Title: ANTAGONIST FOR (PRO)RENIN RECEPTOR FOR THE TREATMENT OF HYPERTENSION AND DIABETES

```
<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
<th>Chemical Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFLQ</td>
<td>D</td>
</tr>
<tr>
<td><img src="Image" alt="Chemical structure" /></td>
<td></td>
</tr>
</tbody>
</table>
```

Abstract: Brain prorenin and the (pro)renin receptor (PRR) have a functional role in the development of hypertension. The present disclosure presents functional PRR antagonistic peptides (e.g., PR10, PR20, PR30, and PR40). In addition, modified peptides comprising one or more thioether-bridges that are stable and strong PRR antagonists are also provided. Methods for treating and preventing hypertension, including neurogenic hypertension, and diabetes with a PRR antagonist are also provided.
ANTAGONIST FOR (PRO)RENIN RECEPTOR FOR THE TREATMENT OF HYPERTENSION AND DIABETES

FIELD OF THE INVENTION

[0001] The disclosure relates to novel (pro)rennin receptor antagonists and use of the antagonists in the treatment of diseases and disorders including hypertension and diabetes.

CROSS-REFERENCE TO RELATED APPLICATIONS

STATEMENT REGARDING THE SEQUENCE LISTING

[0003] The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is YUME_001_01WO_ST25.txt. The text file is 10 KB, was created on September 18, 2013 and is being submitted electronically via EFS-Web.

BACKGROUND OF THE INVENTION

[0004] Hypertension is the most important risk factor for cardiovascular (CV) diseases and remains the number one cause of morbidity and mortality for our country. Despite the variety of traditional antihypertensive agents available, the blood pressure of about 40% of patients is still difficult to manage. A major component of drug resistant hypertension is neurogenic hypertension with increased vasomotor/cardiac sympathetic drive and decreased parasympathetic tone. Many studies demonstrate the importance of the brain renin-angiotensin system (RAS) in the development of neurogenic hypertension. Recently, a new component of the brain RAS was discovered and named the (pro)renin receptor (PRR).

[0005] PRR promotes Angiotensin II (Ang II) generation and activates both Ang II-dependent and -independent signaling pathways through binding to renin and prorenin. It is now well recognized that Ang II is produced and acts locally in the central nervous system (CNS) and serves a crucial role in CV function. So far, the beneficial effects of RAS blockade have been attributed to the inhibition of the vasoconstriction and hypertrophy-inducing properties of Ang II. Thus, PRR provides a new target to study the effect of the brain RAS in
hypertension because it is a novel component of the RAS, controlling the production of the vasoconstrictor Ang II and the hypertrophic signaling pathways through both Ang II-dependent and -independent signaling pathways.

Current antihypertensive agents target RAS components. Examples include angiotensin-converting enzyme (ACE) inhibitors, Ang II type 1 receptor (AT1 R) blockers, and direct renin inhibitors. However, all of these compounds cause dramatic increases of plasma renin levels due to the negative feedback loop (decrease of Ang II levels) on renin production. Renin and prorenin directly bind to PRR and can activate signaling pathways independent of Ang II. The clinical relevance of PRR is particularly significant in situations where there are increases in renin and prorenin levels.

The activation of PRR initiates an intracellular signaling pathway involving mitogen-activated protein kinase which increases the synthesis of profibrotic molecules such as plasminogen activator inhibitor-1, fibronectin, collagen and transforming growth factor-β. These signaling pathways have been shown to directly link to diabetic retinopathy, nephropathy, cardiac hypertrophy, vascular and kidney fibrosis. In addition, prorenin, an activating ligand of PRR, is found at levels one hundred times higher in the plasma of a diabetic patient than the amount of prorenin found in healthy individuals. Several studies indicate that PRR expression was increased in diabetic retinopathy, nephropathy, and in hypertension.

Some peptides have been developed to antagonize prorenin for use in diabetic nephropathy, high salt induced hypertension in mouse and rat models. However, the effects of these peptides remain controversial because several other independent laboratories were not able to replicate the effects of this peptide.

Thioether bridges have been used in modifying small peptides in the past to increase stability. However, there are currently no available compounds or thioether bridge-modified peptides for treating hypertension that act on the (pro)renin receptor.

SUMMARY OF THE INVENTION

The present invention provides (pro)renin receptor antagonist compositions, including novel peptides comprising thioether bridges that stabilize the molecules. Also provided are methods for treating a disease or disorder, e.g., hypertension, with a (pro)renin receptor antagonist. The (pro)renin receptor antagonists described herein both reduce Ang II generation and prevent Ang II-independent signal activation.

One aspect of the invention provides a polypeptide comprising an amino acid sequence having at least 70% identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23. In one embodiment, the polypeptide comprises an amino acid sequence having at least 80% identity to the amino acid sequence set forth in one of SEQ ID
NOs:1-8 and 16-23. In another embodiment, the polypeptide comprises an amino acid sequence having at least 90% identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23. In yet another embodiment, a pharmaceutical composition comprises the polypeptide and a pharmaceutically acceptable carrier.

Another aspect of the invention provides a (pro)renin receptor (PRR) antagonist that blocks prorenin from binding to PRR, wherein the PRR antagonist binds to PRR. In one embodiment, the PRR antagonist is a peptide. In another embodiment, the PRR antagonist peptide comprises amino acid residues 3, 4, 6, 7, and 18 of SEQ ID NO:2. In a related embodiment, the PRR antagonist peptide further comprises amino acid residues 8, 10, and 11 of SEQ ID NO:2.

In yet another embodiment, the PRR antagonist peptide further comprises a non-standard amino acid. In one embodiment, the non-standard amino acid is dehydroalanine, 2-aminobutyric acid, or dehydrobutyryne. In another embodiment, the PRR antagonist peptide comprises a thioether bridge.

One aspect of the invention provides a method for treating or preventing a disease or disorder comprising administering an effective amount of one or more PRR antagonists. In one embodiment, the disease or disorder is hypertension, diabetes, diabetic retinopathy, nephropathy, cardiac hypertrophy, vascular or kidney fibrosis. In another embodiment, the PRR antagonist comprises the polypeptide or the PRR antagonist described above.

Another aspect of the invention provides a method for reducing blood pressure comprising administering a PRR antagonist. In one embodiment, the PRR antagonist is a PRR-binding peptide. In another embodiment, the PRR antagonist comprises amino acid residues 3, 4, 6, 7, and 18 of SEQ ID NO:2. In a related embodiment, the PRR antagonist further comprises amino acid residues 8, 10, and 11 of SEQ ID NO:2. In yet another embodiment, the PRR antagonist comprises a non-standard amino acid. In one embodiment, the non-standard amino acid is dehydroalanine, 2-aminobutyric acid, or dehydrobutyryne. In another embodiment, the PRR antagonist comprises a thioether bridge. In one embodiment, the administering step is oral, intravenous, or intracerebroventricular.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the description of specific embodiments presented herein.

