20057086017 A1 | IV Y0 0O 0 N

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

15 September 2005 (15.09.2005)

AT OO O

(10) International Publication Number

WO 2005/086017 Al

(51) International Patent Classification’: GO6F 15/80
(21) International Application Number:
PCT/GB2005/000797

(22) International Filing Date: 2 March 2005 (02.03.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0404683.5 2 March 2004 (02.03.2004) GB
(71) Applicant (for all designated States except US): IMAG-
INATION TECHNOLOGIES LIMITED [GB/GB];
Home Park Estate, Kings Langley, Hertfordshire WD4

8LZ (GB).

(72) Inventor; and

(75) Inventor/Applicant (for US only):
[AU/GB]; 99 Watford Road, St.
AL2 3JY (GB).

FENNEY, Simon
Albans, Hertfordshire

(74) Agent: ROBSON, Aidan, John; Reddie & Grose, 16
Theobalds Road, London WC1X 8PL (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR MANAGEMENT OF CONTROL FLOW IN A SIMD DEVICE

121 10
I:Z?;Er[;] » Control Unit

“ 121 : 7

Sy PE, t EMC |

P . =T | logid

A 4

2~ [2
— PE y
ete 21~ logic [

O (57) Abstract: A single instruction multipre data processing device (SIMD) comprises a plurality of processing elements (PE). Each
PE includes an execution mask counter (EMC) register for storing a plurality of bits. There is a means for enabling and disabling a
writing of data to registers in the PE in dependence on the multi-bit data stored in the EMC register.

WO 2005/086017 PCT/GB2005/000797

1

METHOD AND APPARATUS FOR MANAGEMENT OF CONTRO-L. FLOW IN
A SIMD DEVICE

Field of the Invention

This invention relates to a method and apparatus for management of method flow in a
single instruction multiple data (SIMD) device.

Background to the Invention

Computing devices are commonly classified into four broad categories
1. Single Instruction/Single Data (SISD),
2. Multiple Instruction/Single Data (MISD) (an unusual category)
‘3. Single Instruction/Multiple Data (SIMD), and
4. Multiple Instruction Multiple Data (MIMD).

The first category, SISD, describes the majority of existing computer devices wherein a
single instruction stream operates on a single set of data. The fourth, MIMID, describes
systems like processor farms and some super-computers, in which N proce ssors (i.e.
instructions) can be independently executing on N sets of data.

The third category, SIMD, is a blend of the two extremes. With reference to Figure 1, a
SIMD device generally has a single Control Unit (CU), ‘10’, that interprets an instruction
stream, ‘11°, and an array of multiple homogeneous parallel Processing Elements (PEs),
“12°, which operate in lock step under the guidance of the CU. Each PE typically contains
an Arithmetic/Logic Unit (ALU), registers, and/or interfaces to memories @and/or
neighbouring PEs.

Many modern CPUs, e.g. x86, and PowerPC, contain instructions that con€rol a SIMD
subunit. SIMD systems are used in many applications including computer graphics and
multimedia are becoming more common.

In each cycle, the CU instructs all PEs to perform the same operation. In effect, each PE
is running the same program and, moreover, the same line of code as the other PEs except
with different data. This leads to some interesting control flow issues. For example,
consider the following psendo code with a simple IF-THEN-ELSE constriect:

CodeBlock 1;

IF (condition 1) THEN
CodeBlock _2;
ELSE
CodeBlock_3;
ENDIF

CodeBlock_4;

WO 2005/086017 PCT/GB2005/000797

Since each PE is executing the same instruction, we have a dilemma when we reach the
‘IF” statement. For example, let’s assume that ‘condition 1 is a test of the value of a

local PE data register value. For PE y ‘condition_1’ may evaluate to ‘true’ requiring
execution of ‘CodeBlock_2’ but not ‘CodeBlock 3’, whereas on PE, the converse may
apply.

A prior art solution is to include a feature known as ‘masking’. Each PE includes a
Boolean ‘Enable Register’, ER, ‘13’, such that, if the enable register is ‘false’, writes to
data registers within the PE are dlsabled The s1mple example given above is thus re-

encoded as:
CodeBlock 1;

ER := condition 1;
CodeBlock_2; :

ER := NOT ER;
CodeBlock_3;

ER := TRUE;

CodeBlock 4;

In the case of PE,, ‘CodeBlock_3’ is processed but is completely harmless because it is

not allowed to update any storage register as the associated ER has been set to “false’ in
that part of the code. Note, however, that this was a particularly simple example and it
will become clear that more complicated and/or nested control-flow code requires more
careful coding.

There are several forms of other structured, control-flow constructs commonly found in -
modern programming languages, such as ‘C’. A very brief summary of some of these
constructs now follows:

Nesting: :
Control flow constructs can be nested, i.e., one may be embedded within another. A
simple example, using nested ‘IF’ constructs, is...

IF (condition_1) THEN
CodeBlock_1;
IF (condition 2) THEN

CodeBlock_2;

ENDIF

ELSE
CodeBlock_3;

ENDIF

‘CodeBlock_2’ will only run if both ‘condition_1" and then ‘condition_2° pass. Note that
‘CodeBIock 3’ will not ‘execute’ if we have reached either ‘CodeBlock I’or
‘CodeBlock_2°.

Multi-way IF-THEN-ELSIF-ELSE: °
Although IF-THEN-ELSE can be nested to produce complex decisions, sometimes it is
preferable to express them as chains of the following form:

WO 2005/086017 PCT/GB2005/000797

IF {(condition 1) THEN
CodeBlock_1;
ELSIF (condition_2) THEN
CodeBlock_2;
ELSIF (condition_3) THEN
CodeBlock_3;
ELSE .
CodeBlock_4;
ENDIF

Note that this is more convenient to express than the functionally equivalent ...

IF (condition 1) THEN
CodeBlock_1;

ELSE
. IF (condition_2) THEN
CodeBlock 2;
ELSE
IF (condition_ 3) THEN
CodeBlock_3;
ELSE
CodeBlock 4;
ENDIF
ENDIF
ENDIF
Loops:

A pre-tested loop, e.g. while-loop, takes the form...

CodeBlock_1;

WHILE (condition 1) DO
CodeBlock_2;

ENDWHILE ’

CodeBlock_ 3;

In this example, if after executing ‘CodeBlock_1°, ‘condition_1’ is ‘true’, ‘CodeBlock 2’
will be executed. The condition will then be retested and if still ‘true’, ‘CodeBlock 2’
will be re-executed. This process repeats until the condition fails, after which
‘CodeBlock 3’ is run. A simple variation, the post-tested loop, does not perform the first
conditional test so that ‘CodeBlock 2’ is always executed at least once.

Loops with “breakloop’ and ‘continueloop’:

Loops may be augmented by the use of ‘breakloop’ and/or ‘continueloop’ statements. If a
‘breakloop’ is encountered within a loop, it is as if the loop is instantly terminated at that
point — all subsequent instructions inside the (innermost) loop are skipped and control
proceeds to the instruction following the loop. A coding example is given below:

WHILE (conditiom_1) DO
CodeBlock 1;

IF (condition_2) THEN
CodeBlock_2;
BREAKLOOP;

ENDIF

WO 2005/086017 PCT/GB2005/000797

CodeBlock_3;
ENDWHILE

CodeBlock 4;

After executing ‘CodeBlock_1’, if ‘condition_2” is ‘false’, ‘CodeBlock 3’ will be
executed and the loop condition will be retested. If, on the other hand, ‘condition 2’ is
true, ‘CodeBlock 2’ will be run, the “breakloop’ command encountered, and control then
passes immediately to ‘CodeBlock 4°.

