Video packet in the Video
bitstream by a user data Start code, which is a bit String of
000001B2 in hexadecimal (start code value of B2), as the
Start code of the data packet. Various data can be included
with the FEC codes in the user data video packet. In one
embodiment, a user data header code identifies the type of
data in the user data Video packet. For example, a 16-bit
code for the user data header code can identify that data in
the user data Video packet is FEC code. In another example,
such as in a standard yet to be defined, the FEC codes of
Selected data are carried in a dedicated data packet with a
unique Start code.

It will be appreciated that error correction codes corre
sponding to all the data in the Video bitstream can be
included in the user data Video packet. However, this dis
advantageously results in a relatively large amount of over
head. One embodiment of the invention advantageously
encodes FEC codes from only a selected portion of the data
in the video bitstream. The user data header code in the user
data Video packet can further identify the Selected data to
which the corresponding FEC codes apply. In one example,
FEC codes are provided and decoded only for data corre
sponding to at least one of motion vectors, DC coefficients,
and header information.

US 6,876,705 B2
27

FIG. 19 is a flowchart 1900 generally illustrating a
process of decoding Systematically encoded FEC data in a
video bitstream. The process can be activated once per VOP.
The decoding process is advantageously compatible with
video bitstreams that include FEC coding and those that do
not. The process starts at a first state 1904, where the process
receives the video bitstream. The video bitstream can be
received wirelessly, through a local or a remote network, and
can further be temporarily stored in buffers and the like. The
process advances from the first state 1904 to a second state
1908.

In the second state 1908, the process retrieves the data
from the video bitstream. For example, in an MPEG-4
decoder, the process can identify those portions correspond
ing to standard MPEG-4 video data and those portions
corresponding to FEC codes. In one embodiment, the pro
ceSS retrieves the FEC codes from a user data Video packet.
The process advances from the second state 1908 to a
decision block 1912.

In the decision block 1912, the process determines
whether FEC codes are available to be used with the other
data retrieved in the second state 1908. When FEC codes are
available, the process proceeds from the decision block 1912
to a third state 1916. Otherwise, the process proceeds from
the decision block 1912 to a fourth state 1920. In another
embodiment, the decision block 1912 instead determines
whether an error is present in the received Video bitstream.
It will be understood that the corresponding portion of the
Video bitstream that is inspected for errors can be stored in
a buffer. When an error is detected, the process proceeds
from the decision block 1912 to the third State 1916. When
no error is detected, the process proceeds from the decision
block 1912 to the fourth State 1920.

In the third state 1916, the process decodes the FEC codes
to reconstruct the faulty data and/or verify the correctness of
the received data. The third state 1916 can include the
decoding of the normal video data that is accompanied with
the FEC codes. In one embodiment, only selected portions
of the video data supplemented with FEC codes, and the
proceSS reads header codes or the like, which indicate the
data to which the retrieved FEC codes correspond.

The process advances from the third State to an optional
fifth state 1924. One encoding process further includes other
data in the same packet as the FEC codes. For example, this
other data can correspond to at least one of a count of the
number of motion vectors, a count of the number of bits per
packet that are encoded between the resync field and the
motion marker field. This count allows a decoder to advan
tageously resynchronize to a Video bitstream earlier than at
a place in a bitstream with the next marker that permits
reSynchronization. The process advances from the optional
fifth state 1924 to the end. The process can be reactivated to
process the next batch of data, such as another VOP.

In the fourth state 1920, the process uses the retrieved
video data. The retrieved data can be the normal video data
corresponding to a video bitstream without embedded FEC
codes. The retrieved data can also correspond the normal
Video data that is maintained Separately in the Video bit
stream from the embedded FEC codes. The process then
ends until reactivated to process the next batch of data.

FIG. 20 is a block diagram generally illustrating one
process of using a ring buffer in error resilient decoding of
Video data. Data can be transmitted and/or received in
varying bit rates and in bursts. For example, network con
gestion can cause delays in the receipt of packets of data.
The dropping of data, particularly in wireleSS environments,
can also occur. In addition, a relatively Small amount of

15

25

35

40

45

50

55

60

65

28
received data can be stored in a buffer until it is ready to be
processed by a decoder.
One embodiment of the invention advantageously uses a

ring buffer to Store incoming Video bitstreams for error
resilient decoding. A ring buffer is a buffer with a fixed size.
It will be understood that the size of the ring buffer can be
Selected in a very broad range. A ring buffer can be con
Structed from an addressable memory, Such as a random
access memory (RAM). Another name for a ring buffer is
circular buffer.
The storing of the video bitstream in the ring buffer is

advantageous in error resilient decoding, including error
resilient decoding of video bitstreams in a wireless MPEG-4
compliant receiver, Such as a Video-enabled cellular tele
phone. With error resilient decoding techniques, data from
the video bitstream may be read from the video bitstream
multiple times, in multiple locations, and in multiple direc
tions. The ring buffer permits the decoder to retrieve data
from various portions of the video bitstream in a reliable and
efficient manner. In one test, use of the ring buffer Sped
access to bitstream data by a factor of two.

