6/022739 A2 | IV VY 200 0000 O

—

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 March 2006 (02.03.20006)

lﬂb A 00 O 0

(10) International Publication Number

WO 2006/022739 A2

(51) International Patent Classification:
GOGF 17/28 (2006.01)

(21) International Application Number:
PCT/US2004/027384

(22) International Filing Date: 25 August 2004 (25.08.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
10/919,438 17 August 2004 (17.08.2004) US
(71) Applicant (for all designated States except US): CON-
TENTGUARD HOLDINGS, INC. [US/US]; 103 Foulk

Road, Suite 200-M, Wilmington, DE 19803 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TA, Thanh
[AU/US]; 18694 Stratton Lane, Huntington Beach, CA
92648 (US). CHEN, Eddie [US/US]; 6796 Vallon Drive,
Rancho Palos Verdes, CA 90275 (US). LAO, Guillermo
[US/US]; 5531 Lorna Street, Torrance, CA 90503 (US).
VALENZUELA, Edgardo; 9409 Alexander Avenue,
South Gate, CA 90280 (US).

(74) Agents: KAUFMAN, Marc, S. et al.; Nixon Peabody
LLP, 401 9th Street, NW, Washington, D.C. 20004 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE,
SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(84)

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND SYSTEM FOR PROCESSING GRAMMAR-BASED LEGALITY EXPRESSIONS

(57) Abstract: Legality expressions are systematically pre-processed, organized, and stored to achieve faster real-time response,
& improved predictability, and increased reliability for queries against a large volume of legality expressions. Exponential improve-
ments in both the time to locate the set of legality expressions matching specified search criteria and the processing costs of evaluating
the request against the matching legality expressions are achieved using the disclosed systems, devices, and methods. The systems,
devices, and methods are unique to the optimization of legality expression processing, but they can also enable the use of other

optimization techniques for processing large amounts of data.

WO 2006/022739 PCT/US2004/027384

METHOD AND SYSTEM FOR PROCESSING
GRAMMAR-BASED LEGALITY EXPRESSIONS

FIELD OF THE INVENTION
[0001] The invention relates to the field of processing grammar-based legality
expressions. More particularly, it relates to systems and methods that optimize processing of
legality expressions, enabling legality expression processing systems to respond to requests

expeditiously and within a predicable time frame.

BACKGROUND OF THE INVENTION
[0002] Declarative Meta languages have been promoted heavily in the information
technology industry since the early 1990s by industry leaders such as Microsoft, IBM, and
Sun Microsystems. Since that time, an increasing number of systems and applications have
adopted the use of Meta languages. One of the Meta languages, XML, has become the de
facto standard.
[0003] One use for which Meta languages have been proposed is legality expressions.
Legality expressions are syntactically and semantically correct constructs based on a defined '
grammar. Legality expressions are the manifestation of a legality statement in digital form.
The semantics of legality expressions may include assertions, certifications, permissions,
obligations, prohibitions, intentions, promises, exclusivities, declarations, rules, rights,
conditions, and policies. Legality expression “semantics” refer to the meanings of the
legality expression. The “syntax” of legality expressions is another key component and refers
to the data types and the structure in which words or expressions are put together to form
phrases or clauses.
[0004] By themselves, Meta languages typically do not carry machine-interpretable
semantics. However, there has been great industry demand for machine-interpretable
semantics to automate business transactions and to facilitate interoperability across devices,
platforms, and systems. Driven by this demand, enterprises and industry standard groups
have developed legality expression grammars to overlay a Meta language. These grammars
capture the semantics of legal expressions. Analogous to the relationship between a clause
and the grammar in a natural language, a legality expression is a specific clause based on and
compliant with the legality expression grammar.
[0005] Examples of legality expression grammars include, but are not limited to, the

eXtensible rights Markup Language (XrML), the ISO MPEG Rights Expression Language

o1-

WO 2006/022739 PCT/US2004/027384

(MPEG REL), the Open Digital Rights Language (ODRL), the Open Mobile Alliance (OMA)
REL, the Content Reference Forum Contract Expression Language (CRF CEL), the Security
Assertion Markup Language (SAML), the XML Access Control Language (XACL), the
eXtensible Access Control Markup Language (XACML), the Business Process Execution
Language (BPEL), and the Process Specification Language (PSL). Examples of legality
expressions include XrML licenses that govern the use of Microsoft RMS-enabled Office
documents, XML licenses that govern the use of Digital Rights Management (DRM) enabled
Windows Media content, SAML asserti\ons in Web Services applications, CEL-based
eContracts for CRF-targeted business scenarios, and the like. This list of legality expression
grammars is not inclusive, but instead shows examples of legality expression grammars well
known in the industry.

[0006] Legality expressions may be used in a wide variety of systems and
applications. Some examples include agreements between business entities, permissioné
granted by rights holders to distributors and consumers, policies and rules governing
computer system behaviors, digital identification, digital certificates, tokens that assert an
entity’s identity and attributes, tokens that assert an entity’s privileges in a government or
enterprise security environment, and the like.

[0007] The primary objectives of legality expressions are to facilitate human-to-
machine and machine-to-machine communications, and to enable precise and unambiguous
machine interpretation. In other words, the syntax and semantics of legality expression
grammars are typically not designed for an optimal real-time processing response.
Transformation of the original legality expression format into a machine-internal
representation is often required to detect the intent of a user from the semantics (meaning)
and syntax (arrangement) of the legality expression.

[0008] In addition, it is conventional to impose digital signatures on legality
expressions to authenticate their integrity. For privacy protection, legality expressions may
be further protected by cryptographic means such as encryption. To mitigate size, bandwidth,
and other constraints, legality expressions may be encoded in different formats. For example,
a legality expression may be encoded in a binary format to reduce its size in the mobile
communication environment. The transformation, digital signature, security protection,
encoding, and other potential formatting all introduce additional overhead to the processing
of legality expressions.

[0009] As grammar-based legality expressions become the prevalent means for

communicating and enforcing legality terms on machine-interpreted and enforced

.2-

WO 2006/022739 PCT/US2004/027384

transactions, many systems and applications may need to process large volumes of legality
expressions efficiently. For example, a consumer’s personal computer may contain
thousands of licenses, each of which governs the use of one specific digital work or a group
of digital works. In another example, a rights clearance center may manage and process
millions of electronic licenses and contracts in response to frequent queries. In a third
example, a large retailer may implement an automated contract issuance and management
system that stores the contractual agreements between itself and its hundreds or thousands of
suppliers expressed in a CEL. This application would require a gigantic database of
eContracts. In addition, there are many instances where a legality expression management -
system needs to satisfy a fixed response-time requirement. For example, it may need to
deliver authorization tokens for viewing a streaming video to the consumption device every
second. A lengthy search for the appropriate permissions and usage rights would not be a
practical solution in this environment.

[0010] In a conventional legality expression processing system, legality expressions
are stored sequentially in a persistent repository. The stored legality expressions are captured
in the original Meta language syntax. In certain cases, the legality expressions may be binary
encoded, digitally signed, security protected, and formatted by other means.

[0011] Triggered by a processing request, the system processes the legality
expressions in a linear fashion, typically going through the following steps of first selecting
the legality expressions relevant to the processing request. The processing request typically
encompasses a specific context. For example, a request might impose the query, ‘Does
music distributor X have the permission from record company Y to sell its content in territory
Z?” In this case, “X”, “Y”, “Z”, and “sell” can all be used as filters to select the relevant
legality expressions. In other words, this specific processing request is only interested in the
legality expressions that satisfy these four filtering criteria. Depending on the type of
processing request, the system may need to find the first legality expression that matches the
query, a subset of legality expressions that match the query, or all legality expressions that
match the query.

[0012] Second, the legality expression is validated. The set of matching legality
expressions from the “Select” step must be validated and verified. This may include
reversing the binary encoding process, decrypting, verifying digital signature to confirm
integrity, and validating the syntax of the legality expressions against the grammar.

[0013] Third, the legality expression is interpreted. This step extracts the semantic

meaning from the legality expressions to construct the information needed for a response to

23-

WO 2006/022739 PCT/US2004/027384

the processing request. This step may also involve retrieving and processing other related
legality expressions needed for the response. For examples, a usage right may only be
granted if the principal possesses another (prerequisite) right. A legality expression can have
one or more other rights or legal obligations requiring interpreting many layers of
authorization, authentication, and the like. In this case, the system must search for and verify
that the principal does possess the required pre-requisite right before granting the usage right.
[0014] Last, the system responds to the processing request. Once the initial steps
have been completed, the system must determine that all conditions and obligations are
satisfied in order to properly respond to the processing request.

[0015] These operations can be computing-resource and processing intensive,
especially when the legality expressions are complicated, lengthy, or dependant on other
legality expressions. Without a systematic method to organize and manage high volumes of
legality expressions, it will be very d,ifﬁcult, and in some instances impossible, to respond to
query, event, authorization, or other processing requests within a reasonable time. If the
legality expressions are stored sequentially in a conventional storage area, looking up the
legality expressions via linear or binary search, and the subsequent processing, may result in
a wide range of indeterminate response times, making it impossible to meet fixed response
time requirements. Conventional processing of legality expressions is not practical nor
efficient in a system managing thousands or millions of legality expressions.

[0016] What is needed is a new type of system and method of efficiently processing
legality expressions to meet communication requests expeditiously and in a predictable time

frame.

SUMMARY OF THE INVENTION

[0017] The present invention relates to a system and method for efficiently storing
and cataloging legality expressions to provide exceptional retrieval speed and integrity. The
present invention provides a simple, powerful, and elegant manner in which legality
expressions that match the context may be quickly retrieved and processing costs of
evaluating a processing request may be reduced.

[0018] The present invention provides a systematic method to pre-process, organize,
and store legality expressions that achieves faster real-time response, improved predictability,
and increased reliability for queries against a large volume of legality expressions. This

invention improves both the time to locate the set of legality expressions matching the

WO 2006/022739 PCT/US2004/027384

provided context and the processing costs of evaluating the request against the matching
legality expressions.

10019] Additionally, the present invention introduces systems, devices, and methods
unique to the optimization of legality expression storage and organization to facilitate the use
~ of additional optimization techniques for processing large amounts of data. These techniques
include, but are not limited to, caching the results of frequently-used queries, indexing the
data for optimal search performance, storing and organizing the data in databases, distributing
the processing and computing tasks to multiple processors, and predicting the queries based
on user behaviors and histograms. The storage and organization optimization methods
performed by the present invention are the pre-requisites that enable the use of further

optimization techniques illustrated above.

BRIEF DESCRIPTION OF THE DRAWINGS
[0020] The above-mentioned and other features of this invention and the manner of
attaining them will become more apparent, and the invention itself will be better understood
by reference to the following description of embodiments of the invention taken in
conjunction with the accompanying figures where:
[0021] FIGURE 1A illustrates a structural block diagram of a legality expression in
accordance with the present invention.
{0022} FIGURE 1B illustrates an example of a structural block diagram of an MPEG
REL legality expression in accordance with the present invention.
[0023] FIGURE 2 illustrates a block diagram of the components of an exemplary
system to process legality expressions in a method in accordance with the present invention.
[0024] FIGURE 3 illustrates the basic processing steps of the pre-processor of an
exemplary system in accordance with the present invention.
[0025] FIGURE 4 illustrates example processing of atomic expressions with different
semantic types typically found in digital rights management (DRM) applications.
10026] FIGURE 5 illustrates the basic processing steps of the selector of an
exemplary system in accordance with the present invention.
[0027] FIGURE 6 illustrates the basic processing steps of the evaluator of an
exemplary system in accordance with the present invention,
[0028] FIGURE 7 illustrates an exemplary set of authorization options used to prove
that a rights holder has the right to perform a particular task.

WO 2006/022739 PCT/US2004/027384

[0029] FIGURE 8 illustrates an exemplary embodiment of a data model for pre-
processed legality expressions.

[0030] FIGURE 9A illustrates an example of a pseudo MPEG REL license.

[0031] FIGURE 9B illustrates an example of units of evaluation that comprise an
MPEG REL license. »

[0032] FIGURE 9C illustrates an example of atomic expressions that comprise units

of evaluation in an MPEG REL license.

[0033] FIGURE 9D illustrates an example of indices of atomic expressions in an

MPEG REL license.

DETAILED DESCRIPTION OF THE INVENTION
[0034] The invention is described in detail with particular reference to certain
preferred embodiments, but within the spirit and scope of the invention, it is not limited to
such embodiments. It will be apparent to those of skill in the art that various features,
variations, and modifications can be included or excluded, within the limits defined by the
claims and the requirements of a particular use.
[0035] The present invention extends the functionality of current methods and
systems used to process legality expressions by properly and consistently pre-processing,
organizing, and storing legality expressions to achieve increased efficiency, predictability,
and speed. The system and method of the present invention has many advantages over prior
systems, because the legality expressions and their elemental structures provided by the
present invention significantly reduce the locating times and processing costs required while
providing improved consistency and reliability in optimizing retrieval methods.
[0036}] The present invention reduces processing costs during evaluation and
efficiently stores legality expressio\ns so that they can be retrieved quickly based on given
search criteria. The present invention improves both the time to locate the set of legality
expressions that match the search criteria and the processing costs of evaluating the request
against the matching set of results.
[0037] The present invention discloses an evaluation model that optimizes the
structure of legality expressions for storage, retrieval, and evaluation. The system of the
present invention is built on the disclosed evaluation model to pre-process legality
expressions. An assessment of the performance improvements that this invention offers is
further described, and the structure of an example rights database for an embodiment that

supports XrML is disclosed.

WO 2006/022739 PCT/US2004/027384

[0038] 1. Evaluation Model

[0039] The disclosed evaluation model describes an optimized structure for legality

expressions, an optimized mechanism to profile expressions, and an optimized unification
method for storage, retrieval, and evaluation of legality expressions.

[0040] Legality expressions may be equated to specific clauses based upon a

particular grammar. The optimized structure for machine processing of legality expressions in

the disclosed evaluation model is called a unit of evaluation. A unit of evaluation represents

a lowest level statement that can be evaluated and thereby result in a decision, such as an

authorization or an authentication decision. FIGURE 9A illustrates a legality expression

using a MPEG REL pseudo license as the example. Pseudo license is not strictly conforming

to the MPEG REL syntax. It expresses the key MPEG REL semantics in a simplified form.

Section [A.1] in the Appendix describes the structure of the example pseudo license and how

it is represented according to the evaluation model. FIGURE 9B illustrates units of
evaluation based on the example pseudo license illustrated in FIGURE 9A. Also section

[A.2] in the Appendix describes the optimization method to partition the example pseudo

license into units of evaluation.

[0041) Units of evaluation may be further broken down into their constituent parts

called “atomic expressions,” denoting the most basic building block of a unit of evaluation.