Figure 1 is a schematic illustrating that hypertensive stimuli increase brain PRR expression, leading to Ang II formation and/or activation of Ang II-independent...
signaling, and thus hypertension. Therefore deletion of PRR in the brain will mitigate the hypertension.

Figure 2 is an image illustrating prorenin and renin protein expression in brains of C57Bl/6J mice. The prorenin and renin protein was extracted from whole brain lysate. Samples incubated with (pro)renin antibody showed strong bands at 46 kD for prorenin and thin bands at 38 kD for matured renin.

Figure 3 is a graph illustrating an increase of brain PRR expression in deoxycorticosterone acetate (DOCA)-salt hypertensive mice. The PRR mRNA expression levels varied in CV regulatory regions of the brain and increased following 21 days of DOCA-salt treatment. * P<0.05 vs. Sham Cortex; #P<0.05 vs. Sham treatment in the same brain nucleus.

Figure 4 is a graph illustrating that aldosterone and high salt regulate PRR expression in Neuro-2A cells. Neuro-2A cells were incubated with either normal salt (146mM) or high salt (160mM) for 5 days without or without aldosterone (1µM), MR inhibitor (Eplerenone, 10µM), or ENaC inhibitor (Amiloride, 10µM) for 6 hours. * P<0.05 vs. normal salt; #P<0.05 vs. Vehicle group in the same treatment.

Figure 5A is a diagram illustrating the PRR gene deleted by Cre recombinase under the control of neurofilament-H promoter in the Nefh-PRR mouse model for brain-targeted PRR deletion.

Figure 5B is a series of representative immuno-fluorescent images of the subfornical organ (SFO) and paraventricular nucleus (PVN) in WT and Nefh-PRR mice.

Figure 6 is a series of graphs illustrating the pressor response to intracerebroventricular (ICV) infusion of carbachol (Figure 6A), Ang II (Figure 6B), renin (Figure 6C), and prorenin (Figure 6D) in wild-type (WT) and Nefh-PRR mice. WT and Nefh-PRR mice were implanted with telemetric transmitters and ICV cannula. Two weeks after recovery, mice were ICV infused (0.3µl/min) with carbachol (100ng/µl), Ang II (100ng/µl), Ang II (100ng/µl) + losartan (10µg/µl), mouse renin (100ng/µl), mouse prorenin (100ng/µl), or mouse prorenin (100ng/µl) + losartan (10µg/µl) over 10 minutes. Blood pressure (BP) was recorded in conscious freely moving mice. *P<0.05 vs. WT.

Figure 7 is a graph illustrating reduced BP in Nefh-PRR mice in DOCA-salt hypertension. Mice were implanted with telemetry transmitters for BP recording and treated with DOCA-salt for 21 days. *P<0.05 VS. WT.

Figure 8 is a graph illustrating Ang II levels in DOCA-salt hypertensive mice. Mice were treated with DOCA-salt or Sham for 21 days. Brain hypothalamus and kidney tissues were harvested for Ang II measurement using fluorescent ELISA KIT. *P<0.05 vs. WT.
Figures 9A and 9B are graphs illustrating that ICV administration of AAV-Cre-eGFP reduces pressor response induced by ICV mouse prorenin in PRR-Floxed mice. The AAV-PRR-eGFP (100 nl) was administered ICV to PRR-Floxed mice. After 7 days, mice were ICV infused (0.3 µl/min) with mouse prorenin (100 ng/µl) over 10 minutes. BP was recorded in conscious freely moving mice (Figure 9A). At the end of experiment, brain cortex, hypothalamus, and brainstem were harvested for PRR mRNA measurement (Figure 9B). *P<0.05 vs. AAV-eGFP.

Figure 10 is a diagram illustrating the 3D structure of PR10 (SEQ ID NO:1).

Figure 11 shows the amino acid sequence and chemical structure of modified peptide PR103 (SEQ ID NO:3) with a thioether bridge and one non-standard amino acid, dehydroalanine (Dha), at position 7. dehydroalanine (Dha), 2-aminobutyric acid (Abu), and dehydrobutyryne

Figure 12 is a diagram illustrating the 3D structure of modified peptide PR103.

Figure 13 shows the amino acid sequence and chemical structure of modified peptide PR105 (SEQ ID NO:4) with two thioether bridges and one non-standard amino acid, dehydroalanine (Dha), at position 7.

Figure 14 is a diagram illustrating the 3D structure of modified peptide PR105.

Figure 15 shows the amino acid sequence and chemical structure of modified peptide PR107 (SEQ ID NO:5) with two thioether bridges and one non-standard amino acid, dehydroalanine (Dha), at position 7.

Figure 16 shows the amino acid sequence and chemical structure of modified peptide PR201 (SEQ ID NO:6) with three thioether bridges and four non-standard amino acids, 2-aminobutyric acid (Abu, at positions 3 and 7), dehydrobutyryne (Dhb, at position 5), and dehydroalanine (Dha, at position 18).

Figure 17 shows the amino acid sequence and chemical structure of modified peptide PR202 (SEQ ID NO:7) with two thioether bridges and four non-standard amino acids, 2-aminobutyric acid (Abu, at position 3), dehydrobutyryne (Dhb, at positions 5 and 6), and dehydroalanine (Dha, at position 18).

Figure 18 shows the amino acid sequence and chemical structure of modified peptide PR203 (SEQ ID NO:8) with two thioether bridges and one non-standard amino acid, dehydroalanine (Dha, at position 10).

Figure 19 is a series of graphs showing the exemplary dose responses for peptide PR10 and PR20.

Figure 20 is a series of fluorescence microscopy images showing PRR binding in the PR20 alanine replacement assay. Each of the amino acid positions of PR20 was substituted with alanine. PR20 and the alanine substituted peptides were labeled with FITC. Fluorescence indicates binding of the peptide to PRR.
Figure 21 shows the core amino acid sequence for the PR30 peptide (SEQ ID NO:16) and modified thioether bridge containing peptides PR301 (SEQ ID NO:18), PR302 (SEQ ID NO:19), and PR303 (SEQ ID NO:20). PR301 comprises five non-standard amino acid residues, and PR302 and PR303 each comprise four non-standard amino acid residues.

Figure 22 shows the core amino acid sequence for the PR40 peptide (SEQ ID NO:17) and modified thioether bridge containing peptides PR401 (SEQ ID NO:21), PR402 (SEQ ID NO:22), and PR403 (SEQ ID NO:23). PR401 comprises four non-standard amino acid residues, and PR402 and PR403 each comprise three non-standard amino acids.

