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METHOD FOR ANALYZING MRI DIFFUSION DATA

BACKGROUND OF THE INVENTION

Reference to Related Applications

This application claims priority to U.S. Provisional Application No.
60/282,033, whose disclosure is hereby incorporated by reference in its entirety

into the present disclosure.
Field of the Invention

The instant invention is directed generally to the field of magnetic
resonance imaging (MRI), image display, image processing and image filtering
to enhance structure and reduce noise. The present invention relates
specifically to diffusion-weighted magnetic resonance imaging, more
particularly to a quantitative and statistically robust numerical method for
measuring anisotropic diffusion in-an object, and most particularly to

characterizing multiple fiber voxel data.
Description of Related Art

The background will be described with reference to related art
publications listed in the attached appendix. All references cited are

incorporated herein by reference.
Magnetic resonance imaging

Magnetic resonance imaging (MRI) is one of several approaches used
to image physiological structures. For example, MRI has revolutionized
radiological imaging of the internal structures of the human body, because of

its noninvasiveness and no known health hazards attributed to its use.
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Basically, MRI involves the exposure of tissue to a variety of different
polarizing magnetic and radio-frequency electromagnetic fields. The tissue's
atomic nuclei respond to the fields and are subsequently processed to produce
an image of the specimen. Nuclei exhibiting magnetic moments (spins) align
themselves with the polarizing field. Depending upon the field's strength and
the magnetogyric constant of the specific nuclear species involved, the nuclei

precess about the polarizing field at an angular frequency (Larmor frequency).

The spins exhibit a net magnetic moment in the direction of the
polarizing field even though the magnetic components of the spins cancel each
other in a plane perpendicular to the polarizing field. The net magnetic
moment can be tilted by applying an excitation field perpendicular to the
polarizing field and at a frequency near the Larmor frequency. The tilted
magnetic moment comprises a transverse component rotating at the Larmor
frequency in the plane perpendicular to the polarizing field. The magnitude
and duration of the excitation field determines the extent to which the magnetic

moment is tilted and the magnitude of the net transverse magnetic moment.

Once the excitation field is removed, an external return coil senses the
field associated with the transverse magnetic moment, producing a sinusoidal
output at the Larmor frequency and an amplitude proportional to that of the
transverse magnetic moment. The net magnetic moment gradually reorients
itself with the polarizing field when the excitation field is removed resulting in

the amplitude of the return coil output decaying exponentially with time.

The rate at which the return coil output decays is dependent upon, and
indicative of, the composition of the specimen. If the excitation field has a
broad frequency band, the return coil output may include components
associated with the transverse magnetic components of a greater variety of
frequencies. A Fourier analysis of the output allows the different frequencies,

indicative of different chemical or biological environments, to be distinguished.
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Employing an excitation field that has a narrow frequency band, excites only a
relatively narrow band within a nuclear species, resulting in the transverse
magnetic component and return coil output exhibiting a relatively narrow
frequency band indicative of that band of the nuclear species. In the wide
band, the contribution of particular spins to the return coil output is not
dependent upon their location within the specimen. Therefore, the output does
not indicate the location of components in the specimen. The frequency and

decay of the output can be used only to identify components of the specimen.

In order to produce a spatial image of the specimen, gradients are
established in the polarizing field. Although the direction of the polarizing
field remains the same, its strength varies along the X, y, and z axes oriented (
with respect to the specimen. Varying the strength of the polarizing field
linearly along the x-axis, causes the Larmor frequency of a particular nuclear
species to vary linearly as a function of its position along the x-axis. With
magnetic field gradients established along the y-axis and z-axis, the Larmor
frequency of a particular species will vary linearly as a function of its position

along these axes.

By performing a Fourier analysis of the return coil's output, the
frequency components of the output can be separated. With a narrow band
excitation field applied to excite a select nuclear species, the position of a spin
relative to the xyz coordinate system can then be determined by assessing the
difference between the coil output frequency and the Larmor frequency for that
species. Thus, the MRI system can be constructed to analyze frequency at a
given point in time to determine the location of spins relative to the magnetic
field gradients and to analyze the decay in frequency to determine the

composition of the specimen at a particular point.

Special equential operation of one or more main polarizing field coils,

polarizing gradient field coils, rf excitation field cbils, and return field coils
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results in generation and sensing of the fields required for proper operation of
an MRI system. The same coil arrangement can be used to generate the
excitation field and sense the return field. As described in U.S. Pat. No.
4,843 322 (Glover), U.S. Pat. No. 4,868,501 (Conolly); and U.S. Pat. No.
4,901,020 (Ladebeck et al.), different sequences have been developed for

specific aspects of MRI system operation.

Production of angiograms is but one application of conventional MRI
systems. A variety of pulse sequences and processing techniques have been
developed for use in MRI angiography [U.S. Pat. No. 4,516,582 (Redington);
U.S. Pat. No. 4,528,985 (Macovski), U.S. Pat. No. 4,647,857 (Taber); U.S.
Pat. No. 4,714,081 (Dumoulin et al.); U.S. Pat. No. 4,777,957 (Wehrli et al.);
and U.S. Pat. No. 4,836,209 (Nishimura)]. Blood vessels are readily
differentiated from surrounding tissue by the pulsatile flow of blood. For
example, if the excitation field is pulsed at systole and diastole, the contribution
of blood flow to the return field will differ, while the contribution of static
tissue and bone to the return field will be the same. The contribution from the
blood vessel is determined by subtracting one return from the other, canceling

the static component.

Because neuronal tissue does not exhibit the flow-distinctiveness of
blood vessels, MRI angiography systems and pulse sequences cannot be used
to generate suitable images and conventional MRI systems and sequences used

for general imaging of tissue and bone do not provide acceptable results.

Contrasting agents

The use of pharmaceutical agents to enhance the contrast of neural tissue
relative to surrounding tissue in the images produced is one technique proposed
for use in enhancing the imaging of neural tissue [e.g. PCT EP 91/01780 (Filler
et al., WO 92/04916, 1992)]. Therein, a two-part contrast agent was injected,
taken up, and transported, by the nerve of interest. The first part of the agent
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promoted neural uptake; the second the desired image. Injected into muscle,
the agent undergoes axoplasmic flow in the nerve supplying that muscle,
thereby tagging the nerve. The second part of the agent has a magnetically

active component.

Because of the ability to image only a single nerve or nerve group, an
increasing preference to avoid the use of invasive procedures whenever
possible, and the typical reduction of the intensity of the imaged nerve, the use

of contrast agents has certain limitations in neural imaging.

Anisotropy

MRI has been used somewhat successfully without contrast agents to
map white matter nerve tracts in the brain. White matter coursing through gray
matter tissue in the brain , unlike the surrounding gray matter, exhibits
relatively high anisotropic diffusion. Moreover, in axonal pathways
surrounded by myelin sheaths, water mobility is relatively high, while water
mobility perpendicular to the tracts is low. [Douek et al., Myelin Fiber
Orientation Color Mapping, BOOK OF ABSTRACTS, SOCIETY OF
MAGNETIC RESONANCE IN MEDICINE, p. 910 (1991)]

Briefly, a plurality of perpendicular and parallel field gradient pulses
(diffusion gradients), oriented relative to the white matter tracts to be imaged is
used. Pulsed gradients change the received signal phase from all of the spins.
The relative effect of these diffusion graaients is the canéeling out of stationary
spins. Spins moving from one spatial position to another in the time between
the two diffusion gradients, on the other hand, experience changes in the
frequency and phase of the spin magnetization. The net effect is a reduction in
the received signal, which is greatest for spins diffusing the farthest between
the two pulsed gradients.

Diffusion-weighted imaging
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Thus, MRI is one of the most versatile non-invasive imaging techniques
in biomedicine, providing functional as well as anatomical information. MRI
can also provide images exhibiting quantitative information regarding motion
of water molecules. Given the anisotropic nature of white matter, water will
diffuse freely along a tract, but is restricted in its motion perpendicular to the
tract. When the diffusion gradient is aligned with the tract, there is thus a
greater reduction in signal than when the diffusion gradient is aligned
perpendicular to the tract. Because this phenomenon is not exhibited by the
surrounding gray matter tissue, the white matter tracts can be identified. MRI
dealing with microscopic motion within a single voxel is referred to as

diffusion weighted imaging (DWI).

The MRI sequence for DWI, where differences in intravoxel water
motion (apparent diffusion coefficient, D,,,) are treated as another contrast
mechanism. This is an extension of the original Stejskal-Tanner sequence for
measurement of molecular diffusion by nuclear magnetic resonance (NMR),
which employed diffusion gradient pulses (time-dependent field gradient) to
encode quantitative information for molecular motion (diffusion coefficient)

into a signal intensity.