Continuing from the FIGURE 9B example, FIGURE 9C identifies the atomic expressions

within the units of expressions. Also section [A.3] in the Appendix describes the atomic

expressions within each of the unit of evaluation.

[0042] Many legality expressions languages have their own optimized methods for
representing the information stored in the expressions. For example, in the MPEG REL,

grants with the same principal can be grouped together into a grant group so that the principal

(i.e., right grantee) need not be declared repeatedly in each grant. Such optimization reduces

the number of expressions needed to represent the required statements, but it is not the
optimal way to store and retrieve the target statement for evaluation. The disclosed .
evaluation model therefore proposes an optimized structure to which all legality expressions
can be transformed so that they can be efficiently stored and retrieved for evaluation.

[0043] The optimized mechanism to profile legality expressions in the disclosed

evaluation model is a profile consisting of a set of related expressions that are syntactically

different but semantically the same. That is, a set of expressions that all say the same thing

but in a different way. The same statement is made in a different fashion. Use of a profile

_7-

WO 2006/022739 PCT/US2004/027384

ensures the evaluation of legality expressions against a (query) context. The context contains
all the facts from which an expression is evaluated. When the context is constructed from a
query, it is often called a query context. The context is a set of expressions representing the
facts relating to the request. Section [A.4] in the Appendix describes some examples of query
contexts.

[0044] In the example shown below, a song context object can be identified by its
title and by its unique ID assigned by the producer. All the different expressions that
represent a specific song are called a profile. Thus, the retrieval of the expressions
representing a specific song (query context object) is guaranteed to be complete if the search

is performed over all expressions in the profile for that song.

[0045] Object: The specific musical composition of words and notes.
' Expression 1: Beethoven, Ninth Symphony (Title)
Expression 2: Deutsche Grammophon Catalog #429861 (Record Label ID)

[0046] The profile function returns all the different expressions that represent the
same object. In the above example, the profile function returns Expression 1 and Expression
2 as below:

Beethoven Ninth Symphony; Deutsche Grammophon Catalog #429861

[0047] The optimized unification method for legality expressions in the disclosed
evaluation model evaluates whether a query context object, which is an expression (fact)
specified in the context, can be used to substitute for a particular atomic expression. An
example of the optimized unification method is illustrated below:

[1] Legality Expression: Any Beethoven Symphonies

[2] Expression In The Query Context: Beethoven, Ninth Symphony

[0048] Then expression [2] can be used to substitute for [1].
[0049] Another example of the unification is shown below when an expression may

not be substituted:

[1] Legality Expression: Any Beethoven Symphonies
[2] Expression In The Query Context: Chopin, Nocturne In ‘A’ Minor
[0050] In this case, the query context object is not the proper context, and expression

[2] cannot be used to substitute for [1].

WO 2006/022739 PCT/US2004/027384

[0051] The unification method evaluates an atomic expression against the context
and resolves the conflict if one exists in the result from the evaluation. This method is also
used in the retrieval of a set of legality expressions that match with the (query) context.
Expressions that are retrieved using the disclosed unification method are matched with the

(query) context, and therefore the returned expressions need not be evaluated.

[0052] a. Optimized Legality Expression Structure

[0053] As defined above, a legality expression is a specific clause based on, and in
compliance with, a legality expression grammar. In grammar-based legality expression
languages, the evaluation of the legality expressions against a request can be optimally
carried out over a list of units of evaluation. For example, in MPEG REL, a unit of
evaluation can be a grant specifying that a principal may exercise a right over a resource
under certain conditions. Section [A.2] in the Appendix describes the units of evaluation of a
pseudo MPEG REL license. In BPEL, a unit of evaluation can be an operation or business
activity that can be invoked or performed.

[0054] In some applications (such as those using the MPEG REL, CRF CEL, or
XACL), evaluating a unit of evaluation usually results in an authorization or authentication
decision. In other applications (such as those using BPEL or PSL), evaluation of a unit of
evaluation results in an activity or operation being carried out. For example, evaluation of an
MPEG REL grant against a requested principal, right, and resource returns an authorization
decision stipulating whether the input principal is allowed to exercise the input right over the
input resource. Evaluating an XACL document against the input subject, content, and access
results in an authorization decision stipulating whether the input subject is allowed to access
the input content.

[0055] Although the physical representation of a legality expression and a unit of
evaluation are different among different applications, the structures of these components are
similar in terms of evaluation. As shown in FIGURE 1A, legality expression 100 comprises
units of evaluation 110. Units of evaluation 110 are made up of atomic expressions 120a,
120b, 120c, 120d. Units of evaluation 110 are combinatorial expressions. Evaluation of a
unit of evaluation 110 as a whole is a conjunction of the evaluation of all of the atomic
expressions 120a, 120b, 120c, 120d that comprise it.

[0056] As an example, in FIGURE 1B, an MPEG REL legality expression 101 is

pictured. The unit of evaluation comprises a grant 111. Grant 111 is made up of atomic

WO 2006/022739 PCT/US2004/027384

expressions including the principal 121a to whom the grant was made, the right 121b
expressed in the grant, the resource 121c, and the condition 121d upon which the grant is
made.
[0057] For convenience and brevity, in FIGURE 1A, a single exemplary unit of
evaluation 110, is shown with four example atomic expressions 120a, 120b, 120¢, 120d, but
an unlimited number of units of evaluation may comprise a legality expression. Likewise,
each unit of evaluation may have an unlimited number of atomic expressions. While many
more atomic expressions may be associated with each unit of evaluation, for illustrative
purposes and for brevity, four atomic expressions are shown in FIGURE 1A and in FIGURE
1B, respectively.
[0058] | Referring again to FIGURE 1A, based on the semantic meaning of each unit
of evaluation 110, the atomic expressions 120 that comprise it can be identified easily. Each
atomic expression 120 is a conjunctive term of the unit of evaluation 110 and can be
independently evaluated. The results of evaluating the atomic expression 120 in a unit of
evaluation 110 are combined to make up the evaluation of the unit of evaluation 110. Thus,
the data model for a unit of evaluation 110 disclosed in this invention is called the
“evaluation model.”
[0059] To evaluate the representation, let e be an atomic expression that can be
independently evaluated. For example e is an atomic expression [p2] of unit of evaluation 2
in FIGURE 9C. Let a(e,c) be an evaluation function of expression e against the context c.
Section A.4.1 of the Appendix provides an example of an evaluation context ¢. Let I be an
expression that represents a unit of evaluation. FIGURE 9B illustrates an example unit of
evaluation. Then, the evaluation model for the unit of evaluation can be expressed as:
[0060] [= combinatorial expression of (e;), where i = 1..n

a(l,c) =a(e,,c) * ..." alen ©)
[0061] Let t(e,]) be a function that returns the semantic type of the atomic expression
e within the given unit of evaluation /. (For example, applying the function #(e,l) to [p2] in
FIGURE 9C, which has the semantic type of Principal, would evaluate #[P2])) to Principal.)
Let m(c, x) be a function that returns all expressions of the semantic type x in the context c.
(For example, applying the example query context ¢ described in section A.4.1 of the
Appendix to, the function rﬁ(c, principal) will return a DSA key holder with specific values

of pl, ql, and y1.) Then, the evaluation function is as follows:

WO 2006/022739 PCT/US2004/027384

[0062] a(e, ¢) can be evaluated if and only if:

x=1te,)

m(c,x) return null or '

m(c,x) return [y;], i=1..n, and there exists at least one i such that u(e, y)), where
u is the unification method as described below. '
[0063] In other words, the algorithm can be described as:

a(e, c) can be evaluated if and only if:

¢ contains no expression that has the same semantic type as e. Thus the query
context ¢ does not care about this field;
[0064] or, if ¢ contains at least one expression that has the same semantic type as e,
then at least one of those expressions must unify withe.
[0065] . The “pre-processor” described below with regard to the exemplary system
provides detailed information on how an exemplary system can pre-process legality

expressions into units of evaluation and atomic expressions prior to executing a query.

[0066] b. Profile

[0067] In many applications, different atomic expressions may represent the same
object. A profile is a set of related expressions that are syntactically different but
semantically the same—that is, a set of expressions that semantically represents the same
statement. Use of a profile ensures that the evaluation of legality expressions against a
(query) context is complete.

[0068] For example, an expression can represent Joe as a Microsoft NET Passport
holder; another expression can represent Joe as a holder of a public/private key pair, and so
on. Section [A.5] in the Appendix describes an example of a profile. To extend the
evaluation function described above, let f(y) be a profile function that returns all the different
expressions that represent the same object that y represents. (For example, with the example
profile of [p2] as described in the section [A.5] of the Appendix, f{[p2]) will return a set of
Joe, a specific DSA key holder and a specific Microsoft .NET Passport.) Then, the

evaluation function in the previous section can be redefined as follows:

WO 2006/022739 PCT/US2004/027384

[0069] a(e, ¢) can be evaluated if and.only if:

x=tel)

m(c,x) return null or

m(c,x) returnv[y,-],i =]..n, and there exists at least one y; such that there is at
least one z; such that u(e, z;), where z;; in the set of [z;] returned from f{y,), and u is the
unification method as described below.
[0070] The “profiler” is further described below with regard to the exemplary system

and provides detailed information on how an exemplary system can profile atomic

expressions.
[0071] c¢. Unification Method
[0072] The unification method evaluates whether a query context object can be used

to substitute for an atomic expression. The unification method evaluates an atomic expression
against the context and resolves the conflict between the atomic expression and the result
from the evaluation.

[0073] In general, an expression may contain variables, and the variables may or may
not be constrained. If an expression does not contain any variables, it is called a “primitive
expression.” If the expression itself represents a variable, it is called a “variable expression.”
[0074] If the units of evaluation returned by a query contain solely primitive atomic
expressions, they usually do not need to be re-evaluated or validated, since they already serve
as matches to the query specified in the context. If the query returns units of evaluation that
are not primitive, they must be further evaluated.

[0075] For example, suppose the query returns an expression containing a variable for
a principal, x, that has been bound to two different primitive expressions for key values, y;
and y,, thus u(x, y;) and u(x, y2). In this case, the expression must be evaluated to determine
whether y; or y; can be substituted for x. The evaluation determines if unification may take
place, that is if u(y;, y2) or u(ys yi). If u(ys, y2) occurs, then y, can be substituted for x. If
u(yz y1) occurs, then y; can be substituted for x. This algorithm is used to revolve the values
to which a variable is bound. Otherwise, neither y; nor y, can be substituted for x, and the
expression returned from the query is discarded.

[0076] The unification function u(e, y) specifies that e can be unified with y in three
different instances:

[0077] First, if e is a variable expression, then it is either subject to constraints or it is

not subject to constraints. If e is a variable expression with no constraints, then e can be

-12 -

WO 2006/022739 PCT/US2004/027384

unified with y for all y of the same semantic type. If e is a variable expression with some
constraints, then e can only be unified with y if, when e is substituted by y, all the constraints
are satisfied for all y of the same semantic type.

[0078] Second, if e is an empty expression (i.e., returns no values upon execution),
then e can be unified with any expression y. For example, MPEG-REL grant | contains a
right v to view the book b. Thus the principle p in grant [is an empty expression. Therefore,
p can be unified with any principal such as x. This will translate to x is granted the right v to
view the book b. This is similar to the case where expression e is a variable with no
constraint. However, they are different in implementation since variable expression e must
be bound to a value while an empty expression is not.

[0079] Third, otherwise, let g be a graph that represents e. Let g, be a graph that
represents y. Then, e can be unified with y if either graph g. is identical with graph g,, or if
every node in g, can be unified with the a node of the same semantic type in g,. Also, the
unification function can use a transform function that can create transformations of the given
graph to attain semantically equivalent graphs. This generic algorithm will support a partial
match between expressions. Section [A.7] in the Appendix illustrates examples of unification.
[0080] When an expression e can be unified with an expression y, then e can be
substituted with y. Thus if u(e, y), then e can be substituted with y.

[0081] Importantly, the unification function u is a one-way function; that e can be
unified with y does not mean that y can be unified with e. Since the unification function is
applied to each atomic expression independently, cases may exist where the same variable
expression is unified with different values in different atomic expressions. The conflict
resolution is therefore defined as follows:

[0082] If e is a variable expression with or without constraints, and y;, and y; are
atomic expressions such that u(e, y;) and ufe, y,), then

[0083] e can only be substituted by y; if u(y;, y2), or

[0084] e can only be substituted by y; if u(y, y1). This is to resolve a variable which
is bound to more than one value.

[0085] Third and lastly, if variable expression e cannot be substituted, then there is no
answer for e within the given context ¢ such that the function of a(e, ¢) cannot be evaluated.
[0086] The “evaluator” is further described below with regard to the exemplary
system and illustrates how an exemplary system can evaluate legality expressions using this

unification method.

WO 2006/022739 PCT/US2004/027384

[0087] 2. Exemplary System

[0088] The disclosed evaluation model presents a system that performs exemplary
processing steps for a rights expressioh language, XrML, as one possible embodiment of the
invention. However, this invention is not limited to any particular legality expression
language or to XrML. The invention may be applied to any legality expression language.
[0089] FIGURE 2 illustrates an exemplary system that efficiently processes grammar-
based legality expressions using the invented processes. This exemplary embodiment
comprises a pre-processor 220, a profiler 240, a repository 260, a selector 280, and an
evaluator 290. Additionally, a legality expression input module 210 is used to initiate pre-
processing of the legality expressions, query requestor 270 is utilized to initiate the selection
and evaluation requestor 297 is utilized in the evaluation process of the atomic expressions,
and context module 230 is used to construct the (query) context with which to select the
matching atomic expressions, unit of evaluations, and processing instructions. ~Context
module 230 may be a sepafate module or may be included in the query requestor 270. The
output module 295 may receive the result from processed units of evaluation.

[0090] As shown again in FIGURE 2, system 200 is comprised of modules that
perform specific operations to carry out a method of efficiently processing grammar-based
legality expressions in accordance with the present invention. The modules may be software
sub-routines or program files called to perform specific operations to carry out the method of
the present invention. While software modules are shown, it is to be understood that all or a
portion of the exemplary embodiments can also be conveniently implemented by the
preparation of application-specific integrated circuits or by interconnecting an appropriate
network of component circuits. For simplicity and brevity, an exemplary embodiment
utilizing software modules is shown in FIGURE 2.

[0091] Legality expression input module 210 submits a legality expression to pre-
processor 220. Pre-processor 220 partitions the legality expressions into units of evaluation
as described above with regard to the evaluation model and as further described below with
specific regard to the pre-processor. Each unit of evaluation is broken down into searchable
independent expressions called “atomic expressions.” Pre-processor 220 further ensures that
the partitioning process conforms to grammar 222 and specification 224. Pre-processor 220
outputs units of evaluation, atomic expressions, and processing instructions torepository 260,
which may store these oﬁtputs. Repository 260 makes these outputs available to profiler 240,

which manages the profiles for all atomic expressions as proposed by the evaluation model.