DETAILED DESCRIPTION

Detailed descriptions of one or more embodiments are provided herein. It is to be understood, however, that the present invention may be embodied in various forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one skilled in the art to employ the present invention in any appropriate manner.

Where ever the phrase "for example," "such as," "including" and the like are used herein, the phrase "and without limitation" is understood to follow unless explicitly stated otherwise. Similarly "an example," "exemplary" and the like are understood to be non-limiting.

The terms "comprising" and "including" and "having" and "involving" (and similarly "comprises", "includes," "has," and "involves") and the like are used interchangeably and have the same meaning. Specifically, each of the terms is defined consistent with the common United States patent law definition of "comprising" and is therefore interpreted to be an open term meaning "at least the following," and is also interpreted not to exclude additional features, limitations, aspects, etc. Thus, for example, "a process involving steps a, b, and c" means that the process includes at least steps a, b and c. Where ever the terms "a" or "an" are used, "one or more" is understood, unless such interpretation is nonsensical in context.

As used herein, the term "effective amount" is intended to encompass contexts such as a pharmaceutically effective amount or therapeutically effective amount. For example, in certain embodiments, the effective amount is capable of achieving a beneficial state, beneficial outcome, functional activity in a screening assay, or improvement of a clinical condition.

The terms "polypeptide," "protein" and "peptide" are used interchangeably and mean a polymer of amino acids not limited to any particular length. The term does not
exclude modifications such as myristylation, sulfation, glycosylation, phosphorylation and addition or deletion of signal sequences.

[0045] The term "antibody" as used herein includes monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments, so long as they exhibit the desired biological activity, e.g., specifically bind to PRR. The term "immunoglobulin" (Ig) is used interchangeably with "antibody" herein. Monoclonal or polyclonal antibodies specifically reacting with PRR may be made by methods known in the art, and are commercially available. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratories; Goding (1986) Monoclonal Antibodies: Principles and Practice, 2d ed., Academic Press, New York; and Ausubel et al. (1999) Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New York.

[0046] The term "isolated" refers to a subject PRR antagonist, e.g., a thioether bridge modified PRR antagonist peptide, that has been separated and/or recovered from a component of its natural environment, e.g., a host cell culture environment. In certain embodiments, the isolated protein is substantially free from proteins or polypeptides or other contaminants that would interfere with its use (therapeutic, diagnostic, prophylactic, research or otherwise).

[0047] The term "polynucleotide" as referred to herein means single-stranded or double-stranded nucleic acid polymers. In certain embodiments, the nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. The term "polynucleotide" specifically includes single and double stranded forms of DNA. As will be also recognized by the skilled artisan, polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules.

[0048] Standard techniques for cloning, DNA isolation, amplification and purification, for enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like, and various separation techniques are those known and commonly employed by those skilled in the art.

[0049] The term "operably linked" means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions under suitable conditions. For example, a transcription control sequence "operably linked" to a protein coding sequence is ligated thereto so that expression of the protein coding sequence is achieved under conditions compatible with the transcriptional activity of the control sequences.

[0050] The term "vector" is used to refer to any molecule (e.g., nucleic acid, plasmid, or virus) used to transfer a polynucleotide sequence to a host cell. The term "expression
vector" refers to a vector that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control expression of inserted nucleic acid sequences. Expression includes, but is not limited to, processes such as transcription, translation, and RNA splicing, if introns are present.

[0051] Calculations of sequence similarity or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows. To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In certain embodiments, the length of a reference sequence aligned for comparison purposes is at least 30%, preferably at least 40%, more preferably at least 50%, 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence. The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.

[0052] The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0053] The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch, (1970, J. Mol. Biol. 48: 444-453) algorithm which has been incorporated into the GAP program in the GCG software package, using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package, using a NWSgapdna. CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used unless otherwise specified) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.

[0054] The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller (1989, Cabios, 4: 11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
As used herein, "treating" or "treatment" refers to an approach for obtaining beneficial or desired results, including and preferably clinical results. Treatment can involve optionally either the amelioration of symptoms of the disease or condition, or the delaying of the progression of the disease or condition.

As used herein, unless the context makes clear otherwise, "prevention," and similar words such as "prevented," "preventing" etc., indicates an approach for preventing, inhibiting, or reducing the likelihood of, the onset or recurrence of a disease or condition. It also refers to preventing, inhibiting, or reducing the likelihood of, the occurrence or recurrence of the symptoms of a disease or condition, or optionally an approach for delaying the onset or recurrence of a disease or condition or delaying the occurrence or recurrence of the symptoms of a disease or condition. As used herein, "prevention" and similar words also includes reducing the intensity, effect, symptoms and/or burden of a disease or condition prior to onset or recurrence of the disease or condition.

(Pro)renin Receptor Antagonists

The present invention is based in part on the finding that blocking the (pro)renin receptor (PRR) reduces Angiotensin II (Ang II) generation and also prevents Ang II-independent signal activation. Accordingly, one aspect of the invention relates to PRR antagonists. PRR antagonists include, e.g., small molecule compounds, antisense polynucleotides, polypeptides, including PRR-binding peptides, and anti-PRR antibodies.

A PRR antagonist inhibits or blocks the ligand-receptor interaction of prorenin to PRR. In one embodiment, a PRR antagonist blocks prorenin from binding PRR. In another embodiment, a PRR antagonist competes with prorenin for binding to PRR.

In one embodiment, a polynucleotide variant of a PRR antagonist is provided. A polynucleotide variant may have substantial identity to a PRR antagonist polynucleotide sequence described herein. For example, a polynucleotide may be a polynucleotide comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a reference polynucleotide sequence, using the methods described herein, (e.g., BLAST analysis using standard parameters).

In another embodiment, a polypeptide variant of a PRR antagonist is provided. A peptide variant may have substantial identity to a PRR antagonist peptide sequence described herein. For example, a peptide variant may be a peptide comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a PRR antagonist peptide described herein.
PRR Antagonist Peptides

In one embodiment of the invention, the PRR antagonist is a peptide that inhibits the binding of prorenin to PRR. Examples of functional PRR antagonist peptides include the peptides disclosed herein, PR10, PR20, PR30, and PR40, with sequences IFDNIISGQVLKEDVF (SEQ ID NO:1), LPTDTTTFKRIFRKMRPSI (SEQ ID NO:2), LPTDTTTFKRIFLKRMPSIREE (SEQ ID NO:16), and LPRTRATFERIPRLKKMPSVRE LPRTRATFERIPRLKKMPSVRE (SEQ ID NO:17), respectively. Administration of either PR10 or PR20 intracerebroventricularly (ICV) was shown to significantly reduce prorenin (PR) induced pressor response as described further in the Examples below.