As noted above, intravoxel anisotropic water motion produces signal
attenuation of DWIs dependent on the direction of the diffusion gradient pulses
applied. This directional dependency, most conspicuous in the myelinated
fibers, is likely due to anisotropic restriction of water diffusion. In contrast to
conventional DWIs, where diffusion gradient pulses are applied to three axial
directions simultaneously, DWIs obtained using diffusion gradient pulses

applied to only one spatial axis are generally referred to as anisotropic.

While intravoxel isotropic water motion produces identical effects on
signal intensity of anisotropic DWIs regardless of the direction of the diffusion

gradient pulses, intravoxel anisotropic water motion affects signal intensity in a
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rhanner dependent on the angle of the direction of anisotropy with respect to
the spatial axis in which the diffusion gradient pulses have been applied.
Therefore, each anisotropic DWI can be considered the projection image of
intravoxel anisotropic water motion. Each pixel of anisotropic DWIs contains
the spatial information in three-dimensional resolution, but carries only one
dimensional information regarding anisotropic water motion in space, resulting
in image resolution that is inferior to resolution obtained where each pixel has

three-dimensional information.
High angular resolution diffusion-weighted MRI

The sensitivity of the magnetic resonance (MR) signal to molecular
diffusion provides the most sensitive non-invasive method for the measurement
of local tissue diffusion characteristics (1). The basic effect from which
diffusion information is derived is the signal diminution due to diffusive
motions along the direction of an applied gradient field (2, 3). The fact that
diffusion can have a directional dependence was recognized early on (4) but
found a great resurgence of interest in the application to diffusion weighted
imaging of human tissues, where inferences about tissue structure can be made
from the directional dependence it imposes on the local diffusion. Anisotropic
diffusion was first demonstrated in the brain by Moseley (5, 6) and has been
used to study a variety of other tissues (7). The determination of anisotropy
requires a reconstruction of the local apparent diffusion, D, If the diffusion
is process has spatially homogeneous Gaussian increments, the directional
dependence can be completely characterizéd by the diffusion tensor D that
relates the signal loss along an applied gradient in an orthogonal Cartesian
system defined by the imaging coordinate system to the diffusion alonga
direction in an arbitrarily rotated orthogonal system defined by the tissue (8).
Reconstruction of local Gaussian diffusion can thus be posed as one of
estimating the diffusion tensor (8), which, in principle, requires only 6

measurements plus an additional measurement for normalization (9). This
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technique is of particular interest in its application to the characterization of

white matter tracts (10, 11).

However, it has long been recognized that the Gaussian model for
diffusion can be inappropriate within the complex structure of human tissue (8,
12). One way in which this model can fail is the presence of multiple fiber
directions within a single imaging voxel. Because the diffusion tensor model is
no longer appropriate, the characterization of the diffusion in such voxels
becomes problematic. A novel approach to this problem, proposed by Tuch
(13), is to map Dy, at high angular resolution in order to more accurately.
detect variations in diffusion along different directions. This has been extended
to a scheme by Wedeen (14) where measurements through a range of diffusion
sensitivities are made. There remains, however, no method for characterizing
the diffusion measured by these high angular resolution diffusion weighted

(HARD) methods.

In view of the above discussion, it is evident that there exists a strong
need for an effective method of reconstructing and characterizing three
dimensional information from axial anisotropic DWI projection images. The
present invention fulfills these needs and provides additional advantages that

will be apparent from the detailed description hereinbelow.

SUMMARY OF THE INVENTION

Accordingly, an object of this invention is to provide a method and
system for the computerized analysis of MRI data especially as it relates to

visualizing white matter properties and/or structure.

The invention contemplates a method for identifying diffusion
anisotropy without invoking the diffusion tensor formalism. The method
comprises the collecting of a plurality of high angle resolution diffusion image

data employing a diffusion-weighted stimulated echo spiral acquisition process.
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The method further contemplates computing the spherical diffusion variance of
the diffusion data in each voxel by a spherical harmonic transform algorithm,
identifying components in the three diffusion channels, wherein diffusion
channels are broken down into direct sum subspaces representing isotropic,
single fiber, and multiple fiber components, and wherein asymmetries
produced by artifacts fall into channels impossible to reach by diffusion,
thereby, providing a direct means of noise reduction within said channels as
well as means for identifying artifactual effects. The method is also useful for
determining magnitude and direction of diffusion by computing from the

transform magnitude and phase.

Also contemplated is a method for characterizing multi-component MRI
images of multidirectional crossed fibers in a specimen by obtaining a plurality
of high angular diffusion weighted images, each image obtained by applying a
diffusion gradient pulse, and employing a simple spherical harmonic transform
algorithm for identification of diffusion anisotropy based upon the variance of
the estimated apparent diffusion coefficient as a function of measurement

direction. The specimen can be white matter in the mammalian body.

Also contemplated is a spherical harmonic transform algorithm useful in
characterizing diffusion anisotropy from measurement data collected by
employing high angular resolution magnetic resonance imaging, said transform

derived from mathematical group theory.

Further contemplated is computer software programmed to perform
rapid electronic characterization of MRI images employing group theory and

the spherical harmonic transform as described herein below.
BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of

the invention, will be better understood when read in conjunction with the
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appended drawings. For the purpose of illustrating the invention, there are
shown in the drawings, certain embodiment(s) which are presently preferred. It
should be understood, however, that the invention is not limited to the precise

arrangements and instrumentalities shown.
Figure 1 diagrams a typical spherical coordinate system used in physics.

Figure 2 shows the mean squared error between the true diffusion log (signal)
(Eqn 13) and the approximate form (Eqn ‘14) as a function of b-values and

azimuthal angle A¢g between two identical fibers oriented in the x — y plane (ie,
polar angle @ = 90°). The approximation error gets worse for large b and large

Agbut is less than .05 for b < 5000/mmy.

Figure 3 depicts the effect of the coupling term in the approximation Eqn 14 in
a voxel containing two fibers oriented in the x — y plane at an angle A¢ = 90°
relative to one another for three b-values: b = 500, 2500, 5000 gmmz. (Left) The
true D,,, and the approximate D, determined from Eqn 14. (Right) The
mean and coupling terms in Eqn 14. For increasing b-values the approximation
is less accurate, as demonstrated by the increasing discrepancy between the true

and the estimated shapes in Figure 2.

Figure 4 is a graphical representation of the Spherical Harmonic
Decomposition. The contributions to D, from the different L orders of the
spherical harmonic decomposition are shown for a single fiber (a) and a double
fiber (b) voxel.

(a) Single fiber. The D,,, contains contributions only from the L =0 term (the
sphere) and a more complex shape produced by the L = 2 spherical harmonic
components.

(b) The Dy, for two identical fibers oriented * relative to one another, contains
contributions only 'from the L = 0 and L = 2 spherical harmonic components, as
in (a), as well as a contribution from the L = 4 component (bottom right). Note

that the four-lobe structure of D,,, in the equatorial plane is generated by the
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addition of the 4 positive red lobes and the 4 negative blue lobes of the L = 4
component to the L = 0 component sphere. The color scheme for the
coefficients has red at maximum positive and blue at maximum negative, while

for D, is max positive (red) to zero (blue).

Figure 5 is a graphical representation of the spherical harmonic transform. For
each value of L, there corresponds 2L + 1 values of M :-L,...,0,...,L. The box
at each (L, M) coordinate contains an array (upper right diagram) whose
coordinates are varied parameters at the fixed values (L,M). The transform is

identically zero for M| >L (blank boxes).

Figure 6 shows rotational variations of the SHD. Reconstructed D,,,s are on
the left. The SHT coefficients are on the right with the varied parameters
azimuthal (A¢) angle on the horizontal axis and the polar (A6) angle on the
vertical axis and displayed as described in Figure 5. (a) Single fiber rotated
through the full range of (¢,6). (b) Two identical fibers oriented (AGAg)
relative to one another. (b left) D,,, for (AGAg) = (90°,0°). (b right) Spherical
harmonic transform of two fibers with one fiber rotated through the full range
of (AGAg). The angular variations are with respect to the first fiber which is
fixed along x = 0. The SHT in (a) and (b) shows that only L = 0, 2 components
arise from the single fiber and only L =0, 2, 4 arise from the multiple fiber.

This is a consequence of the fact that rotations only mix M components.