The ‘continueloop’ statement skips the remaining instructions inside the loop body but
does not terminate the loop. Instead, it continues to the next iteration. If we replace
‘breakloop’ with ‘continueloop’ in the above example, then after encountering
‘continueloop’, control would proceed to the start of loop, retesting ‘condition_1 etc.

Note that the breakloop and continueloop statements could be extended so that they refer
not to the most deeply nested loop but to some outer parent loop.

Return and Exit commands:

Related to the ‘breakloop’ construct, some languages employ a ‘return’ statement to
indicate that a procedure is to terminate early.and return to the parent function. An ‘exit’
command is even more drastic in that it terminates the current process — this is
occasionally used in error handling.

Case construct:
A case statement is a variation on IF-THEN-ELSE that is used to execute different
sections of code depending on the value of a single expression. A typical example is ...

CASE (Expression_ 1)

WHEN Constant_A:

WHEN Constant_B:
CodeBlock_1;
DONE;

WHEN Constant C:
CodeBlock_2;
/*note no DONE*/

WHEN Constant_D:
CodeBlock_3;
DONE;

DEFAULT:
CodeBlock 4;
DONE; /*redundant*/

ENDCASE;

In the above example, if “Expression_1" evaluates to either ‘Constant A’ or
‘Constant_B’, then ‘CodeBlock 1’ will be executed. The following ‘DONE’, following

WO 2005/086017 PCT/GB2005/000797

‘CodeBlock_1°, indicates that the case statement should now terminate. If, on the other
hand, the expression evaluates to ‘Constant C’, ‘CodeBlock 2’ is executed. Because
there is no “DONE’ at the end of this section, execution continues with ‘CodeBlock_3°.
The ‘DEFAULT" case is chosen if the expression does not match any of the listed values.

Recursion:

This final construct describes when a section of code references itself, This is a common
feature of modern computer languages and can be found described in most textbooks. To
support such a feature generally requires a program stack to save the program counter and
other associated state.

In the prior art, one way of handling complex conditional code is to explicitly write
instructions for the CU that directs each PE to compute the appropriate ER value.
Intermediate values are then stored, say, in local program registers in each PE. This is
certainly extremely flexible but requires many additional instructions that are likely to
decrease performance.

In “A SIMD Graphics Processor”, (Computer Graphics (Proceedings of SIGGRAPH 84),
18(3) pp77-82, July 1984), Levinthal and Porter enhance the ER control flag by adding a
‘run flag stack’, consisting of a ‘stack’ of bit registers. The addition of instructions to
push and pop values between the stack and the ER allows very easy implementation of
some forms of nested conditional code. The CHAP control unit is also enhanced so that it
includes a means of testing if all ER values are “false’. This, for example, allows the
efficient implementation of a ‘while’ loop across all the PEs. In particular, whenever an
individual PE ‘fails the loop test’, it merely sets its ER to “false’ since loop iterations
must continue if other PEs are not disabled. A special conditional branch instruction,
which uses the test for when ERs are false, allows the CU to jump to the instruction after
the end of the loop once all PEs have completed the loop.

Although the ‘run flag stack’ enhancement is a powerful construct that other systems
have also later used — it is not without some shortcomings. Firstly, some of the above
forms of control, such as ‘continueloop’, are not easily supported because only the ZR bit
is directly accessible. Secondly, if the depth of the stack is N, (i.e. N bits of storage per
PE), the maximum nesting depth of control is limited to only ~N levels.

A variation on Levinthal and Porter’s method is presented in WO 0246885 (Redford). In
this system, the stack is replaced by a counter value. When an ER value is ‘saved’, the
stored counter value is incremented whenever the ER is ‘false’, otherwise the stored
counter is not modified. When ‘restoring’, if the counter value is (for the sake of
argument) non zero, the counter is decremented and ER is set to “false’, otherwise the
counter is left unmodified and ER is set to ‘true’. This improves the method of Levinthal
et al in that the guaranteed safe maximum level of conditional nesting is ~2" for an N bit
counter, albeit at the cost of additional increment and decrement units. Since it is only, in
effect, a form of data compression of the stack, it still has the exactly the same issues
with some common control operations.

WO 2005/086017 PCT/GB2005/000797

A radically different approach is taken in EPO 035647. In this system, each PE has a
several additional multi-bit registers including a ‘Program counter store’ and a ‘priority
register’. The program source code is pre-processed in an interesting manner ~ it is
broken into blocks which either start with labels or occur after branches, and which are
terminated by branches (conditional and non-conditional) or by another label. These
blocks are then analysed and assigned a unique integer priority code. Special instructions
that use the priority values are added to the start and/or end of the blocks.

The execution process is complex and requires special hardware which can search
through the priority codes of all inactive PE’s to find those with the least priority. When
the system reaches the end of a block, it uses the above hardware to identify and run the
block of code with the least priority value (disabling all other PEs in the process).

This system can handle some rather arbitrary conditional code, including arrangements
sometimes termed ‘spaghetti code’, however, due to the static pre-analysis of the source
code, that this method cannot handle recursion. Furthermore, while the search hardware
for locating the least priority value may be tolerable for a very small numbers of PEs, it is
likely to become very expensive and/or have a large timing latency with even moderate
numbers of PEs. '

Summary of the Invention

Preferred embodiments of the invention are relatively inexpensive to implement, even
with large numbers of PEs, yet allows for easy support of virtually all the common forms
of control flow constructs used in ‘structured programming’. It avoids the control
limitations and/or costs with the prior art as described above, nor does it need significant
pre-processing of the source code, thus simplifying the compilation process.

We have appreciated that, by extending the single bit ER flag to multiple bits, being able
to test for a small number of pre-determined values of those bits, and by including a small
set of control-flow Instructions, a means of efficiently managing control flow on a SIMD
processor can be achieved. Note that this differs from the prior art which uses a single bit
ER flag to control instruction execution and where management of this flag is done with
auxiliary structures, either explicit local registers, stack, counter, or a priority value.

In accordance with an embodiment of the invention there is provided a single instruction
multiple data processing device (SIMD) comprising a plurality of processing elements
(PE), each PE including an execute mask count (EMC) register for storing a plurality of
bits, means for enabling and disabling the writing of data to registers in the PE in
dependence on multi-bit data stored in the EMC register.

In accordance with an embodiment of the invention there is provided a method for
controlling program flow on an SIMD comprising a plurality of PEs, comprising the steps
“of, supplying a sequence of instructions and.data to the PEs, executing the instructions on
the PEs, enabling and disabling the writing of data to registers in each PE in dependence

WO 2005/086017 PCT/GB2005/000797

on a mulii-bit data value stored in an EMC register on each PE, and modifying the multi-
bit value in the EMC register of a PE when the writing of data to registers on that PE is
disabled whilst the writing of data to registers in other PEs is enabled.

Detailed Description of Preferred Embodiments

Preferred embodiments of the invention will now be described in detail by way of
example with reference to the accompanying diagrams in which:

Figure 1 shows a typical arrangement of a SIMD device;

Figure 2 shows a very broad overview of the new invention;

Figure 3 is a flowchart of a preferred embodiment’s CondStart instruction;

Figure 4 is a flowchart of a preferred embodiment’s CondElsif instruction;

Figure 5 is a flowchart of a preferred embodiment’s CondSetMask instruction;
Figure 6 is a flowchart of a preferred embodiment’s CondLoopTest instruction;
Figure 7 is a flowchart of a preferred embodiment’s CondEnd instruction;

Figure 8 shows an overview of the logic used to control the enabling/disabling of
PEs in response to control flow instructions in an embodiment of the invention; and
Figure 9 is a flowchart of a subset of the logic of Figure 8.