WO 2006/022739 PCT/US2004/027384

The units of evaluation and atomic expressions are indexed by the pre-processor 220 before
being stored in repository 260 and made available to selector 280.

[0092] Query requestor 270 submits an input query request to the context module 230
to construct the (query) context and submits the (query) context to the selector 280 as the
request. Selector 280 processes the input query request by locating the previously pre-
processed units of evaluation and the associated atomic expressions in repository 260 that
match the input query or utilizing thosé same outputs from profiler 240.

[0093] The selector 280 uses a matching mechanism based on a unification algorithm
as described above with regard to the evaluation model.

[0094] The evaluation requestor 297 submits an evaluation request to the evaluator
290. The evaluator 290 first requests the context module 230 to construct the (query)
context, then submits the (query) context to the selector 280 to retrieve the matching units of
evaluation and the associated atomic expressions and processing instructions. The evaluator
280 evaluates the selected units of evaluation and the associated atomic expressions returned
by the selector 280 against the given evaluation request and context 230 and determines if the
match is satisfactory by evaluating the results against a prescribed evaluation criteria.

[0095] The pre-processor 220 and the profiler 240 are the preparation means to
organize and manage the legality expressions and associated information. The selector 280
and the evaluator 290 are engaged upon receipt of a processing request to generate specific
results. In other words, the pre-processor 220 and the profiler 240 are typically offline
operations, whereas the selector 280 and the evaluator 290 perform real-time operations.
[0096] This example system represents one of many possible embodiments of this
invention. Other embodiments may implement only some of these components or present
themselves in different architectural structures that perform the same processing steps. Any
system that incorporates the processing steps described above can efficiently process

grammar-based legality expressions.

[0097] a. Pre-processor

[0098] FIGURE 3 illustrates the basic processing steps of the pre-processor. The goal
of pre-processing is to translate legality expressions into searchable independent expressions.
Pre-processing involves validating the syntax of the legality expressions against the grammar,
verifying the integrity of the legality expressions based on the application’s trust model,
normalizing legality expressions into a form suited for optimal machine processing, assessing

the semantic meaning of the legality expressions, partitioning legality expressions into units

S1s-

WO 2006/022739 PCT/US2004/027384

of evaluation, atomizing units of evaluation into atomic expressions, indexing each unit of
evaluation and atomic expression based on its semantic meaning, and storing the units of
evaluation, their atomic expressions, and corrésponding processing instructions into a
searchable persistent repository.

[0099] At 301 in the “Validate” step, the pre-processor validates and verifies the
legality expression against the grammar and specification. For example, in many XML-based
legality expression languages, this step usually involves checking the expression’s syntax
against its XML schema and checking the expression’s semantics against its specification.
Other legality expression languages may employ other means to validate the syntax and
semantics of their input expressions.

[00100] In the “Verify” step of 305, the pre-processor checks the integrity of the
legality expression to make sure that it has not been changed or tampered with. Many
legality expression languages, such as XML-based legality expression languages, support
digital signatures as a mechanism to protect the integrity of the expression and to indicate its
source. Using a digital signature requires trust between the signer and the verifier. Therefore,
the mechanism to verify the trust and the integrity of the legality expressions relies on the
trust mechanism used by the system.

[00101} In the “Normalize” step at 311, the pre-processor converts the legality
expression into a form suited for optimal machine processing. The incoming legality
expressions may be encoded in various ways. They may be digitally signed, and they may be
security protected (i.e., encrypted). In addition, they may be packaged together with a
resource such as a digital work or packed inside a resource, requiring them to be extracted
from the package. Moreover, many different legality expressions may actually represent the
same object, requiring canonicalization to produce a consistent representation of the input
legality expression based on predefined methods. Canonicalization captures the essential
characteristics of the object in a highly deterministic fashion by conforming to accepted rules
and standards. The normalizing process addresses these issues and takes all of the necessary
steps to transform incoming legality expressions into a single, normalized form. The
normalized form can be device, platform, and storage independent.

[00102] The validate 301 and verify 305 and normalize 311 steps may be performed in
either order with similar results. No constraints are imposed on the order in which the
“Validate” and “Verify” and “Normalize” steps are performed on the input legality

expressions.

WO 2006/022739 PCT/US2004/027384

[00103] At 321 in the “Partition” step, the pre-processor breaks the input legality
expressions into units of evaluation. Since the structure of a legality expression is application
domain-specific, the method of partitioning a legality expression into units of evaluation
depends upon its semantic specifications. If parts of the input legality expression were
encrypted, the pre-processor will decrypt the encrypted parts before breaking the input
legality expression into units of evaluation.

[00104] According to the evaluation model, a unit of evaluation consists of a sequence
of atomic expressions. The result of evaluating the unit of evaluation is the conjunction of -
the evaluation of the atomic expressions that comprise it. That is, the function is true only if
all its arguments are true. Thus, the evaluation model proposes a method to convert the input
expressions into a set of legality expressions by converting the input expression into a
disjunctive normal form. An example disjunctive normal form is:

(A or B) anp C; which equates to (A anp C) or (B anp C)

[00105] This is represented symbolically by:
(A V B) " C; which equatesto (A" C) V (B C)

[00106] In general, a disjunctive normal form is represented mathematically as:

(eu AL "e,,,)V V(e,,,;" eoe "emk)

[00107] Each term (e * ... “enm) in the disjunctive normal form is in conjunctive
form, and therefore is considered a unit of evaluation. Section [A.2] in the Appendix
illustrates how an MPEG REL legality expression as illustrated in FIGURE 9A is partitioned
into multiple units of evaluation. ‘

[00108] For example, an XACL document usually contains an expression for the
subject content, ¢, and an expression for the subject policy. The content expression ¢, in turn,
consists of an expression for user information and bid information, while the policy
expression contains disjunctive expressions for access rules, r; ... r,. Thus, the XACL
document can be modeled as:

cr(rvV.Vr,)

[00109] This expression can be converted to its disjunctive normal form as follows:

c*rpV.V(c™ry)

WO 2006/022739 PCT/US2004/027384

[00110] Then, each expression (¢ * r,) becomes a unit of evaluation. In some cases,
for example, r, may contain disjunctive expressions of subject and access, as follows:
[00111] <rule id="rulel”>
<acl>
<subject> <uid> Alice </uid> </subject>
<privilege type="read” sign="+"/>
<privilege type="write” sign="+"/>
</acl>
</rule>
[00112] Thus, r,=s » (r V w), where s, r ,and w are expressions for subject, privilege
type “read”, and privilege type “‘write”.
[00113] Then, r, can be converted to (s * r) V (r * w) and ¢ * r, converted to
(c"s*r)V(c"s”w). Finally, each (c”*s”r) and (c”s”w) are units of evaluation instead of c*r,,.
{00114] In another example, an XrML license usually contains one or more grants.
Each grant ez contains a conjunction of expressions for a principal e, a right e,, a resource e,

and a condition e,. Therefore, an XrML license can be written in the following form:

(epl Neg e ecl) \Y (epn'\ e e’ ecn)

[00115] Thus, each grant (epn * €40 ™ €™ eca) of the input XrML license is a unit of
evaluation.
[00116] Further unit of evaluation examples in legality expressions include, but are not

limited to, an agreement in a contract (such as obligation or prohibition clause), an activity
(such as a business activity), an operation (such as a manufacturing operation), a rule in a
policy, and a privilege or characteristic (such as a security token or a claim). The partitioning
of the normalized legality expressions into their corresponding units of evaluation ensures all
expressions are captured.

[00117] In the “Atomize” step of 325, the pre-processor breaks each unit of evaluation
into searchable, independent atomic expressions. The atomize process includes resolving or
cross-referencing interdependent atomic expressions. In the XrML example above, each
grant e, is a unit of evaluation that contains atomic expressions for a principal ep, a right e,, a
resource e, and a condition e. Section [A.3] in the Appendix describes how units of
evaluation as illustrated in FIGURE 9B are atomized to a set of atomic expressions.

[00118] At 331 in the “Index” step, the pre-processor organizes the units of evaluation,

atomic expressions, processing instructions, and other data relevant for optimal query

WO 2006/022739 PCT/US2004/027384

response time. For example, if an entity may be identified by different synonymous names
such as a Microsoft .NET passport ID, email address, family name, nickname, and a frequent
flyer number, an index can be created to associate the synonymous names together to
facilitate fast search and response. Another example is creating a database table
encompassing all of the atomic legality expressions associated with a frequently-queried
entity to expedite all queries related to that entity.

[00119] Since atomic expressions can be evaluated independently, their content and
semantic meaning should be indexed so that they can be easily retrieved later in the
evaluation process. For example, if an XrML principal is of type “DSA key holder,” the
principal is also of the more generic type “key holder,” and is also of the more generic type
“principal, then the principal should be indexed as type DSA key holder, as key holder, as
principal, and the principal’s key value should also be indexed so that the search on any key
holder, any DSA, and any principal will also return this specific instance of DSA key.
FIGURE 9D illustrates the proposed indices for atomic expression and section [A.8] in the

Appendix describes the different types of semantic meanings of atomic expressions.

[00120] 1) Different Organization Methods

[00121] Association and indexes are not the only way to store units of evaluation and
atomic expressions along with their processing instructions. Different applications may use

different organization methods to ensure efficient storage and retrieval.

[00122] a) Associate Sets of Key/Value Pairs with Legality Expressions
[00123] A first alternative organization method employs the pre-processor to associate
sets of key/value pairs with legality expressions (or fragments of legality expressions). The
sets of key/value pairs can be extracted from the legality expression or passed in separately.
[00124] Embodiments that provide key/value pairs to the pre-processor may generate
them in a variety of ways. For example, the key/value pairs could be based on the context in
which the legality expression was received. The context could provide information about
possible intended use.

[00125] The key/value pairs could provide a range of information, such as metadata
associated with fragments of the legality expression, validity periods for the legality
expression, or information used to categorize the legality expression so that search spaces
may be partitioned. These key/value pairs could then be used to limit the legality expression

search space when processing an evaluation request.

-19-

WO 2006/022739 PCT/US2004/027384

[00126] For example, an online retailer may make special offers when the site has low
traffic. To do this, they put in place dynamic offers that are considered to be in the search
space when traffic is low. These offers are registered with a key (trafficLevel) and a value
(low). When a consumer hits the retailer’s web site, the server detects the traffic level and
requests the offers registered with the trafficLevel key associated with a value equal to the
current traffic level. If the current traffic level is low, the consumer receives all offers
registered with a trafficLevel of low. Similarly, when the consumer buys an item, the web
site server determines the trafficLevel and the special offers that apply to that trafficLevel
Those offers determine the price of the item, including any additional discounts that may
apply at that time.

[00127] Associating key/value pairs with legality expressions can limit the search
space and the number of legality expressions that must be evaluated. In the example above,
environment data at the time of the request can be used in conjunction with the registered
key/value pairs to limit the search space and thus provide faster results. Similarly, data
extracted from the request, data provided by the user, or data obtained through other means

can be used in conjunction with key/value pairs to limit the search space.

[00128] b) Assign Legality Expressions to Different Search Spaces

[00129] Second, the pre-processor can assign legality expressions to different search
spaces based on certain criteria. The criteria could be extracted or determined from the
legality expression or passed in separately. Possible partitioning schemes include using
different database tables, using different processors or processor territories, and using
different partition structures, but other partitioning schemes may be used as well.

[00130] If utilizing different database tables, complete legality expressions may be
stored in different tables, analogous to a hash table. Each database table then represents one
bucket in the hash table. Ideally, each incoming request would require a search space limited
to one table. The number of tables to use would depend on a performance analysis and vary
with each environment. In addition, legality expressions could be fragmented and stored in
sub-tables.

[00131] Also, if using different processors or servers or processor territories, complete
legality expressions may be stored in separate, independent search spaces, each of which is
managed by a processor, for example, a hardware processor or management software. This

scheme is also similar to a hash table, but each processor represents one hash table bucket. In

-20-

WO 2006/022739 PCT/US2004/027384

addition, several processors may receive the same request in parallel, and results could be
accumulated.

[00132] In a variation of this scheme, no pre-set association would exist between
processors and search spaces. Instead, the processor that searches a specific search space is
determined at request time. Several processors may search the available search spaces in
parallel.

[00133] Additionally, if using different partition structures, complete legality
expressions may be stored in different search spaces defined by partition structures, such as
file system directories. For example, all legality expressions created, retrieved by, or
otherwise associated with a specific user could be placed in that user’s “Secure Documents
and Settings” directory. Whenever the user is logged in, any requests would be made against

the legality expressions in the user’s “Secure Documents and Settings” directory.

[00134] c) Assign Expressions into Search Spaces of Different Priorities

[00135] Lastly, the pre-processor can assign legality expressions into search spaces of
different priorities. Legality expressions can be stored in any logical or physical storage, but
each search space is assigned a priority. Requests can then be applied against search spaces
in priority order—the highest priority first, followed by next highest priority, and so on. In
this case, a mechanism will exist for promoting or demoting legality expressions in search
spaces of different priorities, perhaps based on the number of times that a legality expression
is used or based on some other statistic. Any combination of these above approaches can also
be used.

[00136] In the “Storage” step of 335, the pre-processor stores the units of evaluation,
atomic expressions, and processing instructions in a searchable, persistent repository so that
they can be retrieved efficiently for evaluation or query. During this step, the association
between the units of evaluation, the atomic expressions, and the processing instructions must
be maintained so that, given one piece of information, the other information associated with it
can be retrieved easily. For example, given an atomic expression, it should be fast and
efficient to retrieve the unit of evaluation to which it belongs. Similarly, given a unit of
evaluation, it should be fast and efficient to retrieve all atomic expressions that comprise it.
[00137] Processing instructions may need to be associated with both the unit of
evaluation and the atomic expression so that when they are retrieved for evaluation, the
‘processing instructions will provide optimal means for evaluating them efficiently. Some

processing instructions may be stored as separate data, while others may be part of the

-21-

WO 2006/022739 PCT/US2004/027384

expressions. Although different applications may need different processing instructions, the
most common processing instructions are the type of expression and the semantic type of the
expression.

[00138] The type of the expression indicates whether an expression is primitive
expression or variable expression. If aﬁ expression is variable expression, processing
instructions should stipulate whether any constraint is associated with it. This information is
used during the evaluation process to determine whether a given expression needs evaluation.
[00139] The semantic type of the expression is used during the evaluation process as
described in the evaluation model disclosed above. An expression can be evaluated only
against another expression of the same type.