Figure 7 shows that MR diffusion measurements are sensitive only to the -
absolute value of the direction: motion in x has the same effect as motion in —x.
This imposes a projective symmetry on the measurements so that antipodes on
the measurement sphere (Top) are identical. (Middle b-d) Projective subspace
of a single fiber. (Bottom e-g) Projective subspace behavior of the coupling
term. |

(Top) Antipodes on the measurement sphere (red dots).
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(Middle)(a) Single fiber in the equatorial plane (6 = 90°). Only the A=0,2
components of the L = 2 channel contribute. (b) Single fiber oriented along the
x axis (0 = 0°). Only the M = 0 component of the L = 2 channel contributes.
(c) Single fiber oriented at (0 = 45°, ¢=0°). All of the M components of the L
= 2 channel contribute. (Bottom)(d) SHD components for two identical fibers
oriented at Ag = 90° in the meridian plane (¢=90°). Only the even | M| <2
components of the even L components contribute. (¢) SHD components for
two identical fibers oriented at Ag, = 90° in the equatorial plane. Only the M=
0, 4 components of the L =4 channel contribute. (f) SHD components of the
coupling term for two identical fibers oriented at y = 90° with the first fiber
oriented along (¢, €) = (45°, 90°) and the second tilted second in the meridian
plane (¢, 6) = (135°, 45°). All M components of the even L components now

contribute.

Figure 8 depicts single fiber rotations. (Top a, b) Single fiber azimuthal
rotation. Rotations in the equatorial plane produce only phase changes.
(Bottom c, d) Single fiber polar rotation. Rotations in the meridian plane
produce only magnitude changes.

(a) Single fiber fixed in the equatorial plane (6= 90°), at three different
azimuthal angles of rotation: ¢ = (0°, 45°, 90°). The magnitudes of the
components remains unchanged, but the phase is altered.

(b) The phase ¢/ 2 of the coefficient g, ; ; of the SHT shown for the fiber in the
equatorial plane (8 = 7/ 2) rotated through the range of orientations in the
equatorial plane 0 < ¢ < 180°.

(c) Single fiber fixed in the meridian plane (¢ = 90°), at three different polar
angles of rotation: 8 = (0°, 45°, 90°). The magnitudes of the components are
redistributed amongst the available L = 2 channels (M= -2, 0, 2) but the phase
remains uhchanged. (Bright white pixels are numerical noise artifacts aliased

from O to x)
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(d) The magnitude of the coefficient a; o of the SHT (solid line) for a fiber in
the meridian plane (¢ = 0) rotated through the range of orientations in the
meridian plane 0 < #< 180°. The circles are the function cPxCos 6) (with a
scaling factor ¢) and show exact correspondence with the magnitude variations

Ofaz’ 0-

Figure 9 is about double fiber rotations. (Top a-b) Double fiber azimuthal
rotation. Rotations in the equatorial plane produce only phase changes in the
coupling term. (Bottom c-d) Double fiber polar rotation. Rotations in the
meridian plane produce only magnitude changes in the coupling term and a
mixing of energy amongst the M components.

(a) The coupling term for two identical fibers in the equatorial plane (6=m/2)
at a fixed orientation of 90° relative to one another, rotated relative to the
laboratory coordinate system through ¢= (0, ©/ 16, n/ 8) radians. The shape
of the coupling term does not chahge, but its orientation relative to the
laboratory changes. As a result, the phase of the coefficients changes, but their
magnitude stays the same.

(b) The phase 8/ 4 of the coupling term for two identical fibers in the
equatorial plane (6= 7 / 2), at a fixed orientation of 90° relative to one another,
rotated relative to laboratory coordinate system through arange 0 < ¢g<n
radians.

(¢) The coupling term for two identical fibers in the meridian plane (6=m/2)
at a fixed orientation of 90° relative to one another, rotated relative to the
laboratory coordinate system through ¢= (0, ©/ 16, n/ 8) radians. The shape
of the coupling term does not change, but its orientation relative to the
laboratory changes. As a result, the relative magnitude of the components with
L changes, but the phase stays the same.

(d) The relative magnitude of the SHD components of the coupling term for
two identical fibers in the meridian plane (¢ = 0), at a fixed orientation of 90°

relative to one another, rotated relative to the laboratory coordinate system
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through a range 0 < @ <7/ 2 radians . The angle determined by the changing
magnitudes in the even and odd M channels is proportional to the orientation:

¢4 =tan’ (V% Y.

Figure 10 shows double fiber relative rotations and the Fractional Multifiber .
Index.

(a) The coupling term for two identical fibers in the equatorial plane (6= /2)
at three different relative orientations Ag = (0, n / 4, n / 2) radians relative to
one another, with the mean angle between them fixed relative to the laboratory
coordinate system ¢= (0, n/ 16, 1/ 8) radians. The shape of the coupling term
does not change, but its size changes. As a result, the magnitude of coefficients
of the coupling coefficient grows with increasing relative angle, but the phase
stays the same.

(b) The energy in the L = 4 component of the SHD components of the coupling
term for two identical fibers in the meridian plane (¢ = 0), for a range of
relative orientations 0 < A < =, for a fixed mean angle relative to the laboratory
coordinate system (0°). The maximum magnitude occurs for A =90°, ie., when
the fibers are perpendicular.

(c) (Bottom Left) The Fractional Multiplier Index (FMI) for a simulation of
two identical fibers for a full range of relative azimuthal Ag and polar A&
orientations between the fibers, sampled in increments qf 7.2° in both Ag and

A6, (Bottom Right) A few of the corresponding local diffusion Dg,(4, 6).

Figure 11 shows diffusion encoding directions generated by the pulse sequence
are spherical tessellations of an icosahedron of user-specified order (shown

here for clarity is the fifth order tessellation).

Figure 12 demonstrates spherical harmonic transform and the separate fiber
channels it produces. (a) Compound spherical harmonic transform
components of HARD data collected on a normal human volunteer with b =

3000 s/mm’ and 43 diffusion encoding directions. As predicted, the energy is
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indeed confined to the L. =0, 2, 4, except for the eddy current artifacts
appearing at (L, M) = (0, 1).

Figure 13 shows the shape of D, estimated from the fiber channels in Figure
12. (Top Left) Single fiber channel (greyscale) overlayed in color with
multifiber channel (FMI > .4) (color scale). (Top Right) Greyscale image is
relative anisotropy index determined from diffusion tensor calculation from
same data. In circles, there are three points from the isotropic (A), single fiber
(B) and (C) multiplier channels for which Dap,; is (colored shapes) reconstructed
from all three SHT components L = 0, 2, 4. The gray matter voxel (A) 1s
essentially isotropic, so that D,, is a sphere and unaffected by the inclusion of
L=2,4. The single fiber voxel (B) has the characteristic peanut shape , which
is unaffected by the inclusion of L =4. The voxel in (C) requires L =2,4 to
represent Dy, , which in this case is consistent with two identical but
perpendicular fibers. The DTI reconstruction (c), on the other hand, can only
accurately reconstruct the isotropic and single fiber channels. Both, (A)
isotropic and (B) single fiber voxels are evident, but (C) multiplier channel

appears black, being the extreme case of two fibers crossed at 90°.

Figure 14 shows fiber magnitude and orientation. (A) Magnitude of single
fiber channel, representing the presence of single fibers, (B) map of estimated

6, and (C) map of estimated ¢.

Figure 15 shows: (Left) a white matter map reconstructed by adding the energy
in the L = 2, 4 channels, and (Right) a map made from the energy in the odd
order components (L = 1, 3, 5) showing little structure. These images are not

on the same scale, but scaled independently for display.

Figure 16 represents evidence of consistency with the two-fiber model. D,
measured from multifiber channel in Figure 12 (top) and simulated (bottom)
for (I-1) f; = f5, dp = 905 f = 25, dp =905, f = 2f5, dp = 75°. The shapes have

been interpolated from the diffusion directional sampling for clarity.
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DESCRIPTION OF THE PREFERRED EMBODIMENT

MR Diffusion Measurements

Before presenting our strategy for characterizing diffusion anisotropy in
multifiber systems, we summarize in this section the basic mathematical
underpinnihgs of MR‘diffusion measurements. In what follows, a fiber will be
defined as a particular diffusion tensor D. With this definition, a large bundle
of parallel fibers would be synonymous with a single “fiber”. While it is
natural to confer cylindrical symmetry on a diffusion tensor as part of the
definition of a fiber, we relax this restriction in order to more clearly establish

where such symmetry actually effects the more general results.
Single Fiber

We first consider diffusion measurements made in a voxel containing a
single fiber, following Hsu and Mori [17] throughout. The signal attenuation

can be written _
S (b,D) =S,e *P#? (1)

where b is related to the k-space trajectory k () by b = JoTE K (f)dt and
incorporates the gradient sirengths. The gradient directions can be defined by
the unit vector u. If the measurements are made along the principal axes, i.e.,

in the coordinate system in which the diffusion tensor is diagonal, the apparent

diffusion coefficient Dy, is ([17])

and the applied diffusion encoding gradient u is in the direction of the

eigenvectors of D.
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uy " fdy 0 0

u= |y , Da=|[0 dy 0 Q)
u3 0 0 dj

~ where the eigenvalues are the principal diffusivities {d,, dy, d5}. Generally,
however, this principal axis coordinate system is not known. The applied
diffusion encoding gradients v are therefore not coincident with the principal

axis system, but are related to it by a rotation R:
u=Rv (4)
where v is a unit vector in direction of diffusion encoding.