Two specific embodiments of the invention will be described here. The first is the more
straightforward to describe and so better illustrates the behaviour of the invention. The
second embodiment, details an improved method of encoding some of the values used
which result in a reduction of the hardware implementation cost.

With reference to Figure 2, in the first embodiment the ER flag of the prior art in each PE
is replaced with a multi-bit “Execute Mask Count” register or EMC, ‘20°. Bach EMC has
an associated test logic unit, ‘21°, which can report when the EMC is one of several pre-
defined values - these pre-defined tests are for example ‘EMC is zero’, ‘EMC=1", and
‘EMC=2’. Other values are possible. A set of signals per PE, ‘22, including the results
of the associated pre-defined EMC tests, is fed to the CU. The purpose of these signals
will be described in detail later.

The EMC is used to disable/enable the write back of instruction results to internal PE
registers: when the value is ‘zero’ write back is enabled and is disabled for all non-zero
values. Note that, unlike the prior art, this is a test of all the bits in the EMC register.

At the start of a program or process, all EMCs are initialised to predetermined values:
These values are usually chosen to be zeros thus initially enabling all PEs.

Instructions :
In the preferred embodiments, five additional control instructions are defined to support
structured control flow. These instructions are...

CondStart, - Conditional Start
CondElself, - Conditional ELSE IF

WO 2005/086017 PCT/GB2005/000797

8
CondSetMask, - "Conditional SET MASK
CondLoopTest, and - Conditional LOOP TEST
CondEnd. - Conditional END

Note, however, that variations of these instructions (e.g. additional or modifications to)
will be apparent to one skilled in the art.

Each control instruction has two or three ‘immediate data’ fields that are used to
parameterise that instruction’ s behaviour, which will shortly be described using a pseudo-
code format. It should be noted that this is done for clarity and may not be the most
efficient for direct hardware implementation. A more hardware friendly implementation
will be described later but other alternatives will be apparent to one skilled in the art.
Examples on how to utilise these to implement control flow then follow these

. descriptions.

1) CondStart (condition, MaskAdjustAmount, JumpTarget)

The CondStart instruction will be used to start most control flow blocks, and takes three
fields. The first, ‘condition’, refers to some Boolean test that can be performed by the
PE’s ALU. For simplicity of description in the embodiment, this will just be a test of
‘condition codes’ (e.g. ‘is negative’, ‘not zero’, or ‘True’) as commonly seen in CPU
instruction sets, but those skilled in the art will be able to envision other possibilities.

The second field, MaskAdjustAmount, describes how to adjust the local EMC value. In
the preferred embodiments, this need only be a choice of two possible values, ‘1’ or ‘2°.
The final field, JumpTarget, is used to alter the CU’s program counter when certain -
conditions are met. :

Briefly, for each PE, if the condition test fails or the EMC is non zero, then the EMC is
ad;usted/mcremented by the MaskAdjustAmount. If all EMCs are non-zero, the CU
jumps to the instruction indicated by JumpTarget.

The behaviour of the instruction is summarised concisely by the following pseudo-code:

CondStart (conditiomn, MaskAdjustAmount, JumpTarget)
BEGIN

/*

// PE Processing

*/

FOR P in ALL PES DO

IF ({(P.condition !=TRUE) OR (P.ExecuteMaskCount != 0)) THEN
P.ExecuteMaskCount+= MaskAdjustAmount;
ENDIF

ENDFOR

/-k
// Branch processing.

*/

WO 2005/086017 PCT/GB2005/000797

IF All _PEs (ExecuteMaskCount != 0) THEN
Jjump JumpTaxget
ENDIF
END

The behaviour is also given diagrammatically in Figure 3. In step “100°, the instruction
begins by examining the ‘first’ PE. Step ‘101’ checks if we have examined all PEs and
will proceed.to step ‘102’. Here it tests the condition requested in the instruction against
the state of the PE and also examines the EMC value. If the condition evaluates to
FALSE or the EMC value is non-zero, then the processing proceeds to step ‘103’,
whereupon the EMC is incremented by the ‘mask adjust amount’ as specified in the
instruction. It then goes to step ‘104°. If at step ‘102’ the test takes the “NO” path, then it
also proceeds to step ‘104°.

At step ‘104’ the instruction advances to the next PE (if any) and back to step ‘101°.
When all PE’s have been processed by 102 and 103, it proceeds to step ‘110°. If there are
some PEs that still have a zero EMIC value, the Program counter is advanced, in the
standard fashion, to the next instraction, ‘111°. Otherwise, if all PEs are currently
disabled, i.e. all EMCs # 0, then the instruction branches to the ‘Jump target’, in step
‘112°. :

2) CondElself (condition, MaskA djustAmount, JumpTarget)

The CondElself instruction is primarily used for else/elseif clauses as well as for
implementing continueloop and breakloop statemements. It takes the same three
parameters as CondStart. The functionality is...

CondElselIf (condition, MaskadjustAmount, JumpTarget)
BEGIN :
/-k
// PE Processing
*/
FOR P in ALL PEs DO
IF (P.ExecuteMaskCount == 0) THEN

P.ExecuteMaskCount := MaskAdjustamount;

ELSIF (P.condition AND (P.ExecuteMaskCount == 1))
P.ExecuteMaskCount = 0;
ENDIF
ENDFOR

/*
// Branch processing.
*/
IF All PEs (ExecuteMaskCount I= 0) THEN
jump JumpTarget
. ENDIF
END

This functionality is also shown in Figure 4. Steps 100, 101, 104, 110, 111, and 112 are
identical to those as described previously. In step ‘120°, which replaces step 103, the

WO 2005/086017 PCT/GB2005/000797

10

EMC is tested for equality to zero and, if so, the EMC is set to the instruction’s .
‘MaskAdjustAmount’, ‘121°, and control proceeds to step ‘104°. If the EMC is non-zero
in step ‘120’ theN in step ‘122 the EMC is tested for equality to 1, and the condition is
tested. If either of these tests fail, control again proceeds to step ‘104°. If both pass, in
step *123’, the EMC value is set to zero, and control once more proceeds to step ‘104°.

3) CondSetMask (condition, MaskAdjustAmount, JumpTarget)

This instruction can be used for breakloops/continueloops, early returns, and exits. The
instruction behaves as follows. ..

CondSetMask (condition, MaskAdjustAmount, JumpTarget)
BEGIN
/*

// PE Processing
*/
FOR P in ALL PEs DO
IF ((P.condition==TRUE) AND (P.ExecuteMaskCount == 0)) THEN

P.ExecuteMaskCount = MaskAdjustAmount;

ENDIF
ENDFOR

/* .
// Branch processing.
*/
IF All_PEs (ExecuteMaskCount != 0) THEN
jump JumpTarget
ENDIF
END

This behaviour is also summarised in Figure 5. This is almost identical in behaviour to
CondStart (i.e. Figure 3) except that steps ‘102’ and ‘103’ have been replaced by ‘130’
and ‘131” respectively. In step *130°, the EMC is tested for equality to zero and if this is
the case AND the condition is true, then it proceeds to step ‘131’ whereupon the EMC is
set to the MaskAdjustAmount specified in the instruction. If the test in ‘130’ fails, the
control passes to step ‘104 as before.