In contrast to other buffer implementations, data is advan
tageously not flushed from a ring buffer. Data enters and
exits the ring buffer in a first-in first-out (FIFO) manner.
When a ring buffer is full, the addition of an additional
element overwrites the first element or the oldest element in
the ring buffer.
The block diagram of FIG. 20 illustrates one configura

tion of a ring buffer 2002. Data received from the video
bitstream is loaded into the ring buffer 2002 as the data is
received. In one embodiment, the modules of the decoder
that decode the video bitstream do not access the video
bitstream directly, but rather, access the Video bitstream data
that is stored in the ring buffer 2002. Also, the skilled
practitioner will appreciate that the ring buffer 2002 can
reside either ahead of or behind a VOP decoder in the data
flow. However, the placement of the ring buffer 2002 ahead
of the VOP decoder saves memory for the ring buffer 2002,
as the VOP is in compressed form ahead of the VOP decoder.
The video bitstream data that is loaded into the ring buffer

2002 is represented in FIG. 20 by a bitstream file 2004. Data
logging information, including error logging information,
such as error flags, is also stored in the ring buffer 2002 as
it is generated. The data logging information is represented
in FIG. 20 as a log file 2006. In one embodiment, a log
interface between H.223 output and decoder input advanta
geously Synchronizes or aligns the data logging information
in the ring buffer 2002 with the video bitstream data.
A first arrow 2010 corresponds to a location (address) in

the ring buffer 2002 in which data is stored. As data is added
to the ring buffer 2002, the ring buffer 2002 conceptually
rotates in the clockwise direction as shown in FIG. 20. A
second arrow 2012 indicates an illustrative position from
which data is retrieved from the ring buffer 2002. A third
arrow 2014 can correspond to an illustrative byte position in
the packet that is being retrieved or accessed. Packet Start
codes 2016 can be dispersed throughout the ring buffer
2002.
When data is retrieved from the ring buffer 2002 for

decoding of a VOP with video packets enabled, one embodi
ment of the decoder inspects the corresponding error-flag of
each packet. When the packets are found to be corrupted, the
decoder skips the packets until the decoder encounters a
clean or error-free packet. When the decoder encounters a
packet, it Stores the appropriate location information in an
indeX table, which allows the decoder to access the packet
efficiently without repeating a Seek for the packet. In another

US 6,876,705 B2
29

embodiment, the decoder uses the contents of the ring buffer
2002 to recover and use data from partially corrupted video
packets as described earlier in connection with FIGS. 7-16.

Table II illustrates a sample of contents of an index table,
which allows relatively efficient access to packets Stored in
the ring buffer 2002.

TABLE II

Index - Table Entry

Initial
Value Descriptions

Walid O Valid flag. A value of 1 indicates that valid data
corresponding to this entry information exists in the
ring buffer.

Past O Past flag, O indicates that this index has a current or
future index.

Pos O Start position of the packet, which indicates a position
in the ring buffer.

ErrorType O Error type.
Size O Packet Size.

Various embodiments of the invention have been
described above. Although this invention has been described
with reference to these specific embodiments, the descrip
tions are intended to be illustrative of the invention and are
not intended to be limiting. Various modifications and appli
cations may occur to those skilled in the art without depart
ing from the true Spirit and Scope of the invention as defined
in the appended claims.

APPENDIX A

Incorporation by Reference of Commonly Owned
Applications

The following patent applications, commonly owned and
filed of the same day as the present application, are hereby
incorporated herein in their entirety by reference thereto:

Application
No.

Attorney
Title Docket No.