One embodiment of the invention provides a polynucleotide sequence encoding a PRR antagonist peptide. In one embodiment, the polynucleotide is codon optimized for expression in the host cell, e.g., Lactococcus lactis. The polynucleotide sequence encoding the PRR antagonist peptide may be part of a construct. Accordingly, the polynucleotide sequence encoding the PRR antagonist peptide may be contained in a vector, such as an expression vector for expression and production by a host cell, e.g., L. lactis.

PRR antagonist peptides include modified peptides, e.g., peptides comprising a thioether bridge and/or amino acids that are not standard or naturally occurring in humans, e.g., amino acids found in polypeptides of microbial origin. Examples of non-standard amino acids include, but are not limited to, dehydroalanine (Dha), 2-aminobutyric acid (Abu), and dehydrobutyryl (referred to herein interchangeably as "Dht" or "Dhb").

In one embodiment, thioether-bridge modified peptides are designed based on the core amino acid sequences of PR10, PR20, PR30, and PR40 in order to avoid peptide degradation by peptidase in vivo. The introduction of one or more thioether bridges makes the resulting peptides more stable and, therefore, strong PRR antagonists. The NisBTC encoding plasmid (pTU-BTC) and substrate-peptide-encoding plasmids (pPR103, pPR105, pPR107, pPR201, pPR202) were constructed and introduced into the lactic acid producing bacterium L. lactis to produce the thioether-bridge containing peptides PR103 (SEQ ID NO:3), PR105 (SEQ ID NO:4), PR107 (SEQ ID NO:5), PR201 (SEQ ID NO:6) and PR202 (SEQ ID NO:7) respectively. One alternative embodiment is PR203 (SEQ ID NO:8) as provided in Figure 18.

In one embodiment, a PRR antagonist peptide comprises common amino acid substitutions or modifications. For example, a PRR antagonist peptide derived from the core amino acid sequence of PR20 comprises amino acid residues 3, 4, 6, 7, and 18 of the amino acid sequence set forth in SEQ ID NO:2. In a related embodiment, the PRR antagonist peptide derived from PR20 further comprises amino acid residues 8, 10, and 11 of SEQ ID NO:2. In another embodiment, a PRR antagonist peptide comprises amino acid
residues 3, 4, 6, 7, and 18 of one of SEQ ID NOs:18-23. In a related embodiment, the PRR antagonist peptide further comprises amino acid residues 8, 10, 11, and 14 of one of SEQ ID NOs:18-23.

[0066] In one embodiment, the PRR antagonist is a peptide comprising an amino acid sequence having at least 50% identity to an amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23. In another embodiment, the PRR antagonist is a peptide comprising an amino acid sequence having at least 60% identity to an amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23. In yet another embodiment, the PRR antagonist is a peptide comprising an amino acid sequence having at least 70% identity to an amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23. In one embodiment, the PRR antagonist is a peptide comprising an amino acid sequence having at least 80% identity to an amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23. In one embodiment, the PRR antagonist is a peptide comprising an amino acid sequence having at least 90% identity to an amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23. In another embodiment, the PRR antagonist is a peptide comprising the amino acid sequence set forth in one of SEQ ID NOs:4-8 and 18-23.

Methods of Use

[0067] One aspect of the invention provides a more efficient hypertension treatment because of the dual beneficial effect of PRR blockade that both reduces Ang II generation and prevents Ang II-independent signal activation. The result of PRR deletion mimics the effect of PRR antagonism in hypertension. Deletion of PRR attenuates blood pressure in chronic hypertension and prevents development of hypertension. As described in the examples, intracerebroventricular (ICV) administration of either PR10 or PR20 significantly reduced the prorenin (ICV) induced pressor response in C57BL/6J mice. Accordingly, the significant reduction in the prorenin-induced pressor response indicated a functional activity of PR10 and PR20 in blocking the effects of prorenin/PRR activation.

[0068] In one embodiment, the PRR antagonist is administered to a patient for the treatment or prevention of a disease or disorder including, e.g., hypertension, diabetes, diabetic retinopathy, nephropathy, cardiac hypertrophy, vascular and kidney fibrosis. In certain embodiments, the disease or disorder is chronic hypertension or RAS-dependent hypertension. In one embodiment, the hypertension is neurogenic hypertension.

[0069] In another embodiment, the PRR antagonist is used in the preparation of a medicament for the treatment or prevention of a disease or disorder. In one embodiment, the PRR antagonist is a PRR-binding peptide. In a preferred embodiment, the PRR antagonist is a modified peptide. In one embodiment, the modified peptide PRR antagonist
comprises one or more thioether bridges. For example, the modified peptide PRR antagonist may comprise one, two, three, or more thioether bridges.

Pharmaceutical Compositions

[0070] Pharmaceutical compositions can be made using the PRR antagonists described herein. An effective amount of a therapeutic composition is the minimum dose that produces a measurable effect in a subject, e.g., produces a statistically significant reduction in blood pressure. Pharmaceutical compositions are readily prepared by one of ordinary skill in the art.

[0071] A PRR antagonist of the present invention can be lyophilized for storage or formulated into various solutions known in the art for solubility and stability and consistent with safe administration into animals, including humans.

[0072] Administration of the PRR antagonists described herein, in pure form or in an appropriate pharmaceutical composition, can be carried out via any of the accepted modes of administration of agents for serving similar utilities. The pharmaceutical compositions can be prepared by combining a PRR antagonist or antagonist-containing composition with an appropriate physiologically acceptable carrier, diluent or excipient, and may be formulated into preparations in solid, semi solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants, gels, microspheres, and aerosols. In addition, other pharmaceutically active ingredients (including other anti-hypertensive agents) and/or suitable excipients such as salts, buffers and stabilizers may, but need not, be present within the composition.

[0073] "Carriers" as used herein include pharmaceutically or physiologically acceptable carriers, excipients, or stabilizers that are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as polysorbate 20 (TWEEN™) polyethylene glycol (PEG), and poloxamers (PLURONICS™), and the like.
Administration may be achieved by a variety of different routes, including oral, parenteral, nasal, intravenous, intradermal, subcutaneous or topical. In one embodiment, the PRR antagonist is administered intracerebroventricularly (ICV). In another embodiment, the PRR antagonist is administered orally. Preferred modes of administration depend upon the nature of the condition to be treated or prevented. An amount that, following administration, reduces, inhibits, or prevents hypertension is considered effective.

In particular embodiments, a thioether bridge-modified peptide is designed to be delivered intravenously or orally.