4) CondLoopTest (condition, MaskAdjustAmount, JumpTarget)

This is used at the end of a loop structure for both pre- and post-tested loops. In the
preferred embodiments, the MaskAdjustAmount is again restricted to values of 1 or 2.

CondLoopTest (condition, MaskAdjustAmount, JumpTarget)
BEGIN

BOOL ExitLoop = TRUE;

[*

// PE Processing - determine if any PEs are active
*/

FOR P in ALL_PEs DO

WO 2005/086017 PCT/GB2005/000797

11
IF ((P.Condition == TRUE) AND (P.ExecuteMaskCount == 0))
THEN ’
Exitloop = FALSE;
ENDIF
ENDFOR
/* If we should exit the loop */
IF (ExitLoop) THEN
FOR P in ALL PEs DO
IF (P.ExecuteMaskCount > MaskAdjustAmount) THEN
P.ExecuteMaskCount -= MaskAdjustAmount;
ELSE
P.ExecuteMaskCount = 0;
ENDIF
ENDFOR
/*else if we should continue iterating */
ELSE .
* FOR P in ALL PEs DO
IF (P.Condition == FALSE) AND (P.ExecuteMaskCount ==
0) THEN
P.ExecuteMaskCount = MaskAdjustAmount;
ENDIF
ENDFOR
jump JumpTarget;
ENDIF
END

Once again, the form of the above description is intended for clarity. For efficiency, a
hardware implementation may use a different arrangement.

This behaviour is shown in Figure 6. The first step, ‘140°, is to set the Boolean Flag,
‘ExitLoop’ to True, and then proceed to step ‘100°. It should be noted that steps ‘100°,
‘1017, and ‘104’ perform the same functions as described in the previous instructions. If
still processing PEs after step ‘101°, the tmethod proceeds to step ‘141°. If any PE
indicates that it still needs to execute, i.e., Condition is True and the EMC is zero, then
proceed to step ‘142’ else proceed to ‘104, In step ‘142 the ExitLoop Boolean value is
set to False.

Once step ‘101" determines that all PEs hhave been tested, control proceeds to ‘143” which
examines the ExitLoop flag — if False, control proceeds to step ‘150’ else it proceeds to
‘160°. Step ‘150°, starts another iteration pass through the PEs followed by ‘151°
detecting when the iteration has completed. When processing a particular PE, step ‘152’
determines if that PE has just terminated its loop, i.e. EMC=0 and Condition is False. If
this is not the case control passes to step “154’, else to step ‘153’ In step ‘153’ the
MaskAdjustAmount is added to the EMC value, and control proceeds to step ‘154’ which
moves on to the next PE, and subsequently to step ‘151°. If ‘151” indicates that the all
PEs have been processed, step ‘155’ sets the CU program counter to be the “Jump
Target”.

When step ‘160’ is chosen, it also starts a different iteration pass through the PEs with
step ‘161” determining when all PEs have been processed. In step ‘162’ a PE’s EMC

WO 2005/086017 PCT/GB2005/000797

12

value is examined and if this is less than (or equal to) the MaskAdjustAmount, the EMC
is set to zero, ‘163°, else the value is subtracted from the EMC, ‘164’. Control then
continues to step ‘165 which progresses to the next PE. When ‘161’ determines all PEs
have been processed, step ‘166’ advances the CU program counter to the next instruction.

5) CondEnd (MaskAdjustAmount, JumpTarget)
The final instruction is used at the end of a control flow instruction. It behaves as follows:

CondEnd (MaskAdjustAmount, JumpTarget)
BEGIN

/*

// PE Processing

*/

FOR P in ALL_PEs DO

IF ((P.ExecuteMaskCount > MaskaAdjustAmount)) THEN -
P.ExecuteMaskCount -= MaskAdjustAmount;

ELSE
P.ExecuteMaskCount

]

0;
ENDIF

ENDFOR

/*
// Branch processing.
=/
IF All PEs (ExecuteMaskCount != 0) THEN
jump JumpTarget
ENDIF
END

This behaviour is also shown in Figure 7. The behaviour is very similar to that of
condstart (Figure 3) with steps 100, 101, 104, 110, 111, and 112 being identical, but steps
102 and 103 are replaced with 170, 171, and 172 as follows: In step 170 if the EMC value
is less than or equal to the MaskAdjustAmount, the EMC is simply set to zero, step 171,
else the MaskAdjustAmount is subtracted from the EMC, step 172.

In the preferred embodiments, the MaskAdjustAmount is again restricted to values of 1
or 2.

Translating Control Flow Constructs

The instructions described above are used to implement the control-flow constructs
previously described. A few examples will be presented which, although far from
exhaustive, should be sufficient to teach these skilled in compilers the simple principles
mvolved.

Example: ‘IF’ constructs:
A simple if/else statement...

IF (condition 1) THEN
CodeBlock_1;
ELSE

WO 2005/086017 PCT/GB2005/000797
13

CodeBlock _2;
ENDIF

...could be translated as...

CondStart (condition_1, 1 , ELSE_ADDR);
CodeBlock_1;

ELSE_ADDR:
CondElseIf (TRUE, 1, ENDIF_ADDR) ;
CodeBlock_2;

ENDIF_ADDR:
CondEnd (1, next_CondEnd_etc);

This behaves as follows: Condstart is executed upon entry to the ‘IF’. Whenever a PE is
enabled (EMC=0) and ‘condition_1" is ‘true’, ‘CodeBlock 1’ will be executed. For all
other PEs, the EMC is incremented by MaskAdjustAmount, i.e. “+1°. If there are no
active PEs, then the CU branches immediately to ELSE_ADDR, thus'skipping all the
instructions in ‘CodeBlock 1°.

At ELSE ADDR, the CondElself will set any ennabled PES to disabled and enable any
that had only failed ‘condition_1° (i.e., those with EMC = 1).

At the end of the ‘IF”, the original EMC values are restored by the CondEnd instruction.

An ‘IF’ with ‘ELSIF’ clauses is slightly more involved. For example, the following
pseudo code...

IF (condition_1) THEN
CodeBlock 1;
ELSIF (condition_2) THEN
CodeBlock_2;
ELSIF (condition 3) THEN
CodeBlock_3;
ELSE
CodeBlock_4;
ENDIF .

...would be translated as follows(

i
;Reserve 2 values for operating the ELSEIFs

;
CondStart (TRUE, 2 , somewhere after_endif);

7
;Perform the first test

i
CondSetMask (NOT condition_1, 1, TEST2_ADDR);
CodeBlock_1;

TEST2_ADDR:
CondElseIf (condition_2, 2, TEST3_ADDR)
CodeBlock_2; .

WO 2005/086017 PCT/GB2005/000797
14

TEST3_ADDR:
CondElselIf (condition_3, 2, ELSE_ADDR)
CodeBlock_3;

ELSE_ADDR:
CondElseIf (TRUE, 2, ENDIF_ADDR)
CodeBlock_4;

ENDIF_ADDR: -
CondEnd (2, next_CondEnd etc);

With this code, once any PE that was enabled at the start of the conditional loop has
executed a section of code, its EMC will be set to 2. Any that have not yet satisfied a test
have an EMC of 1.

It is possible to create an alternative embodiment wherein a modified CondElself
instruction has two ‘branch addresses’ so that it can perform even more ‘short circuiting’
of the conditional code.

Example: Loop constructs:
A simple ‘while’ statement...