[00140] FIGURE 4 illustrates an example processing of atomic expressions with
different semantic types typically found in digital rights management (DRM) applications. In
DRM applications, atomic expressions are usually classified as authentication expressions or
as authorization expressions. Atomic expression 433 is classified as an authentication
expression 434 while atomic expression 466 is classified as an authorization expression 467.
When evaluated, authentication expression 434 results in an authentication decision 443.
Example authentication expressions include identification or certification of a user, a right, or
a resource, such as a device. When evaluated, authorization expression 467 results in
authorization decision 476. An example authorization expression is a permission that allows
a user to view an electronic book.

[00141] Additional embodiments may vary in the storage mechanism and destination
that they support. One example of a storage destination is a database. The process of storing
the pre-processed results to a database could involve SQL INSERT commands. The
“Example Rights Database” section provides an example of one possible database structure

for storing pre-processed legality expressions in an embodiment that supports XrML.

[00142] b. Profiler
[00143] The profiler stores and manages the profiles within the system. A profile is a

set of identifications assigned to or associated with an atomic expression. Each profile is
uniquely identifiable by a profile ID. Profiling is the process of managing profiles for all
atomic expressions.

[00144] For example, a profile for a digital song may contain the song title, the unique
identification of the song, the URL of the song, and so on. The profile can be used during the

indexing process to create all equivalent indices for a given atomic expression. The profile

-22-

WO 2006/022739 PCT/US2004/027384

can be used during the selection process to broaden the query for an atomic expression from
that expression’s specific identification to all other identifications for that atomic expression.
[00145] In many cases, an atomic expression may have several identifications or the
identification may be expressed in different ways syntactically. For example, a user named
Joe can be identified by an XrML keyHolder, as follows:
<keyHolder licensePartId="Joe”>
<info>
<dsig:KeyValue>
<dsig:RSAKeyValue>
<dsig:Modulus>KtdToQQyzA==</dsig:Modulus>
<dsig:Exponent>AQABAA==</dsig:Exponent>
</dsig:RSAKeyValue>
</dsig:KeyValue>
</info>

</keyHolder>

[00146] Joe can also be identified using a Microsoft .NET passport, as follows:
<passport>

<userid>joelhotmail.com</userid>

</passport>
[00147] Joe can also be identified as a person using the following three example
representations:

<person>

<ssn>123—-45-6789</ssn>

<licenseNumber>B7654321</licenseNumber>

</person>

[00148] <person>
<ssn>123—45—-6789</ssn>

</person>

[00149] <person>

<licenseNumber>B7654321</licenseNumber>

</person>

223 -

WO 2006/022739 PCT/US2004/027384

[00150] Since the atomic expression, Joe, has multiple identifications, a request to
determine whether Joe has the right to view a video clip may not return any matches if only
legality expressions that contain Joe as an XrML keyHolder are evaluated. To ensure
completeness, all legality expressions that refer to Joe using any ofhis identifications must be
evaluated.
[00151] Some embodiments of the profiler may not produce and associate all
permutations of the same atomic expression as seen with the <person> element described
above. These embodiments may simply associate the different types of identifications that
refer to the same atomic expression.
[00152] One way to implement a profile is to structure the profile so that it contains
any number of identifications, each with an identification type and an identification value.
[00153] The identification type indicates the type of the identification value—either an
expression or a constant. In the case of a constant, the identification type indicates the type
of constant (such as a DSA key, an RSA key, a URI reference, a file reference, and the like).
[00154] The identification value is the constant value (such as the RSAKeyValue,
DSAKeyValue, URI reference, and the like) or the expression value (such as ContentGuard
Employee).
[00155] At an abstract level, a profile may look like this:

Profile (Profile ID)

[constant] Joe

[constant] Passport holder Pl (joe@hotmail.com)
[expression] ContentGuard employee

[constant] Key holder P2 (KtdToQQyzA==, AQABAA==)
[constant] Person P3 (123—-45-6789, B7654321)

[00156] In an exemplary embodiment, the profiler indexes identifications and stores
them in a searchable profile table (;iescribed below in the “Example Rights\ Database”
section) in the persistent repository. To manage the profile, the profiler consists of two major
functions, the profile update, and the profile query.

[00157] The profile update function is employed when creating a new profile or
updating an existing profile. To speed up the query process, both Profile ID and
Identification fields of the profile table are indexed.

[00158] The profile query function is utilized when retrieving the profile that contains

all the identifications for the given atomic expression. Generally, the profile query function

_24-

WO 2006/022739 PCT/US2004/027384

is used by the selector (see the “Selector” section below) to retrieve all known identifications
for a given atomic expression to construct the alternative query to retrieve the set of legality
expressions for a given request. Input to the query is either the profile ID or the identification
value. When input is an identification value, the profile ID is retrieved and then used to

retrieve all the identifications with the same profile ID.

[00159] c. Selector
[00160] FIGURE 5 illustrates the basic processing steps of the selector. The selector

locates the units of evaluation, the atomic expressions, and the processing instructions from
the repository to match the query context.

[00161] Since the selector queries against pre-processed legality expressions in the
form of atomic expressions, the process of finding a match against many legality expressions
is much faster than querying against legality expressions that have not been pre-processed. In
addition, the time needed to process the matching expressions is reduced.

[00162] In the example embodiment, the selector supports any query on authentication
expressions, authorization expressions, and combinations of authentication and authorization
expressions.

[00163] As shown in FIGURE 5, selecting involves planning for the queries from the
input context objects in step 505, constructing the initial search domain for the queries,
executing each query, validating the result, and possibly refining the search domain and
making a modified query.

[00164] In the “Planning” step at 510, the selector examines each expression in the
(query) context and plans for the queries in.an optimal way. Different embodiments may
implement different search optimizations for this step. For example the user-friendly query,
“Does the principal P have the right R on resource r?” is translated into the optimal query
context required by the system, which consists of “principal P”, “right R”, “resource r”, and
other information needed for the evaluation. Instead of translating or extracting key data
from a user-friendly query to form an optimal query, some embodiments may simply take

optimal inputs from the caller.

-25-

WO 2006/022739 PCT/US2004/027384

[00165] Also in the planning step, the selector retrieves the profile for each atomic
expression in the (query) context and uses the profiles, if any, to construct queries to search
for all legality expressions in the searchable persistent repository. Using the example query
above, if the profile of the “principal P’ is found and contains the following identifications:
Profile
Profile ID
Principal P
Passport holder Pl

ContentGuard employee

[00166] Then, either one of the following independent queries is constructed:
[Principal P or Passport holder Pl or ContentGuard

employee, Rights R, resource r]

[00167] Or
[Principal P, Rights R, resource r]
[Passport holder P1l, Rights R, resource r]

[ContentGuard employee, Rights R, resource r]

[00168] Context objects are the output of this planning step.

[00169] At 515, in the “Construct an Initial Search Domain” step, the selector
constructs a search domain for the queries. The search domain is the subset of the searchable
persistent repository that relates to the set of queries. Constructing the search domain limits
the search scope. By reducing the search scope, performance is further improved. A query
statement is the resulting output of the search domain construction step. Section [A.9] in the
Appendix describes the query planning for each atomic expressions in the unit of evaluation.
[00170] In the “Query” step at 520, each query from the set of queries is executed. For
each query, each atomic expression in the unit of evaluation is compared with the
corresponding atomic expression in the query request. The query result is a set of atomic
expressions that matched the expression specified in the query. In one example embodiment,
the query results contain an expression ID that the selector uses to retrieve all atomic
expressions that comprise each unit of evaluation identified by the query results.

[00171] Some embodiments of the selector may examine a query to see if it contains
specific identifications for any of the atomic expressions. For each atomic expression that

has a specific identification, the selector interacts with the profiler to retrieve all the possible

-26-

WO 2006/022739 PCT/US2004/027384

identifications for the atomic expression. Then, the selector reconstructs the query for all
identifications of that atomic expression. |

[00172] Other embodiments of this invention implement the interaction with the
profiler for creating queries for all the possible identifications of atomic expressions in some
other component (such as the evaluator). An example embodiment is also possible in which
the selector does not reconstruct queries based on the different identifications for a given
atomic expression, but rather a user creates all possible queries based on the profiles for each
atomic expression.

[00173] In the “Validate” step at 525, all the matching atomic expressions must be
validated against the unification rules. The unification rules stipulate whether an atomic
expression in a unit of evaluation can be unified with the corresponding atomic expression in
the query request.

[00174) For example, a query for a principal named “John Doe” should return all
expressions of the type principal according to the unification rules. If the returned expression
is a variable expression with constraints, the selector validates all the constraints of the
returned variable expression against the principal “John Doe.”

[00175] An embodiment of this invention can build a semantically-knowledgeable
Mutating Matcher component that combines unification with some of the responsibilities of
the profiler. This Mutating Matcher component matches an atomic expression in a request
with the corresponding atomic expression in the unit of evaluation in question. As part of the
matching process, this component performs the task of analyzing all variations of the atomic
expression from the request by interchanging the positions of any children to find
permutations that are consistent with the semantics of the specific expression type and
translating the identification of an atomic expression into other identifications to try to find a

match.

.27-

WO 2006/022739 PCT/US2004/027384

[00176] For example, an XrML allPrincipals element is an atomic expression inside an
XrML grant, which is a unit of evaluation. The allPrincipals element represents an entity that
holds several identifications. When an allPrincipals is in a grant, at least all of the identities
in the allPrincipals must be present in order for the grant to be exercised. If identities in
addition to those specified in the allPrincipals element are present, the grant can still be
exercised. An allPrincipals element can contain any number of identities, and the order of the
identities is not significant. The following pseudo grant allows Fred and John to play a
movie:
<license>
<grant>
) <allPrincipals>
<keyHolder>...Fred...</keyHolder>
<keyHolder>...John...</keyHolder>
</allPrincipals>
<play!>
<digitalResource>.www.mymovies.com/movie..</digitalResource>
</grant>

</license>

[00177] A request is made asking if Fred, John, and Mary can play the movie. In
XrML, that request would be represented by the following principal, right, and resource:

<allPrincipals>
<keyHolder>...Fred...</keyHolder>
<keyHolder>...John...</keyHolder>
<keyHolder>...Mary...</keyHolder>

</allPrincipals>
<play/>
<digitalResource>..www.mymovies.com/movie..</digitalResource>

[00178] Determining whether the allPrincipals element in the request matches the one
in the grant involves determiﬁing whether all the principals in the allPrincipals in the grant
are in the set of principals in the request’s allPrincipals element. An implementation of a
Mutating Matcher component determines whether the two allPrincipals elements match

according to the semantics of the allPrincipals element. Since the semantics of the

_28-

WO 2006/022739 PCT/US2004/027384

allPrincipals element stipulate that all the identities must be presentto exercise the grant, the
Mutating Matcher component must check that Fred and John are both present in the request’s
allPrincipals element. Since the request’s allPrincipals element includes a superset of the
required identities (it includes Fred, John, and Mary), there is a match.

[00179] An embodiment of this invention can create an extensible architecture that
allows the addition of unification or profiler plug-in components that are knowledgeable
about the semantics of the atomic expressions that are being unified or proﬁied. Assuming
that many unification or a profiling plug-in components may be present, the unification or
profiling components to be used could be determined by an isSupported method that could
take two atomic expressions and any additional context as parameters and return a Boolean
value indicating whether it supports matching of two expressions.

[00180] After the “Validate” step of 525, the selector determines if any irrelevant
atomic expressions were returned at step 528, and in step 530, “Refine Search Domain,”
irrelevant atomic expressions and their related units of evaluation are discarded from the
search domain. The query can be made again against the refined search domain. Thus, the
search domain is continuously refined after each query so that subsequent queries search
more efficiently. With this mechanism, the performance of subsequent queries is dramatically
improved until units of evaluation and their atomic expressions are successfully matched in

step 550.

[00181] d. Evaluator

[00182] Evaluating is the process of comparing units of evaluation in the persistent
repository with the given evaluation request and context. Since legality expressions in the
system of the present invention have already been pre-processed, only the atomic expressions
and, in some embodiments, the units of evaluation associated with the matching parts, are
needed for evaluation, rather than evaluating the entire set of legality expressions.

[00183] Each atomic expression, such as a condition or obligation, is evaluated based
on the current state of each legality expression. For efficiency, the evaluator may resolve
conflict between units of evaluation, combine units of evaluation, or select particular units of
evaluation from the selected set based on the application’s policies..

[00184] Given an evaluation request against a given input context, the evaluator can
validate the input context for the request, profile the expressions in the input context, retrieve

the matching expressions (units of evaluation, atomic expressions, and processing

-29-

WO 2006/022739 PCT/US2004/027384

instructions) for evaluation from the searchable persistent repository, validate each atomic
expression, and validate each unit of evaluation.

[00185] Referring to FIGURE 6, an input context is provided in step 610. In the
“Validate Input Context” step of 620, the input context for the request is validated. For
example, an evaluation request may ask the question, “Does Joe have the right to view a
book?” That request supplies the facts about Joe, the view right, and the book as the input
context for the request. Before evaluating the request, the input context must be validated
against the requirements of the application. For example, in both XrML and MPEG REL
authorization story, the context must contains expressions for the requesting principal, the
requested right, and the requested resource. In a CRF CEL application, the context may
contain any combination of the expressions for trigger events, principal, act, and resource. In
XACL, the context must contain the expressions for the content, subject, and access. In step
625, the evaluator determines if the input context contains all the required elements, and if
the required elements are not present in the input context, an error occurs and the evaluation
terminates at 680.

[00186] If the input context contains the required elements, at step 630 in the “Profile”
step, the evaluator uses the profiler to profile each expression in the input context. As
described in the “Profiler” section above, the profile contains all variations of the expression
that the evaluator should take into account during evaluation. For example, the XrML

keyholder representing Joe is the same as the passport holder with the ID joe@hotmail.com

and the person with the social security number 123-45-6789. Thus, the profile of an
expression that represents Joe returns all three expressions representing Joe. Constructing a
profile for each context object is important to ensure that the evaluation is complete.

[00187] In the “Locate” step at 640, the evaluator uses the profiles and their semantic’
types to construct a query for the selector. The selector returns the set of first matching units
of evaluation along with their associated ator’nic expressions and processing instructions. The
first matching expressions are those that match the query, but that have not been validated
yet.

[00188) If the units of evaluation returned by the selector are primitive expressions, the
evaluator does not need to re-evaluate or validate them, since they already serve as matches
to the query specified in the input context, and at step 645 the primitive expressions are
passed through and access to the input context is granted at 670.

