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(57) ABSTRACT 

Within a display device, a respective one of a plurality of 
design graphical representations is displayed for each of a 
plurality of hierarchically arranged design entity instances 
within a simulated system. The design entity instances 
include a particular design entity instance containing a latch 
that is represented by a particular design graphical represen 
tation. A configuration entity instance associated with the 
particular design entity is identified within a configuration 
database associated with the simulated system. The configu 
ration entity instance has a plurality of different settings that 
each reflects a value of the latch. Within the display device, a 
configuration graphical representation of the configuration 
entity instance is presented in association with the particular 
design graphical representation corresponding to the particu 
lar design entity instance. In addition, a current setting of the 
configuration entity instance is presented concurrently with 
the configuration graphical representation. 
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PRESENTATION OF A SIMULATED OR 
HARDWARE SYSTEM INCLUDING 
CONFIGURATION ENTITIES 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application is a continuation of U.S. patent 
application Ser. No. 10/902,628 (AUS920040080US1), filed 
on Jul. 29, 2004, now U.S. Pat. No. 7,386,825 and entitled 
“Method, System and Program Product Supporting Presen 
tation of a Simulated or Hardware System Including Configu 
ration Entities', which is also related to U.S. patent applica 
tion Ser. No. 10/902,595 (AUS920030573US1), which is 
assigned to the assignee of the present invention and incor 
porated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The present invention relates in general to designing, simu 

lating and configuring digital devices, modules and systems, 
and in particular, to methods and systems for computer-aided 
design, simulation, and configuration of digital devices, mod 
ules and systems described by a hardware description lan 
guage (HDL) model. 

2. Description of the Related Art 
In a typical digital design process, Verifying the logical 

correctness of a digital design and debugging the design (if 
necessary) are important steps of the design process per 
formed prior to developing a circuit layout. Although it is 
certainly possible to test a digital design by actually building 
the digital design, digital designs, particularly those imple 
mented by integrated circuitry, are typically verified and 
debugged by simulating the digital design on a computer, due 
in part to the time and expense required for integrated circuit 
fabrication. 

In a typical automated design process, a circuit designer 
enters into an electronic computer-aided design (ECAD) sys 
tem a high-level description of the digital design to be simu 
lated utilizing a hardware description language (HDL), Such 
as VHDL, thus producing a digital representation of the vari 
ous circuit blocks and their interconnections. In the digital 
representation, the overall circuit design is frequently divided 
into Smaller parts, hereinafter referred to as design entities, 
which are individually designed, often by different designers, 
and then combined in a hierarchical manner to create an 
overall model. This hierarchical design technique is very 
useful in managing the enormous complexity of the overall 
design and facilitates error detection during simulation. 
The ECAD system compiles the digital representation of 

the design into a simulation model having a format best Suited 
for simulation. A simulator then exercises the simulation 
model to detect logical errors in the digital design. 
A simulator is typically a software tool that operates on the 

simulation model by applying a list of input stimuli represent 
ing inputs of the digital system. The simulator generates a 
numerical representation of the response of the circuit to the 
input stimuli, which response may then either be viewed on 
the display screen as a list of values or further interpreted, 
often by a separate Software program, and presented on the 
display Screen in graphical form. The simulator may be run 
either on a general-purpose computer or on another piece of 
electronic apparatus specially designed for simulation. Simu 
lators that run entirely in Software on a general-purpose com 
puter are referred to as “software simulators, and simulators 
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2 
that run with the assistance of specially designed electronic 
apparatus are referred to as “hardware simulators.” 
As digital designs have become increasingly complex, 

digital designs are commonly simulated at several levels of 
abstraction, for example, at functional, logical and circuit 
levels. At the functional level, system operation is described 
in terms of a sequence of transactions between registers, 
adders, memories and other functional units. Simulation at 
the functional level is utilized to verify the high-level design 
of digital systems. At the logical level, a digital system is 
described in terms of logic elements such as logic gates and 
flip-flops. Simulation at the logical level is utilized to verify 
the correctness of the logic design. At the circuit level, each 
logic gate is described in terms of its circuit components such 
as transistors, impedances, capacitances, and other Such 
devices. Simulation at the circuit level provides detailed 
information about Voltage levels and Switching speeds. 

In order to Verify the results of any given simulation run, 
custom-developed programs written in high-level languages 
such as C or C++, referred to as a reference model, are written 
to process input stimuli (also referred to as test vectors) to 
produce expected results of the simulation run. The test vector 
is then run against the simulation execution model by the 
simulator. The results of the simulation run are then compared 
to the results predicted by the reference model to detect dis 
crepancies, which are flagged as errors. Such a simulation 
check is known in the verification art as an "end-to-end’ 
check. 

In modern data processing systems, especially large 
server-class computer systems, the number of latches that 
must be loaded to configure the system for operation (or 
simulation) is increasing dramatically. One reason for the 
increase in configuration latches is that many chips are being 
designed to Support multiple different configurations and 
operating modes in order to improve manufacturer profit mar 
gins and simplify system design. For example, memory con 
trollers commonly require Substantial configuration informa 
tion to properly interface memory cards of different types, 
sizes, and operating frequencies. 
A second reason for the increase in configuration latches is 

the ever-increasing transistor budget within processors and 
other integrated circuit chips. Often the additional transistors 
available within the next generation of chips are devoted to 
replicated copies of existing functional units in order to 
improve fault tolerance and parallelism. However, because 
transmission latency via intra-chip wiring is not decreasing 
proportionally to the increase in the operating frequency of 
functional logic, it is generally viewed as undesirable to cen 
tralize configuration latches for all similar functional units. 
Consequently, even though all instances of a replicated func 
tional unit are frequently identically configured, each 
instance tends to be designed with its own copy of the con 
figuration latches. Thus, configuring an operating parameter 
having only a few valid values (e.g., the ratio between the bus 
clock frequency and processor clock frequency) may involve 
setting hundreds of configuration latches in a processor chip. 

Conventionally, configuration latches and their permitted 
range of values have been specified by error-prone paper 
documentation that is tedious to create and maintain. Com 
pounding the difficulty in maintaining accurate configuration 
documentation and the effort required to set configuration 
latches is the fact that different constituencies within a single 
company (e.g., a functional simulation team, a laboratory 
debug team, and one or more customer firmware teams) often 
separately develop configuration Software from the configu 
ration documentation. As the configuration software is sepa 
rately developed by each constituency, each team may intro 
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duce its own errors and employ its own terminology and 
naming conventions. Consequently, the configuration soft 
ware developed by the different teams is not compatible and 
cannot easily be shared between the different teams. 

In addition to the foregoing shortcomings in the process of 
developing configuration code, conventional configuration 
Software is extremely tedious to code. In particular, the 
Vocabulary used to document the various configuration bits is 
often quite cumbersome. For example, in at least some imple 
mentations, configuration code must specify, for each con 
figuration latch bit, a full latch name, which may include fifty 
or more ASCII characters. In addition, valid binary bit pat 
terns for each group of configuration latches must be indi 
vidually specified. 

Another problem encountered in the simulation and debug 
ging of simulated and hardware digital systems is that the 
state of the simulated or hardware digital system is difficult to 
present in a convenient format. Conventionally, a person that 
is debugging a digital system will obtain a raw "dump' of the 
values of the thousands of latches, registers or configuration 
constructs within the digital system. The dump will then be 
processed manually or utilizing a script to remove large 
amount of “uninteresting data, presumably leaving a man 
ageable collection of data (which may be further parsed and/ 
or transformed) that will aid the user in debugging the hard 
ware system. 

Although this convention technique of ascertaining the 
state of a digital design reduces the difficulty in parsing and 
interpreting the results of a system “dump, the individuals 
responsible for debugging the design are often unaware of the 
details of the underlying latches and configuration constructs 
and are therefore left to “reverse engineer” much of the design 
to understand its operation, or seek assistance from the origi 
nal design team. Moreover, because the names of the signals 
and latches within a design often change between revisions of 
the design, the scripts and other debugging tools developed to 
interpret the state of the system and facilitate debugging 
cannot be reused for multiple designs. 

In view of the foregoing, the present invention appreciates 
that it would be useful and desirable to provide an improved 
method of configuring and presenting the state of a digital 
system described by an HDL model, particularly one that 
Supports the selective presentation of configuration informa 
tion in accordance with designers' or other users’ prefer 
CCCS. 

SUMMARY OF THE INVENTION 

Improved methods, systems, and program products for 
specifying and presenting the configuration of a digital sys 
tem, Such as an integrated circuit or collection of intercon 
nected integrated circuits, are disclosed. According to one 
method, a respective one of a plurality of design graphical 
representations is displayed within a display device for each 
of a plurality of hierarchically arranged design entity 
instances within a simulated System. The design entity 
instances include a particular design entity instance contain 
ing a latch that is represented by a particular design graphical 
representation. A configuration entity instance associated 
with the particular design entity is identified within a configu 
ration database associated with the simulated system. The 
configuration entity instance has a plurality of different set 
tings that each reflects a value of the latch. Within the display 
device, a configuration graphical representation of the con 
figuration entity instance is presented in association with the 
particular design graphical representation corresponding to 
the particular design entity instance. In addition, a current 
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4 
setting of the configuration entity instance is presented con 
currently with the configuration graphical representation. 

All objects, features, and advantages of the present inven 
tion will become apparent in the following detailed written 
description. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The novel features believed characteristic of the invention 
are set forth in the appended claims. However, the invention, 
as well as a preferred mode ofuse, will best be understood by 
reference to the following detailed description of an illustra 
tive embodiment when read in conjunction with the accom 
panying drawings, wherein: 

FIG. 1 is a high level block diagram of a data processing 
system that may be utilized to implement the present inven 
tion; 

FIG. 2 is a diagrammatic representation of a design entity 
described by HDL code: 

FIG. 3 illustrates an exemplary digital design including a 
plurality of hierarchically arranged design entities; 

FIG. 4A depicts an exemplary HDL file including embed 
ded configuration specification statements in accordance with 
the present invention; 

FIG. 4B illustrates an exemplary HDL file including an 
embedded configuration file reference statement referring to 
an external configuration file containing a configuration 
specification statement in accordance with the present inven 
tion; 

FIG. 5A is a diagrammatic representation of an LDial 
primitive in accordance with the present invention 

FIG. 5B depicts an exemplary digital design including a 
plurality of hierarchically arranged design entities in which 
LDials are instantiated in accordance with the present inven 
tion; 
FIG.5C illustrates an exemplary digital design including a 

plurality of hierarchically arranged design entities in which 
an LDial is employed to configure signal states at multiple 
different levels of the design hierarchy: 
FIG.5D is a diagrammatic representation of a Switch in 

accordance with the present invention; 
FIG. 6A is a diagrammatic representation of an IDial in 

accordance with the present invention; 
FIG. 6B is a diagrammatic representation of an IDial hav 

ing a split output in accordance with the present invention; 
FIG. 7A is a diagrammatic representation of a CDial 

employed to control other Dials in accordance with the 
present invention; 

FIG. 7B depicts an exemplary digital design including a 
plurality of hierarchically arranged design entities in which a 
CDial is employed to control lower-level Dials utilized to 
configure signal states; 

FIG. 7C is a diagrammatic representation of a Register in 
accordance with the present invention; 

FIG. 8 is a high level flow diagram of a model build process 
utilized to produce a simulation executable model and asso 
ciated simulation configuration database in accordance with 
the present invention; 
FIG.9A illustrates a portion of a digital design illustrating 

the manner in which a traceback process implemented by a 
configuration compiler detects inverters in the signal path 
between a configured signal and an associated configuration 
latch; 
FIG.9B is a high level flowchart of an exemplary traceback 

process implemented by a configuration compiler in accor 
dance with a preferred embodiment of the present invention; 
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FIG. 10 is a high level logical flowchart of an exemplary 
method by which a configuration compiler parses each signal 
or Dial identification within a configuration specification 
statement in accordance with a preferred embodiment of the 
present invention; 

FIG. 11A depicts a diagrammatic representation of a Dial 
group; 

FIG. 11B illustrates an exemplary simulation model 
including Dials grouped in multiple hierarchically arranged 
Dial groups; 

FIG. 12A depicts an exemplary embodiment of a simula 
tion configuration database in accordance with the present 
invention; 

FIG. 12B is a more detailed view of an exemplary simula 
tion configuration database including data structures repre 
senting Dials and Registers in accordance with the present 
invention; 

FIG. 13 is a high level logical flowchart of a illustrative 
method by which a configuration database is expanded within 
Volatile memory of a data processing system in accordance 
with the present invention; 

FIG. 14 is a block diagram depicting the contents of Vola 
tile system memory during a simulation run of a simulation 
model in accordance with the present invention; 