WHILE (condition_1) DO
CodeBlock_1;
ENDWHILE

...could be translated as...

CondStart (condition 1, 1 , ENDWHILE_ADDR);
LOOPSTART ADDR:

CodeBlock 1;
ENDWHILE ADDR:

CondLoopTest (condition 1, 1, LOOPSTART_ADDR) ;

To support loops with ‘breakloop’ and ‘continueloop’ functionality, e.g...

WHILE (condition 1) DO
CodeBlpck~l;

IF {condition 2) THEN
CodeBlock_2;
CONTINUELOOP;

ENDIF; '

CodeBlock_3;

IF (condition_3) THEN
CodeBlock _4;
BREAKLOOP;

ENDIF;

CodeBlock_5;
ENDWHILE

...the initial ‘MaskAdjustAmount” is instead set to ‘2” allowing for both ‘continueloop’
and ‘breakloop’ states fo be monitored. For example:

WO 2005/086017 PCT/GB2005/000797

15

CondStart (condition 1, 2 , ENDWHILE_ADDR) ;
LOOPSTART ADDR:
CodeBlock_1;

; .
; IF (condition 2) THEN ...
14
CondStart (condition_2, 1, ENDIF_1_ADDR};
CodeBlock _2;
/*Continueloop: set EMC to IF Masking + 1, i.e. 2%/
CondSetMask (TRUE, 2, ENDIF_1_ADDR);
ENDIF_1_ADDR:
CondEnd (1, CONTINUE_ADDR) ;

CodeBlock_3;

’

; IF (condition_3) THEN ...

CondStart (condition_3, 1, ENDIF_2 ADDR);
CodeBlock _4;
/*Breakloop: set EMC to IF Masking + 2, i.e. 3%/
CondSetMask (TRUE, 3, ENDIF_Z_ADDR);
ENDIF_2_ADDR:
CondEnd (1, CONTINUE ADDR) ;

CodeBlock_5;

CONTINUE_ADDR:
;Re~enable any continueloops for next iteration
CondElself (TRUE, O, ENDWHILE_ADDR)

ENDWHILE_ADDR:
CondLoopTest (condition_1, 1, LOOPSTART ADDR) ;

If the breakloop or continueloop is the only code within an ‘if’, a single CondSetMask
instruction will suffice for its implemenation. It is also possible to implement enhanced
‘breakloop/continueloop’ commands that control, not just the innermost loop but also a
parent loop by increasing the CondSetMask values.

Case statements are handled in a very similar manner to the ELSIF code while recursion,
up to a maximum value determined by the size of the CU’s program counter stack and the
number of bits in the EMC, is automatically handled by the described approach.

Hardware Structure .

A preferred arrangement for the operation of the instructions will now be described with
reference to Figure 8. When the CU processes one of the above control flow instructions,
the instruction ‘condition’, ‘50°, Operand, ‘51°, Mask AdjustAmount, ‘52°, and Jump
Target, ‘53, fields are extracted..

The ‘condition’, ‘507, is broadcast to all M PE units and tested against specific registers
or condition flags, ‘61°. For each PE, a Boolean flag, is generated by the tests producing
M resulting bits, ‘62°. As described previously, the EMC value, ‘20°, for each PE, is
tested, ‘21°, to determine if it matches one of three pre-determined values, i.e., 0, 1, or 2,

WO 2005/086017 PCT/GB2005/000797

16

generating three Boolean flags. Each flag is grouped with the matching values from the
other M PEs to create three sets of M bits, ‘63, ‘64°, and ‘65°, corresponding to ‘Is 0°, ‘Is
1’, and ‘Is 2°. Clearly, a particular bit position, corresponding to one of the A PEs, can
only be ‘true’ in at most one of ‘63°, ‘64°, or ‘65°.

The ‘determine operations’ unit, ‘70°, takes the Condition Results, ‘62’, the three sets of
EMC value flags, ‘63’ thru ‘65°, and the Instruction Operand, ‘51°, and Instruction Mask,
‘52’, and determines how to adjust all the PE EMC values to respond to the instruction.
There are six possible operations that can be chosen (ignoring a trivial No-Operation
option). These operations are:

Add 2 to an EMC

Add 1toan EMC

Clear an EMC1to 0 :

Set an EMC to the instruction’s Mask Adjust Amount, € 52’
Subtract 1 from an EMC '
Subtract 2 from an EMC

‘These choices can clearly be encoded with three bits.

For any particular instruction, at most one of these operations need be applied to a
particular PE’s EMC and, further more, across all the PEs at most only two different
operations will be used. The first operation choice, “Operation 17, 71, is encoded with 3
bits and copied to all “EMC Update Units”, ‘76’. An M-bit mask, “Operation 1 Select”,
12’ , indicates which subset of the M EMC Update Units should perform this operation.
The EMC update units simply perform the requested operation.

Similarly, the second possible operation choice, “Operation 2”7, *73’, is also broadcast to
all EMC Update Units, along with another M-bit mask, “Operation 2 Select”, *74°, which
indicates which of the units should perform the operation. Again, any particular EMC
-Update Unit will perform, at most, only one of the two operations.

In order to perform a “Set EMC to Mask Adjust Amount” command, the mask Adjust
Amount, ‘52°, is also broadcast to all EMC Update Units.

The remaining required function of unit ‘70’ is to determine how the CU should adjust
the program counter. If it sets the “Do Branch Flag”, ‘80°, the CU’s “Instruction Fetch
Unit”, ‘817, will update the program counter to begin fetching instructions from the
instruction’s “Jump Target”, ‘53°.
Details of the behaviour of the “Determine Operations” unit, ‘70, are now summarised
by the following pseudo code.
DecideOp(IN BIT ConditionResults[M], // ‘62!
IN BIT IsO([M],
// 63’
/l 64

IN BIT Isl([M],

WO 2005/086017 PCT/GB2005/000797
17

IN BIT Is2[M],

// ‘657
IN INT Instr Operand,

// 51
IN INT Instr MaskAdjust, // ‘527
OUT INT Oper_1,

AN

OUT BIT Oper_ 1 Select [M], [/l 720
OUT INT Oper_2,

// 173’ .
OUT BIT Oper_2_Select[M], /] 727
OUT BIT DoBranch)

// 80O’

BEGIN

// Set of PEs active after instruction..

BIT ActivePEs[M];

//

// Determine which PEs will be active

/!
CASE (Instr Operand)

WHEN CondStart:
WHEN CondLoopTest:

BEGIN
ActivePEs := Is0 BIT AND ConditionResults;
DONE;
END
1117
WHEN CondSetMask:
BEGIN
ActivePEs := Is0 BIT_AND BIT_ NOT (ConditionResults);
DONE;
END
/177
WHEN CondEnd:
BEGIN
IF{Instr MaskAdjust == 1) THEN
ActivePEs := Is0 BIT _OR Isl;
ELSE
ActivePEs := Is0 BIT_OR Isl BIT_OR Is2;
ENDIF
DONE;
END
I
WHEN CondElself:
BEGIN
IF (MaskAdjustPmount == 0) THEN : -
ActivePEs := Is0 BIT OR (Isl BIT AND
ConditionResults) ; :
ELSE
ActivePEs := Isl BIT AND ConditionResults;
ENDIF

DONE

WO 2005/086017 PCT/GB2005/000797

18

END

ENDCASE

//
// Determine the “Do Branch Flag” (‘80‘) setting.

// The decision is reversed for LoopTests

//
DoBranch := (ActivePEs == “00000..000");

IF (Instr_Operand == CondLoopTest) THEN
DoBranch := NOT DoBranch;
ENDIF .