Thus, one usually wants to infer the principal diffusivities and the
rotation R. From these can be determined the diffusion properties, such as the
anisotropy, and the fiber directions. The rotation R is defined within the
coordinate system shown in Figure 1. The two angles that define the direction
in this coordinate systerh are the polar angle ¢ [0, ] which is defined as
the angle between the vector and the positive z-axis, and the azimuthal angle ¢
g [0,2n) , which is defined as the angle in the x - y plane relative to the
positive x axis. It is also common to use the elevation angle 8 = 90°-8, which
is the angle between the vector and the x - y plane . This is often denoted by 4,
however, as in Hsu aﬁd Mori [17]. We will retain the standard physics usage,
depicted in Figure 1, where (6, ¢) denote the polar and azimuthal angles,
respectively. We will often employ the shorthand notation Q= (6, ¢).

It is helpful to note that (6, ¢ ) are two of the Euler angles [18], used to
describe rotations in 3-dimensional coordinates. These angles typically
denoted (a,B,y ) where o is the azimuthal rotation angle,  is the polar rotation
angle, and y is a rotation about the new axis defined by the rotation through
(a,B). For the description of a single point (i.e., a measurement) on a sphere,

as is the case in this paper, rotations about the final (radial) axis are
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unimportant, so the rotations can be described by the two angles (o, ). Itis

common in this case to denote these (6,¢).

The gradient direction vectors in the two coordinate systems are related by a
rotation ([17]).
sin ¢ —cos ¢ 0

R = | cos¢cosf singcosf —sinf (5)

cos¢sinf singsind cosl

The apparent diffusion coefficient for an arbitrary gradient direction v can thus

be written ([17])

where

D=RTD,R : (7

Eqn 7 defines the diffusion tensor D in a rotated coordinate system. The signal

from a single fiber is typically expressed in the form

log (S/So) = —bD (8)

where we introduce the shorthand notation D=D ,,, =v "Dv. For any
symmetric matrix D, such as the diffusion tensor, the product x"Dx is a pure
quadratic form [19]. From Eqn 8 one can estimate the diffusion tensor D by an
eigenvalue decomposition whose eigenvectors effectively determine the
rotation of the fiber coordinate system relative to the laboratory system and
whose eigenvalues determine the diffusivities. Since D is positive definite, it
can be written in the fom of Eqn 7 where Dy is diagonal and the unit
eigenvectors of D are the columns of R. The rotation y = Rv produces the sum

of squares
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oTDv = vTRD\RTv =yTDry = > My} ()
i

From [19], the equation of v/Dv = 1 describes an ellipsoid whose axes end at
the points where A;y 2 =1 and where the remaining y components are zero.
Undoing the rotation, these points are in the directions of the eigenvectors and
the axes have half-length 1/ VA, It is impartant to emphasize, however, that the
ellipsoid that describes the eigenspace of the diffusion tensor is not a

description of the shape of the measured local diffusion [15].
Multiple Fibers

The definition of a fiber above can be extended to multiple fibers by
defining the k’th fiber as synonymous with the k’th diffusion tensor D y with
no assumption of cylindrical symmetry until it is necessary. In addition, the
assumption will be made throughout that there is no exchange between fibers
so that the signals add independently.

In general, the signal from a voxel containing » fibers can be written

S=5 fre™Pr (10)
k=1
Where i is the volume fraction of the k’th fiber (2=, fi=1). It will prove

useful to express this in the following form (Taylor expanding about b = 0):

n ) 2 n R n n ) )
log(S/So) = —by _ fuDx — %- > 1l = f)ADE; -2 >y fifjADilADjl} (11)
k=1 k=2 i=2,i£] j=2,5#i
where we have defined the differential apparent diffusion AD,; = Dy-D P’
This form of writing the signal is useful in that it expresses the effect of

additional fibers &>2 relative to the first (k= 1). For a single fiber, the terms

in the bracket drop out and the log signal assumes the pure quadratic form
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utilized in Eqn 8 in the standard diffusion tensor approach. Each of the Disa
quadratic, so each term in Eqn 11 is an even power polynomial in gradient
direction v. The approximation to orders o) (v%) yields even polynomials up to

order 4.
Special case: Two fibers

For multiple fibers within a voxel, Eqn 11 can be complicated.
However, the special case of two fibers (n = 2) is instructive and a useful
approximation in practice. This is the simplest multifiber case, and the
resulting equations have an intuitively clear interpretation and are numerically

relatively simple to manage. From Eqn 11, the log signal case be written

log (§/S0) = —b [fl Di+f, bz] + f1 f26? AD3 (12)

where f} ‘and‘fmzﬂare the volume fractions in compartments 1 and 2, respectively
sothatf +f,=1and AD, = D,—D, and we have kept terms up to second
order in b. The measurements D i are composed of second order polynomials,
so the coupling term & =£, / b* A D%, is composed of even order |

polynomials up to fourth order.

The two terms linear in b represent the individual fiber components and
are pure quadratic forms. In addition, there is a coupling term, second order in
b, with coefficient f; f; that is of fourth order. Note the interesting fact that the
coefficient tenﬁ fi/f> is a quadratic function, with a maximum at fi=fo. The
magnitude of the coupling thus depends on the volume fractions. However, the
shape does not. This is clear from the fact that the volume fraction enters only
as a multiplicative factor in & Variations in the shape of the coupling term are

more easily understood by rewriting in a more illuminating form. First note,

from Eqn 6 and 7, that ADy =vTRTD,Rv (13)
Where we have defined Dz = RLDypAR; - Dia (14)

R, = RRi! (15)
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The term R, is the product of rotation matrices and is therefore also a rotation
matrix (by virtue of the group properties of the 3-Dimensional Rotation Group,
denoted O (3) [20]). 1t first undoes the rotation R, then applies the rotation R;.
If the rotations R; and R, are the same, meaning that the fibers are pointing in
the same direction, then Ry, =1, and D,, is a diagonal matrix with eigenvalues
equal to the difference in principal diffusivities between D, and D,. If the
fibers are identical in orientation and diffusivities (by our definition, Dy = D»),

then D, =0, so that AD,, =0 and the coupling term disappears, reducing the

log signal to the standard single fiber form (Eqn 8). In general, though, the

term A D ,; is of the same form as the rotated single fiber diffusion matrices
(e.g., Eqn 7) but in terms of the new tensor 512 , which we shall term the

reduced diffusion tensor.

The accuracy of the approximation in Eqn 12 depends upon both the b-
value and the relative orientation of the fibers. As shown in Figure 2, this
approximation is good up to quite high b-values. The manifestation of these
errors is most clearly visualized by plotting D,,, as a function of b-value for
AG=90° (the angle at which the influence of the coupling term is the greatest),
an example of which is shown in Figure 3.

The results for HARD diffusion measurements can be summarized as follows:

1. The measured local diffusion is related to the diffusion in the fiber
coordinate system by three-dimensional rotations.

2. The measured log signal from a single fiber is a pure quadratic form.

3. The measured log signal from a multiple fiber can be approximated -by
the sum of two pure quadratic forms and a coupling term of even

polynomial up to order 4.

The question is this: If an eigenvector decomposition is sufficient to

determine the diffusion tensor in the single fiber case, is there a decomposition
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sufficient to determine the diffusion in the case of multiple fibers? We show in

the next section that this is indeed possible.
The Spherical Harmonic Decomposition

Spherical Tensor Representation of Rotations

As described in Section 2, the diffusion measurements along different
encoding directions can be expressed as rotations in 3-dimensions relative to
the (unknown) principal axis system of the diffusion. In the HARD technique,
these measurements are along a set of directions covering the range of the
spherical coordinates (6, ¢). The rotations R were expressed using a form or
representation in terms of the Euler angles. However, the problem was
formulated in the familiar Cartesian coordinate system, or basis e = {x, y, z},
because this is the natural coordinate system for imaging. Systems with
spherical symmetry are often more conveniently handled in the spherical basis:
e ={r, 6 ¢} as defined in Figure 1. As we show next, rotation matrices
transformed into the spherical basis are the spherical harmonics [21]. Tensors

transformed into this representation are called spherical tensors [21].