Examples

The following examples are intended to illustrate but not limit the disclosure. While the disclosure provides certain specific embodiments, the invention is not limited to those embodiments. A person of ordinary skill will appreciate from the description herein that modifications can be made to the described embodiments and therefore that specification is broader in scope than the described embodiments. All examples are therefore non-limiting.

Example 1

Deletion of PRR in the Brain Mitigates Hypertension

Neuron-specific PRR knockout mice (Nefh-PRR) and wildtype (WT) littermates (N=5/group) were each implanted with a telemetric probe for blood pressure (BP) recording and an intracerebroventricular (ICV) cannula for infusion of mouse prorenin (100 ng/ul), mouse renin (100 ng/ul), or an Ang Ii type 1 receptor (AT1R) blocker (losartan, 10 ug/ul) at 0.3 ul/minute for 10 minutes. Mouse prorenin infusion increased the BP (mmHg) in WT mice (ΔMAP: 4.1 ± 5); however, the prorenin induced pressor response was abolished in Nefh-PRR mice (ΔMAP: 5 ± 1). Infusion of mouse renin similarly increased BP in Nefh-PRR (ΔMAP: 27 ± 2) and WT (ΔMAP: 31 ± 5) mice. The pressor response induced by prorenin or renin was completely blocked by the infusion of losartan. The data suggest that ICV prorenin, via PRR, mediates Ang II-dependent pressor response in WT mice.

To determine whether PRR contributes to the development of brain RAS-dependent hypertension, Nefh-PRR and WT littermates (N=8/group) were treated with 50 mg of deoxycorticosterone acetate (DOCA) subcutaneously, plus 0.9% NaCl drinking water for 21 days. The baseline BP was similar between Nefh-PRR (101 ± 2) and WT (101 ± 3) mice. BP was increased in WT mice (132 ± 6) by DOCA-salt treatment, while Nefh-PRR mice remained normotensive (108 ± 3).

In summary, prorenin via PRR mediates AngII/AT1R-dependent pressor response in the brain. Neuron-specific PRR deletion attenuates the development of DOCA-salt hypertension likely due to the lack of Ang II/AT1R activation.
EXAMPLE 2
BLOCKING PRR IMPROVES BAROREFLEX SENSITIVITY AND AUTONOMIC FUNCTION AND IS LINKED TO THE ATTENUATION OF DOCA-SALT HYPERTENSION

[0080] Elevated expression and activity of RAS components in the brain CV control regions support the concept that the brain RAS is involved in the pathogenesis of hypertension, including DOCA-salt hypertension. PRR participates in Ang II generation, triggering both Ang II-dependent and -independent activation of signaling pathways, and plays a significant role in regulating CV function. Accordingly, decreasing PRR expression in CV regulatory nuclei will reduce Ang II generation and/or decrease Ang II-independent signals, resulting in vasodilation and reduction of BP.

[0081] A conditional PRR knockout mouse model with deletion of PRR specifically in neurons was generated and characterized. The mouse PRR exon 2 gene was deleted by breeding PRR floxed mice with mice that express Cre recombinase under the control of the neuron-specific neurofilament-H (Nefh) promoter (Nefh-Cre mice from Jackson laboratory, Maine) (Figure 5A). These PRR knockout mice (Nefh-PRR) appear to be vital and exhibit global PRR ablation in the brain regions that are involved in central regulation of BP, such as the subfornical organ (SFO) and paraventricular nucleus (PVN) (Figure 5B), as well as the rostral ventral lateral medulla (RVLM), solitary nucleus (NTS), and non-CV regulatory nuclei.

[0082] PRR is critical for early development. To test whether neurons are functionally intact in neuron-specific PRR knockout mice, carbachol (a cholinergic agonist), Ang II, renin, and prorenin were ICV infused to both Nefh-PRR and wild type (WT) mice. The pressor response to ICV infusion of carbachol and Ang II was similar between Nefh-PRR and wild type (WT) mice suggesting that the Nefh-PRR mice harbor functional acetylcholine receptor and AT1R (Figure 6A, B). Interestingly, the pressor response to ICV prorenin was significantly reduced in Nefh-PRR compared to WT mice (Figure 6D) indicating that the pressor response to prorenin requires PRR. In addition, the prorenin-induced pressor effect is primarily the direct action of prorenin but not from its conversion to renin, since the pressor response to ICV renin is similar between Nefh-PRR and WT mice (Figure 6C). These data demonstrate that prorenin, via binding to PRR, regulates BP in the CNS.

[0083] More importantly, although the baseline BP and HR were not different between Nefh-PRR and WT mice, the brain-targeted PRR deletion attenuated the development of DOCA-salt hypertension (Figure 7), indicating a critical role of brain PRR in the development of hypertension. However, the mechanism by which PRR affects BP remains unclear. Accordingly, without wishing to be bound by theory, it is hypothesized that brain-targeted PRR deletion reduces Ang II-dependent and Ang II-independent signaling.
pathways, leading to reduced sympathetic activity, improved baroreflex sensitivity, and ultimately reduced BP and improved CV function.

[0084] Telemetry BP recording, baroreflex and autonomic function analysis, and molecular biology techniques may be utilized to determine the role and mechanisms of PRR in the development of DOCA-salt hypertension. The control mice for Nefh-PRR mice experiments are wild type littermates (WT) that are heterozygous for Nefh-Cre to exclude the possible effects of Cre-mediated toxicity on phenotypes.

EXAMPLE 3

DELINEATING THE AUTONOMIC MECHANISMS AND CV CONSEQUENCES OF BRAIN-TARGETED PRR DELETION IN THE DEVELOPMENT OF DOCA-SALT HYPERTENSION

[0085] The Nefh-PRR and WT mice are implanted with telemetric transmitters and receive DOCA-salt, high salt only, or sham treatment as described above. Spontaneous baroreflex sensitivity (SBRS), cardiac, and vasomotor sympathetic tone are assessed as described previously (see, e.g., Li W, et al. Brain-targeted (pro)renin receptor knockdown attenuates angiotensin ii-dependent hypertension. Hypertension. 2012, 59:1 188-1 194; which is hereby incorporated by reference in its entirety). The SBRS is calculated at four different time points (0, 7, 14, and 21 days) without additional animals needed using the sequence method (Hemolab software). In addition, baroreflex reflex sensitivity (BRS) is assessed using a pharmacological method consisting of infusion of sodium nitroprusside (5 µg/min, iv) and phenylephrine (50 ng/min iv) to decrease and increase BP respectively after 21 days of DOCA-salt treatment. Autonomic function is assessed using intraperitoneal injection of propranolol (β-blocker, 4 mg/kg), methyl-atropine (muscarinic receptor blocker, 1mg/kg), and chlorisondamine (ganglionic blocker, 5 mg/kg) as described previously.