/!

// Decide how to update the EMCs

//
CASE (Instr_Operand)

WHEN CondStart:

BEGIN
Oper_1 Select := BIT NOT ActivePEs;
Oper_2_ Select := “00000..000"
IF (Instr_MaskAdjust == 1) THEN
Oper_1 := EMC_ADD 1;
ELSE
Oper_1 := EMC_ADD 2;
ENDIF
DONE
END
11111
WHEN CondElseIf:
BEGIN
Oper_l_Select := Is0;
Oper_1 := EMC SET ;
Oper_2_Select := Isl BIT AND ConditiomResults;
Oper_2 _ := EMC_CLEAR;
DONE
END
/1117
WHEN CondSetMask:
BEGIN
Oper_1_Select :=:-Is0 BIT AND ConditiomResults;
Oper_1 1= EMC_SET;
Oper 2_Select := “00000..000";
DONE
END
11111

WHEN CondLoopTest:
//IF still running the loop
IF{ DoBranch) THEN

// Disable any additional PEs
. Oper_ 1 Select := IsZero AND (NOT
ConditionResults) ;

WO 2005/086017 PCT/GB2005/000797

19
IF (Instr_MaskAdjust == 1) THEN
Oper_1 := EMC_ADD 1;
ELSE
Oper_ 1 := EMC_ADD 2;
ENDIF
Oper_2_Select := “00000..000";
//// Else we are exiting the loop
ELSE
IF (Instr_MaskAdjust == 1) THEN
Oper_ 1 Select := BIT_NOT IsO;
Oper_1 r=
EMC_SUB_1;
Oper_2_Select := *“00000..000”;
ELSE
// Set ones to zero
Oper_1_Select := Is0 BIT OR Isl;
Oper 1 s =
EMC_CLEAR;
//8ub 2 from all values s= 2
Oper 2_Select := BIT NOT (Is0O
BIT OR Isl);
Oper 2 =
EMC_SUB_2;
ENDIF
ENDIF
DONE
END
WHEN CondEnd:
BEGIN
IF (Instr MaskAdjust == 1) THEN
Oper_1_Select := BIT_NOT Is0;
Oper_1 := EMC_SUB 1;
Oper_2_Select := “00000..000";
ELSE
// Set ones to zero
Oper_1 Select := Is0 BIT OR Isl;
Oper_1 1= EMC_CLEAR;
//Sub 2 from all values >= 2
Oper_2_Select := BIT_NOT (Is0 BIT_OR
Isl);
Oper_2 := EMC_SUB 2;
ENDIF
DONE
END
ENDCASE
END

The above functionality is also illustrated in Figure 9. At step ‘200’ the current
instruction type is tested. If it is either a CondStart or CondLoopTest, then it proceeds to
step 210’ else to step ‘201°. In step ‘201’ if it is a CondSetMask instruction, control

WO 2005/086017 PCT/GB2005/000797

20

proceeds to step ‘211’ else to step ‘202°, If in step ‘202’ the instruction is a CondEnd the
control proceeds to step ‘212’, else the instruction must be a CondEIsif and control
proceeds to step ‘213°.

In step ‘210’ the set of M Boolean Flags, “ActivePEs” is set to the bitwise AND of the
Is0 flags with the ConditionResults.

In Step 211° ActivePEs is set to the be the bitwise AND of the Is0 flags with the
Negation of the ConditionResults.

In Step ‘212’, the Instruction’s MaskAdjustAmount is tested. If set to 1, control proceeds
to ‘214’ else (it must be 2) and control proceeds to 215°. ITn ‘214’ ActivePEs is set to IsO
or’ed with Is1, while in ‘215° ActivePEs is set to IsO or Is1 or Is2.

In Step ‘213°, the Instruction’s MaskAdj #stAmount is tested. If set to 0, control passes to
step ‘216’ else to “217’. In 216 ActivePEs is set Is0 or’ed with “Is1 and’ed with
ConditionResults), while in 217 ActivePEs is set to Is1 and’ed with ConditionResults.

After steps 210, 211, 214, 215, 216, or -217', control passes to step 230, wherein the
Boolean Flag “DoBranch™ is set to true if ActivePEs is the zero vector, else it is set to
False.

In Steps 231 and 232 the instruction type is again tested and, if was a CondLoopTest, the
DoBranch signal is inverted. Control progresses to ‘250°.

In step 250, if the instruction is CondStart, control proceeds to step 260, else to 251
where if the instruction is a CondElsif, control proceeds to step 261, else to 252 where if
the instruction is a CondSetMask, control proceeds to step 262, else to 253. In 253, if the
instruction is a CondLoopTest, control proceeds to 263, else to step 264.

In step 260, Oper_1 is enabled for all non-active PEs and Oper_2 is disabled, and control
passes to 270, which tests the instruction’s MaskAdjust Amount. If this is 1, control
passes to step 271, where “EMC Add 17 is chosen as Oper_1, else control passes to ‘272’
where “EMC Add 2 is chosen for Oper_1.

In step 261, Oper_1 is set to “EMCSet” and is enabled for all PEs with EMC=0. Oper_2
is set to “EMC Clear” and is enabled for all PE’s with EMC=1 and Condition which is
true.

In step 262, Oper 1 is set to “EMCSet” and is enaBled for all PEs with EMC=0 and
Condition=True. Oper_2 is disabled.

Step 263 determines if the loop is to continue operation or is to be exited, by examining
the DoBranch flag. If DoBranch is True, control proceeds to step 280, else to step 264
which also handles the CondEnd code. In step 280, Oper 1 is enabled for all PEs with

WO 2005/086017 PCT/GB2005/000797

21

EMC=0 and whose condition is FALSE, and Oper_2 is disabled. Control passes to step
270.

-In Step 264, the MaskAdjustAmount is tested — if the value is 1, control passes to step
281, else to step 282. In 281, Oper_1 is set to “EMC Sub 1” and enabled for all PE’s with
Non-Zero EMCs, and Oper._2 is disabled.

In step 282. Oper_1 is set to “EMC Clear” and enabled for all PEs with an EMC of either
0 or 1, and Oper._2 is set to “EMC Sub 2” for all otheer PEs.

Second Embodiment

In a second preferred embodiment, a saving in-hardwware cost can be achieved by
appreciating that the EMC values do not have to be represented as integers but can use an
alternative mathematical group. In particular, this ernbodiment uses a field based on
primitive polynomials modulo 2. These are frequently used for Linear Feedback Shift
Registers, or LFSRs.

In this system, the basic values/operations are substituted as follows:

Ist Embodiment’s Value or Replacement in 2" Embodiment
Operation

Value of 0 ‘ Value of 1

Add 1 Multipl y by 2 mod polynomial
Add 2 Multiply by 4 mod polynomial
Subtract 2 Multiply by ¥ mod polynomial
Subtract 1 Multiply by ¥ mod polynomial

For a given size of EMC, i.e. M bits, the primitive polynomial is chosen so that it has the
minimum possible number of terms. In this embodiiment, M is 9, and the chosen primitive
polynomial is x” +x” +1. To implement the replacement for “Add 1” the following

pseudo code, which is trivial to translate into a hardware description language such as
VHDL, is used:

BIT[3] FuncAddl(BiT In{9])

BEGIN
BIT[8] Out;
Out [8 downto 1] := In{7 downto 03 ;
Out [0] := In[8] XOR In[4];

Return Out;
END

WO 2005/086017 PCT/GB2005/000797

22
The “Sub 17 is replacement is similar:
BIT[9] FuncSubl (BIT In{2]})

BEGIN '
BIT[9] Out;
Out [7 downto 0] := In[8 downto 1];
Out [8] := In{5] XOR Inl0];
Return Out;

END

These functions are used twice to evaluate the “Add 2” and “Sub 2” equivalents.