[00189] If the selector returns units of evaluation that are not primitive, the evaluator

needs to evaluate them. At step 650 the system “Validates the Unit of Evaluation,” and at

-30-

WO 2006/022739 PCT/US2004/027384

660 the system “Validates Each Atomic Expression.” In these steps, the evaluator determines
whether the matching expressions returned by the selector can be validated according to the
evaluation model described above with regard to the unification rules. For example, if one or
more expressions in a unit of evaluation contain variables, the evaluator needs to validate the
binding of those variables. During the two “Validate” steps at 650 and 660, the evaluator
follows any processing instruction that was associated to the returned units of evaluation and
atomic expressions. Upon completion of the validating steps, access to the input context is
granted at 670, and the evaluation terminates at 630.

[00190] In some applications such as those using the MPEG REL, CRF CEL or
XACML, evaluating a unit of evaluation usually results in an authorization or authentication
decision. In other applications such as those using BPEL or PSL, evaluation of a unit of
evaluation results in an activity or operation being carried out. For example, evaluation of an
XrML grant against the input principal, right, and resource returns an authorization decision
stipulating whether-the input principal is allowed to exercise the input right over the input
resource. Evaluating an XACML document against the input subject, content, and access
results in an authorization decision stipulating whether the input subjectis allowed to access
the input confent.

[00191] Beside the basic processing steps described above, embodiments of the
evaluator may implement additional optimizations, such as caching requests and their
corresponding results and pre-computing a set of expected common requests. Caching results
may reduce costly computations due to common and frequent requests. The cache can be
designed with a frequency for re-computing each cached request depending on the
implementation. In addition, the cache may be implemented with self-destruct features. By
pre-computing a set of expected common results, the evaluator could match incoming
requests against the expected common set of requests, and, in the case of a match, return the
pre-computed results. If the incoming request does not match any of the common set of
requests, the evaluator would process the request as usual. The expected common results
would be re-computed periodically, with the expiration time depending on the
implementation. Re-computation may be triggered by a request that occurs after the pre-

computed result expires.

[00192] 3. Performance Improvements

[00193] The evaluation model of the present invention greatly improves the

performance of systems that evaluate legality expressions. The following materials assess the

231-

WO 2006/022739 PCT/US2004/027384

performance improvements offered by the evaluation model and the exemplary processing
steps disclosed by the present invention.

[00194] Legality expressions can be more efficiently processed if they are pre-
processed to partition them into units of evaluation that, when evaluated, result in
authentication decisions or authorization decisions. Further breaking each unit of evaluation
into a set of atomic expressions dramatically improves the response time of the evaluation
system since it is easier and more efficient to organize and store atomic expressions rather
than entire legality expressions, and it is more efficient to process atomic expressions,
because they are in a form that is ready for evaluation. When an atomic expression has been
matched against the context, in some cases it does not need to be re-evaluated.

[00195] The improvement in processing time caused by implementing the pre-
processor and selector functionality of this invention over a traditional method can be shown
by mathematical means. Let N be the number of expressions in the searchable persistent
repository. Let x be the time needed to process each legality expression using the traditional
method, including the time needed to validate the syntax and semantics of the expression,
verify its integrity, and interpret it. Let n be the number of matching expressions in the initial
search domain N. Let y be the time needed to select each matching expression based on the
proposed selection process. Then, the method as proposed in this invention will improvethe

response time when:

(N)(x) > (n)(y)
[00196] Or
N/n >y/x
[00197] In the worst case scenario y = x, so the improvement ratio of this invention

against the traditional approach is N/m, where N is the number of expressions for
consideration (for instance, all those in the repository), and » is the number of expressions
that match the query. Since n will always be less than or equal to N, the improvement ratio
will never be less than one (that is, no performance loss).

[00198] Taking this a step further, it is expected that NV will be much larger than n.
That is, the set of expressions is much larger than the subset of matches. The conclusion is
that the higher the number of expressions that an application is expected to consider, the
larger the performance gains. Such gains are obvious in cases where N is in the thousands or

hundred of thousands. Performance gains can be further highlighted in applications that

-32-

WO 2006/022739 PCT/US2004/027384

receive common requests and implement the optimization ideas proposed for the evaluator’s
processing, such as caching requests.

[00199] An embodiment of this invention can provide exponential gains in
performance compared to a conventional legality expression processing system. FIGURE 7
illustrates an example set of authorization options that can be used from a high level to better
understand how exponential gains in efficiency are possible. For this example, consider a
rights authorization request that asks, “Can Edgar view the book?” Answering this question
could potentially require answering many’sub-queries. In FIGURE 7, the large circle
represents the original authorization request query (Can Edgar print the book?). Each small
circle represents a sub-query that is made. FEach box represents a rights expression that
authorizes a request (for example, <Edgar>, can <print>, <book> If <Edgar>, can <sell>,
<book>). For this example, assume that these rights expressions are in a repository that
contains 10,000 rights expressions. Without any pre-processing or caching, the system that
produced this authorization forest (note that there are two trees that satisfy the original
request) would need to process all 10,000 rights expressions for each of the 11 queries.
However, using the processes proposed in this invention would enable time savings for each

of queries processed, resulting in exponential performance gains.

[00200] 4. Example Rights Database
[00201] FIGURE 8 illustrates an exemplary data model for an embodiment of the

present invention that supports XrML. The example data model captures the output of the
pre-processor and profiler. FIGURE 8 illustrates how an exemplary pre-processor
implementation can partition XrML expressions into units of expression and atomic
expressions. Additionally, the pre-processor implementation can store XrML expressions
into a database and identify sets of expressions that are different syntactically but the same

semantically and represent that information in a database.

[00202] The profiler and the selector query against this data when requested by the
evaluator.
[00203] This data model consists of several database tables, each of which contains the

specified fields to represent the output of the pre-processor and the profiler.

[00204] Profile Table — Contains profiles for atomic expressions.
Profile ID—The primary key to refer to a profile.
Type—Type of the identification.

Identification—Expression of the actual value of the resource.

-33.

WO 2006/022739 PCT/US2004/027384

[00205] License Table—Contains the licenses in the searchable persistent repository.

License ID—The primary key to refer to a license.

Number of Simple Expressions—Total number of grants as units of
evaluation in the license identified by the License ID.

Number of issuers—Number of issuers of the license identified by the
License ID.

License in Canonical Form — The canonical form of the license.

[00206] Expression Table—Contains a mapping between each of the expressions and
the corresponding license.

Expression ID—The primary key to refer to an expression.

License ID—The primary key to refer to a license.

s Location Info — Location of this expression within the license. This
information is used to verify the integrity of the expression against its
license.

[00207] Authenticated Expression Table—Contains information about the
authenticated expressions.

Expression ID—The primary key to refer to an expression

License ID—The primary key to refer to a license

Principal Expression—The actual value that represents
the principal.

Principal Type—The principal type, either expression or a type of value
(such as DSA key, RSA key, and the like). This field is used as the
search field if the query is based on the principal type instead of the
specific value of the principal.

Principal Location Info—Location of the principal expression within its
atomic expression. This information is used to verify the integrity of
the principal expression within its atomic expression and its license.

Principal Profile ID—The principal’s profile contains all identifications of
the given principal.

Rights—Expression for the right

Rights Location Info—Location of the rights expression within its atomic
expression This information is used to verify the integrity of the rights
expression within its atomic expression and its license.

Resource—Expression for the resource.

_34-

WO 2006/022739 PCT/US2004/027384

Resource Profile ID—The resource’s profile contains all identifications of
the given resource.

Resource Location Info—Location of the resource expression within its
atomic expression This information is used to verify the integrity of the
resource expression within its atomic expression and its license.

[00208] Authorized Expression Table—Usually authorized expressidns operate on
different sets of data. Therefore, each type of authorized expression
or each group of authorized expressions is stored in a separated
table. All authorized expression tables have the following fields:

Expression ID—The primary key to refer to an expression

License ID—The primary key to refer to a license

Authorize Type—Type of the authorized expression

Location Info—Location of the authorized expression within its atomic
expression. This information is used to verify the integrity of the
resource expression within its atomic expression and its license.

Authorize Expression—Name of the authorized expression

_35-

WO 2006/022739 PCT/US2004/027384

APPENDIX
[00209] A.1 Example of a pseudo license in MPEG REL
[00210] FIGURE 9A illustrates a pseudo MPEG REL license I which consists of one
grant [gl] and a grant group [G].
[00211] The grant [g1] specifies that any DSA Key Holder [p1] is granted the right to

play [al] a song [r1], “Nocturne in A mihor, Chopin.” According to the disclosed evaluation
model, the grant [g1] can be represented as follows:

gl=pltal”"rl

[00212] The grant group [G] specifies that a principal [p2], a specific DSA Key
Holder, is granted the rights to play [a2] plus the rights to copy [a3] the songs [12], [r3], “any
symphony of Beethoven” as specified in the grants [g2] and[g3]. The right to copy [a3] is
only valid if the condition [c3] is satisfied at the time that right [a3] is exercised. Thus,

according to the disclosed evaluation model, the grant group [G] can be represented as

follows:
G=(P2)"((@2"r2) V(@3 r3"c3))
[00213] Thus, the license £ in FIGURE 9A can be represented as follows:
License £ =gl V G, or
License £ = (pl ~al ~rl) vV (p2) *((a2 ~12) V (a3 13~ ¢3))
[00214] A.2 Unit of Evaluation - Optimized Legality Expression Structure
[00215] The license £ as illustrated in FIGURE 9A is optimally represented according

to the syntax of the MPEG REL grammar. Since expressions specified in license 1 contains a

random combination of both conjunctive and disjunctive forms, it is not optimal to evaluate

the license £ in its current form. The disclosed evaluation model proposes the expression
represented the license ¢ is converted to a disjunctive normal form. Thus,

License £ = (p1 ~al ~rl) vV (p2) * ((a2 ~1r2) V(a3 " 13 " ¢3))

can be mathematically converted to:

236 -

WO 2006/022739 PCT/US2004/027384

License { = (pl ~al *r1) V((p2 "2~ a2) V (p2 13 ~a3 ~c3)), or
License { = (pl ~al ~r1) V (p2~a2"12) V(p2"a3 13" c3)

[00216] The reason for the second form is to be consistent with the order of terms
defined in MPEG-REL. However, within a unit of evaluation, the order of the conjunctive
terms (atomic expression) within each disjunctive term (unit of evaluation) is not critical.

[00217] Each of the conjunctive expressions (pltal”rl), (p27a2”r2), and

(p2”a3”r3~c3) will be a unit of evaluation according to the disclosed evaluation model.

[00218] FIGURE 9B illustrates an expression that represents the license { in FIGURE

9A partitioned into an optimized structure that consists of three independent units of
evaluation.

[00219] Unit of evaluation ul: (pl » al » rl), in the context of the license { as

illustrated in FIGURE 9A. This unit of evaluation specifies that the principal [p1], any DSA
Key Holder, is granted the right to play [al] the song [r1], “Nocturne in A minor, Chopin.”

[00220] Unit of evaluation u2: (p2 ~ a2 " r2), in the context of the license / as

illustrated in FIGURE 9A. This unit of evaluation specifies that the principal [p2], a specific
DSA Key Holder, is granted the right to play [a2] any song [r2], “Any Beethoven
symphony.”

[00221] Unit of evaluation u3: (p2 ~ a3 » r3 ~ c3), in the context of the license £ as

illustrated in FIGURE 9A. This unit of evaluation specifies that the principal [p2], a specific
DSA Key Holder, is granted the right to copy [a3] any song [r3], “Any Beethoven

symphony” and the condition [c3] stipulates that only two copies are allowed.

[00222] Each unit of evaluation that comprises the license ¢ is an independent

statement that, when evaluated, will result in a decision of whether or not to grant the

requesting principal the requested right to use the requested resource.

[00223] A.3 Atomic Expression
[00224] Each unit of evaluation can be further atomized into atomic expressions for
efficient indexing, storage, retrieval, and evaluation. Atomic expressions are expressions that

made up a unit of evaluation and are independently evaluated. Independent evaluation means

-37-

WO 2006/022739 PCT/US2004/027384

the result of the evaluation of an atomic expression is independent of the result of the
evaluation of other atomic expression that make up the same unit of evaluation.
[00225] Atomic expressions for unit of expression ul—consisting of 3 independent
expressions: |
expression for principal [pl], any DSA Key Holder;”
expression for play rights [al]; and

expression for resources [r1]: Nocturne in A minor, Chopin.

[00226] Atomic expressions for unit of expression u2—consisting of 3 independent
expressions:

expression for principal [p2], a specific DSA Key Holder;”

expression for play rights [a2]; and

expression for resources [r2], Any Beethoven’s symphonies.

[00227] Atomic expressions for unit of expression u3—consisting of 4 independent
expressions:

expression for principal [p2], a specific DSA Key Holder;”

expression for copy rights [a3];

expression for resources [r3], Any Beethoven’s symphonies; and

expression for condition [c3], Exercise limit count = 2.

[00228] A.4—Example of query contexts
[00229] A.4.1—The context for the request, “Can the DSA Key Holder with a specific
pl, q1, y1 play the song: Beethoven, Ninth Symphony?” can be represented as follows:

Query Context ¢

{
Principal = Specific DSA Key Holder with p1, q1, y1 key value
Right = Play
Resource = “Beethoven, Ninth Symphony”
}
[00230] A.42—The context for the request, “Can the song Beethoven, Ninth
Symphony be played?” can be represented as follows:
Query Context ¢
{
Right = Play

Resource = “Beethoven, Ninth Symphony”

_38-

WO 2006/022739 PCT/US2004/027384

}
[00231] A.5—Examples of a profile

[00232] A principal [p2] in FIGURE 9C with a specific DSA Key Holder with P, Q, Y
key values is also known as Joe, and is also known as a specific Microsoft .NET Passport
holder. Thus the profile for [p2] is as follows:

Profile f

{
Joe
Specific DSA Key Holder with pl1, q1, y1 key value
Specific Microsoft .NET Passport holder with passport value

i
[00233] A.6—Example of semantic type
[00234] The principal [p2] in FIGURE 9C is an atomic expression of the unit of

evaluation u2 in FIGURE 9B. Within the context of unit of evaluation u2, the primary
semantic type of [p2] is a Principal within a Grant expressed in MPEG REL.

[00235] However, within the context of MPEG REL, the semantic type of this
particular Principal [p2] is a DSA Key Holder identified by the values of the DSA key.

[00236] A.7—Example of unification
{00237] A definition of a DSA Key Holder principal in MPEG REL is as follows:

Principal
keyHolder
info
KeyValue
DSAKeyValue

P

- Q
Y

-39.