[0086] Changes in HR or BP are calculated after administration of the antagonists. At the end of the protocol, echocardiography is performed as previously described, and mice are sacrificed after echocardiography. The hearts are collected for collagen deposition and cardiomyocyte diameter analysis to determine the degree of hypertrophy in the heart.

[0087] Plasma and urine are collected for norepinephrine (NE) measurement using a CatCombi ELISA kit (IBL International, Hamburg, Germany). PRR deletion will improve SBRS and reduce sympathetic activity due to reduced Ang II generation and its stimulation of AT1 receptors in the brain, and thus reverse cardiac hypertrophy and fibrosis following reduction of hypertension.

EXAMPLE 4
DETERMINING THE EFFECTS OF PRR DELETION ON ACE/ANG II/AT1 R AND ACE 2/ANG 1-7/MASR AXES IN DOCA-SALT HYPERTENSION

[0088] The reduction of DOCA-salt hypertension by PRR deletion in the brain can result from a decrease of Ang II generation, thus leading to a lesser stimulation of AT1 receptors, or an inactivation of Ang II independent signals. Despite several reports showing PRR-mediated Ang II formation, the direct effects of brain PRR deletion on Ang II formation during hypertension remained unknown. An Ang II measurement assay has been established, and using the assay, an increase in brain Ang II level was found despite a decrease in kidney Ang II level in the DOCA-salt hypertensive mice (Figure 8).

[0089] The Neph-PRR and WT mice receive DOCA-salt, high salt, or sham treatment as described above. At the end of 21 days of treatment, mice are sacrificed; plasma and brain tissues are harvested for Ang II, Ang 1-7 measurement utilizing an ELISA kit (Phoenix Pharmaceutical Inc.). Figure 8 shows the ability to measure the Ang II levels in WT mice receiving either DOCA-salt or sham treatment. ACE, ACE2, AT1R, and MasR mRNA and protein levels may be determined using real time PCR, immunofluorescent staining, and western blotting as described. The radioligand receptor binding assay for AT1R is performed to determine the levels of functional receptors as described. The ACE and ACE2 activity are measured to evaluate the function of the enzymes using Fluorogenic Peptide VI.

[0090] Data is expressed as mean ±SEM. Data is analyzed by one-way or two-way, repeated measures ANOVA followed by Student's modified t-test with Bonferroni correction for multiple comparisons between means using the modified error mean square term from the ANOVA.

EXAMPLE 5

PRR ANTAGONIST PEPTIDES BLOCKED THE PRORENIN-INDUCED INCREASE IN BP

[0091] C57Bl/6J mice (N=5/group) were each implanted with a telemetric probe for BP recording and an intracerebroventricular (ICV) cannula for infusion of mouse prorenin (100 ng/ul), PR10, or PR20 (45ng/ul) at 0.3 ul/minute for 10 minutes. Mouse prorenin infusion increased the BP (mmHg) in WT mice (ΔMAP: 31.3 ± 1.1); however, the prorenin-induced pressor response was abolished in either PR10 (ΔMAP: 16.9 ± 4.4 vs. prorenin) or PR20 (ΔMAP: 12.7 ± 0.5 vs. prorenin) infused mice. Both of the peptides exhibited a 40-50% reduction in pressor response induced by prorenin.

EXAMPLE 6

EXEMPLARY METHOD FOR CONSTRUCTING PLASMIDS FOR THIOETHER BRIDGE-MODIFIED PEPTIDES

16
To avoid peptide degradation by peptidase in vivo, thioether-bridge modified peptides were designed according to the core amino acid sequence of PR10 and PR20. The NisBTC-encoding plasmid (pTU-BTC) and substrate-peptide-encoding plasmids (pPR103, pPR105, pPR107, pPR201, pPR202) are constructed and introduced into the lactic acid producing bacterium Lactococcus lactis to produce the thioether-bridged peptides PR103, PR105, PR107, PR201 and PR202 respectively.

Computational modeling was used to design modified PR10 and PR20 peptides comprising thioether-bridges. The thioether-bridges were designed according to the three-dimensional (3D) structure of human renin (provided on the NCBI's website at the following address: ncbi.nlm.nih.gov/Structure/mmdbsrv.cgi?uid=6501 9). Computational modeling was used to confirm the similarity of the thioether-bridge modified peptides to the original human renin peptide. Examples of the computational 3D structures are shown in Figures 10, 12, and 14.

EXAMPLE 7

DESIGN AND CONSTRUCTION OF THE PTU-BTC EXPRESSION VECTOR

The genomic DNA from strain NCTC 6681 Lactococcus lactis subsp. lactis, which contains the nisBTC gene, purchased from American Type Culture Collection (ATCC), was used to prepare the vector. Primers for fusion nisBTC gene PCR were designed: Pnis forward: 5'-tgagtcttaacatactgacc-3' (SEQ ID NO:9), reverse: 5'-gaaccttttatcatgttgccttctata-3' (SEQ ID NO:10); PnisBTC forward: 5'-ggcactcaaatgataaaaagttcatttaaagctc-3' (SEQ ID NO:11), reverse: 5'-cttctctacctcttctctcc-3' (SEQ ID NO:12). Pfusion forward: 5'-ctagcttaacatactgacaatag-3' (SEQ ID NO:13), reverse: 5' tcattctctctctctcc-3' (SEQ ID NO:14). The PCR product will be inserted into NICE pNZ9530 Lactococcus lactis nisRnisK vector and amplified in NZ9000 L. lactis (purchased from Boca Scientific).

EXAMPLE 8

DESIGN AND CONSTRUCTION OF PRR ANTAGONIST PEPTIDES

The NisA leader peptide (MSTKDFNLDLHHHHHHDGSPRITSISLCTPGCK TGALM, SEQ ID NO:15) was designed, which comprises of a His tag for purification and a thrombin cleavage site for generating target peptide without extra amino acid residues. The polynucleotide sequences coding for peptides PR10 and PR20 were optimized to L. lactis for higher expression efficiency using Optimizer software (available at the following web address: genomes.urv.es/OPTIMIZER/). The DNA sequences coding for peptides were synthesized with Seal and Xbal restriction enzyme sites for cloning into the NICE pNZ8150 expression vector to form pPR103, pPR105, pPR107, pPR201, and pPR202 constructs.
Expression of PRR antagonist peptides was achieved by co-transfection of pTU-BTC with pPR103, pPR105, pPR107, pPR201, or pPR202 in the NZ9000 L. Lactis.