Those skilled in the art will appreciate that these operations are considerably cheaper to
implement in hardware and also have the advantage of constant time to evaluate. This
compares very favourably with normal integer addition and subtraction which could take

linear effort. The extremely minor disadvantage of this system is that only (ZM - 1)

unique values can be represented (as opposed to 2" with integers) but, given the
substantial savings in addition/subtraction hardware, M can easily be increased.

In alternative embodiments, different sizes of the EMC, with corresponding primitive
polynomials, may be used.

WO 2005/086017 PCT/GB2005/000797

CLAIMS

10.

11.

A single instruction multiple data processing device (SIMD) comprising a
plurality of processing elements (PE), each PE including an execute mask
count (EMC) register for storing a plurality of bits, means for enabling and
disabling the writing of data to registers in the PE in dependence on multi-bit
data stored in the EMC register.

An SIMD according to claimn 1 in which the PE is disabled and enabled in
dependence on acomparison of the data stored in the EMC register with a
predetermined value.

An SIMD according to claim 1 or 2 in which the means for enabling and
disabling operates during execution of conditional or loop instructions.

An SIMD according to claim 1, 2, or 3 including means to modify the data
stored in the EMC register of a PE.

An SIMD according to claim 4 in which the means to modify the data stored
in the EMC register comprises means to perform a selected one of a plurality
of modifications on the data. ‘

An SIMD according to claim 4 or 5 in which the means to modify the data
stored in the EMC register including means to increment the data value by a
predetermined amount.

An SIMD according to claim 4 or 5 in which the means to modify the data
stored in the EMC register includes means to decrement the data value by a
predetermined amount.

An SIMD according to claim 4 or 5 in which the means to modify the data
stored in the EMC register including means to multiply the data value by a
predetermined amount.

An SIMD according to claim 4 or 5 in which the means to modify the data
stored in the EMC register includes means to divide the data value by a
predetermined amount.

An SIMD according to any preceding claim in which the data values in the
EMC register use a field based on primitive polynomials.

A method for controlling program flow on an SIMD device comprising a
plurality of processor elements PE configured to execute the same instructions
each PE including a multi-bit EMC register, the method comprising the steps
of

supplying to each PE, instructions to be executed, the instructions
including conditional instruction to be executed by the PE;

enabling/disabling the writing of data to registers in the PE in
dependence on the stored EMC value and a condition test preformed ina
conditional instruction under execution.

WO 2005/086017 PCT/GB2005/000797

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

A method according to claim 11 including the step of modifying the data
stored in the EMC register of each PE.

A method according to claim 12 including the step of selecting between a
plurality of possible modifications to the data stored in the EMC register.

A method according to any of claims 4 to 12 including the step of determining
whether the writing of data to registers in a plurality of PEs is enabled or
disabled and branching to a new instruction in dependence on the result of the.
determination.

A method according to claim 12 in which the modifying step comprises
incrementing the data stored in the EMC register by a predetermined amount.

A method according to claim 12 in which the modifying step comprises
decrementing the data stored in the EMC register by a predetermined amount.

A method according to claim 12 in which the modifying step éomprises
multiplying the data stored in the EMC register by a predetermined amount.

A method according to claim 12 in which the modifying step comprises
dividing the data stored in the EMC register by a predetermined amount.

A method according to claim 12 in which the data value in the EMC register
uses a field based on a pnmmve polynomials.

A method for controlling program flow on an SIMD comprising a plurality of
PEs, comprising the steps of, supplying a sequence of instructions and data to
the PEs, executing the instructions on the PEs, enabling and disabling the
writing of data to registers in each PE in dependence on a multi-bit data value
stored in an EMC register on each PE, and modifying the multi-bit value in the
EMC register of a PE when the writing of data to registers on that PE is
disabled whilst the writing of data to registers in other PEs is enabled.

A method according to claim 20 including the step of testing whether the
writing of data to registers in all PEs is disabled, and branching to another
instruction in dependence on the result of the determination.

An SIMD comprising a plurality of PEs, each including an EMC register,
means for supplying a sequence of instructions and data to the PEs for
execution, means for enabling and disabling the writing of data to registers on
each PE in dependence on a multi-bit data value stored in an EMC register on
each PE, and means for modifying the multi-bit value in the EMC register of a
PE when the writing of data to registers in that PE is disabled and the writing
of data to registers in other PEs is enabled

An SIMD according to claim 22 including means to test whether the writing of
data to registers in all the PEs is disabled and means for branching to another
instruction in dependence on the result of the determination.

WO 2005/086017 PCT/GB2005/000797

117
11 10
) !
Program » Control Unit
memory 12 2 ’
e Z » > PEm ""’
,'1,' . pll ' ERm
A1 '
> F’E1 dl
FI G . 1 efc ,)1 7
13
11 10
) \
Program Control Unit
memory 12 1 ’
'\”,f ’,,"/
”,' == PI‘:‘m’ EMCn
y — 7 logig
A7 ‘ d
22~ 20
- PE !
F | G | 2 ete 21—~ logic |

SUBSTITUTE SHEET (RULE 26)

. WO 2005/086017

1

04

PCT/GB2005/000797
217

9

FirstPE [—~—100

Next PE

v 101

104

Procegii Yes

All PEs?

110

Are all
PE's EMCs now
non-zero?

102 Yes
Is PE’s
(Condition FALSE)
or (EMC!=0)

Branchto [~—112 Step to next
jump target 111—— instruction

Increment f~—103 ' '
PE’'s EMC

Next PE

| FIG. 3

P

FirstPE [~—100

Yes

12117 SetPE's

EMC

F

A

g 101

Proce?edi Yes

All PE's?

110

Are all
PE's EMCs now
non-zero?

Yes

122 Branchto [~—112 Step to next
jump target 111—— instruction

Does PE’s

(Condition=TRUE)
and (EMC==1)

l i

O

Set PE's |~—123

Sl FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/GB2005/000797

WO 2005/086017
3/7
104 ;
FirstPE [~—100
Next PE =" 101

All PEs?

Is PE’s
(Condition TRUE)
and (EMC==0)

Set PEs
EMC

104
FirstPE [~—100
Next PE ‘v 101
Proce@iiYes

Proce@i Yes

——131

110

Are all
PE’'s EMCs now
non-zero?

130 Yes

~112

Branch to Step to next
jump target 111—— instruction

FIG. 5

EMC >
mask adjust

110

Are all
PE's EMCs now
non-zero?