The HARD diffusion measurements have an inherent spherical
symmetry because they are made by a series of three-dimensional rotations.
The inherent symmetry in this problem can be elucidated through the theory of
groups, which was originally developed for the purpose of characterizing
symmetry t21]. The concept and consequences of groups, although extremely
powerful, are conceptually relatively simple. Their great power is that they
facilitate the characterization and classification of mathematical structures into
classes or groups with similar symmetry properties. All members within a
particular group can then be treated as equivalent, even if their specific
manifestations differ. For example, two points constrained to move on the
surface of the same sphere can be seen as having identical symmetry properties

even if their precise locations on that sphere differ.
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The importance of the spherical tensor formulation is encapsulated in
the following expression, which shows how a spherical tensor T is affected by

a general rotation D!, (R) in some representation R of the rotation group in

the basis e:

l
Tim = Z glm'm(m) Tlm’
=-l

Notice that rotations of the individual m components within a particular
component rank 1 do not “ mix” elements amongst components of different
rank 1. This quality of the T is called irreducibility. Eqn 16 can be considered
the defining quality of a spherical tensor: a tensor that transforms accordingly
is by definition a Spherical tensor. The spherical tensor representation is useful

because rotations of the individual tensor components preserve the rank.

Both the spherical tensor and the rotations can be related to our specific
problem as follows. The diffusion tensor is a second rank tensor and so
consists of nine components, represented by a 3 x 3 matrix. In its irreducible

representation, the tensor is written as the sum of three terms:

T=T"4+T*+T°¢

where T° = T° I in which 77 is a rank O tensor (i.e., a scalar) and I is the 3 x 3
identity matrix, 7° is an anti-symmetric rank 1 tensor *i.e., a vector) and Iisa
symmetric, rank 2 tensor. The rotations Dtwm (0,B,y ) in the spherical tensor
basis expressed in terms of the Euler angles are called the Wigner rotation
matrices [21]. For a point in spherical coordinates, the Wigner rotation

matrices are proportional to the spherical harmonics [22]:

—1/2
DZJLO(QMB77) = (214-; 1) l/lm(,B:O‘)

(17)
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Therefore, the process of rotating a diffusion tensor can be reformulated by
expressing the diffusion tensor in an irreducible form in which its individual
components transform separately under rotations affected by spherical
harmonic components. In this general formulation, the concept of the diffusion
tensor can easily be extended to more complex structures by considering
tensors of higher rank because now the transformation under rotations are of
exactly the same form (Eqn 16) and the functions that perform the rotations are

exactly the same basis set (the spherical harmonics).

Application to HARD Measurements

Now, consider the general case of a HARD measurement of a voxel of
unknown fiber composition. The measured apparent diffusion coefficient D (
Q ) is then an arbitrary real function. The complex spherical harmonics form a
complete orthonormal basis [18] so an arbitrary real function parameterized by

the spherical coordinates ( &, ¢ ) can be expanded in a Laplace series:

] !

DO.¢) =) > an¥™0,¢)

=0 m=—1

The coefficients a;, are determined by [18] multiplying both sides of Eqn 19 by
Y,"'#( 6,4 )and using the orthogonality condition

2 pm
L[ ¥ ,0)v2(60,0)5in(6) d0 6 = xS
The expansion coefficients are uniquely determined by multiplyirig each side of

Eqn 19 by ¥,"*(6,¢) and integrating over the sphere. The result is that the

coefficient can be determined by
2T p
on = [ [ Degpl6,4) Y70, ) sin(o) a0 g

This is precisely analogous to a Fourier decomposition of sinusoidal functions,
but on the unit sphere. This will be called the spherical harmonic transform or

SHT of the measured apparent diffusion coefficient.

(19)

(20)

(21)
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The utility of describing the measured HARD (log) signal in terms of -
group theoretical constructs can now be shown directly as follows. The
measured HARD signal D (€2) is an arbitrary real function and so can be
expanded in term of a Laplace series (Eqn 19) with the coefficients determined
by the SHD (Eqn 21). But the symmetry of HARD diffusion measurements
imposes severe restrictions on the expansion coefficients that allow direct |
classification of the diffusion from the SHD. In particular, the SHD of ﬁ(Q)

produces the coefficients of the irreducible representation of ﬁ(Q) .

Specifically, the following is true: Isotropic diffusion is independent of
direction, so the lowest order Yyo(Q2 ) is the basis for the representation of Dy,
This Qis easily seen because Yoo (Q2 ) is just a sphere, so the calculated
coefficient merely scales the radius of the sphere. This providesa2L+1=1
dimensional representation of the O (3). For a single fiber, the irreducible
representation of D (€) (Egn 17) provides a basis for a six-dimensional
representation of O (3) (with 7° providing 2#0+1 = 1 and T° providing 2*2+1 =
5). The basis functions are then the spherical harmonics Y, (€2) oforder L =
0,2. Because this is an irreducible representation, Eqn 16 expresses the fact
that fiber rotations do not alter the basis functions. That is, they only produce a
redistribution of energy amongst the M components or variations in the phase
of the M components, but not the order L. For multiple fibers, the log signal
from multiple fibers can be expressed in terms of an expansion in even power
polynomials (Eqn 11) and approximated up to relatively high b-values by
keeping terms up to second order in b, which corresponds to terms of 4’ th
order polynomials. A multifiber voxel therefore provides a basis for a 2+ (0 +
2 +4)+ 3 = 15 dimensional representation of O(3) with basis functions being
the spherical harmonics of even orders up to order L =4. The dimensions of

the representation are the number of measurements that are required to
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characterize the D (€2). It is for this reason that 2 * (0 +2) +2=6
measurements are required to characterize the standard single fiber diffusion

tensor.

The results can be summarized by the following rather remarkable
conclusions:
1.  Isotropic diffusion is described by 49sY o (Q)
2. Single fiber diffusion is described by Zi=g2a ;1 ¥;"(€2).
3. Multiple fiber diffusion is approximately described by
=024 maim¥i" (Q)
4. In general, the local diffusion, including the magnitude and orientation,
can be described by sum of spherical harmonics of even order, i.e.
2’; Zmam¥" (Q), 1=024,...
5. Odd orders of the spherical harmonics describe asymmetric components

and therefore imaging artifacts.

6. The coefficient alm is determined by the spherical harmonic transform
of D (Q?)
7. The dimension of the representation is the number of measurements

required to characterize the apparent diffusion coefficient D(Q) .

It is important to point out that the order L required to characterize the
diffusion in a multifiber voxel depends upon the orientation of the two fibers.
For fibers more closely aligned, higher orders of L will be required. This can
be seen by considering the simplest case of two identical fibers lying in the &
=90° plane, oriented nearly parallel to one another. Distinguishing between
the two fibers requires high resolution in the azimuthal angle ¢. Since the
azimuthal dependence of the spherical harmonics is proportional to exp( img ),

higher frequency variations in ¢ require larger values of m and thus higher



10

15

20

25

WO 02/082376 PCT/US02/12668

-27-

orders L in the basis functions. We have focused on the simplest case in the

present paper where L = 4 is considered sufficient, but this is not required.

The group theory arguments provide a simple and concise description of
the categorization of voxel diffusion characteristics, since the above results are
expressible as direct sum subspaces. Let us call the * state ““ of a voxel with &

fibers 'y, where k=0 means isotropic diffusion. Then we can write

1.  Isotropic diffusion: 1ho = DO,

2. Single fiber diffusion: %1 =9 ¢ D@,
3. Multiple fiber diffusion: ¥2~29 @D @D,

where the 5() are the irreducible represeniations of the rotation group. In
principle, the composition of a voxel in terms of these can be determined, as

well as the magnitude and orientation of the local diffusion.

This theory is easily confirmed by simulation, as shown in Figure 4
where the D,,, for a single fiber and for two identical perpendicular fibers are
broken down in terms of the separate contributions from the different spherical
harmonic components. In these simulation we use a fiber model that possesses
cylindrical symmetry, since this is a reasonable physical model for white matter

geometry (e.g., [17]) though the above results do not require this. The

" corresponding SHD are shown in Figure 6, which shows on the right the SHT

of the D, from a single fiber (top) rotated through the entire range of both &

and ¢, and two fibers (bottom) with one fixed along the x-axis and the relative
angle between the fibers rotated through the entire range of both fand ¢. The
D, for one particular orientation is shown on the left. No energy is produced

in channels other than those predicted by the group arguments above.

The symmetry inherent in this problem precludes the power in the odd L

channels. Energy in these channels in the SHD of actual experimental data is
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therefore produced by non-diffusion effects, such as slice offsets or eddy
currents, which are not constrained to the same symmetry properties. This can
be used to advantage as a means of identifying non-diffusion related variations.
Of course, such variations may also have power in the diffusion related
channels, so their reconstruction may not be trivial. The information in the odd
channel might also be useful in incorporating eddy current correction into the

image reconstruction.

The ability to characterize the diffusion does not imply that extraction of
fiber information is easy, however. This becomes apparent in examining the
coupling term & , about which can be said:

1. The shape of & depends on the eigenvalues of the reduced

diffusion

tensor, and thus on the relative anisotropies of two fibers.

2. The oriéntation (and hence phase) of & depends upon the mean

orientation of fibers.