FIG. 15 is a high level logical flowchart of an exemplary 
method of locating one or more Dial instance data structure 
(DIDS) in a configuration database that are identified by a 
instance qualifier and dialname qualifier Supplied in an API 
call; 

FIG. 16A is a high level logical flowchart of an illustrative 
method of reading a Dial instance in an interactive mode 
during simulation of a digital design in accordance with the 
present invention; 

FIG. 16B is a high level logical flowchart of an exemplary 
method of reading a Dial group instance in an interactive 
mode during simulation of a digital designin accordance with 
the present invention; 

FIG. 17A is a high level logical flowchart of an illustrative 
method of setting a Dial instance in an interactive mode 
during simulation of a digital design in accordance with the 
present invention; 

FIG. 17B is a high level logical flowchart of an exemplary 
method of setting a Dial group instance in an interactive mode 
during simulation of a digital design in accordance with the 
present invention; 

FIG. 18A is a high level logical flowchart of an illustrative 
method of setting a Dial instance or Dial group instance in a 
batch mode during simulation of a digital design in accor 
dance with the present invention; 

FIG. 18B is a more detailed flowchart of an end phase API 
called within the process shown in FIG. 18A: 

FIG. 18C is a block diagram of a data processing system 
environment in which a program may be utilized to access 
and modify a configuration database in order to specify phas 
ing of the application of defaults; 

FIG. 19 is a block diagram depicting an exemplary labo 
ratory testing system in accordance with the present inven 
tion; 

FIG. 20 is a more detailed block diagram of an integrated 
circuit chip within a data processing system formingaportion 
of the laboratory testing system of FIG. 19: 

FIG. 21 is a high level flow diagram of an illustrative 
process for transforming a simulation configuration database 
to obtain a chip hardware database Suitable for use in config 
uring a hardware realization of a digital design; 
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6 
FIG.22A is a high level logical flowchart of an exemplary 

method of transforming a configuration database to obtain a 
chip hardware database in accordance with the present inven 
tion; 
FIG.22B depicts an illustrative embodiment of a latch data 

structure within a chip hardware database following the trans 
formation process illustrated in FIG.22A; 

FIG. 23A is a high level logical flowchart of an exemplary 
method of loading a hardware configuration database from 
non-volatile storage into volatile memory that Supports use of 
the hardware configuration database with digital systems of 
any arbitrary size or configuration; 

FIG. 23B illustrates an exemplary embodiment of a hard 
ware configuration database of a digital system in accordance 
with one embodiment of the present invention; 

FIG. 24 is a high level logical flowchart of an exemplary 
method of identifying, by reference to a hardware configura 
tion database, one or more Dial instances or Dial group 
instances in a digital system that are relevant to an API call; 

FIG. 25 is a high level logical flow diagram of an exem 
plary process by which a hardware configuration database 
developed during laboratory development and testing of sys 
tem firmware can be compressed for commercial deploy 
ment; 

FIGS. 26A-26C together form a high level logical flow 
chart of an illustrative method of compressing a hardware 
configuration database utilizing a Software compression tool 
in accordance with the present invention; 

FIG. 27 is a graphical representation of the contents of an 
exemplary configuration database including both Dials and 
read-only Dials in accordance with the present invention; 

FIGS. 28A-28B respectively illustrate the inclusion of 
read-only parent fields within Dial instance data structures 
and latch data structures of a configuration database in order 
to Support read-only Dials and read-only Dial groups in 
accordance with one embodiment of the present invention; 

FIG. 29 is a high level logical flowchart of an exemplary 
method of expanding a configuration database containing 
RDial and/or RDial groups into volatile memory; 

FIG. 30 is a high level flow diagram of an exemplary 
process for analyzing a selected State of a hardware system, 
and in particular, a failure state of a hardware system, in 
accordance with the present invention; 

FIG. 31 is a high level logical flowchart of an exemplary 
method by which the chip analyzer tool of FIG. 30 generates 
chip configuration reports and simulation setup files utilized 
to analyze hardware failures in accordance with the present 
invention; 

FIG. 32 depicts an exemplary embodiment of a configura 
tion database Supporting the selective presentation of con 
figuration entity instances. Such as Dials, Dial groups, and 
Registers, in accordance with the present invention; 

FIG. 33 is a high level logical flowchart an exemplary 
process for selectively presenting the settings of configura 
tion entity instances describing the state of a simulated or 
hardware system; 

FIG. 34A illustrates an exemplary Graphical User Inter 
face (GUI) for presenting a simulated or hardware system in 
accordance with the present invention; 

FIG. 34B depicts a view of system presented within the 
exemplary GUI of FIG. 34A in which the displayed design 
hierarchy depth is limited in accordance with the present 
invention; 
FIG.34C illustrates a view of system presented within the 

exemplary GUI of FIG. 34A demonstrating the manner in 
which the design hierarchy can beintuitive traversed in accor 
dance with the present invention; 
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FIG. 34D depicts a view of system presented within the 
exemplary GUI of FIG. 34A demonstrating the manner in 
which the additional levels of configuration hierarchy can be 
exposed in accordance with the present invention; 

FIG. 34E illustrates a view of system presented within the 
exemplary GUI of FIG. 34A in which the configuration entity 
instances are selectively omitted from presentation based 
upon configuration database settings in accordance with the 
present invention; and 

FIG. 34F depicts a view of system presented within the 
exemplary GUI of FIG. 34A in which configuration entity 
instances having varying degrees of relevance are displayed 
in a graphically distinct manner in accordance with the 
present invention. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENT 

The present invention employs a configuration specifica 
tion language and associated methods, systems, and program 
products for configuring and controlling the setup of a digital 
system (e.g., one or more integrated circuits or a simulation 
model thereof). In at least one embodiment, configuration 
specifications for signals in the digital system are created in 
HDL code by the designer responsible for an associated 
design entity. Thus, designers at the front end of the design 
process, who are best able to specify the signal names and 
associated legal values, are responsible for creating the con 
figuration specification. The configuration specification is 
compiled at model build time together with the HDL describ 
ing the digital system to obtain a configuration database that 
can then be utilized by downstream organizational groups 
involved in the design, simulation, and hardware implemen 
tation processes. 

With reference now to the figures, and in particular with 
reference to FIG. 1, there is depicted an exemplary embodi 
ment of a data processing system in accordance with the 
present invention. The depicted embodiment can be realized, 
for example, as a workstation, server, or mainframe computer. 
As illustrated, data processing system 6 includes one or 

more processing nodes 8a-8n, which, if more than one pro 
cessing node 8 is implemented, are interconnected by node 
interconnect 22. Processing nodes 8a-8n may each include 
one or more processors 10, a local interconnect 16, and a 
system memory 18 that is accessed via a memory controller 
17. Processors 10a–10m are preferably (but not necessarily) 
identical and may comprise a processor within the Pow 
erPCTM line of processors available from International Busi 
ness Machines (IBM) Corporation of Armonk, N.Y. In addi 
tion to the registers, instruction flow logic and execution units 
utilized to execute program instructions, which are generally 
designated as processor core 12, each of processors 10a–10m 
also includes an on-chip cache hierarchy that is utilized to 
stage data to the associated processor core 12 from system 
memories 18. 

Each of processing nodes 8a-8n further includes a respec 
tive node controller 20 coupled between local interconnect 16 
and node interconnect22. Each node controller 20 serves as a 
local agent for remote processing nodes 8 by performing at 
least two functions. First, each node controller 20 Snoops the 
associated local interconnect 16 and facilitates the transmis 
sion of local communication transactions to remote process 
ing nodes 8. Second, each node controller 20 Snoops commu 
nication transactions on node interconnect 22 and masters 
relevant communication transactions on the associated local 
interconnect 16. Communication on each local interconnect 
16 is controlled by an arbiter 24. Arbiters 24 regulate access 
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8 
to local interconnects 16 based on bus request signals gener 
ated by processors 10 and compile coherency responses for 
Snooped communication transactions on local interconnects 
16. 

Local interconnect 16 is coupled, via mezzanine bus bridge 
26, to a mezzanine bus 30. Mezzanine bus bridge 26 provides 
both a low latency path through which processors 10 may 
directly access devices among I/O devices 32 and storage 
devices 34 that are mapped to bus memory and/or I/O address 
spaces and a high bandwidth path through which I/O devices 
32 and storage devices 34 may access system memory 18. I/O 
devices 32 may include, for example, a display device, a 
keyboard, a graphical pointer, and serial and parallel ports for 
connection to external networks or attached devices. Storage 
devices 34 may include, for example, optical or magnetic 
disks that provide non-volatile storage for operating system, 
middleware and application Software. In the present embodi 
ment, such application software includes an ECAD system 
35, which can be utilized to develop, verify and simulate a 
digital circuit design in accordance with the methods and 
systems of the present invention. 

Simulated digital circuit design models created utilizing 
ECAD system 35 are comprised of at least one, and usually 
many, Sub-units referred to hereinafter as design entities. 
Referring now to FIG. 2, there is illustrated a block diagram 
representation of an exemplary design entity 200 which may 
be created utilizing ECAD system 35. Design entity 200 is 
defined by a number of components: an entity name, entity 
ports, and a representation of the function performed by 
design entity 200. Each design entity within a given model 
has a unique entity name (not explicitly shown in FIG. 2) that 
is declared in the HDL description of the design entity. Fur 
thermore, each design entity typically contains a number of 
signal interconnections, known as ports, to signals outside the 
design entity. These outside signals may be primary input/ 
outputs (I/OS) of an overall design or signals connected to 
other design entities within an overall design. 

Typically, ports are categorized as belonging to one of three 
distinct types: input ports, output ports, and bi-directional 
ports. Design entity 200 is depicted as having a number of 
input ports 202 that convey signals into design entity 200. 
Input ports 202 are connected to input signals 204. In addi 
tion, design entity 200 includes a number of output ports 206 
that convey signals out of design entity 200. Output ports 206 
are connected to a set of output signals 208. Bi-directional 
ports 210 are utilized to convey signals into and out of design 
entity 200. Bi-directional ports 210 are in turn connected to a 
set of bi-directional signals 212. A design entity, Such as 
design entity 200, need not contain ports of all three types, 
and in the degenerate case, contains no ports at all. To accom 
plish the connection of entity ports to external signals, a 
mapping technique, known as a "port map', is utilized. A port 
map (not explicitly depicted in FIG. 2) consists of a specified 
correspondence between entity port names and external sig 
nals to which the entity is connected. When building a simu 
lation model, ECAD software 35 is utilized to connect exter 
nal signals to appropriate ports of the entity according to a 
port map specification. 
As further illustrated in FIG. 2, design entity 200 contains 

a body section 214 that describes one or more functions 
performed by design entity 200. In the case of a digital design, 
body section 214 contains an interconnection of logic gates, 
storage elements, etc., in addition to instantiations of other 
entities. By instantiating an entity within another entity, a 
hierarchical description of an overall design is achieved. For 
example, a microprocessor may contain multiple instances of 
an identical functional unit. As such, the microprocessor itself 
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will often be modeled as a single entity. Within the micropro 
cessor entity, multiple instantiations of any duplicated func 
tional entities will be present. 

Each design entity is specified by one or more HDL files 
that contain the information necessary to describe the design 
entity. Although not required by the present invention, it will 
hereafter be assumed for ease of understanding that each 
design entity is specified by a respective HDL file. 

With reference now to FIG.3, there is illustrated a diagram 
matic representation of an exemplary simulation model 300 
that may be employed by ECAD system 35 to represent a 
digital design (e.g., an integrated circuit chip or a computer 
system) in a preferred embodiment of the present invention. 
For visual simplicity and clarity, the ports and signals inter 
connecting the design entities within simulation model 300 
have not been explicitly shown. 

Simulation model 300 includes a number of hierarchically 
arranged design entities. As within any simulation model, 
simulation model 300 includes one and only one “top-level 
entity encompassing all other entities within simulation 
model 300. That is to say, top-level entity 302 instantiates, 
either directly or indirectly, all descendant entities within the 
digital design. Specifically, top-level entity 302 directly 
instantiates (i.e., is the directancestor of) two instances, 304a 
and 304b, of the same FiXed-point execution Unit (FXU) 
entity 304 and a single instance of a Floating Point Unit (FPU) 
entity 314. FXU entity instances 304, having instantiation 
names FXU0 and FXU1, respectively, in turn instantiate addi 
tional design entities, including multiple instantiations of 
entity A 306 having instantiation names A0 and A1, respec 
tively. 