EXAMPLE 9
PURIFICATION OF PRR ANTAGONIST PEPTIDES

[0095] The PRR antagonist peptides are expressed in the cell culture medium. Peptides with a 6xHis tag are purified through Nichel nitrolotriacetic (Ni-NTA) resin. The purified thioether-bridge containing peptides are tested for antagonist activity to PRR in animal models of hypertension and other diseases.

EXAMPLE 10
IDENTIFICATION OF AMINO ACID RESIDUES INVOLVED IN PRR BINDING

[0096] In order to determine which residues of the PR20 antagonist peptide are involved in binding PRR, an alanine replacement assay was performed. A series of peptides comprising a single alanine substitution at each of the 19 amino acid positions were generated. Each of the 19 alanine substituted peptides and the PR20 peptide were labeled with FITC. Using fluorescent microscopy, each peptide was examined for binding to PRR in mouse brain sections.

[0097] As shown in Figure 20, the amino acids at positions 3, 4, 6, 7, 18 are essential for PR20 binding to PRR. Amino acids at positions 8, 10, 11 were identified as being important, but not critical, for PR20 binding to PRR.

EXAMPLE 11
PRR ANTAGONIST PEPTIDES PR30 AND PR40

[0098] Two additional PRR antagonist peptides, PR30 (SEQ ID NO:16) and PR40 (SEQ ID NO:17), were derived from the core amino acid sequence of PR20. Amino acid residues 3, 4, 6, 7, and 18 (Figure 21 and 22; underlined, bold text) of PR30 and PR40 correspond to the positions that are essential for binding to PRR. Amino acid residues 8, 10, 11, and 14 were determined to be involved in PRR binding, but not essential (Figures 21 and 22, bold, italicized text). The polynucleotides encoding the peptides were codon optimized for expression in L. lactis using Optimizer software, and computational modeling was used to design modified PR30 and PR40 peptides comprising thioether-bridges.

[0099] As described above, the thioether-bridges were designed according to the three-dimensional (3D) structure of human renin. Computational modeling was used to confirm the similarity of the thioether-bridge modified peptides to the original human renin peptide. As shown in Figure 21, two modified peptides derived from PR30 comprising a
single thioether bridge were designed, PR301 (SEQ ID NO:18) and PR302 (SEQ ID NO:19), and one modified peptide was designed with two thioether bridges, PR303 (SEQ ID NO:20). Similarly, two modified peptides comprising a single thioether bridge were derived from PR40, PR401 (SEQ ID NO:21) and PR402 (SEQ ID NO:22), and one modified peptide with two thioether bridges was also designed, PR 403 (SEQ ID NO:23), as shown in Figure 22.

While certain novel features of this invention shown and described below are pointed out in the claims, the invention is not intended to be limited to the details specified, since a person of ordinary skill in the relevant art will understand that various omissions, modifications, substitutions and changes in the forms and details of the invention illustrated and in its operation may be made without departing in any way from the spirit of the present invention. No feature of the invention is critical or essential unless it is expressly stated as being "critical" or "essential."

All patents, patent applications, and references cited herein are incorporated in their entireties by reference.

REFERENCES CITED
Fisher JP, Fadel PJ. Exp Physiol. 201 0;95:572-580
Danser AHJ, Deinum J. Hypertension. 2005;46:1069-1076
Danser AHJ. Hypertens Res. 2009;33:4-1
Paton JF, Raizada MK. Exp Physiol. 201 0;95:569-571
Ferrario CM. Hypertension. 2006;47:51-52
Xu P, et al. Am J Physiol Regul Integr Comp Physiol. 201 0;300:R804-R817
Cuadra AE, et al. Pharmacology & Therapeutics. 201 0;125:27-38
Bader M, Ganten D. Circ Res. 2002;90:8-1
Kinouchi K, et al. Circ Res. 201 0;107:30-34
Burckle C, Bader M. Hypertension. 2006;48:549-551
Shan Z, et al. Circ Res. 201 0;107:934-938
Connelly KA, et al. Journal of Hypertension. 201 1;29:1175-1184
1110.1097/HJH.1170bl0139e3283462674
Sihag HM, Huang J. Experimental Physiology. 2008;93:709-714
Chen QH, Toney GM. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology. 2001;281 :R1 844-R1 853
Nguyen G. Curr Opin Nephrol Hypertens. 2007; 16:129-133
Hans CP, et al. Cardiovasc Pathol. 201 0:20:e57-68
Ferrario CM. Curr Opin Nephrol Hypertens. 201 1:20;1-6
Raizada MK, Ferreira AJ. J Cardiovasc Pharmacol. 2007;50:112-1 19
Cruciat CM, et al. Science. 201 0;327:459-463
Allen AM. Hypertension. 2002;39:275-280
Freeman KL, Brooks VL. Am J Physiol Regul Integr Comp Physiol. 2007;292:R1 675-1 682
Berecek KH, Hypertension. 1982;4: 131-137
Nguyen G, Muller DN. J Am Soc Nephrol. 201 0:21:18-23
Biswas KB, Front Biosci (Elite Ed). 201 0:2:1234-1240
de Vries, L , et al. (201 0) Peptides 31, 893-898
What is claimed is:

1. A polypeptide comprising an amino acid sequence having at least 70% identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23.

2. The polypeptide of claim 1, comprising an amino acid sequence having at least 80% identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23.

3. The polypeptide of claim 1, comprising an amino acid sequence having at least 90% identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23.

4. A pharmaceutical composition comprising the polypeptide of claim 1 and a pharmaceutically acceptable carrier.

5. A (pro)renin receptor (PRR) antagonist that blocks prorenin from binding to PRR, wherein the PRR antagonist binds to PRR.

6. The PRR antagonist of claim 5, wherein the PRR antagonist is a peptide.

7. The PRR antagonist of claim 6, wherein the peptide comprises amino acid residues 3, 4, 6, 7, and 18 of SEQ ID NO:2.

8. The PRR antagonist of claim 7, wherein the peptide further comprises amino acid residues 8, 10, and 11 of SEQ ID NO:2.

9. The PRR antagonist of claim 7, wherein the peptide further comprises a non-standard amino acid.

10. The PRR antagonist of claim 9, wherein the non-standard amino acid is dehydroalanine, 2-aminobutyric acid, or dehydrobutyrine.

11. The PRR antagonist of claim 6, wherein the peptide comprises a thioether bridge.

12. A method for treating or preventing a disease or disorder comprising administering an effective amount of one or more PRR antagonists.
13. The method of claim 12, wherein the disease or disorder is hypertension, diabetes, diabetic retinopathy, nephropathy, cardiac hypertrophy, vascular or kidney fibrosis.

14. The method of claim 12, wherein the PRR antagonist comprises the polypeptide of claim 1 or the PRR antagonist of claim 5.