3. The magnitude of § depends on the volume fractions and the

relative orientations of the fibers.

The last item underscores a basic ambiguity in the diffusion
measurements: the volume fractions and relative orientations can confound
information about one another in the measured signal. However, the

orientation affects the phase, whereas volume fraction changes do not.

Computation and display of the SHD

Numerical methods. The spherical harmonic decomposition is achieved
by computing the spherical harmonic transform of the measured (i.e., apparent)
diffusion coefficient (Eqn 21). Unfortunately, unlike the Discrete Fourier
Transform (DFT), for which there exists a matrix decomposition that allows the
Fast Fourier Transform (FFT), no such algorithm exists for the SHT. Although

a variety of algorithms have been proposed for the computation of spherical
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harmonic coefficients ([23, 24]), no clear algorithm has emerged as clearly
superior, and the subject remains an area of active research. Therefore, for the
present work the coefficients were determined by direct computation of Eqn

21.

The direct computation of Eqn 21 on a grid of N values of ¢ and M
values of @requires the computation of L x (2L + 1) spherical harmonics
evaluated at N M points. The spherical harmonics involve multiple expensive
trigonometric evaluations. Many of the trigonometric evaluations are
redundant, however, so precomputation of these values can be used to speed up
the computation. Direct computation of the measure sin (&) d@d¢ requires M
trigonometric evaluations and NM multiplies. However, an efficient algorithm
for computing the measures was developed by noting that these weights in the
summation that approximates the integral are equal to the Voronoi areas for the
sampling points on the unit sphere. Precomputation of the trigonométric
functions and the weights therefore allowed an efficient SHT. This algorithm
has been incorporated into the author s diffusion plugin module i AFNI [25]
and is sufficiently fast to rapidly process reasonably large HARD data sets?.
For example, the data shown in the present paper are comprised of 10 slices
and 43 directions. The SHT on the entire data set took only 1.25 minutes on an

SGI Octane2 with dual R12000 processors.
Display of the SHD.

Before proceeding, it is important to outline our basic method of
displaying the SHD data. Because there is a great deal of information produced
by this method, we have found it is important to have a concise method for
displaying the results. The SHD calculates components up to a user specified
value of L, for all the 2L + 1 values of M associated with each L (because M = -

L,..0,..+L). Auseful way to display the coefficients is thus on an array of
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coordinates (L, M), as shown in Figure 5. Since M < L, the diagram has a

characteristic triangular shape (white boxes have no coefficients).

Generally, the coefficients are determined for a range of parameters, in
which case the boxes become arrays wherein the parameters are varied. The
first is where the parameters are the spatial coordinates (x, y). Then each *
box” on the (L, M) plot is just an image of the spatial distribution of the
amplitude of that specific (L, M) component of the SHD (e.g. Figure 12 below).
The other case of importance is when the parameters are the azimuthal and
polar fiber angles (¢,6)  as shown in the example in Figure 6. This is useful,
for example, in showing that as a single fiber is rotated arbitrarily, there is a
redistribution of amplitudes within the L=2 channel, but the energy remains

completely contained with this channel, as predicted.

The Structure of the SHD of Diffusion Measurements

Determining significance of multiple fiber channel

The categorization of voxel fiber composition outlined above suggests a
strategy for the analysis of high angular resolution diffusion data. The
spherical harmonic transform is taken for each voxel in the image and sorted
into even and odd order L. The odd orders represent artifacts and therefore can
be eliminated from the analysis. The remaining even orders up to order L =4
are then sorted in the following manner. Voxels with significant power in L=4
are classified as “ multiple fibers”, voxels with significant power in L =2 but
not L = 4 are classified as single fibers , and voxels with significant power in L
=0 but not L =2 or L = 4 are classified as “ isotropic” . Although the method
to determine what is significant involves some subtlety, the basic strategy is
clear. Having determined into which classification each voxel falls, the voxel
local diffusion is determined from the sum of the appropriate spherical

harmonics components (isotropic: L = 0, single fiber: L = 0,2, multiple fiber: L
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= (,2,4), with the coefficients determined from the spherical harmonic

transform.

One method for the determination of significance is suggested by the
results above that show that the magnitude of the L = 4 term increases with
increasing relative orientation of the fibers. Therefore a comparison of energy
in the L = 4 to the L = 2 channel can be used to gauge of whether or not a voxel

is of state , or y 4. One measure of the significance of a multiple fiber

channel is the fractional even order greater than O in that channel. We can

define the Fractional Multifiber Index or FMI as

Y4 on 1ALl

L
> |AL=2,M|2 , even , (22)

FMI =

An example is shown in Figure 10 (Bottom) for the simplest example of two
fibers at a range of relative orientations ranging from parallel to perpendicular.
This is a reasonable measure of comparisori and means of separating single and
multifiber channels, begging the question of which threshold to choose. We
will use this here in lieu of a more complete probabilistic model that will be

pursued in the future.

‘The Symmetry of Diffusion Weighting: Projective Subspaces

Decomposition of the diffusion into separate isotropic, single, and
multifiber channels is a consequence of the group algebra, which generates
additive subspaces that depends upon the degree of polynomial necessary to
describe the measurements. However, this is far from the complete story, for it
is just the L story. There is structure within the SHD contained in the way in

which the energy is distributed amongst the A/ components.

There is a fundamental symmetry in the D,,, imposed by the imaging
process because the signal loss due to diffusion along the direction of a

gradient is insensitive to the sign of the motion. That is, equal diffusive motion
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in both the +x and -x directions produce the same diffusion related signal loss.
This results in a projective symmetry, which can be visualized by the diagram
in Figure 7(top:a). In the mathematics literature, projective is synonymous
with antipodal, and is unrelated with projeétion in the sense commonly used in
the physics literature (i.e., the component along a chosen axis). Diffusion
measurements are therefore represented by the projective subgroup of O(3)
(denoted PSO(3) = O(3)/Z(2) where “ / “ can be thought of as “mod ” and Z
(2) represents the group of two integers). This means that two antipodal points
(the two integers) on a sphere are indistinguishable. The effect of projective
symmetry is that it restricts the energy to even values of M because odd values
are not symmetric in ¢ . However, this symmetry imposed on the PSO(2)
subgroup of O(3) is only evident for a single fiber in the equatorial plane (6=
90° ) because arbitrary rotations can be represented by mixtures of (¢,6)

components. These effects are demonstrated by simulation in Figure 7(b-d).

The SHD for two fibers exhibits a similar symmetry. For two fibers in
the equatorial plane oriented at A¢g = 90° to one another, the mean component
is cylindrically symmetric and therefore does not possess (L, M) = (2, £ 2)
components. For two fibers in the meridian plane oriented at AG@=90° to one
another, the coupling term generates all even M terms for L = 0,2,4 except of
(L, M)= (L, +4). Two fibers in the equatorial plane generates only one set of
non-zero M components: (L, M) = (4, +4) components, similar to the single
fiber, and by symmetry do not possess (L, M) = (2, +£2) components. Again,
arbitrary rotations produce mixing into all available M components. The

projective subspace behavior of two identical crossed fibers is shown in Figure

7(e-g).
Fiber Orientation

Characterizing the local diffusion amounts to determining diffusion

tensor(s) and their orientation(s) relative to the laboratory system. In the
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special case of cylindrically symmetric diffusion, a natural definition of the
fiber orientation is the direction of the principal (i.e., largest) eigenvector e; of
the diffusion tensor [8]. For the problem of multiple fiber voxels, the iséue of
orientation becomes more complicated, for one can ask not only the orientation
of the individual fibers, but their orientation relative to one another. In this
section we reconsider the case of the single fiber, but now in the context of the
SHD. We then consider the simplest multifiber case of two cylindrically

symmetric fibers at arbitrary orientations.

Single fiber orientation from the SHD.

Because the SHD results for a single fiber identically reproduce those of
the diffusion tensor, a single fiber orientation can always be determined from
the SHD by transforming from the spherical basis back to the Cartesian basis,
thereby reconstructing the diffusion tensor, and then determining the fiber

orientation from the principal eigenvector.

The key to determining the fiber oriéntation from the SHD is to
recognize that a rotation R¢ of the fiber by an azimuthal angle ¢ modulates that
phase of the SHT components because the ¢ dependence of the coefficients is
of the form exp(i¢ ). On the other hand, fiber rotations Ry by a polar angle
produce amplitude variations because the § dependence is proportional to P,

(cos 8), the Legendre polynomial, which is a polynomial in cos §of order I. As

~ aconsequence of Eqn 16, the @ variations mix energy amongst the available M

components for a particular L component, but do not exchange energy amongst

the L components.