Each instantiation of a design entity has an associated 
description that contains an entity name and an instantiation 
name, which must be unique among all descendants of the 
directancestor entity, if any. For example, top-level entity 302 
has a description 320 including an entity name 322 (i.e., the 
“TOP preceding the colon) and also includes an instantiation 
name 324 (i.e., the “TOP' following the colon). Within an 
entity description, it is common for the entity name to match 
the instantiation name when only one instance of that particu 
lar entity is instantiated within the ancestor entity. For 
example, single instances of entity B310 and entity C 312 
instantiated within each of FXU entity instantiations 304a 
and 304b have matchingentity and instantiation names. How 
ever, this naming convention is not required by the present 
invention as shown by FPU entity 314 (i.e., the instantiation 
name is FPU0, while the entity name is FPU). 
The nesting of entities within other entities in a digital 

design can continue to an arbitrary level of complexity, pro 
vided that all entities instantiated, whether singly or multiply, 
have unique entity names and the instantiation names of all 
descendant entities within any direct ancestor entity are 
unique with respect to one another. 

Associated with each design entity instantiation is a so 
called “instantiation identifier. The instantiation identifier 
for a given instantiation is a string including the enclosing 
entity instantiation names proceeding from the top-level 
entity instantiation name. For example, the design instantia 
tion identifier of instantiation 312a of entity C 312 within 
instantiation 304a of FXU entity 304 is “TOPFXU0.B.C. 
This instantiation identifier serves to uniquely identify each 
instantiation within a simulation model. 
As discussed above, a digital design, whether realized uti 

lizing physical integrated circuitry or as a software model 
Such as simulation model 300, typically includes configura 
tion latches utilized to configure the digital design for proper 
operation. In contrast to prior art design methodologies, 
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10 
which employ stand-alone configuration Software created 
after a design is realized to load values into the configuration 
latches, the present invention introduces a configuration 
specification language that permits a digital designer to 
specify configuration values for signals as a natural part of the 
design process. In particular, the configuration specification 
language of the present invention permits a design configu 
ration to be specified utilizing statements either embedded in 
one or more HDL files specifying the digital design (as illus 
trated in FIG. 4A) or in one or more external configuration 
files referenced by the one or more HDL files specifying the 
digital design (as depicted in FIG. 4B). 

Referring now to FIG. 4A, there is depicted an exemplary 
HDL file 400, in this case a VHDL file, including embedded 
configuration statements in accordance with the present 
invention. In this example, HDL file 400 specifies entity A 
306 of simulation model 300 and includes three sections of 
VHDL code, namely, a port list 402 that specifies ports 202, 
206 and 210, signal declarations 404 that specify the signals 
within body section 214, and a design specification 406 that 
specifies the logic and functionality of body section 214. 
Interspersed within these sections are conventional VHDL 
comments denoted by an initial double-dash (“--”). In addi 
tion, embedded within design specification 406 are one or 
more configuration specification statements in accordance 
with the present invention, which are collectively denoted by 
reference numerals 408 and 410. As shown, these configura 
tion specification statements are written in a special comment 
form beginning with "--if” in order to permit a compiler to 
easily distinguish the configuration specification statements 
from the conventional HDL code and HDL comments. Con 
figuration specification statements preferably employ a syn 
tax that is insensitive to case and white space. 

With reference now to FIG. 4B, there is illustrated an 
exemplary HDL file 400' that includes a reference to an exter 
nal configuration file containing one or more configuration 
specification statements inaccordance with the present inven 
tion. As indicated by prime notation (), HDL file 400' is 
identical to HDL file 400 in all respects except that configu 
ration specification statements 408,410 are replaced with one 
or more (and in this case only one) configuration file reference 
statement 412 referencing a separate configuration file 414 
containing configuration specification statements 408, 410. 

Configuration file reference statement 412, like the embed 
ded configuration specification statements illustrated in FIG. 
4A, is identified as a configuration statement by the identifier 
"--if” Configuration file reference statement 412 includes 
the directive “cfg file', which instructs the compiler to locate 
a separate configuration file 414, and the filename of the 
configuration file (i.e., “file(00'). Configuration files, such as 
configuration file 412, preferably all employ a selected file 
name extension (e.g., ".cfg) so that they can be easily 
located, organized, and managed within the file system 
employed by data processing system 6. 
As discussed farther below with reference to FIG. 8, con 

figuration specification statements, whether embedded 
within an HDL file or collected in one or more configuration 
files 414, are processed by a compiler together with the asso 
ciated HDL files. 

In accordance with a preferred embodiment of the present 
invention, configuration specification statements, such as 
configuration specification statements 408, 410, facilitate 
configuration of configuration latches within a digital design 
by instantiating one or more instances of a configuration 
entity referred to herein generically as a “Dial.” A Dials 
function is to map between an input value and one or more 
output values. In general. Such output values ultimately 
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directly or indirectly specify configuration values of configu 
ration latches. Each Dial is associated with a particular design 
entity in the digital design, which by convention is the design 
entity specified by the HDL source file containing the con 
figuration specification statement or configuration file refer 
ence statement that causes the Dial to be instantiated. Conse 
quently, by virtue of their association with particular design 
entities, which all have unique instantiation identifiers, Dials 
within a digital design can be uniquely identified as long as 
unique Dial names are employed within any given design 
entity. As will become apparent, many different types of Dials 
can be defined, beginning with a Latch Dial (or “LDial'). 

Referring now to FIG. 5A, there is depicted a representa 
tion of an exemplary LDial 500. In this particular example, 
LDial 500, which has the name “bus ratio’, is utilized to 
specify values for configuration latches in a digital design in 
accordance with an enumerated input value representing a 
selected ratio between a component clock frequency and bus 
clock frequency. 
As illustrated, LDial 500, like all Dials, logically has a 

single input 502, one or more outputs 504, and a mapping 
table 503 that maps each input value to a respective associated 
output value for each output 504. That is, mapping table 503 
specifies a one-to-one mapping between each of one or more 
unique input values and a respective associated unique output 
value. Because the function of an LDial is to specify the legal 
values of configuration latches, each output 504 of LDial 500 
logically controls the value loaded into a respective configu 
ration latch 505. To prevent conflicting configurations, each 
configuration latch 505 is directly specified by one and only 
one Dial of any type that is capable of setting the configura 
tion latch 505. 

At input 502, LDial 500 receives an enumerated input 
value (i.e., a string) among a set of legal values including 
“2:1”, “3:1” and “4:1. The enumerated input value can be 
provided directly by software (e.g., by a software simulator or 
service processor firmware) or can be provided by the output 
of another Dial, as discussed further below with respect to 
FIG. 7A. For each enumerated input value, the mapping table 
503 of LDial 500 indicates a selected binary value (i.e., “0” or 
“1”) for each configuration latch 505. 

With reference now to FIG. 5B, there is illustrated a dia 
grammatic representation of a simulation model logically 
including Dials. Simulation model 300' of FIG. 5B, which as 
indicated by prime notation includes the same design entities 
arranged in the same hierarchical relation as simulation 
model 300 of FIG. 3, illustrates two properties of Dials, 
namely, replication and scope. 

Replication is a process by which a Dial that is specified in 
or referenced by an HDL file of a design entity is automati 
cally instantiated each time that the associated design entity is 
instantiated. Replication advantageously reduces the amount 
of data entry a designer is required to perform to create 
multiple identical instances of a Dial. For example, in order to 
instantiate the six instances of LDials illustrated in FIG. 5B, 
the designer need only code two LDial configuration speci 
fication statements utilizing either of the two techniques illus 
trated in FIGS. 4A and 4.B. That is, the designer codes a first 
LDial configuration specification statement (or configuration 
file reference statement pointing to an associated configura 
tion file) into the HDL file of design entity A 306 in order to 
automatically instantiate LDials 506a0, 506a1, 506b0 and 
506b1 within entity Ainstantiations 306a0,306a1,306b0 and 
306b1, respectively. The designer codes a second LDial con 
figuration specification statement (or configuration file refer 
ence statement pointing to an associated configuration file) 
into the HDL file of design entity FXU 304 in order to auto 
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12 
matically instantiate LDials 510a and 510b within FXU 
entity instantiations 304a and 304b, respectively. The mul 
tiple instances of the LDials are then created automatically as 
the associated design entities are replicated by the compiler. 
Replication of Dials within a digital design can thus signifi 
cantly reduce the input burden on the designer as compared to 
prior art methodologies in which the designer had to individu 
ally enumerate in the configuration Software each configura 
tion latch value by hand. It should be noted that the property 
of replication does not necessarily require all instances of a 
Dial to generate the same output values; different instances of 
the same Dial can be set to generate different outputs by 
providing them different inputs. 
The “scope of a Dial is defined herein as the set of entities 

to which the Dial can refer in its specification. By convention, 
the scope of a Dial comprises the design entity with which the 
Dial is associated (i.e., the design entity specified by the HDL 
Source file containing the configuration specification state 
ment or configuration file reference statement that causes the 
Dial to be instantiated) and any design entity contained within 
the associated design entity (i.e., the associated design entity 
and its descendents). Thus, a Dial is not constrained to operate 
at the level of the design hierarchy at which it is instantiated, 
but can also specify configuration latches at any lower level of 
the design hierarchy within its scope. For example, LDials 
510a and 510b, even though associated with FXU entity 
instantiations 304a and 304b, respectively, can specify con 
figuration latches within entity C instantiations 312a and 
312b, respectively. 

FIG. 5B illustrates another important property of LDials 
(and other Dials that directly specify configuration latches). 
In particular, as shown diagrammatically in FIG. 5B, design 
ers, who are accustomed to specifying signals in HDL files, 
are permitted in a configuration specification statement to 
specify signal States set by a Dial rather than values to be 
loaded into an "upstream” configuration latch that determines 
the signal state. Thus, in specifying LDial 506, the designer 
can specify possible signal states for a signal 514 set by a 
configuration latch 512. Similarly, in specifying LDial 510, 
the designer can specify possible signal states for signal 522 
set by configuration latch 520. The ability to specify signal 
states rather than latch values not only coincides with design 
ers’ customary manner of thinking about a digital design, but 
also reduces possible errors introduced by the presence of 
inverters between the configuration latch 512, 520 and the 
signal of interest 514,522, as discussed further below. 

Referring now to FIG. 5C, there is depicted another dia 
grammatic representation of a simulation model including an 
LDial. As indicated by prime notation, simulation model 300" 
of FIG. 5C includes the same design entities arranged in the 
same hierarchical relation as simulation model 300 of FIG.3. 
As shown, simulation model 300" of FIG. 5C includes an 

LDial 524 associated with top-level design entity 302. LDial 
524 specifies the signal states of each signal sig1 514, which 
is determined by a respective configuration latch 512, the 
signal states of each signal sig2522, which is determined by 
a respective configuration latch 520, the signal state of signal 
sig4532, which is determined by configuration latch 530, and 
the signal state of signal sig3 536, which is determined by 
configuration latch 534. Thus, LDial 524 configures the sig 
nal states of numerous different signals, which are all instan 
tiated at or below the hierarchy level of LDial 524 (which is 
the top level). 
As discussed above with respect to FIGS. 4A and 4B, 

LDial 524 is instantiated within top-level entity 302 of simu 
lation model 300" by embedding within the HDL file of 
top-level entity 302 a configuration specification statement 
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specifying LDial 524 or a configuration file reference state 
ment referencing a separate configuration file containing a 
configuration specification statement specifying LDial 524. 
In either case, an exemplary configuration specification State 
ment for LDial 524 is as follows: 

The exemplary configuration specification statement given 
above begins with the keyword “LDial.” which specifies that 
the type of Dial being declared is an LDial, and the Dial name, 
which in this case is “bus ratio. Next, the configuration 
specification statement enumerates the signal names whose 
states are controlled by the LDial. As indicated above, the 
signal identifier for each signal is specified hierarchically 
(e.g., FXU0.A0.SIG1 for signal 514aO) relative to the default 
scope of the associated design entity so that different signal 
instances having the same signal name are distinguishable. 
Following the enumeration of the signal identifiers, the con 
figuration specification statement includes a mapping table 
listing the permitted enumerated input values of the LDial and 
the corresponding signal values for each enumerated input 
value. The signal values are associated with the signal names 
implicitly by the orderin which the signal names are declared. 
It should again be noted that the signal states specified for all 
enumerated values are unique, and collectively represent the 
only legal patterns for the signal states. 