15. A method for reducing blood pressure comprising administering a PRR antagonist.

16. The method of claim 15, wherein the PRR antagonist is a PRR-binding peptide.

17. The method of claim 16, wherein the PRR antagonist comprises amino acid residues 3, 4, 6, 7, and 18 of SEQ ID NO:2.

18. The method of claim 17, wherein the PRR antagonist further comprises amino acid residues 8, 10, and 11 of SEQ ID NO:2.

19. The method of claim 16, wherein the PRR antagonist comprises a non-standard amino acid.

20. The method of claim 19, wherein the non-standard amino acid is dehydroalanine, 2-aminobutyric acid, or dehydrobutyryl.

21. The method of claim 16, wherein the PRR antagonist comprises a thioether bridge.

22. The method of claim 15, wherein the administering step is oral, intravenous, or intracerebroventricular.
FIG. 1
prorenin 46kD
renin 38kD

FIG. 2

FIG. 3
FIG. 4

- Normal Salt
- Aldosterone
- High Salt
- Aldosterone + High Salt

PRR mRNA Expression (PRR/GAPDH)

Vehicle Eplerenone Amiloride
FIG. 5A

FIG. 5B

SUBSTITUTE SHEET (RULE 26)
FIG. 7

FIG. 8
FIG. 12
SEQ ID No. 5

AA sequence: IF DAIIDha AGVAKEAVFS

Chemical structure:

FIG. 15
SEQ ID No. 6

AA sequence: L P Abu D Dht A Abu F K R A F A K R A P Dha

Chemical structure:

FIG. 16
SEQ ID No. 7

AA sequence: L P Abu D Dht Dht A F K R I F A K R A P Dha I

Chemical structure:

FIG. 17
SEQ ID No. 8

PR203

AA sequence: KRIFAKRAPDhaI

FIG. 18
FIG. 19A

FIG. 19B
Alanine Replacement Assay

<table>
<thead>
<tr>
<th>Positive</th>
<th>Ala 1</th>
<th>Ala 2</th>
<th>Ala 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ala 4</td>
<td>Ala 5</td>
<td>Ala 6</td>
<td>Ala 7</td>
</tr>
<tr>
<td>Ala 8</td>
<td>Ala 9</td>
<td>Ala 10</td>
<td>Ala 11</td>
</tr>
<tr>
<td>Ala 12</td>
<td>Ala 13</td>
<td>Ala 14</td>
<td>Ala 15</td>
</tr>
<tr>
<td>Ala 16</td>
<td>Ala 17</td>
<td>Ala 18</td>
<td>Ala 19</td>
</tr>
</tbody>
</table>

FIG. 20
PR30 (SEQ ID NO: 16):
AA sequence: LP ITT FKRIFLKRMPSIRE

PR301 (SEQ ID NO: 18):
AA sequence: LP Dhb D Abu Dhb Dhb FAla RIFLKRMPPDhb I R E S

PR302 (SEQ ID NO: 19):
AA sequence: LP Dhb D Dhb Dhb Dhb FKRIFLKRMPPAla I R Alas

PR303 (SEQ ID NO: 20):
AA sequence: LP Dhb D Abu Dhb Dhb FAla RIFLKRMPPAla I R Alas

FIG. 21
FIG. 22

PR401 (SEQ ID NO.: 21):
AA sequence: L P I R T A I F E R I P L K K K M P S V R E

PR402 (SEQ ID NO.: 22):
AA sequence: L P Dhb R Dhb A Dhb F A la R I P L K K K M P A la V R A la

PR403 (SEQ ID NO.: 23):
AA sequence: L P Dhb R Dhb A Dhb F K R I P L K K K M P A la V R A la
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

C07K 14/47 (2006.01)
A61K 38/17 (2006.01)
A61P 9/00 (2006.01)
A61P 9/12 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07K 14/47, A61K 38/17, A61P 9/00, 9/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2005/0203021 A1 (YUICHI ISHIDA) 15.09.2005, paragraphs [0002]-[0009], [0084H0086], SEJ IN NO: 2</td>
<td>1-4</td>
</tr>
<tr>
<td></td>
<td>JAN DANSER A.H. et al. Prorenin and the (pro)renin receptor-an update, Nephrol Dial Transplant, 2007, 22, pp. 1288-1292</td>
<td>5-6, 12-14</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [See patent family annex.]

* Special categories of cited documents:

 - 'A' document defining the general state of the art which is not considered to be of particular relevance
 - 'E' earlier document but published on or after the international filing date
 - 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - 'O' document referring to an oral disclosure, use, exhibition or other means
 - 'P' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'&' document member of the same patent family

Date of the actual completion of the international search

24 November 2013 (24. 11.2013)

Date of mailing the international search report

10 January 2014 (10.01. 2014)

Name and mailing address of the ESA/ FEPS

Russia, 123995, Moscow, G-59, GSP-5, Berezikhovskaya nab., 30-1

Facsimile No. +7 (499) 243-33-37

Authorized officer

Y. Kuzmenko

Telephone No. 8(495)53 1-65-15

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Box No. II</th>
<th>Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:</td>
<td></td>
</tr>
<tr>
<td>1. ☐ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:</td>
<td></td>
</tr>
<tr>
<td>2. ☐ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:</td>
<td></td>
</tr>
<tr>
<td>3. ☐ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box No. III</th>
<th>Observations where unity of invention is lacking (Continuation of item 3 of first sheet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This International Searching Authority found multiple inventions in this international application, as follows:</td>
<td></td>
</tr>
<tr>
<td>According to Rule 13 of the Regulations under the PCT the claimed inventions does not meet the requirement of unity of invention a priori, therefore independent claims 1, 4, 5, 12 and 15 form several groups of inventions, which are not so linked as to form a single general inventive concept.</td>
<td></td>
</tr>
<tr>
<td>The special technical feature of independent claims land 4 is a polypeptide comprising an amino acid sequence having at least 70 % identity to the amino acid sequence set forth in one of SEQ ID NOs:1-8 and 16-23.</td>
<td></td>
</tr>
<tr>
<td>The special technical feature of independent claims 5, 12 and 15 is the PRR antagonist.</td>
<td></td>
</tr>
<tr>
<td>Hence, claims comprise 2 groups of inventions, namely:</td>
<td></td>
</tr>
<tr>
<td>1 group of inventions - claims 1-4</td>
<td></td>
</tr>
<tr>
<td>2 group of inventions - claims 5-22.</td>
<td></td>
</tr>
<tr>
<td>1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.</td>
<td></td>
</tr>
<tr>
<td>2. ☑ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.</td>
<td></td>
</tr>
<tr>
<td>3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:</td>
<td></td>
</tr>
<tr>
<td>4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:</td>
<td></td>
</tr>
</tbody>
</table>

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>