WO 2006/022739 PCT/US2004/027384

[00238] A.7.1—Suppose that an atomic expression e is a specific DSA Key Value with
pl1, q1, yI and an expression x which has the same semantic type as e and also has a specific

DSA Key Value with p1, ¢1 and y1, then e is unified with x, and x can be used to substitute

for e.

e = keyHolder
info
KeyValue
DSAKeyValue
pl
ql
yl

x = keyHolder
info
KeyValue
DSAKeyValue

[00239] A.7.2—Suppose that an atomic expression e is a DSA Key Value with no
specific P, Q, Y, and an expression x, which has the same semantic type as e and has a

specific DSA Key Value with p1, q1, and y1, then e is unified with x, and x can be used to

substitute fore.

e = keyHolder
info
KeyValue
Any DSAKeyValue

x = keyHolder
info
KeyValue
DSAKeyValue

.40 -

WO 2006/022739 PCT/US2004/027384

[00240] A.7.3—Suppose that an atomic expression e is a Key Value with no specified
key type, and xI is a DSA Key Value with no specific P, Q, Y, and an expression x2, which
has the same semantic type as e and has a specific DSA Key Value with pI, ¢1 and y1, then e
is unified with both xI and x2, and either xI or x2 can be used to substitute fore.

e = keyHolder
info
KeyValue

x1 = keyHolder
info
KeyValue
Any DSAKeyValue

x2 =keyHolder
info
KeyValue
DSAKeyValue

pl
ql
yl

[00241] However, when e is unified with both xI and x2 within the same unit of
evaluation, then if x1 is unified with x2, then e can only be substituted by x2, if x2 is unified
with x1, then e can only be substituted by x1. Otherwise, e cannot be substituted with either
xI or x2. In the above example [A.7.3], e is unified with both x1 and x2, and x1 is unified

with x2. Therefore, x2 is used to substitute for e, NOT x1.

[00242] A.8—Example of indices
[00243] FIGURE 9C describes the unit of evaluation 2 with its atomic expressions as
follows:

Atomic expression [p2], a specific DS Key Holder with key value p1, q1, y1:

e Primary semantic type in the context of the unit of expression u2: Principal

¢ Secondary semantic types in the context of the MPEG REL: DSAKeyValue,
KeyValue, keyHolder

Atomic expression [a2], a right to play

o Primary semantic type in the context of the unit of expression u2: Rights
e Secondary semantic types in the context of the MPEG REL: not specified

L4 -

WO 2006/022739 PCT/US2004/027384

Atomic expression [r2], any Beethoven symphonies:
e Primary semantic type in the context of the unit of expression u2: Resource
e Secondary semantic types in the context of the MPEG REL: Beethoven symphonies,
any symphonies, classical music
[00244] FIGURE 9D describes the possible indices for any atomic expression. Indices
for atomic expressions are based on their semantic meanings or types. There are two types of
semantic meanings:

1. The semantic meaning or type in the context of the unit of evaluation. For MPEG
REL, a semantic meaning or type of an atomic expression is one of principal,
rights, resource, conditions expressions, etc.

2. The semantic meanings or types in the context of the language. For example, in
MPEG REL a specific DSA Key Holder principal is a KeyValue and also a
keyHolder. The semantic meanings within the language are further classified into
two types of indices. The main index is the actual type of the atomic expression,

while the secondary indices are more generic types of the main index.

[00245] A.9—Example of planning and executing queries
[00246] Given Joe whose profile is specified in the example in section [A.5]
[00247] A.7.1— Profile f
{
Joe

Specific DSA Key Holder with p1, q1, y1 key value
Specific Microsoft .NET Passport holder with passport value

}
[00248] A license ¢ as specified in FIGURE 9A and section [A.1] is partitioned into

units of evaluations and atomic expressions as described in sections [A.2] and [A.3]. All the
atomic expressions are indexed as described in section [A.8].

[00249] Given that Joe requests authorization to play the Ninth Symphony, Beethoven,
then the request consists of the following facts that made up a query context:

Context{
Principal = Joe
Rights = Play
Resource = Ninth Symphony, Beethoven.

_42-

WO 2006/022739 PCT/US2004/027384

[00250] 'A.9.1—Planning queries for the context object: Principal

[00251] To plan for the query, first the profile for each context object is retrieved. For
example, the profile for Joe includes the following object O:

O: Principal
keyHolder
KeyValue
DSAKeyValue
pl,ql, yl
[00252] Since O is a specific DSA Key Holder, the primary semantic meaning (or

type) of O is a principal, the main index of O is DSAKeyValue, and the secondary indices of
O are KeyValue and keyHolder. So, the planning queries include the following search:

1. Search on any principal with the main index is DSAKeyValue, and if P, Q, Y are
specified, then P, Q, Y must match with pl1, q1, y1 respectively. Thus, the
principal [p2] of the unit of evaluation 2, and [p2] of the unit of evaluation 3 in
FIGURE 9C will be a match of the query. However, [p1] in unit of evaluation 1 in
FIGURE 9C will not be a match since its main index is not DSAKeyHolder but
KeyValue.

2. Search on any principal with the main index is KeyValue. Thus, principal [p1] of
the unit of evaluation 1 in FIGURE 9C will be a match since its main index is
KeyValue.

3. Search on any principal with the main index is keyHolder.

[00253] Thus, the queries for the context object Principal once executed, will return the

following atomic expressions:

[p1] of unit of evaluation ul
[p2] of unit of evaluation u2
[p2] of unit of evaluation u3

[00254] And the search domain is now restricted to all atomic expressions of the units

of evaluation ul, u2 and u3 instead of the entire database.

[00255] A.9.2—Planning queries for the context object: Rights

[00256] Similar to the principal in the context, the profile for Play right is retrieved. If
it is not found, that is there is no profile associated with this Play right, then only queries
related to this Play right is planned. Also, there are no secondary indices associated with Play

right as described in section [A.8], therefore the queries to retrieve all matching atomic

-43-

WO 2006/022739 PCT/US2004/027384

expressions for the Play right against the search domain resulted from the previous query are
as follows:
Search on any right where the main index is Play. Once again, this query will match with
the atomic expression [al] play of the unit of evaluation ul and [a2] play of the unit of

evaluation u2. While [a3] copy of unit of evaluation u3 is not matched.

[00257] Thus, the query for the context object Rights once executed, will return the

following atomics expressions:

[al] of unit of evaluation ul
[a2] of unit of evaluation u2

[00258] No atomic expression of unit of evaluation u3 matched, therefore u3 is
removed from the search domain. The search domain is now refined to atomic expressions of

the units of expression ul and u2 only.

[00259] A.9.3—Planning queries for the context object: Resources

[00260] Similarly to the principal in the context, the primary semantic type of the
Ninth Symphony, Beethoven in the context is resource, the main index is Beethoven
Symphony, the secondary indices are Symphony, Classic Music. So the planning queries for

the resource include:

1. Search on any resource with the main index is Beethoven Symphony, and its value if
specified is Ninth Symphony. Thus the resource [r2] of the unit of evaluation u2 isa
match since the main index is Beethoven Symphony with no value specified.
However, [r1] of the unit of evaluation 1 in FIGURE 9C will not be a match. Notice
that even though [r3] of the unit of evaluation u3 in FIGURE 9C could be a match of
the query, since u3 is no longer in the search domain, it is not a match.

2. Search on any resource with main index is Symphony.
3. Search on any resource with main index is Classic Music

[00261] Thus, the queries for the context object Resource, once executed, will return

the following atomic expression:

[r2] of the unit of evaluation u2

[00262] No atomic expression of unit of evaluation ul matched, therefore all atomic
expressions of unit of evaluation ul are removed from the search domain. The search domain

now only contains unit of evaluation u2 and its atomic expressions.

.44 -

WO 2006/022739 PCT/US2004/027384

[00263] A.10—Example of evaluating
[00264] Once all the planning queries have been executed, all the units of evaluation
remaining in the search domain will be matched with the query context. Each unit of
evaluatidn in the search domain will be further evaluated to resolve conflicts, if any, between
its atomic expressions and any conflict between matched units of evaluation.
[00265] The conflict between atomic expressions are defined as:

If a variable is bound to more than one type; or

If a variable is bound to more than one value; or

If a variable must be bound to some value but it is not.
[00266] In the query examples described in [A.9], the only matching unit of evaluation
remaining in the search domain is u2. Since u2 does not contains any variable, u2 is the true
match to the query context. Consequently, Joe’s request for an authorization to play the
Ninth Symphony, Beethoven will be granted. On the other hand, suppose that u2 is a
matching unit of evaluation, and u2 contains variable x for the principal (thus p2) and also
variable x for resource (thus r2). Let’s substitute x for the context object (as defined in [A.9])
of the same type, then p2 is substituted by “Joe” while r2 is substituted by “Ninth Symphony,
Beethoven.” Since “Joe” and “Ninth Symphony, Beethoven” are two different things, they
cannot be substituted for each other. In this case, the conflict cannot be resolved. Therefore,
u2 is rejected. As a resunlt of this evaluation, Joe’s request for an authorization to play the
Ninth Symphony, Beethoven will not be granted.
[00267) . The present invention may be implemented by a general purpose computer
programmed to accomplish the disclosed functions. Accordingly, the modules described
herein can be implemented as computer hardware and/or computer software. Various devices
may be used to provide the computer or computer system for effecting the invention.
[00268] While the present invention has been described in connection with a number
of exemplary embodiments and implementations, the present invention is not so limited but
rather covers various modifications and equivalent arrangements which fall within the

purview of the appended claims.

-45-

WO 2006/022739 PCT/US2004/027384
WHAT IS CLAIMED IS:

1. A method of processing grammar-based legality expressions that are adapted to be
used within a system for enforcing licenses, the method comprising: |

partitioning at least one legality expression into one or more units of evaluation to
assess the semantic meaning of the legality expression; and

atomizing the units of evaluation into atomic expressions, the atomic expressions
denoting the constituent components of the units of evaluation for storage, retrieval, and

evaluation of the legality expressions.

2. The method of processing grammar-based legality expressions of claim 1, further
comprising unifying a query context object and an atomic expression by evaluating the
atomic expression against the context and resolving conflicts between the atomic expression

and the result of the evaluation.

3. The method of processing grammar-based legality expressions of claim 2, further
comprising:
creating profiles representing semantic meanings of the atomic expressions; and
classifying the atomic expressions into the corresponding profiles, the profiles

7

comprising a set of identifications assigned to the atomic expressions.

4. The method of processing grammar-based legality expressions of claim 2, further
comprising:

selecting atomic expressions that match a context of a retrieval query based upon
corresponding profiles of the atomic expressions; and

evaluating the selected atomic expressions by comparing the units of evaluation to the

request context.

S. The method of processing grammar-based legality expressions of claim 1, wherein
partitioning the legality expression into units of evaluation further comprises validating the
legality expression against a grammar and specification to ensure the legality expression

conforms to grammar rules and specifications.

- 46-

WO 2006/022739 PCT/US2004/027384

6. The method of processing grammar-based legality expressions of claim 1, wherein
partitioning the legality expressions into units of evaluation further comprises verifying the

integrity of the legality expression to ensure the legality expression has not been altered.

7. The method of processing grammar-based legality expressions of claim 1, wherein
partitioning the legality expressions into units of evaluation further comprises normalizing

the legality expression by converting the legality expression to a form suited for processing.

8. The method of processing grammar-based legality expressions of claim 1, wherein
partitioning the legality expressions into units of evaluation further comprises indexing the
units of evaluation and the atomic expressions for subsequent retrieval based on the semantic

meaning of each unit of evaluation and each atomic expression.

9. The method of processing grammar-based legality expressions of claim 4, wherein
partitioning the legality expressions into units of evaluation further comprises storing the
units of evaluation, the atomic expressions, and processing instructions in a repository with

the corresponding profiles.

10. The method of processing grammar-based legality expressions of claim 5, wherein the

partitioning step further comprises extracting the legality expression from a resource.

11. The method of processing grammar-based legality expression of claim 5, wherein the

partitioning step further comprises decrypting the legality expression.

12. The method of processing grammar-based legality expressions of claim 5, wherein the

units of evaluation comprise an agreement in a contract.

13. The method of processing gramhlar-based legality expressions of claim 5, wherein the

units of evaluation comprise an evocable business activity.

_47-

WO 2006/022739 PCT/US2004/027384

14. The method of processing grammar-based legality expressions of claim 5, wherein the

units of evaluation comprise an evocable operation.

15. The method of processing grammar-based legality expressibns of claim 5, wherein the

units of evaluation comprise a rule in a policy.

16. The method of processing grammar-based legality expressions of claim 5, wherein the

units of evaluation comprise a privilege.

17. The method of processing grammar-based legality expressions of claim 5, wherein the
indexing step further comprises identifying the semantic type of each atomic expression

within the context of its unit of evaluation.

18. The method of processing grammar-based legality expression of claim 8, wherein the
indexing step further comprises identifying all semantic types of each atomic expression

within the context ofits language.

19. The method of processing grammar-based legality expressions of claim 8, wherein the
indexing step further comprises associating synonymous names for each atomic expression

conforming to a particular profile.

20. The method of processing grammar-based legality expressions of claim 8, wherein the
indexing step further comprises creating a database table encompassing the atomic
expressions associated with frequently queried entities to expedite all queries related to that

entity.

21. The method of processing grammar-based legality expressions of claim 8, wherein the
indexing step further comprises associating sets of key values with legality expressions where

the sets of key values provide additional information related to the legality expressions.
22. The method of processing grammar-based legality expressions of claim 21, wherein

the sets of key values further comprise context regarding an intended use for the legality

expression.

_48-

WO 2006/022739 PCT/US2004/027384

23. The method of processing grammar-based legality expressions of claim 21, wherein

the sets of key values further comprise metadata associated with the legality expression.

24. The method of processing grammar-based legality expressions of claim 23, wherein
the metadata associated with the legality expression comprises validity periods for the

legality expression.

25. The method of processing grammar-based legality expressions of claim 23, wherein
the metadata associated with the legality expression comprises information to categorize the
legality expression to limit legality expression search space when processing an evaluation

request.

26. The method of processing grammar-based legality expressions of claim 8, wherein the
indexing step further comprises assigning legality expressions to separate search spaces based

upon predetermined criteria.

27. The method of processing grammar-based legality expressions of claim 26, wherein

the separate search spaces comprise separate database tables.

28. The method of processing grammar-based legality expressions of claim 26, wherein

the separate search spaces comprise separate processors.

29. The method of processing grammar-based legality expressions of claim 26, wherein

the separate search spaces comprise separate partition structures.

30. The method of processing grammar-based legality expressions of claim 26, wherein

the separate search spaces comprise search spaces of different priorities.
31. The method of processing grammar-based legality expressions of claim 30, wherein

the different priorities are assigned based upon the number of times that the legality

expression is used.

_49-

WO 2006/022739 PCT/US2004/027384

32. The method of processing grammar-based legality expressions of claim 3, wherein the
classifying step further comprises assigning a uniquely identifiable profile identification to

each profile.

33. The method of processing grammar-based legality expressions of claim 32, wherein
the profile is used to create all equivalent indices for atomic expressions and units of

evaluation.

34. The method of processing grammar-based legality expressions of claim 33, wherein

the profile is stored in a searchable profile table.