Several different syntaxes can be employed to specify the 
signal States. In the example given above, signal states are 
specified in either binary format, which specifies a binary 
constant preceded by the prefix "Ob', or in hexadecimal for 
mat, which specifies a hexadecimal constant preceded by the 
prefix "Ox'. Although not shown, signal states can also be 
specified in integer format, in which case no prefix is 
employed. For ease of data entry, the configuration specifica 
tion language of ECAD system 35 also preferably supports a 
concatenated syntax in which one constant value, which is 
automatically extended with leading Zeros, is utilized to rep 
resent the concatenation of all of the desired signal values. In 
this concatenated syntax, the mapping table of the configu 
ration specification statement given above can be rewritten as: 

{2:1 => 0, 
3:1 => 0x183821, 
4:1 => 0x1FFFFF 

in order to associate enumerated input value 2:1 with a con 
catenated bit pattern of all Zeros, to associate the enumerated 
input value 3:1 with the concatenated bit pattern 
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14 
Ob1 10000011100000100001, and to associate the enumer 
ated input value 4:1 with a concatenated bit pattern of all ones. 

With reference now to FIG. 5D, there is illustrated a dia 
grammatic representation of a special case of an LDial having 
a one-bit output, which is defined herein as a Switch. As 
shown, a Switch 540 has a single input 502, a single 1-bit 
output 504 that controls the setting of a configuration latch 
505, and a mapping table 503 that maps each enumerated 
input value that may be received at input 502 to a 1-bit output 
value driven on output 504. 

Because Switches frequently comprise a significant major 
ity of the Dials employed in a digital design, it is preferable if 
the enumerated value sets for all Switches in a simulation 
model of a digital design are the same (e.g., “ON”/"OFF"). In 
a typical embodiment of a Switch, the “positive’ enumerated 
input value (e.g., “ON”) is mapped by mapping table 503 to 
an output value of Ob1 and the “negative’ enumerated input 
value (e.g., "OFF") is mapped to an output value of Ob0. In 
order to facilitate use of logic of the opposite polarity, a 
Negative Switch or NSwitch declaration is also preferably 
supported that reverses this default correspondence between 
input values and output values in mapping table 503. 
The central advantage to defining a Switch primitive is a 

reduction in the amount of input that designers are required to 
enter. In particular, to specify a comparable 1-bit LDial, a 
designer would be required to enter a configuration specifi 
cation statement of the form: 

LDial mode (signal) = 
{ON =>b1; 
OFF =>bO 

A Switch performing the same function, on the other hand, 
can be specified with the configuration specification State 
ment: 

Switch mode (signal); 
Although the amount of data entry eliminated by the use of 
Switches is not particularly significant when only a single 
Switch is considered, the aggregate reduction in data entry is 
significant when the thousands of Switches in a complex 
digital design are taken into consideration. 

Referring now to FIG. 6A, there is depicted a diagrammatic 
representation of an Integer Dial (“IDial”) in accordance with 
a preferred embodiment of the present invention. Like an 
LDial, an IDial directly specifies the value loaded into each of 
one or more configuration latches 605 by indicating within 
mapping table 603 a correspondence between each input 
value received at an input 602 and an output value for each 
output 604. However, unlike LDials, which can only receive 
as legal input values the enumerated input values explicitly 
set forth in their mapping tables 503, the legal input value set 
of an IDial includes all possible integer values within the bit 
size of output 604. (Input integer values containing fewer bits 
than the bit size of output(s) 604 are right justified and 
extended with Zeros to fill all available bits.) Because it would 
be inconvenient and tedious to enumerate all of the possible 
integer input values in mapping table 603, mapping table 603 
simply indicates the manner in which the integer input value 
received at input 602 is applied to the one or more outputs 
604. 

IDials are ideally suited for applications in which one or 
more multi-bit registers must be initialized and the number of 
legal values includes most values of the register(s). For 
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example, if a 4-bit configuration register comprising 4 con 
figuration latches and an 11-bit configuration register com 
prising 11 configuration latches were both to be configured 
utilizing an LDial, the designer would have to explicitly enu 
merate up to 2' input values and the corresponding output bit 
patterns in the mapping table of the LDial. This case can be 
handled much more simply with an IDial utilizing the follow 
ing configuration specification statement: 

IDial cnt value (sig1(0... 3), sig2(0... 10)); 
In the above configuration specification statement, “IDial' 
declares the configuration entity as an IDial, “cnt value' is 
the name of the IDial, “sig1' is a 4-bit signal output by the 
4-bit configuration register and 'sig2' is an 1'-bit signal 
coupled to the 1'-bit configuration register. In addition, the 
ordering and number of bits associated with each of sig1 and 
sig2 indicate that the 4 high-order bits of the integer input 
value will be utilized to configure the 4-bit configuration 
register associated with sig1 and the 11 lower-order bits will 
be utilized to configure the 11-bit configuration register asso 
ciated with sig2. Importantly, although mapping table 603 
indicates which bits of the integer input values are routed to 
which outputs, no explicit correspondence between input val 
ues and output values is specified in mapping table 603. 

IDials may also be utilized to specify the same value for 
multiple replicated configuration registers, as depicted in 
FIG. 6B. In the illustrated embodiment, an IDial 610, which 
can be described as an IDial “splitter, specifies the configu 
ration of three sets of replicated configuration registers each 
comprising 15 configuration latches 605 based upon a single 
15-bit integer input value. An exemplary configuration speci 
fication statement for instantiating IDial 610 may be given as 
follows: 

IDial cnt value(AO.sig1 (0.7), A.O.sig2(8.14): 
A1.sig1 (0.7), A1.sig2(8.14): 
A3..sig1 (0.7), A3...sig2(8.14) 

In the above configuration specification statement, “IDial' 
declares the configuration entity as an IDial, and 'cnt value' 
is the name of the IDial. Following the IDial name are three 
scope fields separated by semicolons (“:”). Each scope field 
indicates how the bits of the input integer value are applied to 
particular signals. For example, the first scope field specifies 
that the 8 high-order bits of the integer input value will be 
utilized to configure the 8-bit configuration register associ 
ated with the signal A0.sig1 and the 7 lower-order bits will be 
utilized to configure the 7-bit configuration register associ 
ated with A0.sig2. The second and third scope fields specify 
that the corresponding configuration registers within design 
entities A1 and A3 will be similarly configured. Importantly, 
the integer input bits can be allocated differently in each 
Scope field as long as the total number of bits specified in each 
Scope field is the same. 

Although the configuration of a digital design can be fully 
specified utilizing LDials alone or utilizing LDials and IDials, 
in many cases it would be inefficient and inconvenient to do 
so. In particular, for hierarchical digital designs such as that 
illustrated in FIG. 5C, the use of LDials and/or IDials alone 
would force many Dials to higher levels of the design hierar 
chy, which, from an organizational standpoint, may be the 
responsibility of a different designer or design group than is 
responsible for the design entities containing the configura 
tion latches controlled by the Dials. As a result, proper con 
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figuration of the configuration latches would require not only 
significant organizational coordination between design 
groups, but also that designers responsible for higher levels of 
the digital design learn and include within their HDL files 
details regarding the configuration of lower level design enti 
ties. Moreover, implementing Dials at higher levels of the 
hierarchy means that lower levels of the hierarchy cannot be 
independently simulated since the Dials controlling the con 
figuration of the lower level design entities are not contained 
within the lower level design entities themselves. 

In view of the foregoing, the present invention recognizes 
the utility of providing a configuration entity that Supports the 
hierarchical combination of Dials to permit configuration of 
lower levels of the design hierarchy by lower-level Dials and 
control of the lower-level Dials by one or more higher-level 
Dials. The configuration specification language of the present 
invention terms a higher-level Dial that controls one or more 
lower-level Dials as a Control Dial (“CDial”). 

Referring now to FIG. 7A, there is depicted a diagrammatic 
representation of a CDial 700a in accordance with the present 
invention. CDial 700a, like all Dials, preferably has a single 
input 702, one or more outputs 704, and a mapping table 703 
that maps each input value to a respective associated output 
value for each output 704. Unlike LDials and IDials, which 
directly specify configuration latches, a CDial 700 does not 
directly specify configuration latches. Instead, a CDial 700 
controls one or more other Dials (i.e., CDials and/or LDials 
and/or IDials) logically coupled to CDial 700 in an n-way 
“Dial tree' in which each lower-level Dial forms at least a 
portion of a “branch' that ultimately terminates in “leaves” of 
configuration latches. Dial trees are preferably constructed so 
that no Dial is instantiated twice in any Dial tree. 

In the exemplary embodiment given in FIG. 7A, CDial 
700a receives at input 702 an enumerated input value (i.e., a 
string) among a set of legal values including 'A'. ... , 'N'. If 
CDial 700a (oran LDial or IDial) is a top-level Dial (i.e., there 
are no Dials “above' it in a Dial tree), CDial 700a receives the 
enumerated input value directly from Software (e.g., simula 
tion software or firmware). Alternatively, if CDial 700a forms 
part of a “branch” of a dial tree, then CDial 700a receives the 
enumerated input value from the output of another CDial. For 
each legal enumerated input value that can be received at 
input 702, CDial 700a specifies a selected enumerated value 
orbit value for each connected Dial (e.g., Dials 700b, 500 and 
600) in mapping table 703. The values in mapping table 703 
associated with each output 704 are interpreted by ECAD 
system 35 in accordance with the type of lower-level Dial 
coupled to the output 704. That is, values specified for LDials 
and CDials are interpreted as enumerated values, while values 
specified for IDials are interpreted as integer values. With 
these values, each of Dials 700b, 500 and 600 ultimately 
specifies, either directly or indirectly, the values for one or 
more configuration latches 705. 

With reference now to FIG. 7B, there is illustrated another 
diagrammatic representation of a simulation model contain 
ing a Dial tree including a top-level CDial that controls mul 
tiple lower-level LDials. As indicated by prime notation, 
simulation model 300" of FIG. 7B includes the same design 
entities arranged in the same hierarchical relation as simula 
tion model 300 of FIG.3 and contains the same configuration 
latches and associated signals as simulation model 300" of 
FIG.S.C. 
As shown, simulation model 300" of FIG. 7B includes a 

top-level CDial 710 associated with top-level design entity 
302. Simulation model 300" further includes four LDials 
712a, 712b, 714 and 716. LDial 712a, which is associated 
with entity instantiation A0304a, controls the signal states of 
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each signal sig1 514a, which is determined by a respective 
configuration latch 512a, and the signal state of signal sig2 
522a, which is determined by configuration latch 520a. LDial 
712b, which is a replication of LDial 712a associated with 
entity instantiation A1304b, similarly controls the signal 
states of each signal sig1 514b, which is determined by a 
respective configuration latch 512b, and the signal state of 
signal sig2 522b, which is determined by configuration latch 
520b. LDial 714, which is associated with top-level entity 
302, controls the signal state of signal sig4 532, which is 
determined by configuration latch 530. Finally, LDial 716, 
which is associated with entity instantiation FPU0314, con 
trols the signal state of signal sig3 536, which is determined 
by configuration latch 534. Each of these four LDials is 
controlled by CDial 710 associated with top-level entity 302. 
As discussed above with respect to FIGS. 4A and 4B, 

CDial 710 and each of the four LDials depicted in FIG. 7B is 
instantiated within the associated design entity by embedding 
a configuration specification statement (or a configuration file 
reference statement pointing to a configuration file containing 
a configuration specification statement) within the HDL file 
of the associated design entity. An exemplary configuration 
specification statement utilized to instantiate each Dial shown 
in FIG. 7B is given below: 

CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO, 
FPUO.BUSRATIO, 

BUSRATIO)= 
{2:1 => 2:1, 2:1, 2:1, 2:1; 
3:1 => 3:1, 3:1, 3:1, 3:1; 

4:1 => 4:1, 4:1, 4:1, 4:1 
}: 

LDial Buskatio (AO.sig1, A1.sig1, B.C.sig2(0.5)) = 
{2:1 => Ob0, Ob0, 0x00; 
3:1 => Ob1, Ob1, 0x01; 

4:1 => Ob1, Ob1, 0x3F, 
}: 

LDial BusPatio (sig3) = 
{2:1 => Ob0; 
3:1 => Ob0; 
4:1 => Ob1 

}: 
LDial BusPatio (sig4(0.3)) = 

{2:1 => 0x0; 
3:1 => 0x1; 
4:1 => OxF 

}: 

By implementing a hierarchical Dial tree in this manner, 
several advantages are realized. First, the amount of software 
code that must be entered is reduced since the automatic 
replication of LDials 712 within FXU entity instantiations 
304a and 304b allows the code specifying LDials 712 to be 
entered only once. Second, the organizational boundaries of 
the design process are respected by allowing each designer 
(or design team) to specify the configuration of signals within 
the design entity for which he is responsible. Third, coding of 
upper level Dials (i.e., CDial 710) is greatly simplified, reduc 
ing the likelihood of errors. Thus, for example, the CDial and 
LDial collection specified immediately above performs the 
same function as the “large LDial specified above with ref 
erence to FIG. 5C, but with much less complexity in any one 
Dial. 
Many Dials, for example, Switches utilized to disable a 

particular design entity in the event an uncorrectable error is 
detected, have a particular input value that the Dial should 
have in nearly all circumstances. For such Dials, the configu 
ration specification language of the present invention permits 
a designer to explicitly specify in a configuration specifica 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
tion statement a default input value for the Dial. In an exem 
plary embodiment, a Default value is specified by including 
“=default value' following the specification of a Dial and 
prior to the concluding semicolon. For example, a default 
value for a CDial, can be given as follows: 

CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO, 
FPUO.BUSRATIO, 

BUSRATIO)= 
(2:1 => 2:1, 2:1, 2:1, 2:1; 
3:1 => 3:1, 3:1, 3:1, 3:1; 

4:1 => 4:1, 4:1, 4:1, 4:1 
} = 2:1: 

It should be noted that for CDials and LDials, the specified 
default value is required to be one of the legal enumerated 
values, which are generally (i.e., except for Switches) listed in 
the mapping table. For Switches, the default value must be 
one of the predefined enumerated values of “ON” and "OFF". 
A default value for an IDial can similarly be specified as 

follows: 

IDial cnt value(AO.sig1 (0.7), A.O.sig2(8.14): 
A1.sig1 (0.7), A1.sig2(8.14): 
A3..sig1 (0.7), A3...sig2(8.14) 

) = 0x7FFF; 

In this case, a constant, which can be given in hexadecimal, 
decimal orbinary format, provides the default output value of 
each signal controlled by the IDial. In order to apply the 
specified constant to the indicated signal(s), high order bits 
are truncated or padded with Zeros, as needed. 
The configuration specification language of the present 

invention also permits control of the time at which particular 
default values are applied. Control of the application of 
defaults is important, for example, in simulating or executing 
in hardware the boot sequence for an integrated circuit. Dur 
ing the initial stages of the boot sequence, the clock signals to 
different sections of the integrated circuit may be started at 
different times, meaning that latches in different sections of 
the integrated circuit must be loaded at different times in 
accordance with the specified Dial default values. 

In accordance with the present invention, control of the 
timing of the application of default values is Supported 
through the association of one or more phase identifiers (IDS) 
with a default value. Phase IDs are strings that label collec 
tions of Dials to which default values should be applied 
substantially concurrently. Multiple phase IDs may be asso 
ciated with a particular Dial to promote flexibility. For 
example, in different system configurations, the boot 
sequence for a constituent integrated circuit may be different. 
Accordingly, it may be necessary or desirable to apply a 
default value to a particular Dial during different phases, 
depending upon the system configuration. 

In one exemplary syntax one or more phase IDs (e.g., 
phaseido and phaseid1) can optionally be specified in a 
comma delimited list enclosed by parenthesis and following a 
default declaration in a Dial declaration statement as follows: 
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CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO, 
FPUO.BUSRATIO, 

BUSRATIO)= 
{2:1 => 2:1, 2:1, 2:1, 2:1; 
3:1 => 3:1, 3:1, 3:1, 3:1; 

4:1 => 4:1, 4:1, 4:1, 4:1 
} = 2:1 (phaseidO, phaseid1); 

It is preferably an error to specify a phase ID for a Dial for 
which no default value is specified, and as noted above, the 
specification of any phase ID is preferably entirely optional, 
as indicated by the exemplary CDial and IDial declarations 
given previously. 
The use of default values for Dials is subject to a number of 

rules. First, a default value may be specified for any type of 
Dial including LDials, IDials (including those with split out 
puts) and CDials. Default values are preferably not supported 
for Dial groups (which are discussed below with respect to 
FIGS. 11A-11B). Second, if default values are specified for 
multiple Dials in a multiple-level Dial tree, only the highest 
level default value affecting each “branch of the Dial tree is 
applied (including that specified for the top-level Dial), and 
the remaining default values, if any, are ignored. Despite this 
rule, it is nevertheless beneficial to specify default values for 
lower-level Dials in a Dial tree because the default values may 
be applied in the event a smaller portion of a model is inde 
pendently simulated, as discussed above. In the event that the 
combination of default values specified for lower-level Dials 
forming the “branches” of a Dial tree do not correspond to a 
legal output value set for a higher-level Dial, the compiler will 
flag an error. Third, a default value is overridden when a Dial 
receives an input to actively set the Dial. 
By specifying default values for Dials, a designer greatly 

simplifies use of Dials by downstream organizational groups 
by reducing the number of Dials that must be explicitly set for 
simulation or hardware configuration. In addition, as dis 
cussed further below, use of default values assists in auditing 
which Dials have been actively set. 

In at least one embodiment of the present invention, the 
configuration specification language of the present invention 
Supports the definition and use of an additional construct 
referred to hereinas a Register. A Register associates a logical 
name with an arbitrary collection of latches, thus permitting 
the values of the latches to be set and read by reference to the 
logical name. In this regard, Registers are similar to the Dials 
described above. However, unlike the LDials and IDials 
described above, Registers can include latches that are refer 
enced by other Dials, such as LDials and IDials (as well as 
latches that are not referenced by any Dial). 

Referring now to FIG. 7C, there is illustrated a diagram 
matic representation of a Register 720 in accordance with the 
present invention. Register 720 has an input 722 and one or 
more one-bit outputs 724 (e.g., outputs 724a-724h). As 
shown, outputs 724a–724h of Register 720 are each logically 
coupled to a respective one of one-bit latches 705a-705h. Of 
these latches 705, latches 705a-705b are logically coupled to 
a Dial tree having CDial 700 as the top-level Dial. In addition, 
latches 705c-705d are logically coupled to an LDial 500, and 
latches 705e-705f are logically coupled to an IDial 600. 
Latches 705g-705h are not referenced by any Dial. 
The illustrated arrangement of Register 720 and Dials 500, 

600 and 700 advantageously permits latches 705a-705f to be 
set and read utilizing the most convenient conceptualization 
of latches 705a-705f. It is often the case that a collection of 
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latches, such as latches 705a-705f. are conveniently concep 
tualized as a number of different subfields, which may, for 
example, derive their values from different sources, represent 
different data types (e.g., integer or enumerated value), have 
different ranges of legal values, etc. Thus, by employing 
multiple Dials to delineate some or all of the subfields, the 
legal values and data types of the subfields can be efficiently 
documented within the code defining an HDL model. 
On the other hand, certain constituencies involved in the 

development of a digital design may find it more convenient 
to conceptualize and access latches 705a-705h as a mono 
lithic entity, which in this case is Register 720. For example, 
because code that addresses latches 705a-705f as a plurality 
of different subfields and therefore accesses latches 705a 
705f via Dials 500, 600, 700 is larger than code that addresses 
latches 705a-705h as a monolithic register, firmware devel 
opers and others interested in minimizing the size of the code 
image may prefer to access latches 705a-705h as Register 720 
and leave it to the human user to perform the combination of 
the Subfields needed to obtain the sequence of bits comprising 
the Register value. 

Although a wide variety of syntax may be employed to 
declare a Register, exemplary syntax for a Register declara 
tion statement utilized to declare a Register within an HDL 
file 400 or configuration file 414 may be given as follows: 
REGISTER my reg(x.y.signal(0 to 4), signal2(0 to 6)); 

In this exemplary declaration statement, the keyword "REG 
ISTER’ identifies the statement as a register declaration, 
“my reg” is the name of the Register, and “x.y.signal(0 to 4) 
and “signal2(0 to 6) are output signals of the set of latches 
included in the Register. (Of course, any arbitrary number of 
signals can be included within the Register.) 
As with the Dials described above, a variety of rule sets can 

be constructed to define the permitted uses and functions of 
Registers. In one exemplary embodiment, the following rules 
are enforced for Registers by the model build process 
described below with respect to FIG. 8: 

(1) Registers do not support default values; 
(2) Registers can reference latches also referenced by 

Dials; 
(3) A Register cannot reference a latch (or signal) refer 

enced by another Register; 
(4) Registers cannot be referenced by a Dial (e.g., CDial) 

and are therefore top-level entities: 
(5) Registers can reference latches not referred to by any 

Dial (and in a degenerate case, all latches referenced by 
a Register may be referenced only by that Register). 

As will be appreciated by those skilled in the art, other 
embodiments of the present invention may employ a different 
rule sets, which may support default values for register sets, 
hierarchical arrangement of Registers, and other alternative 
or additional rules. 

In addition to defining syntax for configuration specifica 
tion statements specifying Dials and Registers, the configu 
ration specification language of the present invention Sup 
ports at least two additional HDL semantic constructs: 
comments and attribute specification statements. A comment, 
which may have the form: 

BusRatio.comment="The bus ratio Dial configures the cir 
cuit in accordance with a selected processor/intercon 
nect frequency ratio’; 

permits designers to associate arbitrary strings delimited by 
quotation marks with particular Dial names. As discussed 
below with reference to FIG. 8, these comments are processed 
during compilation and included within a configuration docu 
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mentation file in order to explain the functions, relationships, 
and appropriate settings of the Dials. 

Attribute specification statements are statements that 
declare an attribute name and attribute value and associate the 
attribute name with a particular entity name. For example, an 
attribute specification statement may have the form: 

BusPatio.attribute (myattribute)=scom57(0:9); 

In this example, “BusRatio.attribute' declares that this state 
ment is an attribute specification statement associating an 
attribute with a Dial having “BusRatio” as its Dial name, 
“myattribute” is the name of the attribute, and “scom57(0.9) 
is a string that specifies the attribute value. Attributes Support 
custom features and language extensions to the base configu 
ration specification language. 

Referring now to FIG. 8, there is depicted a high level flow 
diagram of a model build process in which HDL files con 
taining configuration statements are compiled to obtain a 
simulation executable model and a simulation configuration 
database for a digital design. The process begins with one or 
more design entity HDL source code files 800, which include 
configuration specification statements and/or configuration 
file reference Statements, and, optionally, one or more con 
figuration specification reference files 802. HDL compiler 
804 processes HDL file(s) 800 and configuration specifica 
tion file(s) 802, if any, beginning with the top level entity of a 
simulation model and proceeding in a recursive fashion 
through all HDL file(s) 800 describing a complete simulation 
model. As HDL compiler 804 processes each HDL file 800, 
HDL compiler 804 creates “markers' in the design interme 
diate files 806 produced in memory to identify configuration 
statements embedded in the HDL code and any configuration 
specification files referenced by an embedded configuration 
file reference statement. 

Thereafter, the design intermediate files 806 in memory are 
processed by a configuration compiler 808 and model build 
tool 810 to complete the model build process. Model build 
tool 810 processes design intermediate files 806 into a simu 
lation executable model 816, that when executed, models the 
logical functions of the digital design, which may represent, 
for example, a portion of an integrated circuit, an entire inte 
grated circuit or module, or a digital system including mul 
tiple integrated circuits or modules. In this processing, model 
build tool 810 preferably generates an m-way tree indicating 
the hierarchical relationships between the design entities 
comprising the simulation model. 

Configuration compiler 808 processes the configuration 
specification statements marked in design intermediate files 
806 and creates from those statements a configuration docu 
mentation file 812 and a configuration database 814. Configu 
ration documentation file 812 lists, in human-readable for 
mat, information describing the Dials associated with the 
simulation model. The information includes the Dials 
names, their mapping tables, the structure of Dial trees, if any, 
instance information, etc. In addition, as noted above, con 
figuration documentation file 812 includes strings contained 
in comment statements describing the functions and settings 
of the Dials in the digital design. In this manner, configuration 
documentation suitable for use with both a simulation model 
and a hardware implementation of a digital design is aggre 
gated in a “bottom-up’ fashion from the designers respon 
sible for creating the Dials. The configuration documentation 
is then made available to all downstream organizational 
groups involved in the design, simulation, laboratory hard 
ware evaluation, and commercial hardware implementation 
of the digital design. 
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Configuration database 814 preferably contains the m-way 

tree generated by model build tool 810 that describes the 
hierarchical relationships of the design entities within simu 
lation executable model 816, as well as a number of data 
structures pertaining to Dials and other configuration entities. 
As described in detail below, these data structures include 
Dial data structures describing Dial entities, latch data struc 
tures, and Dial instance data structures. These data structures 
associate particular Dial inputs with particular configuration 
values used to configure the digital design (i.e., simulation 
executable model 816). In a preferred embodiment, the con 
figuration values can be specified in terms of either signal 
states or configuration latch values, and the selection of which 
values are used is user-selectable. Configuration database 814 
is accessed via Application Programming Interface (API) 
routines during simulation of the digital design utilizing 
simulation executable model 816 and is further utilized to 
generate similar configuration databases for configuring 
physical realizations of the digital design. In a preferred 
embodiment, the APIs are designed so that only top-level 
Dials (i.e., LDials, IDials or CDials without a CDial logically 
“above' them) can be set and all Dial values can be read. 
As described above, the configuration specification lan 

guage of the present invention advantageously permits the 
specification of the output values of LDials and IDials by 
reference to signal names (e.g., "sig1'). As noted above, a key 
motivation for this feature is that designers tend to think in 
terms of configuring operative signals to particular signal 
states, rather than configuring the associated configuration 
latches. In practice, however, a signal that a designer desires 
to configure to a particular state may not be directly connected 
to the output of an associated configuration latch. Instead, a 
signal to be configured may be coupled to an associated 
configuration latch through one or more intermediate circuit 
elements, such as buffers and inverters. Rather than burden 
ing the designer with manually tracing back each config 
urable signal to an associated configuration latch and then 
determining an appropriate value for the configuration latch, 
configuration compiler 808 automatically traces back a speci 
fied signal to the first storage element (i.e., configuration 
latch) coupled to the signal and performs any necessary inver 
sions of the designer-specified signal state value to obtain the 
proper value to load into the configuration latch. 