Yes

FIG. 7

SUBSTITUTE SHEET (RULE 26)

O

Branchto [~112 Step to next
171 EMC0 Decrement jump target 111—— instruction
‘ EMC 172 | |

PCT/GB2005/000797

WO 2005/086017

auo(O
A

A 4

€9~

SOA

[4

417

3e]s

1snfpe ysew
=< O3

9 Ol

€Gl

DN JsWaIoU|

jebeydwnl | zg
0} youeg

091~

UoBipuoY) pue

(osje)

==0N3

283d IV (¢53d IV
pessaoold SS1 SaA P3390l
A
< 3d XeN S 3d XeN
3d 1su14 (051~ 3dsi)
£ g9 57 v§L

i

doopix3
evl

271~ esle4=:doopix3

SOA

¢(0==0W3
any (anyL
uopipuoQ)

[4

(Sad Iy
paso0ld

Xo[RS 3d eN
00—~ 3disid N
>_, 14]%

anu} =:doojix3 ovL

SUBSTITUTE SHEET (RULE 26)

PCT/GB2005/000797

WO 2005/086017

5/7

YA
=
ZA (siq ¢) z uopesado .
e 8 9Old
A (s1g W) 10888 Z Uonelado
,/L/
VL (sna N) isnipe ysely
r/y
2/ | N (snq ¢) | uopessdo 08 Logonasu
" (19 1) 199)8s | uonesado N)
_ Beyy youeiq oQ
(¢-'1-108" 810" +'24) |,
0/~ suoperdosuwsieg |
% 4
(snq)
POT~—1 5| ¢9
(siamw) | (snaw) !
GO~ 0Sl—g9 (sHaw)
| _ synsal
pd uopipuo)
et 2160 Jaisse|o anjep
~\C
—{ N < sbejj uonpuoo
— | ®epdn O3 e 0 <
s sig)sibal
0 T oo k) 1
s \ _ \ _.s\ it \ _.\\
\\ / / \\ \\ / \\
oL 0¢c L9

Jun yojey

18

19618} dwin|
uononysy|

€S

1snipe ysew
uoyonysu

—~~—2CS

puelado
uoponnsuy|

~1G

UONIpuod
uononAsy|

~—09

SUBSTITUTE SHEET (RULE 26)

PCT/GB2005/000797

S}NSEUORIPUOD
aNy 1|
=:$3deMoy

6 Old

(s)insayuonIpuo))
ANV 1S1) HO 18]
=:S3deAloY

$0=lunowy
Jsnipyysely

A

6/7

WO 2005/086017

T T T T s e e e e o e e e e e e — - —— e e~ —— — —— e

o1z ele
¢SI O IStH0 08t |, (§is13puog
2c7 =S3doAlY | 8q Jsny)
{ oN
Yadz4
YyoueigoQg LON 181 {0 08 pu3puoYd
=:ourIgoQ =:S34oAlOY 1snipyysep uononJsu §|
Lie (A4
1591 doopuod); w
uononysul s| L (synsajuopipuod) ySEIOSPUOY)
LON ANV 0s
RorA =s3gonpoy | SPA uogonisut S|
102
S3deAOY ON
={ouelgoq S)nsayuoIIpUO L ~0le
_ i om< %% Y 581 d007puon 4O
| BJSPUOY uononsut
otz —S34oNOY S9A ~HEISpUO) uojony

00¢

SUBSTITUTE SHEET (RULE 26)

28C ZANSOW3='g JedQ
(15140 psi)iou
=109J9s ¢ "JedQ

1Ba|nONT=:| "1edD
1Sl
10 0S]=:108j8s ™| "JadD

Lgz—~ BuoN,=108j8s z JodD

PCT/GB2005/000797

WO 2005/086017

717

LANSOWI=:1"JadQ

10 s|=1108jes ™} "1adQ

£

082

QUON,=.108]8S ¢ 18d0
S)INSSYUORIPUOD

J0U pUE OS]
=109|8s~ | "18d0

(puzpuoy
aq 1snpy)

A

A

92

BUON,=11998S ¢ Jad)
}9SOW3=:}4edo
sjjnsayuonIpuos pue
0S|=:109j9s~ | "18dQ

19T

¢lc " ISI3puo

w 18|=1108]85"Z JedD CM_Homq_Emcww_

}9SONI=:} JedQ .)

(PPYOINS 18]=1091857, "18d0)

=:1"JadQ

: SUON,

LPPYOWS =108|8s ¢ 18dQ Jeigpuo)
=i} JedQ SN0V LON uopnonsut s

(

112

1ea|noNI=:z 1edo
s))nsayuonipuoy pue

=:}09|8s™ | "18d

0G¢

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intern I Application No

PCT/6B2005/000797

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GOGFlS}éO

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, PAJ, INSPEC

Electronic data base consulted during the international search (name of data base and, where practical, search lerms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

techniques for large-scale SIMD
architectures"

FRONTIERS OF MASSIVELY PARALLEL
COMPUTATION, 1990. PROCEEDINGS., 3RD
SYMPOSIUM ON THE COLLEGE PARK, MD, USA
8-10 OCT. 1990, LOS ALAMITOS, CA, USA,IEEE
COMPUT. SOC, US,

8 October 1990 (1990-10-08), pages
259-264, XP010019649

ISBN: 0-8186-2053-6

* page 260-26, section 3 *

X US 2002/174318 A1 (STUTTARD DAVE ET AL) 1-19
21 November 2002 (2002-11-21)

Y paragraphs ‘0006!, °‘0267!, ‘0268! 20-23

Y NATION W G ET AL: "Efficient masking 20-23

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the interational filing date but
later than the priority date claimed

'T* later document published after the international filing date
or priority date and not In conflict with the application but
fited to understand the principle or theory underlying the
nvention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
Involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu—
merr]ns, such combination being obvious to a person skilled
inthe art,

'&" document member of the same patent family

Date of the actual completion of the international search

14 June 2005

Date of malling of the Intemnational search report

24/06/2005

Name and malling address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Kamps, S

Form PCT/ISA/210 (second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Intern | Application No

PCT/GB2005/000797

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

RICE M D ET AL: "A formal model for SIMD
computation”

FRONTIERS OF MASSIVELY PARALLEL
COMPUTATION, 1988. PROCEEDINGS., 2ND
SYMPOSIUM ON THE FRONTIERS OF FAIRFAX, VA,
USA 10-12 OCT. 1988, WASHINGTON, DC,
USA,IEEE COMPUT. SOC. PR, US,

10 October 1988 (1988-10-10), pages
601-607, XP010033052

ISBN: 0-8186-5892-4

* page 603, section 3.1 *

WO 02/46885 A (CHIPWRIGHTS DESIGN, INC;
REDFORD, JOHN, L)

13 June 2002 (2002-06-13)

cited in the application

page 5, Tines 25-34; figure 2

1-23

11

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

INTERNATIONAL SEARCH REPORT

Internai

A\pplication No

s mm——— PCT/GB2005/000797
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2002174318 Al 21-11-2002 GB 2348971 A 18-10-2000
GB 2348972 A 18-10-2000
GB 2348973 A 18-10-2000
GB 2348974 A 18-10-2000
GB 2348975 A 18-10-2000
GB 2348976 A 18-10-2000
GB 2348977 A 18-10-2000
GB 2348978 A 18-10-2000
GB 2348979 A 18-10-2000
GB 2352306 A 24-01-2001
GB 2348980 A 18-10-2000
GB 23480981 A 18-10-2000
GB 2349484 A 01-11-2000
GB 2348982 A 18-10-2000
GB 2348983 A 18-10~-2000
GB 2348984 A 18-10-2000
AU 3829500 A 14-11-2000
EP 1181648 Al 27-02-2002
WO 0062182 A2 19-10-2000
JP 2002541586 T 03-12-2002
GB 2391093 A ,B 28-01-2004
GB 2394815 A ,B 05-05-2004

WO 0246885 A 13-06-2002 AU 4175902 A 18-06-2002
CN 1486465 A 31-03-2004
DE 01988453 T1 22-04-2004
EP 1348167 A2 01-10-2003
WO 0246885 A2 13-06-2002

Form PCTASA/210 {patent family annex) {January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