These variations are illustrated in Figure 8(a,b), where a single
cylindrically symmetric anisotropic fiber is rotated through azimuthal angles
¢ = { 0°,45°,90° } while fixed at the equatorial plane (i.e. #=90°)and
through polar angles 6= { 0°, 45°, 90°}while fixed at the prime meridian (i.e.
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¢ =0°). The phase and magnitude for the single fiber case shown in Figure
8(a,b) and Figure 8(c,d) demonstrate that the orientation can be determined

from the phase, while the @ orientation can be determined from the amplitude.

In this example, the phase (Figure 8(a,b)) is determined from the

coefficient a, , that corresponds to the spherical harmonic 1,2 =+15/32n
sin%(0) € ? so that the estimate of the azimuthal orientation is ¢ = arg {22212

where arg denotes the phase angle. The magnitude variation of a, gas a

function of 0 < @< 7 is seen (Figure 8(c,d)) to follow Pi(cosé) so that the

estimate of the polar orientation § can be made by noting that the a,

component has no energy for @ =90°, so that the ratio of a, ; to a, o can be

related to the polar angle by: 6 = tan™ ( ay0/az ).

Two-fiber orientation from the SHD

Determination of the fiber orientation in a multifiber voxel is
complicated by the fact that the measured signal is not just a function of the
individual fiber orientations, but of their relative orientations and their volume
fractions. However, the coupling term £ that generates the L = 4 components
have some remarkable properties that make this problem tractable, at least for

the two fiber case. Three limiting cases illustrate these properties.

The first is two fibers coplanar in the equatorial plane (i.e., 8 =90°). If
the angle between the two fibers is kept constant but the two fibers are rotated
relative to the laboratory coordinate system, then the coupling term &£ rotates,
causing a phase change in the L = 4 components, but no magnitude change.
This is shown in Figure 9(a-b).

The second is two fibers coplanar in the meridian plane (i.e., ¢ =0°). If
the angle between the two fibers is kept constant but rotate the two fibers

relative to the laboratory coordinate system, then the coupling term £ rotates,
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causing a phase change in the L = 4 components, but no magnitude change.

This is shown in Figure 9(c-d).

The third is two fibers coplanar in the meridian plane (i.e., ¢=0°). If
the angle between the two fibers is varied but the mean angle between the
fibers is kept fixed, the size of the coupling term £ changes, disappearing when
the fibers are aligned since this is identical to a single fiber. This is shown in

Figure 10(top:a-b).

The orientation results for the special case of two fibers can be
summarized as follows:

¢ Azimuthal rotations R 4 of two fibers together (i.e., fixed relative
orientation but variable mean ¢ orientation relative to laboratory frame)
produces only phase change in the components.

e Polar rotations Ry of two fibers together (i.e., fixed relative orientation
but variable mean @ orientation relative to laboratory frame) produce a
redistribution of magnitude change in components, but no phase
changes. '

e Variable relative orientation but fixed mean orientation relative to the
laboratory frame produces only magnitude changes in the coupling
component, but the relative amplitudes of the components (i.e. the
pattern) remains unchanged. Utilizing these results necessitates the

assumption of a two-fiber model.

Methods

Images were acquired on a GE SIGNA 1.5T Clinical Imager with high-
speed gradient hardware using a stimulated echo sequence with a stimulated
echo spiral acquisition previously described [15]. Diffusion sensitive images
were acquired on five normal human subjects, with approval from the Humans

Subject Committee at UC San Diego.
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High angular resolution diffusion encoding is achieved by generating
gradient directions equally spaced on a sphere by tessellations of an
icbsahedron [13, 15], as shown in Figure 11. This procedure produces
directions that are equally separated in angle on the surface of a sphere. Single
shot images were acquired at 9 slices with the following parameters: FOV =
24cm, slice thickness = 3.8 mm, and matrix size 64 x 64 for approximately
(3.75 mm x3.75 mm x 3.8 mm) isotropic resolution, TR = 2700 ms, TE = 52
ms. The diffusion parameters were: diffusion gradient duration, 6 = 20 ms,
stimulated echo mixing time M = 200 ms, and b = 3000 s/mmz,‘ and 43
diffusion directions determined by the icosahedral tessellations of a sphere.
Twenty averages at each diffusion direction were collected to ensure high

signal-to-noise ratios, and resulted in a total scan time of = 34 min.

Results

The spherical harmonic decomposition (up to order L = 5) of a HARD
data set collected in a normal human volunteer is shown Figure 12. Note that
the energy is indeed confined to the L = 0,2,4, except for the artifacts appearing
at (L, M)=(0, 1). This is discussed below. The isotropic, single fiber, and
multiple ﬁEer channels reconstructed from this transform are shown in Figure
12 (bottom). Measured D, (8,4 ) from the multifiber channel of Figure 12
are compared with simulations in Figure 16 assuming 2 fibers oriented Ag
relative to one another. As predicted, the isotropic channel appears to consist
of gray matter, the single fiber channel looks like a white matter map, and the
multifiber channel corresponds anatomically to regions of complex fiber
geometry. From the coefficients of the SHT shown in Figure 12, the local D,
can be calculated. In Figure 13 are shown representative shapes from the three

different channels.

For the representative voxel from the multiple fiber voxel the extreme

case of nearly identical fibers crossed at 90° was chosen since the failure of the
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DTI method is most apparent in this circumstance. However, it is important to
note that regions of significant energy in the multifiber channel do not
necessarily correspond to “ black holes” in the standard DTI maps (such as -
those shown in [15]) since this effect is produced only in the specific case of
identical fibers oriented at 90° to one another. However, these regions do
correspond to regions in which characterization by a single diffusion tensor is
incorrect, and will produce spurious results in the estimation of diffusivities

and orientations.

Figure 12 (bottom) shows significant energy in the (L, M) = (0, 1)
channel. Since this is an odd channel, it cannot be related to diffusion. The
structure of this channel can be understood from the reconstruction of the shape
produced by the (L, M) = (0, 1). The addition of ¥ 1% to Y, causes the isotropic
sphere to be offset in the z-direction. This is consistent with both eddy currents
and slight imperfections in slice refocusing. The likeness of the Y,! channel to
a gray matter map is a consequence of the fact that the artifacts that generate
these components are most evident in regions of large isotropic diffusion where

the diffusion “sphere” is prominent.

A white matter map is reconstructed from the energy in the L=2,4
channels, regardless of any categorization as single or multiple fiber, and
shown in Figure 15, along with a map of the energy in the odd channels which
shows little structure. The magnitude of the single fiber channel, and the
estimated maps of #and ¢, is shown in Figure 14 for a different slice from the

same data set.
Discussion and Conclusion

The recognition of the MR sensitivity to diffusion anisotropy [4]
occurred shortly after the initial studies of isotropic diffusion [2, 3], but really
blossomed with the recognition of its utility for the study of fibrous biological
systems [10, 11]. The natural first step in ciuantifying anisotropic diffusion is
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to assume a Gaussian model for a single fiber, from which a diffusion tensor
model ensues [8]. From this model can be estimated the fiber diffusivities and
orientation, and the conditions sufficient to capture this information [9]. While
it was recognized that this method is restricted to single fiber [8, 12],
development of a technique to measure more complex systems was only
recently proposed [13]. With the general goal being to investigate complex
anatomical structures with no a priori assumptions about the diffusion
characteristics, the sampling criterion is no longer based upon a presumed
model, and so is phrased in terms of being “unbiased” in the sense that no
direction is assumed preferable. The result is sampling on a sphere with a
radius defined by the b-value with sufficient density to detect diffusion changes
in different directions [13]. The question then arises: How does one
characterize the diffusion from such measurements? One approach, suggested
by Wedeen [14], is to extend the measurements to several radii by collecting
“shells” of high angular spherical resolution data and Fourier transforming the
data to produce a “q-space” image [26]. This method is sensitive to restricted
diffusion because it samples a range of b-values, but is unnecessarily
complicated for the determination of non-Gaussian diffusion arising, for
instance, from multiple fiber directions. Aé pointed out inn [15], the magnitude
of b, in conjunction with high angular resolution sampling, is sufficient for this
purpose. The more pertinent questibn is how to characterize HARD

measurements made at high b-values, which is the subject of the present paper.

Our approach to characterizing the diffusion measured with the HARD
technique is based on characterizing the shape of the measured apparent
diffusion coefficient. Using the methods of group theory, this characterization
is that HARD measurements can be decomposed into irreducible
representations of the rotation group in which isotropic, single fiber, and
multiple fiber components are three, separable direct sum subspaces. In our

initial investigation of this problem, deviations from a spherical surface in the
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form of the variance of the measurements were used as a measure of
anisotropy, the spherical diffusion variance [15]. While this had the advantage
over the diffusion tensor method in identifying regions of anisotropy not well
characterized by a single diffusion tensor, it is unable to quantify this

anisotropy in any meaningful way. In particular, it does not allow the

- quantitation of either the magnitude or direction of diffusion. The present work

can be seen as a formalization of this approach, since the spherical harmonics
higher than YOO, which contribute to the spherical diffusion variance,

characterize how the various anisotropic components contribute to the variance.