With reference now to FIG.9A, there is illustrated a portion 
of a digital design including an LDial 900 that controls the 
states of a plurality of signals 904a-904e within the digital 
design. When configuration compiler 808 performs a trace 
back of signal 904a, no inversion of the designer-specified 
signal states is required because signal 904a is directly con 
nected to configuration latch 902a. Accordingly, configura 
tion compiler 808 stores into configuration database 814 the 
designer-specified values from the configuration specifica 
tion statement of LDial 900 as the values to be loaded into 
configuration latch 902a. Traceback of signal 904b to con 
figuration latch902b similarly does not result in the inversion 
of any designer-specified values from the configuration speci 
fication statement of LDial 900 because the only intervening 
element between signal 904b and configuration register 902b 
is a non-inverting buffer 906. 

Configuration latches, such as configuration latches 902c 
and 902d. are frequently instantiated by designers through 
inclusion in an HDL file 800 of an HDL statement referencing 
a latch primitive in an HDL design library. The latch entity 
903a, 903b inserted into the simulation executable model in 
response to such HDL library references may include invert 
ers, such as inverters 908,910, which are not explicitly “vis 
ible' to the designer in the HDL code. The automatic trace 
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back performed by configuration compiler 808 nevertheless 
detects these inverters, thus preventing possible configuration 
COS. 

Accordingly, when performing a traceback of signal 904c. 
configuration compiler 808 automatically inverts the 5 
designer-specified configuration value specified for signal 
904c before storing the configuration value for configuration 
latch902c in configuration database 814 because of the pres 
ence of an inverter 908 between signal 904c and configuration 
latch 902c. When configuration compiler 808 performs tra- 10 
ceback of signal 904d, however, configuration compiler 808 
does not invert the designer-specified signal state values 
despite the presence of inverters 910,914 and buffer 912 in 
the signal path because the logic is collectively non-inverting. 
It should be noted that configuration compiler 808 can accu- 15 
rately process both “hidden' inverters like inverter 910 and 
explicitly declared inverters like inverter 914. 

FIG. 9A finally illustrates a signal 904e that is coupled to 
multiple configuration latches 902e and 902f through an 
intermediate AND gate 916. In cases like this in which the 20 
traceback process detects fanout logic between the specified 
signal and the closest configuration latch, it is possible to 
configure configuration compiler 808 to generate appropriate 
configuration values for configuration latches 902e, 902f 
based upon the designer-specified signal state values for sig- 25 
nal 904e. However, it is preferable if configuration compiler 
808 flags the configuration specification statement for LDial 
900 as containing an error because the compiler-selected 
values for configuration latches 902e, 902fmay affect other 
circuitry that receives the configuration values from configu- 30 
ration latches 902 in unanticipated ways. 

Referring now to FIG. 9B, there is depicted a high level 
logical flowchart of the traceback process implemented by 
configuration compiler 808 for each signal name specified in 
a configuration specification statement. As shown, the pro- 35 
cess begins at block 920 and then proceeds to block 922–924, 
which illustrate configuration compiler 808 initializing an 
inversion count to Zero and then locating the signal identified 
by the signal name specified in a configuration specification 
Statement. 40 

The process then enters a loop comprising blocks 926-936, 
which collectively represent configuration compiler 808 trac 
ing back the specified signal to the first latch element in the 
signal path. Specifically, as illustrated at blocks 926-930, 
configuration compiler 808 determines whether the next 45 
“upstream circuit element in the signal path is a latch (926), 
buffer (928) or inverter (930). If the circuit element is a latch, 
the process exits the loop and passes to block 940, which is 
described below. If, however, the circuit element is a buffer, 
the process passes to block 934, which illustrates configura- 50 
tion compiler moving to the next upstream circuit element to 
be processed without incrementing the inversion count. If the 
circuit element is an inverter, the process passes to blocks 936 
and 934, which depicts incrementing the inversion count and 
then moving to the next upstream circuit element to be pro- 55 
cessed. In this manner, configuration compiler traces back a 
specified signal to a configuration latch while determining a 
number of inversions of signal state implemented by the 
circuit elements in the path. As noted above, if configuration 
compiler 808 detects a circuit element other than a buffer or 60 
inverter in the signal path, configuration compiler 808 pref 
erably flags an error, as shown at block 946. The process 
thereafter terminates at block 950. 

Following detection of a configuration latch at block 926, 
configuration compiler 808 determines whether the inversion 65 
count is odd or even. As shown at blocks 940-944, if the 
inversion count is odd, configuration compiler inverts the 
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designer-specified configuration values for the signal at block 
942 prior to inserting the values into configuration database 
814. No inversion is performed prior to inserting the configu 
ration values into configuration database 814 if the inversion 
count is even. The process thereafter terminates at block 950. 
As has been described, the present invention provides a 

configuration specification language that permits a designer 
of a digital system to specify a configuration for the digital 
system utilizing configuration statements embedded in the 
HDL design files describing the digital system. The configu 
ration statements logically instantiate within the digital 
design one or more Dials, which provide configuration values 
for the digital design in response to particular inputs. The 
Dials, like the design entities comprising the digital design, 
may be hierarchically arranged. The configuration specifica 
tion statements are compiled together with the HDL files 
describing the digital design to produce a configuration data 
base that may be accessed to configure a simulation execut 
able model or (after appropriate transformations) a physical 
realization of the digital design. The compilation of the con 
figuration specification statements preferably supports a tra 
ceback process in which designer-specified configuration 
values for a signal are inverted in response to detection of an 
odd number of inverters coupled between the signal and an 
associated configuration latch. 

With reference again to FIG. 5C, recall that an exemplary 
configuration specification statement for LDial 524 includes 
a parenthetical signal enumeration of the form: 

It should be noted that the signal enumeration section of the 
configuration specification statement individually, hierarchi 
cally and explicitly enumerates the signal identifier of each 
signal instance configured by the Dial, beginning from the 
scope of the design entity with which the Dial is associated 
(which by convention is the design entity in whose HDL file 
the configuration specification Statement or configuration ref 
erence statement instantiating the Dial is embedded). This 
syntax is referred to herein as a “full expression of a signal 
identifier. Employing “full expression' syntax in the signal 
enumeration section of the configuration specification State 
ment for an LDial or IDial or in the Dial enumeration section 
of the configuration specification statement of a CDial 
requires the designer to know and correctly enter the hierar 
chical identifier for each instance of a signal (or lower-level 
Dial) controlled by the Dial. Consequently, if a new instance 
of the same signal (or lower-level Dial) were later added to the 
digital design, the designer must carefully review the configu 
ration specification statement of the Dial(s) referencing other 
instances of the same signal (or Dial) and update the signal (or 
Dial) enumeration section to include the full expression of the 
newly added instance. 

In order to reduce the amount of input required to input the 
signal (or Dial) enumeration sections of configuration speci 
fication statements and to reduce the burden of code mainte 
nance as new signal and Dial instances are added to the digital 
design, an ECAD system 35 in accordance with the present 
invention also supports a "compact expression' syntax for the 
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signal (or Dial) enumeration sections of configuration speci 
fication statements. This syntax is referred to herein more 
specifically as “compact signal expression' when applied to 
the configuration specification statements of LDials and IDi 
als and is referred to as “compact Dial expression” when 
referring to the configuration specification statements of CDi 
als. 

In a compact expression of a signal or Dial enumeration, all 
instances of an entity within a selected scope for which a 
common configuration is desired can be enumerated with a 
single identifier. For example, in FIG. 5C, if the designer 
wants a common configuration for all four instantiations of 
signal sig1 514, the designer could enumerate all four instan 
tiations in the configuration specification statement of LDial 
524 with the single compact signal expression "A. sig1'. 
where the bracketed term is the name of the entity in which the 
signal of interest occurs. In compact expressions, the default 
Scope of the expression is implied as the scope of the design 
entity (in this case top-level entity 302) with which the Dial is 
associated. The identifier “A.sig1' thus specifies all four 
instantiations of signal sig1 514 within A entity instantiations 
304 within the default scope of top-level entity 302. 
The scope of the identifier in a compact expression can 

further be narrowed by explicitly enumerating selected levels 
of the design hierarchy. For example, the compact expression 
“FXU1.A.sig1 refers only to signal sig1 instantiations 
514b0 and 514b1 within FXU1 entity instantiation 304b, but 
does not encompass signal sig1 instantiations 514a.0 and 
514a1 within FXU0 entity instantiation 304a. 
Of course, when only a single instance of a signal or Dial is 

instantiated at higher levels of the design hierarchy, the com 
pact expression and the full expression will require approxi 
mately the same amount of input (e.g., “FPU0.sig3 versus 
“FPU).sig3” to identify signal sig3536). However, it should 
be noted that if another FPU entity 314 were later added to 
simulation model 300", the compact expression of the iden 
tification would advantageously apply to any later added FPU 
entities within the scope of top-level entity 302. 

Utilizing compact expression, the configuration specifica 
tion statement for LDial 524 can now be rewritten more 
compactly as follows: 

LDial bus ratio (A). SIG1, C.SIG2(0.5), 
FPUO.SIG3, SIG4(0.3) 

If the concatenation syntax described above is applied to the 
mapping table, the mapping table can be further reduced to: 

In the concatenation syntax, the signal values are specified in 
the mapping table with a single respective bit field for each 
entity identifier, irrespective of the number of actual entity 
instances. For example, all instances encompassed by “A 
..sig1' are represented by 1 bit of the specified configuration 
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value, all instances encompassed by “C.sig2' are repre 
sented by 6 bits of the specified configuration value, the single 
instance identified by “FPU0.sig3” is represented by 1 bit of 
the specified configuration value, and the single instance of 
“sig4(0 . . . 3) is represented by 4 bits of the specified 
configuration value. Thus, utilizing concatenation syntax, the 
21 bits collectively specified by LDial 524 can be specified by 
an equivalent 12-bit pattern. 
Compact Dial expressions are constructed and parsed by 

the compiler in the same manner as compact signal expres 
sions. For example, the configuration specification statement 
for CDial 710 of FIG. 7B can be rewritten utilizing compact 
Dial expression as follows: 

CDial BusRatio (FXU).BUSRATIO, FPU). BUSRATIO, BUSRATIO)= 
{2:1 => 2:1, 2:1, 2:1; 
3:1 => 3:1, 3:1, 3:1; 
4:1 => 4:1, 4:1, 4:1 

Again, this configuration specification statement advanta 
geously permits CDial 710 to automatically control any addi 
tional LDials named "Bus ratio’ that are latter added to simu 
lation model 300" through the instantiation of additional 
FXU entities 304 or FPU entities 314 without any code modi 
fication. 