SYSTEMS AND METHODS FOR
ENHANCED ERROR
CONCEALMENT INAVIDEO
DECODER
SYSTEMS AND METHODS FOR
DECODING OF SYSTEMATIC
FORWARDERROR CORRECTION

(FEC) CODES OF SELECTED
DATA INA VIDEO BITSTREAM
SYSTEMS AND METHODS FOR
MANAGEMENT OF DATAIN
ARING BUFFER FORERROR
RESILIENT DECODING OF
A VIDEO BITSTREAM
SYSTEMS AND METHODS FOR
REDUCING ERROR PROPAGATION
INAVIDEO DATASTREAM
SYSTEMS AND METHODS FOR
REFRESHING MARCOBLOCKS
SYSTEMS AND METHODS FOR
REDUCING FRAMERATES IN
A VIDEO DATASTREAM
SYSTEMS AND METHODS FOR
GENERATING ERROR
CORRECTION INFORMATION
FOR MEDIASTREAM
SYSTEMS AND METHODS FOR
PERFORMING BTRATE

10/092,366 INTV.OOSA

10/092,353 INTV.OO7A

10/092,384 INTV.OO8A

10/092,340 INTV.OO9A

10/092.375 INTV.O1OA

10/092,345 INTV.O11A

10/092,392 INTV.O12A

10/092,383 INTV.O13A

15

25

35

40

45

50

55

60

65

30

-continued

Application
No.

Attorney
Title Docket No.

ALLOCATING FOR A
VIDEO DATASTREAM
SYSTEMS AND METHODS FOR
ENCODING REDUNDANT
MOTION VECTORS IN
COMPRESSED WIDEO
BITSTREAM
SYSTEMS AND METHODS FOR
DECODING REDUNDANT
MOTION VECTORS IN
COMPRESSED WIDEO
BITSTREAM
SYSTEMS AND METHODS FOR
DETECTING SCENE CHANGES
INAVIDEO DATASTREAM

10/092,373 INTV.O14A

10/092,339 INTV.O15A

10/092,394 INTV.O16A

What is claimed is:
1. A method of recovering useful data from a Video packet

that has been corrupted, the method comprising:
receiving the Video packet;
ending without recovering data when corruption is

detected in a Video packet header of the Video packet;
ending without recovering data when corruption is

detected in a DC portion of the video packet;
ending without recovering data when corruption is

detected in a motion vector portion of the Video packet;
initiating decoding of the Video packet in a forward

direction;
maintaining a first count of a number of macroblockS

decoded without error in the forward direction;
Storing codewords decoded in the forward direction;
Storing a first bit location when an error is first detected in

the forward direction;
initiating decoding of the Video packet in a reverse

direction;
maintaining a Second count of a number of macroblockS

decoded without error in the reverse direction;
Storing codewords decoded in the reverse direction;
Storing a Second bit location when an error is first detected

in the reverse direction;
determining if there is an overlapping region, where the

Overlapping region corresponds to a region identified in
both the forward direction and in the reverse direction
as having an error;

if there is an overlapping region, discarding the data in the
Overlapping region and using the data in a remaining
portion of the Video packet; and

if there is no overlapping region, discarding the data
between a first backtracking amount ahead of the first
error location in the forward direction and a Second
backtracking amount behind the Second error location
in the first location, and recovering the remaining
portion of the Video packet.

2. The method as defined in claim 1, wherein the first error
location and the Second error location correspond to bit
locations.

3. The method as defined in claim 1, wherein the first error
location and the Second error location correspond to mac
roblock boundaries.

4. The method as defined in claim 1, wherein the first
backtracking amount and the Second backtracking amount
are each to a next valid macroblock boundary.

US 6,876,705 B2
31

5. The method as defined in claim 1, wherein the first
backtracking amount and the Second backtracking amount
are about 90 bits.

6. The method as defined in claim 1, further comprising
discarding recovered data from a corrupted Video packet that
corresponds to an intra-coded macroblock.

7. The method as defined in claim 1, further comprising:
determining whether AC prediction was disabled by the

encoder;
using a recovered intra-coded macroblock if the intra

coded macroblock is recovered from a portion of the
video packet that is ahead of a DC marker in the
forward direction, where the Video packet was encoded
with AC prediction disabled; and

32
otherwise discarding recovered data corresponding to an

intra-coded macroblock.

8. The method as defined in claim 1, further comprising
using recovered data corresponding to a first intra-coded
macroblock only if no other intra-coded macroblock exists
to the immediate left of the first intra-coded macroblock and
no other intra-coded macroblock exists immediately above
the first intra-coded macroblock in the image.

9. The method as defined in claim 1, further comprising
concealing errors with gray pixels for portions of the Video
packet that were not recoverable.

k k k k k