35. The method of processing grammar-based legality expressions of claim 4, wherein the
selecting step further comprises:
planning queries from input context objects; and

constructing an initial search domain for the planned queries.

36. The method of processing grammar-based legality expressions of claim 35, wherein
the selecting step further comprises executing each planned query to retrieve the set of

atomic expressions that satisfy the query request.

37. The method of processing grammar-based legality expressions of claim 36, wherein
the selecting step further comprises constructing the units of evaluation from the atomic

expressions returned from the query request.

38. The method of processing grammar-based legality expressions of claim 37, wherein
the selecting step further comprises validating the results of each executed query against
unification rules stipulating whether an atomic expression in a unit of evaluation may be

unified with a corresponding atomic expression in the executed query.
39. The method of processing grammar-based legality expressions of claim 38, wherein

the selecting step further comprises refining the search domain and executing a modified

query if the results of the executed queries fail to meet an established relevancy criterion.

-50-

WO 2006/022739 PCT/US2004/027384

40. The method of processing grammar-based legality expressions of claim 35, wherein
planning queries from input context objects further comprises retrieving the profile for each
atomic expression in the input context object and using the profiles to construct queries to

search for atomic expressions in a repository.

41. The method of processing grammar-based legality expressions of claim 35, wherein
executing each query further comprises examining the query to determine if the query
contains specific profile identifications for any atomic expressions and retrieving all possible

profile identifications for the atomic expression.

42. The method of processing grammar-based legality expressions of claim 36, wherein
executing each planned query to retrieve the set of atomic expressions that satisfy the query
request further comprises:
analyzing variations of the atomic expression from the request context by
interchanging positions of components of the atomic expression to determine if permutations
of the atomic expression exist that are consistent with semantics of a unit of evaluation; and
translating the identified permutation of the atomic expression into an atomic

expression that matches the request context.

43. The method of processing grammar-based legality expressions of claim 4, wherein the
evaluating step further comprises:

validating the context of a retrieval query against requirements of an application;

profiling each atomic expression in the context of a retrieval query;

retrieving the matching atomic expressions, units of evaluation, and processing
instructions from the repository;

validating the atomic expressions against unification rules;

validating the units of evaluation against unification rules; and

resolving conflicts between units of evaluation.
44. The method of processing grammar-based legality expressions of claim 43, wherein

the resolving step further comprises applying the application’s policies to select preferred

units of evaluation from among the units of evaluation that conflict.

-51-

WO 2006/022739 PCT/US2004/027384

45. The method of processing grammar-based legality expressions of claim 43, wherein
the resolving step further comprises applying the application’s policies to combine

conflicting units of evaluation.

46. The method of processing grammar-based legality expressions of claim 43, wherein
the evaluating step further comprises caching requests and their corresponding results and

pre-computing a set of expected common requests.

47. The method of processing grammar-based legality expressions of claim 46, wherein
the caching step further comprises re-running the cached request and pre-computing a set of

expected common requests at a pre-determined periodic time.

48. A method of translating grammar-based legality expressions into searchable
independent expressions for efficiently processing communication requests for digital
content, the method comprising:

validating a syntax of the legality expression against a grammar and specification to
ensure the legality expression conforms to grammar rules and a specification;

verifying the integrity of the validated legality expression based on an application
trust model to preserve privacy and secure usage;

normalizing the verified legality expression into a form suited for machine
processing;

partitioning the normalized legality expression into units of evaluation to assess the
semantic meaning of the normalized legality expression;

atomizing the units of evaluation into atomic expressions;

indexing each unit of evaluation and atomic expression based on the semantic
meanings of the units of evaluation and the atomic expressions; and

storing the indexed units of evaluation, the atomic expressions, and corresponding

processing instructions in a repository.

49. The method of translating grammar-based legality expressions of claim 48, further
comprising profiling the atomic expressions to identify, organize, and manage storage and
retrieval of legality expressions, units of evaluation, and atomic expressions that represent an

identical object.

-52-

WO 2006/022739 PCT/US2004/027384

50. The method of translating grammar-based legality expressions of claim 49, wherein
the organization of the atomic expressions is based on a context in which the legality

expression was received.

51. The method of translating grammar-based legality expressions of claim 50, wherein
the context in which the legality expression was received comprises at least one of the
following: metadata associated with the legality expression, validity periods for the legality
expression, and information used to categorize the legality expression to partition search

space.

52. The method of translating grammar-based legality expressions of claim 50, wherein
the context in which the legality expression was received comprises priority criteria
indicating that each legality expression must be stored in a separate search space in the

repository based upon the priority criteria.

53. The method of translating grammar-based legality expressions of claim 49, wherein
the profile of a legality expression is updated each time a new profile is created in the

repository.

54. The method of translating grammar-based legality expressions of claim 48, wherein
after the storing step, the method further comprises constructing a query to locate and access
atomic expressions and processing instructions from the repository to match a profile of a

desired input context object.

55. The method of translating grammar-based legality expressions of claim 54, wherein
the constructing a query step further comprises constructing an initial search domain based

upon the desired input context object.
56. The method of translating grammar-based legality expressions of claim 54, wherein

after the constructing a query step, the method further comprises retrieving atomic

expressions matching a profile of the desired input context object.

_53-

WO 2006/022739 PCT/US2004/027384

57. The method of translating grammar-based legality expressions of claim 56, wherein
after the retrieving step, the method further comprises validating atomic expressions
matching a profile of the desired input context object against a predetermined unification

rule.

58. The method of translating grammar-based legality expressions of claim 57, wherein
the predetermined unification rule evaluates whether an input context object may be used to

substitute for a unit of evaluation.

59. Alegality expression processing system to process grammar-based legality
expressions comprising:

a legality expression input module for entering legality expressions for processing;

a pre-processor module to partition the entered legality expressions into units of
evaluation and atomic expressions;

a repository for storing the units of evaluation and the atomic expressions;

a profiler module that manages profiles for the units of evaluation and the atomic
expressions; '

a query requestor module for entering an input query;

a selector module that locates the atomic expressions from the repository that match
the input query;

a context module that supplies the context within which the located atomic
expressions may be evaluated;

an evaluation requestor to initiate an evaluation of the located atomic expressions;

an evaluator module that examines the atomic expressions located by the selector
module against a given evaluation request and context; and

an output module to deliver the results of the evaluation.

60. The legality expression processing system of claim 59, wherein the input legality

expressions are entered in original meta language syntax.

61. The legality expression processing system of claim 59, wherein the units of evaluation

comprise searchable independent expressions.

_54-

WO 2006/022739 PCT/US2004/027384

62. The legality expression processing system of claim 59, wherein the selector module

uses a matching mechanism based on a unification algorithm to locate the units of evaluation.

63. The legality expression processing system of claim 61, wherein the selector module
uses a matching mechanism based on a unification algorithm to locate the searchable

independent expressions.

64. The legality. expression processing system of claim 59, wherein the pre-processor
module partitions legality expressions into units of evaluation by performing at least one of
the following actions of: '

validating the syntax of the legality expressions against a grammar;

verifying the integrity of the legality expressions based on an application trust model;

normalizing legality expressions for machine processing;

assessing the semantic meaning of the legality expressions;

atomizing legality expressions into atomic expressions;

indexing each unit of evaluation and atomic expression based on its semantic
meaning; and

storing the units of evaluation, their atomic expressions, and corresponding processing

instructions into a searchable persistent repository.

65. The legality expression processing system of claim 59, wherein the profiler module
manages profiles for the atomic expressions by assigning a profile identification tag to the

atomic expressions.

66. The legality expression processing system of claim 59, wherein the profiler module
manages profiles for the atomic expressions by creating equivalent indices for the atomic

expressions.
67. The legality expression processing system of claim 61, wherein the profiler module

manages profiles for the searchable independent expressions by creating equivalent indices

for the searchable independent expressions.

-55-

WO 2006/022739 PCT/US2004/027384

68. A legality expression processing system to be used within a system for enforcing
licenses, the legality expression processing system comprising:

a legality expression input module for entering legality expressions for processing;

a preprocessor module to partition the legality expression into one or more units of
evaluation to assess the semantic meaning of the legality e;(pression and to atomize the units
of evaluation into atomic expressions, the atomic expressions denoting the constituent
components of the units of evaluation for storage, retrieval, and evaluation of legality
expressions; and

a repository for storing the units of evaluation and the atomic expressions for

subsequent retrieval and evaluation.

69. The legality expression processing system of claim 68, further comprising:

a profiler to create profiles from the atomic expressions that represent semantic
meanings of the atomic expressions and to classify the atomic expressions stored in the
repository into corresponding profiles, the profiles comprising a set of identifications

assigned to the atomic expressions.

70. The legality expression processing system of claim 69, further comprising:

a query requestor to initiate the submission of a query context within which to
evaluate a legality expression;

a context module to construct the query context requested by the query requestor;

a selector to process the requested query context by locating the units of evaluation
and associated atomic expressions in the repository that match the requested query context.
71. The legality expression processing system of claim 70, wherein the selector further
processes the requested query context by unifying the query context and an atomic expression
by evaluating the atomic expression against the query context and resolving conflicts between

the atomic expression and the result of the evaluation.

-56-

WO 2006/022739 PCT/US2004/027384

72. The legality expression processing system of claim 71, further comprising:

an evaluation requestor to submit a request for the legality expression processing
system to.evaluate a legality expréssion;

an evaluator that receives the request from the evaluation requestor, requests the

context module to construct the query context, and submits the query context to the selector.

73. The legality expression processing system of claim 72, wherein the evaluator
evaluates a match between the units of evaluation and the associated atomic expressions

located by the selector and the evaluation request and context.

74. The legality expression processing system of claim 73, wherein the evaluator further
determines if the evaluated match is satisfactory by evaluating the match against a prescribed

evaluation criteria.)

75. The legality expression processing system of claim 74, further comprising an output

module to communicate results of the match evaluation.

76. A data storage medium with computer-executable instructions for processing
grammar-based legality éxpressions for enforcing licenses comprising:

instructions for partitioning at least one legality expression into one or more units of
evaluation to assess the semantic meaning of the legality expression; and

instructions for atomizing the units of evaluation into atomic expressions, the atomic
expressions denoting the constituent components of the units of evaluation for storage,

retrieval, and evaluation of the legality expressions.

77. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 76, further comprising
instructions for unifying a query context object and an atomic expression by evaluating the
atomic expression against the context and resolving conflicts between the atomic expression

and the result of the evaluation.

-57-

WO 2006/022739 PCT/US2004/027384

78. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 77, further comprising:
instructions for creating profiles representing semantic meanings of the atomic
expressions; and
instructions for classifying the atomic expressions into the corresponding profiles, the

profiles comprising a set of identifications assigned to the atomic expressions.

79. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 77, further comprising:
instructions for selecting atomic expressions that match a context of a retrieval query
based upon corresponding profiles of the atomic expressions; and
instructions for evaluating the selected atomic expressions by comparing the units of

evaluation to a request context.

80. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 76, wherein the
instructions for partitioning the legality expression into units of evaluation further comprise
instructions for validating the legality expression against a grammar and specification to

ensure the legality expression conforms to grammar rules and specifications.

81. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 76, wherein the
instructions for partitioning the legality expressions into units of evaluation further comprise
instructions for verifying the integrity of the legality expression to ensure the legality

expression has not been altered.

82. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 76, wherein the
instructions for partitioning the legality expressions into units of evaluation further comprise
instructions for normalizing the legality expression by converting the verified legality

expression to a form suited for processing.

_58-

WO 2006/022739 PCT/US2004/027384

83. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 76, wherein the
instructions for partitioning the legality expressions into units of evaluation further comprise
instructions for indexing the units of evaluation and the atomic expressions for subsequent
retrieval based on the semantic meaning of each unit of evaluation and each atomic

expression.

84. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 79, wherein the
instructions for partitioning the legality expressions into units of evaluation further comprise
instructions for storing the units of evaluation, the atomic expressions, and processing

instructions in a repository with corresponding profiles.

85. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 80, wherein the
instructions for partitioning further comprise instructions for extracting the legality

expression from a resource.

86. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 80, wherein the)
instructions for partitioning further comprise instructions for decrypting the legality

expression.
87. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 80, wherein the units of

evaluation comprise an agreement in a contract.

88. The method of processing grammar-based legality expressions of claim 80, wherein

the units of evaluation comprise an evocable business activity.

89. The method of processing grammar-based legality expressions of claim 80, wherein

the units of evaluation comprise an evocable operation.

_59-

WO 2006/022739 PCT/US2004/027384

90. The method of processing grammar-based legality expressions of claim 80, wherein

the units of evaluation comprise a rule in a policy.

91. The method of processing grammar-based legality expressions of claim 80, wherein

the units of evaluation comprise a privilege.

92. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 80, wherein the
instructions for indexing further comprise instructions for identifying the semantic type of

each atomic expression within the context of its unit of evaluation.

93. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 83, wherein the
instructions for indexing further comprise instructions for identifying all semantic types‘ of

each atomic expression within the context of its language.

94. The data storage medium with computer-executable instructions for processing
‘grammar-based legality expressions for enforcing licenses of claim 83, wherein the
instructions for indexing further comprise instructions for associating synonymous names for

each atomic expression conforming to a particular profile.

95. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 83, wherein the
instructions for indexing further comprise instructions for creating a database table
encompassing the atomic expressions associated with frequently queried entities to expedite

all queries related to that entity.

96. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 83, wherein the
instructions for indexing further comprise instructions for associating sets of key values with
legality expressions where the sets of key values provide additional information related to the

legality expressions.

-60 -

WO 2006/022739 PCT/US2004/027384

97. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 96, wherein the sets of

key values further comprise context regarding an intended use for the legality expression.

98. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 96, wherein the sets of

key values further comprise metadata associated with the legality expression.

99. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 98, wherein the metadata

associated with the legality expression comprises validity periods for the legality expression.

100. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 98, wherein the metadata
associated with the legality expression comprises information to categorize the legality

expression to limit legality expression search space when processing an evaluation request.

101. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 83, wherein the
instructions for indexing further comprise instructions for assigning legality expressions to

separate search spaces based upon predetermined criteria.

102. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 101, wherein the separate

search spaces comprise separate database tables.
103. The data storage medium with computer-executable instructions for processing

grammar-based legality expressions for enforcing licenses of claim 101, wherein the separate

search spaces comprise separate processors.

-61 -

WO 2006/022739 PCT/US2004/027384

104. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 101, wherein the separate

search spaces comprise separate partition structures.

105. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 101, wherein the separate

search spaces comprise search spaces of different priorities.

106. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 105, wherein the different

priorities are assigned based upon the number of times that the legality expression is used.

107. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 78, wherein the
instructions for classifying further comprise instructions for assigning a uniquely identifiable

profile identification to each profile.

108. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 107, wherein the profile
identification is used to create all equivalent indices for atomic expressions and units of

evaluation.

109. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 108, wherein the profile

is stored in a searchable profile table.

110. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 79, wherein the
instructions for selecting further comprise:

instructions for planning queries from input context objects; and

instructions for constructing an initial search domain for the planned queries.

.62-

WO 2006/022739 PCT/US2004/027384

111. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 110, wherein the
instructions for selecting further comprise instructions for executing each planned query to

retrieve the set of atomic expressions that satisfy the query request.

112. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 111, wherein the
instructions for selecting further comprise instructions for constructing the units of evaluation

from the atomic expressions returned from the query request.

113. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 112, wherein the
instructions for selecting further comprise instructions for validating the results of each
executed query against unification rules stipulating whether an atomic expression in a unit of

evaluation may be unified with a corresponding atomic expression in the executed query.

114. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 113, wherein the
instructions for selecting further comprise instructions for refining the search domain and for
executing a modified query if the results of the executed queries fail to meet an established

relevancy criterion.

115. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 110, wherein the
instructions for planning queries from input context objects further comprise instructions for
retrieving the profile for each atomic expression in the input context object and for using the

profiles to construct queries to search for atomic expressions in a repository.

116. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 110, wherein the
instructions for executing each query further comprise instructions for examining the query to
determine if the query contains specific profile identifications for any atomic expressions and

retrieving all possible profile identifications for the atomic expression.

-63-

WO 2006/022739 PCT/US2004/027384

117. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 111, wherein the
instructions for executing each planned query to retrieve the set of atomic expressions that
satisfy the query request further comprises:

instructions for analyzing variations of the atomic expression from the request context
by interchanging positions of components of the atomic expression to determine if
permutations of the atomic expression exist that are consistent with semantics of a unit of
evaluation; and

instructions for translating the identified permutation of the atomic expression into an

atomic expression that matches the request context.

118. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 79, wherein the
instructions for evaluating further comprise:

instructions for validating the context of a retrieval query against requirements of an
application;

instructions for profiling each atomic expression in the context of a retrieval query;

instructions for retrieving the matching atomic expressions, units of evaluation, and
processing instructions from the repository;

instructions for validating the atomic expressions against unification rules;

instructions for validating the units of evaluation against unification rules; and

instructions for resolving conflicts between units of evaluation.

119. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 118, wherein the
instructions for resolving further comprise instructions for applying the application’s policies

to select preferred units of evaluation from among the units of evaluation that conflict.

120. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 118, wherein the
instructions for resolving further comprise instructions for applying the application’s policies

to combine conflicting units of evaluation.

WO 2006/022739 PCT/US2004/027384

121. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 118, wherein the
instructions for evaluating further comprise instructions for caching requests and their

corresponding results and for pre-computing a set of expected common requests.

122. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 121, wherein the
instructions for caching further comprise instructions for re-running the cached request and

for pre-computing a set of expected common requests at a pre-determined periodic time.

123. A data storage medium with computer-executable instructions for translating
grammar-based legality expressions into searchable independent expressions for efficiently
processing communication requests for digital content, the data storage medium comprising:

instructions for validating a syntax of the legality expression against a grammar and
specification to ensure the legality expression conforms to grammar rules and a specification;

instructions for verifying the integrity of the validated legality expression based on an
application trust model to preserve privacy and secure usage;

instructions for normalizing the verified legality expression into a form suited for
machine processing;

instructions for partitioning the normalized legality expression into units of evaluation
to assess the semantic meaning of the normalized legality expression;

instructions for atomizing the units of evaluation into atomic expressions;

instructions for indexing each unit of evaluation and atomic expression based on the
semantic meanings of the unit of evaluation and the atomic expression; and

instructions for storing the indexed units of evaluation, the atomic expressions, and

corresponding processing instructions in a repository.

124. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 123, further comprising
instructions for profiling the atomic expressions to identify, organize, and manage storage
and retrieval of legality expressions, units of evaluation, and atomic expressions that

represent an identical object.

-65-

WO 2006/022739 PCT/US2004/027384

125. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 124, wherein the
organization of the atomic expressions is based on a context in which the legality expression

was received.

126. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 125, wherein the context
in which the legality expression was received comprises at least one of the following:
metadata associated with the legality expression, validity periods for the legality expression,

and information used to categorize the legality expression to partition search space.

127. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 125, wherein the context
in which the legality expression was received comprises priority criteria indicating that each
legality expression must be stored in a separate search space in the repository based upon the

priority criteria.

128. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 124, further comprising
instructions to update the profile of a legality expression each time a new profile is created in

the repository.

129. The data storage medium with computer-executable instructions for processing
"grammar-based legality expressions for enforcing licenses of claim 123, wherein the
instructions for storing further comprise instructions for constructing a query to locate and
access atomic expressions and processing instructions from the repository to match a profile

of a desired input context object.

130. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 129, wherein the
instructions for constructing a query further comprise instructions for constructing an initial

search domain based upon the desired input context object.

- 66-

WO 2006/022739 PCT/US2004/027384

131. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 129, further comprising
instructions for retrieving atomic expressions matching a profile of the desired input context

object.

132. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 131, further comprising
instructions for validating atomic expressions matching a profile of the desired input context

object against a predetermined unification rule.

133. The data storage medium with computer-executable instructions for processing
grammar-based legality expressions for enforcing licenses of claim 132, wherein the
instructions for validating atomic expressions matching a profile of a desired input context
object against a predetermined unification rule further comprise instructions for evaluating

whether an input context object may be used to substitute for a unit of evaluation.

_67-

WO 2006/022739

Legality Expression 100

- Unit of Evaluation 110

Atomic 4 Atomic
Expression Expression
120a g1 120c¢
Atomic - .} Atomic
Expression Expression
120b -120d

MPEG REL 101

Grant 111
Principal Resource
121a ; 121c
Right , Condition
121b 121d

1/12

PCT/US2004/027384

FIGURE 1A

FIGURE 1B

PCT/US2004/027384

WO 2006/022739

G6¢
a|npoly
ndino

¢ 3dNOld

omN 0.2
a|npony lf——p={ JO}SONbOY
Xajuo) Aanp
062 " > 08¢ i 1) 74
Jojen|eAy 10)09j8g J9|yoid
16¢
Jojsanbay £ omwa
uonen|ea Oysodey
111
[A44
. Jewuwels) o0z
vZe Jossaosoidaid
uoljeoyloadg

ole
a|npo Indu
uoissaidx3y

Ayjeba

©2/12

WO 2006/022739 PCT/US2004/027384

Validate Legality Expression
301

J,

Verify Integrity of Legality Expression
305

'

Normalize Legality Expression
for Processing
311

!

Partition Legality Expression
into Units of Evaluation
321

!

~ Atomize Units of Evaluation
into Atomic Expressions .
325

Index Units of Evaluation, Atomic

Expressions, and Processing Instructions |
331

'

Store Units of Evaluation
and Atomic Expressions -
335

FIGURE 3

3/12

PCT/US2004/027384

WO 2006/022739

Unit of Evaluation

. Atomic
Expression 1

Classification

' Evaluation

. Result

433

" Authentication
Expression

434

Authentication
Expression
Evaluation

Authentication
Decision
443
Example:

Identifying
a User

Atomic

Expression 2
466

Authorization

467

Expression

Authorization -

Expression
Evaluation

~ Authorization
Decision
476
- Example:

Permission to
View a Book

FIGURE 4

4/12

WO 2006/022739

Input Context Objects
505

¢

Plan for Quéries
51 0‘

v

Construct an Initial Search Domain
515

i

Query
520

PCT/US2004/027384

'

Validate
525

Were
any irrelevant
atomic expressions
returned?
528

Refine Search Domain
530 ‘_

Matchedxunits of evaluatioh and
their atomic expressions
550

FIGURE 5

5/12

WO 2006/022739 PCT/US2004/027384

Provide Query Context
610

v

Validate Query Context
620

' Does the
uery Context Contain All the
Required Elements?
625

No

Yes

Profile the EXpressions in the Query Context
630 '

v

Locate Target Expressions for Ewvaluation
' ' 640

~Is the
Unit of Evaluation
a Primitive

. Expression?
645

Yés

No

Validate Each Unit of Evaluation
650

Y

Validate Each Atomic Expression
660

Y

Access to Query Context is Granted
670

Y

Terminate Evaluation
680

L

FIGURE 6

6/12

WO 2006/022739

Can
<Edgar>
<print>
<book>
?

PCT/US2004/027384

-

<Edgar> can
<print> <book>
if
> <Edgar> can c
N’ <view> <book>
and if
<Edgar>can

<save> <book>

' <Edgar> can <print> <book>

<Edgar> can <sell> <book>

if

Wa\

O-

<Edg<abp <\;|ew? <Edgar> <Edgar> <sell> <Edgar> <sell>
ook <save> <book> <book>
£q if <book> : " C g
N < ‘e .
<posség:ll;>|':::rty> {}Edg:p can()— o <Edga;> can <Edgar> can
. <possessProperty> <po
) and if - ,
- <Edgar> can
<view> <book> :
<Edgar> can
. <Edgar> can <possessProperty> <Edgar>can
<possessProperty> <distributor> <possessProperty>
<bookClubMember> if N <publisher>
S : <Edgar> paid $100
A J Y
<Edgar> <lend> <book> <Edgar> <view> <book>
v if
<Edgar> can <Edgar>can
<possessProperty> | <possessProperty>
<bookClubMember> <bookClubMember>
f/ ?
<Edgar> can <Edgar> can
<possessProperty> <possessProperty>
<bookClubMember> <bookClubMember>

FIGURE 7

7/12

PCT/US2004/027384

WO 2006/022739

8 ¥N9I4

“ajqe uoissaidx3 pazioyny

oju| uopes0]

adA}

ezuoyiny

uojssaidxg ail
-azuoyiny juoissesdxy

Q) esua9li

a|qe] uoissaidx3y

at. .
0Oju] uo)eIo] uoissaidxg Q| asusar
a|qe] uoissaidx3z pajesnuayiny
oju| oju| ojuj
Q) ejyoid Ql 9|uoid adA] |uoissaidx3 al
uoneoso] | @anosay | uoneooq s)ybry uoK)es0 X Qi esuaon
20n0sdY | o inosen by . jediouig jediouud | rediousg | jedioung :o_mmmamm
: . aj|qe] 9suaal
°|qel °jyoid - w04 suoIssaidxy sionss
|{esluoue) aidwig 0 ._mnEq"z | qiesuaon
uoneoynuap edAL al aioid hosueon | o equiN :
a|qe] Jenssj
Qi ejyoid _ : uoissaidxg’
Jonss| oju| uojeoo] | adAj Janss| sonss; al Jenss Q| esuadi

8/12

WO 2006/022739 PCT/US2004/027384

License 1

[g1] Grant
[p1] Principal
keyHolder
KeyValue
Any DSAKeyValue

[a1] Rights: play | ,
[r1] - Resource: Chopin, Noctune in A minor

[G] GrantGroup
[p2] Principal -
keyHolder
KeyValue
DSAKeyValue
p1
ql
y1

[g2] Grant
[a2] Rights: play
[r2] Resource: Beethoven,AnySymphony

[g3] Grant

[a3] Rights: copy 4

[F3] Resource: Beethoven,AnySymphony
[c3] Condition: Exercise limit, count=2

FIGURE %A

9/12

WO 2006/022739

PCT/US2004/027384
License = (p14a1Ar)V ((p2)*((a2~r2)V(a3#3+c3)))
Unit of evaluation w1 AUnit of evaluation u2 Unit of evaluationu)
gi=pltal*r g2=p2ha2*r2 g3=p2rald A3
Or, Or, Or,
[g1] Grant {92} Grant [92) Gran't)
[p1] Principal 2] Principal [p2] Principal
keyHolder ‘ keyHolder keyHolder
KeyValue KeyValue KeyValue
Any DSAKeyValue DSAKeyValue DS AKeyValue
, , p1,q1, y1 ~pl.alyl
[al] Rights: play [a2} Rights: play [a3] Rights: copy
[r1} Resource: Chopin, [r2] -Resource: Beethoven [r3] Resource:
Nocturne in A minor._ Any Symphony Beethoven,
Any Symphony
[c3] Condition: Exercise
limit count =2

FIGURE 9B

10/12

WO 2006/022739 PCT/US2004/027384
License = (p1*a1*r1)V ((p2)*((@2*r2)V(a3*r3*c3)))
Unit of evaluation ul Unit of evaluation u2 Unit of evaluation y3
gr=pthattn . g2=p2ra2in2 g3=p2*a3+r3 ~c3
Or, or, or, o
fo1) Grant : o . |92 Grant 192] Grent
p1] Prncipal 2] Principal [p2] Principal
eyHolder keyHolder keyHolder
Keyvalue KeyValue . . KeyValue
Any DSAKeyValue DSAKeyValue DSAKeyValue
- pl.qf, y1 p1.qQ1, v1
ights: 3] Rights: co| -
a1}l Rights: pla i [a2) Rights: play [a e« Py A
{rﬂ] Rgsourcz: {Zhobln. : {r2] Resource: Beethoven, () Resilrl\r:e"'amm'
o y Any Symphon sSymp
Noctune InArr.linolr: y Sympnony [Condition® Exerelimit,
4 ' count=2
A
Atomic expressions Atomic expressions Atomic expressions
1 tp1] Principal . {p2] Principal {p2) Principal
. keyHolder keyHolder keyHolder
KeyValue KeyValue KeyValue
Any DSAKéyVaIue DSAKeyValue DSAKeyValue
pl,ql, y1 _pl.ql, y1
[a1] Rights: play [a2] Rights play {a3] Rights: copy
(r1] Resource: Chopin, Noctume [r2]Resource: Beethoven, [r3] Resource: Beethoven,
in A minor Any Symphony Any Symphony
{c3] Condition: Exerdse limit
count =2

FIGURE 9C

11/12

WO 2006/022739 PCT/US2004/027384

=p2 a2 Arp 3
Main index: DSAKeyValue 92 p2 a2 fr2y
Secondary indices: Or,
KeyValue, keyHolder {g2)Grant
[p2] Principal
KeyValue
DSAK ey Vaw
P. QY
[&2] Rights: play
[r] Resource: Buhoven,
Any Sy mphony

. Primary semantic ty pewithin
unitof evaluation: Principal:

-

Atomi R

[p2)Principal
Key Value
DSAKey Vi
Pv Q, Y

[a2]Rights:play

Primary semanticty pewithin
unitof evaluation: Rights

[r2)Resource: Beethwven Any
Symphony

Primary semanticty pewithin
unitof evaluation: Resource

Main index :Beethoven’s
symphony

Secondary indices:
symphony, classic
music '

FIGURE 9D

12/12

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