Referring now to FIG. 10, there is depicted a high level 
logical flowchart of an exemplary method by which configu 
ration compiler 808 parses each signal or Dial identification 
within a configuration specification statement in accordance 
with the present invention. As described above, each signal or 
Dial identification is constructed hierarchically from one or 
more fields separated by periods (“ ”). The last field specifies 
an instance name of a signal (e.g., "sig1') or Dial (e.g., 
“Bus Ratio), and the precedingfields narrow the scope from 
the default scope, which by convention is the scope of the 
design entity with which the Dial is associated. 
As shown, the process begins at block 1000 and then pro 

ceeds to block 1002, which illustrates configuration compiler 
808 determining whether the first or current field of the signal 
or Dial identification contains an entity identifier enclosed in 
brackets (e.g., “A”), that is, whether the identification is a 
compact expression. If so, the process passes to block 1020, 
which is described below. If not, configuration compiler 808 
determines at block 1004 whether the identification is a full 
expression, by determining whether the first or current field of 
the identification is the last field of the identification. If so, the 
signal or Dial identification is a full expression, and the pro 
cess passes to block 1010. If, on the other hand, the current 
field of the identification is not the last field, configuration 
compiler 808 narrows a current scope to the design entity 
instantiation identified in the current field of the identifica 
tion, as depicted at block 1006. For example, if configuration 
compiler 808 were processing the identification 
“FPU0.SIG3' within the configuration specification state 
ment of CDial 710 of FIG. 7B, configuration compiler 808 
would narrow the scope from the default scope of top entity 
302 to FPU entity instantiation 314. If the entity instantiation 
indicated by the current field of the identification exists, as 
shown at block 1008, the process returns to block 1002 after 
updating the current field to be the next field, as shown at 
block 1009. If, however, the entity instantiation specified by 
the current field does not exist within the current scope, con 
figuration compiler 808 flags an error at block 1032 and 
terminates processing of the signal or Dial identification. 
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Referring again to block 1004, when configuration com 
piler 808 detects that it has reached the last field of a full 
expression, the process shown in FIG. 10 passes from block 
1004 to block 1010. Block 1010 illustrates configuration 
compiler 1010 attempting to locate within the current scope 
the single signal or Dial instance having a name matching that 
specified in the last field of the signal or Dial identification. If 
configuration compiler 808 determines at block 1012 that no 
matching instance is found within the current scope, the pro 
cess passes to block 1032, and configuration compiler 808 
flags an error. However, if configuration compiler 808 locates 
the matching signal or Dial instance, then configuration com 
piler 808 makes an entry in configuration database 814 bind 
ing the signal or Dial instance to the parameters specified in 
the mapping table of the configuration specification statement 
of the Dial being processed, as shown at block 1014. There 
after, processing of the signal or Dial identification terminates 
at block 1030. 

With reference now to block 1020 and following blocks, 
the processing of a signal or Dial identification employing 
compact expression will now be described. Block 1020 
depicts configuration compiler 808 attempting to locate, 
within each of one or more instances in the current scope of 
the entity indicated by the bracketed field, each Dial or signal 
instance matching that specified in the signal or Dial identi 
fication. For example, when processing the compact expres 
sion “FXU1A.sig1' for simulation model 300" of FIG.7B, 
configuration compiler 808, upon reaching the field “A”. 
searches FXU1 for instantiations of entity A306, and upon 
finding entity instantiations 306a0 and 306a1, searches 
within each of these two entity instantiations to locate signals 
instantiations sig1 514a.0 and 514a1. If configuration com 
piler 808 determines at block 1022 that no matching signal or 
Dial instance is found within the current scope, the process 
passes to block 1032, which depicts configuration compiler 
808 terminating processing of the signal or Dial identification 
after flagging an error. However, if configuration compiler 
808 locates one or more matching signal or Dial instances, 
then the process passes from block 1022 to block 1024. Block 
1024 illustrates configuration compiler 808 making one or 
more entries in configuration database 814 binding each 
matching signal or Dial instance to the parameters specified 
in the mapping table of the configuration specification State 
ment of the Dial being processed. Thereafter, processing of 
the signal or Dial identification terminates at block 1030. 

Utilizing the compact expressions Supported by the present 
invention, the amount of code a designer must enter in a 
configuration specification statement can be advantageously 
reduced. The use of compact expressions not only reduces 
input requirements and the likelihood of input errors, but also 
simplifies code maintenance through the automatic applica 
tion of specified configuration parameters to later entered 
instances of signals and Dials falling within a selected Scope. 
As described above, every Dial has a one-to-one mapping 

between each of its input values and a unique output value of 
the Dial. In other words, each input value has a unique output 
value different than the output value for any other input value. 
For CDials and LDials, the mapping table must explicitly 
enumerate each legal input value and its associated mapping. 
The requirement that the input values must be explicitly 

enumerated in the mapping table limits the overall complex 
ity of any given LDial or CDial. For example, consider the 
case of an integrated circuit (e.g., a memory controller) con 
taining 10 to 20 configuration registers each having between 
5 and 20 legal values. In many cases, these registers have 
mutual dependencies—the value loaded in one register can 
affect the legal possibilities of one or more of the other reg 
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isters. Ideally, it would be convenient to specify values for all 
of the registers utilizing a Dial tree controlled by a single 
CDial. In this manner, the configuration of all of the 10 to 20 
registers could be controlled as a group. 

Unfortunately, given the assumptions set forth above, the 
10 to 20 registers collectively may have over 300,000 legal 
combinations of values. The specification of a CDial in such 
a case, although theoretically possible, is undesirable and 
practically infeasible. Moreover, even if a looping construct 
could be employed to automate construction of the configu 
ration specification statement of the CDial, the configuration 
specification statement, although informing simulation Soft 
ware which input values are legal, would not inform users 
how to set a CDial of this size. 

In recognition of the foregoing, the configuration specifi 
cation language of the present invention provides a “Dial 
group' construct. A Dial group is a collection of Dials among 
which the designer desires to create an association. The runt 
ime APIs utilized to provide Dial input values observe this 
association by preventing the individual Dials within a Dial 
group from being set individually. In other words, all Dials in 
a Dial group must be set at the same time so that individual 
Dials are not set independently without concern for the inter 
actions between Dials. Because software enforces an obser 
vance of the grouping of the Dials forming a Dial group, use 
of Dial groups also provides a mechanism by which a 
designer can warn the "downstream” user community that an 
unstated set of interdependencies exists between the Dials 
comprising the Dial group. 

With reference now to FIG. 11A, there is illustrated a 
diagrammatic representation of a Dial group 1100a. A Dial 
group 1100a is defined by a group name 1102 (e.g., 
“GroupG”) and a Dial list 1104 listing one or more Dials or 
other Dial groups. Dial groups do not have any inputs or 
outputs. The Dials listed within Dial list 1104, which are all 
top-level Dials 1110a-1110?, may be LDials, CDials and/or 
IDials. 

FIG. 11A illustrates that a Dial group 1100a may be imple 
mented as a hierarchical Dial group that refers to one or more 
other Dial groups 1100b-1100m in its Dial list 1104. These 
lower-level Dial groups in turn refer to one or more top-level 
Dials 1110g-1110k and 1110m-1110r (or other Dial groups) 
in their respective Dial lists. 
One motivation for implementing Dial groups hierarchi 

cally is to coordinate configuration of groups of Dials span 
ning organizational boundaries. For example, considera digi 
tal system in which 30 Dials logically belong in a Dial group 
and 10 of the Dials are contained within a first design entity 
that is the responsibility of a first designer and 20 of the Dials 
are contained within a second design entity that is the respon 
sibility of a second designer. Without a hierarchical Dial 
group, a single Dial group explicitly listing all 30 Dials in its 
Dial list 1104 would have to be specified at a higher level of 
the design hierarchy encompassing both of the first and sec 
ond design entities. This implementation would be inconve 
nient in that the designer (or design team) responsible for the 
higher-level design entity would have to know all of the 
related Dials in the lower-level design entities and specifically 
identify each of the 30 Dials in the Dial list 1104 of the Dial 
group. 
An alternative hierarchical approach would entail creating 

a first Dial group containing the 10 Dials within the first 
design entity, a second Dial group containing the 20 Dials 
within the second design entity, and a third higher-level Dial 
group that refers to the first and second Dial groups. Impor 
tantly, the Dial list 1104 of the higher-level Dial group must 
only refer to the two lower-level Dial groups, thus shielding 
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designers responsible for higher levels of the design hierarchy 
from low-level details. In addition, code maintenance is 
reduced since changing which Dials belong to the two lower 
level Dial groups would not affect the Dial list 1104 of the 
upper-level Dial group. 

Dial groups are subject to a number of rules. First, no Dial 
or Dial group may be listed in the Dial list1104 of more than 
one Dial group. Second, a Dial group must refer to at least one 
Dial or other Dial group in its Dial list1104. Third, in its Dial 
list 1104, a Dial group can only refer to Dials or Dial groups 
within its scope, which by convention (and like the concept of 
Scope as applied to Dials) is that of its associated design entity 
(i.e., the design entity itself and any lower level design entity 
within the design entity). Fourth, each Dial referred to in a 
Dial list 1104 of a Dial group must be a top-level Dial. 

Referring now to FIG. 11B, there is depicted an exemplary 
simulation model 1120 illustrating the use of Dial groups. 
Exemplary simulation model 1120 includes a top-level 
design entity 1122 having instantiation identifier “TOP: 
TOP’. Within top-level design entity 1122, two design enti 
ties 1124 and 1126 are instantiated, which have entity names 
FBC and L2, respectively. FBC entity instantiation 1124 in 
turn instantiates a Dial instance 1130 having Dial name “C”. 
a Zentity instantiation 1132 containing a Dial instance 1134 
having Dial name “B”, and two instantiations of entity X 
1136, which are respectively named “X0 and “X1. Each 
entity X instantiation 1136 contains two entity Y instantia 
tions 1138, each further instantiating a Dial instance 1140 
having Dial name 'A'. L2 entity instantiation 1126 contains 
a Dial instance 1150 having Dial name "D' and two entity L 
instantiations 1152, each containing a Dial instance 1154 
having Dial name “E”. 
As shown, FBC entity instantiation 1124 has an associated 

Dial group instance 1160 having a group name “F”. As indi 
cated by arrows, Dial group instance 1160 includes each of 
Dials instances 1130, 1134 and 1140 within FBC entity 
instantiation 1124. L2 entity instantiation 1126 similarly has 
an associated Dial group instance 1162 that includes each of 
Dial instances 1150 and 1154 within L2 entity instantiation 
1126. Both of these Dial group instances in turn belong to a 
higher-level Dial group instance 1164 having group name 
“H”, which is associated with top-level design entity 1122. 

Each Dial group instance is created by including within the 
HDL file of the associated design entity an appropriate con 
figuration statement. For example, exemplary syntax for con 
figuration statements creating Dial groups “F”, “G” and “H” 
are respectively given as follows: 

GDial F(C, Z.B, Y.A); 
GDial G(D, L.E): 
GDial H(FBC.F. L2.G): 

In each configuration statement, a Dial group is declared by 
the keyword “GDial’, which is followed by string (e.g., “F”) 
representing the group name. Within the parenthesis follow 
ing the group name, the Dial list for the Dial group is speci 
fied. As indicated in the configuration statement for Dial 
group “H”, the Dial list for a hierarchical Dial group specifies 
other Dial groups in the same manner as Dials. It should also 
be noted that the compact dial expression syntax discussed 
above can be employed in specifying Dials or Dial groups in 
the Dial list, as indicated in the configuration statements for 
Dial groups “F” and “G”. 
Now that basic types of Dials, syntax for their specifica 

tion, and the application and Dial groups have been described, 
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30 
a description of an exemplary implementation of configura 
tion database 814 and its use will be provided. To promote 
understanding of the manner in which particular Dial instan 
tiations (or multiple instantiations of a Dial) can be accessed 
in configuration database 814, a nomenclature for Dials 
within configuration database 814 will be described. 
The nomenclature employed in a preferred embodiment of 

the present invention first requires a designer to uniquely 
name each Dial specified within any given design entity, i.e., 
the designer cannot declare any two Dials within the same 
design entity with the same Dial name. Observing this 
requirement prevents name collisions between Dials instan 
tiated in the same design entity and promotes the arbitrary 
re-use of design entities in models of arbitrary size. This 
constraint is not too onerous in that a given design entity is 
usually created by a specific designer at a specific point in 
time, and maintaining unique Dial names within Such a lim 
ited circumstance presents only a moderate burden. 

Because it is desirable to be able to individually access 
particular instantiations of a Dial entity that may have mul 
tiple instantiations in a given simulation model (e.g., due to 
replication), use of a Dial name alone is not guaranteed to 
uniquely identify a particular Dial entity instantiation in a 
simulation model. Accordingly, in a preferred embodiment, 
the nomenclature for Dials leverages the unique instantiation 
identifier of the associated design entity required by the native 
HDL to disambiguate multiple instances of the same Dial 
entity with an “extended Dial identifier for each Dial within 
the simulation model. 
As an aside, it is recognized that some HDLS do not strictly 

enforce a requirement for unique entity names. For example, 
conventional VHDL entity naming constructs permit two 
design entities to share the same entity name, entity name. 
However, VHDL requires that such identically named entities 
must be encapsulated within different VHDL libraries from 
which a valid VHDL model may be constructed. In such a 
circumstance, the entity name is equivalent to the VHDL 
library name concatenated by a period (“ ”) to the entity name 
as declared in the entity declaration. Thus, pre-pending a 
distinct VHDL library name to the entity name disambiguates 
entities sharing the same entity name. Most HDLS include a 
mechanism such as this for uniquely naming each design 
entity. 