A strength of the approach is that it does not require any a priori
information about the diffusion. The utility of the decomposition results from
the group algebra imposed by the symmetries of both the measurement scheme
and the diffusion. The decomposition allows distinction of diffusive and non-
diffusive signal variations, as well as distinction amongst diffusion variations.
In particular, the diffusion channels can be broken down into direct sum
subspaces representing isotropic, single fiber, and multiple fiber components.
Asymmetries produced by experimental artifacts fall into channels impossible
to reach by diffusion, thereby providing a direct means of noise reduction
within the diffusion channels as well as a means for identifying artifactual

effects.

The numerical computation of the spherical harmonic transform (SHT)
was implemented in the most naive fashion, by direct computation of the
coefficients by a discretized version of the integral Eqn 21, in a fashion
analogous to a discrete Fourier transform (DFT) on a sphere. This method 1s
time consuming. Unfortunately, there is no matrix decomposition of the SHT
analogous to that used to implement the fast Fourier transform (FFT) from the
DFT that would facilitate a fast SHT. Several methods for fast SHT
computation have been proposed (e.g., [27, 28, 29, 30, 23, 24]) and will be

investigated for application to the current problem.
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A very general problem that arises is the determination of the voxel
composition from the SHD. The solution to this problem hinges on the ability
to estimate the parameters of a voxel, in particular, the number of fibers, their
volume fractions, anisotropies, and orientations. Even in the simple example
discussed above of two fibers, it was shown that it is not possible to determine
all of these uniquely, as the volume fraction and relative fiber orientation both
affect the higher order SHD components in a similar fashion. In practice, fiber
configurations within a voxel may be much more complicated than the simple
two fiber model, making the problem of parameter determination exceedingly

complicated.

The power of the SHD, however, is the fact that the identification of the
existence of multiple fibers is not dependent upon making this distinction:
multiple fibers of any sort show energy in the higher channels. Moreover, even
in lieu of a particular fiber model, the SHD allows the shape of the diffusion
measurements to be quantified by the coefficients of the SHT. These may be
then used to reconstruct the diffusion structure in each voxel depending upon
the user model. With constraints, such as on the number of fibers, the
computational complexity can be reduced. An example is shown in Figure 16
in which two fibers were assumed. One solution for the composition in both
angles and volume fractions was estimated simply by trial and error in the
simulation. However, one can imagine formalizing this process by choosing a
limited maximum number of fibers and searching over number of fibers, the
relative angular displacements between the fibers and the fiber volume
fractions in order to estimate these quantities. Incorporation of other imaging

information may augment this estimation.

For the purpose of determining the significance of the power in the
multiple fiber channels in order to determine whether a voxel actually contains
multiple fiber directions, some comparison with the single fiber channel is

required. For this purpose, a simple statistic for determining the significance of
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the multifiber channel, the Fractional Multifiber Index, was introduced. While
this is a natural measure, there is no indication of its optimality. A more formal
probabilistic analysis needs to be undertaken to determine a method for

determining the significance of energy amongst the channels.

We remind here that what we have loosely referred to as “ fibers” are
really fiber bundles, within which the water movement that produces the
diffusion signal is most likely complex. We have implicitly assumed that all
the fibers that make up a bundle are essentially identical. Moreover, we have
also made the assumption throughout this paper that there is no exchange
between fibers, so that the signals from the individual fibers add independently.
This will not be true in general. Both of these assumptions are made here, as
they are in most of the DTI literature, not for lack of recognition, but because
the true nature of the diffusion signal can be exceedingly complicated and is

beyond the scope of the current paper.

The characterization of fibers in terms of even orders of L is a
consequence of the symmetry. Experimental artifacts, such as eddy current
effects, that do not possess such symmetry, are not confined to the even
channels and therefore appear in the odd L channels. Energy in these channels
therefore indicates the presence of non-diffusion effects. The SHD, by
automatically separating out some fraction of the non-diffusion energy,
effectively reduces the noise in the diffusion channels. This has great potential

for use on systems for which artifacts are present.

In practice, the issue of multiple fiber directions within a voxel is
intimately tied to the image resolution: For higher resolution there will be
fewer voxels with multiple directions. Nevertheless, there will always remain
heterodirectional voxels at any resolution. Moreover, the penalty in SNR per
unit time can make high-resolution diffusion imaging over a large region

prohibitive. A post-processing scheme capable of accurately identifying and
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quantifying multiple fiber voxels may lead to more efficient acquisition

protocols.

One important application of our method is its incorporation of
multifiber voxels into fiber tract mapping schemes. This will require utilizing
estimates of the individual fiber orientations and volume fractions determined
from the SHD of individual voxels. Additional machinery to keep track of
multiple possible pathways of fibers passing through such voxels will then be

necessary.

It is worth reiterating, in summary, that the proposed method reduces to
the standard diffusion tensor method in the presence of single fiber voxels, so |
no penalty of information is imposed by its usage. Rather, deviations from the
DTI model due to artifacts or multiple fiber directions are readily extracted and
quantified, allowing a more complete description of complex diffusion

processes in tissues.

While the foregoing specification has been described with regard to
certain preferred embodiments, and many details have been set forth for the.
purpose of illustration, it will be apparent to those skilled in the art that the
invention may be subject to various modifications and additional-embodiments,
and that certain of the details described herein can be varied considerably
without departing from the spirit and scope of the invention. Such
modifications, equivalent variations and additional embodiments are also

intended to fall within the scope of the appended claims.
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CLAIMS
What is claimed is:

1. A method for characterizing specimen structure from diffusion anisotropy in
magnetic resonance imaging without invoking the diffusion tensor formalism,
comprising;
collecting a plurality of high-angle resolution diffusion image data employing
a diffusion-weighted stimulated echo spiral acquisition process;
computing spherical diffusion variance in each voxel by a spherical harmonic
transform of the diffusion data;
identifying components in a plurality of compartments in the voxel,
comprising at least three separate diffusion channels,
wherein the diffusion channels are apportioned into direct sum subspaces representing
isotropic, single fiber, and multiple fiber components, and
wherein asymmetries produced by experimental artifacts fall into other undelineated
channels impossible to reach by diffusion, thereby, providing
direct means of noise reduction within said diffusion channels, and
means for identifying artifactual effects; and
determining magnitude and direction of diffusion by computing from the

spherical harmonic transform magnitude and phase.

2. A method for characterizing multi-component magnetic resonance images of
multidirectional crossed fibers in a specimen, comprising:

obtaining a plurality of high angular diffusion-weighted image signals, each
image obtained by applying a diffusion gradient pulse;

employing a simple spherical harmonic transform algorithm to identify
diffusion anisotropy based upon the variance of the estimated apparent diffusion
coefficients as a function of measurement direction; and

constructing computerized images of components within a voxel to determine

magnitude and alignment of fibers.
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3. A method as described in claim 2, wherein the diffusion gradient pulsing is in an

icosahedron pattern.

4. A method as described in claim 4, wherein the icosahedron is obtained by a

plurality of high angle tessellations upon a spherical representation of a specimen.

5. A method as described in claim 2, wherein the specimen is white matter in the

mammalian body.

6. A method for analyzing diffusion data collected with magnetic resonance imaging
of a specimen, comprising:

applying a mathematical group theory to analyze spherical diffusion variance
in diffusion-weighted image data collected,
wherein said data are applied to a spherical harmonic transform,

reducing data collected to a numerical algorithm,
wherein the algorithm is easily implemented to characterize anisotropy in multifiber
systems;

identifying components in a voxel as isotropic, single fiber, or multiple fiber

structures forming a plurality of at least three separate channels; and

determining magnitude and direction of diffusion by computation from the

transform magnitude and phase.

7. A spherical harmonic transform algorithm useful in characterizing diffusion
anisotropy from signals collected by employing high-angle resolution magnetic
resonance imaging, said transform derived from mathematical group theory based on

symmetrical conformity.

8. A spherical harmonic transform algorithm as described in claim 7, wherein said
algorithm is useful in the characterizing by determining the composition of a voxel in

terms isotropic, single fiber, and multiple fiber channels.

9. A spherical harmonic transform algorithm as described in claim 8, wherein said
algorithm is further useful in determining magnitude and orientation of a diffusion

field.
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10. A spherical harmonic transform algorithm as described in claim 8, wherein said
algorithm is useful in determining the composition and orientation of fibers in white

matter.

11. A computer program of a spherical harmonic transform algorithm useful in
5  characterizing diffusion anisotropy from signals collected by employing high-angle

resolution magnetic resonance imaging, said transform derived from mathematical

group theory based on symmetrical conformity.
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