In a preferred embodiment, an extended Dial identifier that 
uniquely identifies a particular instantiation of a Dial entity 
includes three fields: an instantiation identifier field, a design 
entity name, and a Dial name. The extended Dial identifier 
may be expressed as a string in which adjacent fields are 
separated by a period (“ ”) as follows: 

<instantiation identifiers.<design entity name>.<Dial 
name 

In the extended Dial identifier, the design entity field con 
tains the entity name of the design entity in which the Dial is 
instantiated, and the Dial name field contains the name 
declared for the Dial in the Dial configuration specification 
statement. As described above, the instantiation identifier 
specified in the instantiation identifier field is a sequence of 
instantiation identifiers, proceeding from the top-level entity 
of the simulation model to the directancestor design entity of 
the given Dial instance, with adjacent instance identifiers 
separated by periods (“ ”). Because no design entity can 
include two Dials of the same name, the instantiation identi 
fier is unique for each and every instance of a Dial within the 
model. 
The uniqueness of the names in the design entity name field 

is a primary distinguishing factor between Dials. By includ 
ing the design entity name in the extended Dial identifier, 
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each design entity is, in effect, given a unique namespace for 
the Dials associated with that design entity, i.e., Dials within 
a given design entity cannot have name collisions with Dials 
associated with other design entities. It should also be noted 
that it is possible to uniquely name each Dial by using the 
instantiation identifier field alone. That is, due to the unique 
ness of instantiation identifiers, Dial identifiers formed by 
only the instantiation identifier field and the Dial name field 
will be necessarily unique. However, Such a naming scheme 
does not associate Dials with a given design entity. In prac 
tice, it is desirable to associate Dials with the design entity in 
which they occur through the inclusion of the design entity 
field because all the Dials instantiations can then be centrally 
referenced without the need to ascertain the names of all the 
design entity instantiations containing the Dial. 
As noted above, use of extended Dial identifiers permits the 

unique identification of a particular instantiation of a Dial and 
permits the re-use of design entities within any arbitrary 
model without risk of Dial name collisions. For example, 
referring again to FIG. 11B, Dial A entity instantiations 
1140a0, 1140a1, 1140b0 and 1140b1 can be respectively 
uniquely identified by the following extended Dial identifi 
CS 

FBCXO.Y.O.Y.A 

With an understanding of a preferred nomenclature of 
Dials, reference is now made to FIG. 12A, which is a dia 
grammatic representation of an exemplary format for a con 
figuration database 814 created by configuration compiler 
808. In this exemplary embodiment, configuration database 
814 includes at least four different types of data structures: 
Dial definition data structures (DDDS) 1200, Dial instance 
data structures (DIDS) 1202, latch data structures 1204 and 
top-level pointer array 1206. Configuration database 814 may 
optionally include additional data structures, such as Dial 
pointer array 1208, latch pointer array 1210, instance pointer 
array 1226 and other data structures depicted in dashed-line 
illustration, which may alternatively be constructed in vola 
tile memory when configuration database 814 is loaded, as 
described further below. Generating these additional data 
structures only after configuration database 814 is loaded into 
Volatile memory advantageously promotes a more compact 
configuration database 814. 
A respective Dial definition data structure (DDDS) 1200 is 

created within configuration database 814 for each Dial or 
Dial group in the digital system. Preferably, only one DDDS 
1200 is created in configuration database 814 regardless of 
the number of instantiations of the Dial (or Dial group) in the 
digital system. As discussed below, information regarding 
particular instantiations of a Dial described in a DDDS 1200 
is specified in separate DIDSs 1202. 
As shown, each DDDS 1200 includes a type field 1220 

denoting whether DDDS 1200 describes a Dial or Dial group, 
and if a Dial, the type of Dial. In one embodiment, the value 
set for type field 1220 includes “G” for Dial group, “I” for 
integer Dial (IDial), “L” for latch Dial (LDial), and “C” for 
control Dial (CDial). DDDS 1200 further includes a name 
field 1222, which specifies the name of the Dial or Dial group 
described by DDDS 1200. This field preferably contains the 
design entity name of the Dial (or Dial group), followed by a 
period (“ ”), followed by the name of Dial (or Dial group) 
given in the configuration specification Statement of the Dial 
(or Dial group). The contents of name field 1222 correspond 
to the design entity name and Dial name fields of the extended 
dial identifier for the Dial. 
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DDDS 1200 also includes a mapping table 1224 that con 

tains the mapping from the input of the given Dial to its 
output(s), if required. For LDials and CDials, mapping table 
1224 specifies relationships between input values and output 
values much like the configuration specification statements 
for these Dials. For Dial groups and IDials not having a split 
output, mapping table 1220 is an empty data structure and is 
not used. In the case of an IDial with a split output, mapping 
table 1220 specifies the width of the replicated integer field 
and the number of copies of that field. This information is 
utilized to map the integer input value to the various copies of 
the integer output fields. 

Finally, DDDS 1200 may include an instance pointer array 
1226 containing one or more instance pointers 1228a-1228m 
pointing to each instance of the Dial or Dial group defined by 
the DDDS 1200. Instance pointer array 1226 facilitates 
access to multiple instances of a particular Dial or Dial group. 
As further illustrated in FIG. 12A, configuration database 

814 contains a DIDS 1202 corresponding to each Dial instan 
tiation or Dial group instantiation within a digital design. 
Each DIDS 1202 contains a definition field 1230 containing a 
definition pointer 1231 pointing to the DDDS 1200 of the Dial 
for which the DIDS 1202 describes a particular instance. 
Definition pointer 1231 permits the Dial name, Dial type and 
mapping table of an instance to be easily accessed once a 
particular Dial instance is identified. 
DIDS 1202 further includes a parent field 1232 that, in the 

case of an IDial, CDial or LDial, contains a parent pointer 
1233 pointing to the DIDS 1202 of the higher-level Dial 
instance, if any, having an output logically connected to the 
input of the corresponding Dial instance. In the case of a Dial 
group, parent pointer 1233 points to the DIDS 1202 of the 
higher-level Dial group, if any, that hierarchically includes 
the present Dial group. If the Dial instance corresponding to 
a DIDS 1202 is a top-level Dial and does not belong to any 
Dial group, parent pointer 1233 in parent field 1232 is a 
NULL pointer. It should be noted that a Dial can be a top-level 
Dial, but still belong to a Dial group. In that case, parent 
pointer 1233 is not NULL, but rather points to the DIDS 1202 
of the Dial group containing the top-level Dial. 

Thus, parent fields 1232 of the DIDSs 1202 in configura 
tion database 814 collectively describe the hierarchical 
arrangement of Dial entities and Dial groups that are instan 
tiated in a digital design. As described below, the hierarchical 
information provided by parent fields 1232 advantageously 
enables a determination of the input value of any top-level 
Dial given the configuration values of the configuration 
latches ultimately controlled by that top-level Dial. 

Instance name field 1234 of DIDS 1202 gives the fully 
qualified instance name of the Dial instance described by 
DIDS 1202 from the top-level design entity of the digital 
design. For Dial instances associated with the top-level entity, 
instance name field 1234 preferably contains a NULL string. 
DIDS 1202 may further include a default field 1229, a 

phase ID field 1227, and a instance set field 1239. At compile 
time, configuration compiler 808 preferably initially inserts a 
default field 1229 into at least each DIDS 1202 for which the 
configuration specification statement for the associated Dial 
has a default specified. Default field 1229 stores the specified 
default value; if no default value is specified, default field 
1229 is NULL or is omitted. Configuration compiler 808 
Subsequently analyzes configuration database 814 utilizing a 
recursive traversal and removes (or set to NULL) the default 
field 1229 of any Dial instance that has an ancestor Dial 
instance having a default. In this manner, default values of 
Dial instances higher in the hierarchy override defaults speci 
fied for lower level Dial instances. For each remaining (or 
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non-NULL) default field 1229, configuration compiler 808 
inserts into the DIDS 1202 a phase ID field 1227 for storing 
one or more phase IDs, if any, associated with the default 
value. The phase ID(s) stored within phase ID field 1227 may 
be specified within a Dial definition statement within an HDL 
file 800 or configuration specification file 802, or may alter 
natively be supplied by direct manipulation of configuration 
database 814 by a downstream user, as discussed further 
below with respect to FIG. 18C. 
As indicated by dashed-line notation, a instance set field 

1239 is preferably inserted within each DIDS 1302 in con 
figuration database 814 when configuration database 814 is 
loaded into volatile memory. instance set field 1239 is a 
Boolean-valued field that in initialized to FALSE and is 
updated to TRUE when the associated Dial instance is explic 
itly set. 

Finally, DIDS 1202 includes an output pointer array 1236 
containing pointers 1238a–1238n pointing to data structures 
describing the lower-level instantiations associated with the 
corresponding Dial instance or Dial group instance. Specifi 
cally, in the case of IDials and LDials, output pointers 1238 
refer to latch data structures 1204 corresponding to the con 
figuration latches coupled to the Dial instance. For non-split 
IDials, the configuration latch entity referred to by output 
pointer 1238a receives the high order bit of the integer input 
value, and the configuration latch entity referred to by output 
pointer 1238n receives the low order bit of the integer input 
value. In the case of a CDial, output pointers 1238 refer to 
other DIDSs 1202 corresponding to the Dial instances con 
trolled by the CDial. For Dial groups, output pointers 1238 
refer to the top-level Dial instances or Dial group instances 
hierarchically included within the Dial group instance corre 
sponding to DIDS 1202. 

Configuration database 814 further includes a respective 
latch data structure 1204 for each configuration latch in simu 
lation executable model 816 to which an output of an LDial or 
IDial is logically coupled. Each latch data structure 1204 
includes a parent field 1240 containing a parent pointer 1242 
to the DIDS 1200 of the LDial or IDial directly controlling the 
corresponding configuration latch. In addition, latch data 
structure 1204 includes a latch name field 1244 specifying the 
hierarchical latch name, relative to the entity containing the 
Dial instantiation identified by parent pointer 1242. For 
example, if an LDial Xhaving an instantiation identifiera.b.c 
refers to a configuration latch having the hierarchical name 
“a.b.c.d. latch1, latch name field 1244 will contain the string 
“d.latch1. Prepending contents of an instance name field 
1234 of the DIDS 1202 identified by parent pointer 1242 to 
the contents of a latch name field 1244 thus provides the fully 
qualified name of any instance of a given configuration latch 
configurable utilizing configuration database 814. 

Still referring to FIG. 12A, as noted above, configuration 
database 814 includes top-level pointer array 1206, and 
optionally, Dial pointer array 1208 and latch pointer array 
1210. Top-level pointer array 1206 contains top-level point 
ers 1250 that, for each top-level Dial and each top-level Dial 
group, points to an associated DIDS 1202 for the top-level 
entity instance. Dial pointer array 1208 includes Dial pointers 
1252 pointing to each DDDS 1200 in configuration database 
814 to permit indirect access to particular Dial instances 
through Dial and/or entity names. Finally, latch pointer array 
1210 includes latch pointers 1254 pointing to each latch data 
structure 1204 within configuration database 814 to permit 
easy access to all configuration latches. 
Once a configuration database 814 is constructed, the con 

tents of configuration database 814 can be loaded into volatile 
memory, such as system memory 18 of data processing sys 
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tem 8 of FIG. 1, in order to appropriately configure a simu 
lation model for simulation. In general, data structures 1200, 
1202, 1204 and 1206 can be loaded directly into system 
memory 18, and may optionally be augmented with addi 
tional fields, as described below. However, as noted above, if 
it is desirable for the non-volatile image of configuration 
database 814 to be compact, it is helpful to generate addi 
tional data structures, such as Dial pointer array 1208, latch 
pointer array 1210 and instance pointer arrays 1226, in the 
Volatile configuration database image in system memory 18. 

Referring now to FIG. 12B, there is illustrated a more 
detailed view of a portion of an exemplary simulation con 
figuration database 814 including data structures representing 
Dials and Registers in accordance with the present invention. 
In order to avoid unnecessary complexity some features of 
simulation configuration database 814 shown in FIG. 12A are 
omitted from FIG. 12B. 

Turning now to a consideration of the figure, FIG. 12B 
illustrates a latch data structure 1204' representing a latch, 
such as configuration latch 705a of FIG.7C, that is referenced 
by both a Dial and a Register. The Dial referencing the latch 
is represented within simulation configuration database 814 
by DIDS 1202a, as discussed above with respect to FIG.12A. 
To represent the logical connection between the Dial and the 
latch, latch data structure 1204 includes a Dial parent field 
1240a containing a Dial parent pointer 1242a pointing to a 
DIDS 1202a, and DIDS 1202a includes an output pointer 
1238n within output pointer array 1236 that points to latch 
data structure 1204' to identify the latch as a “child' of the 
parent Dial. 
The Register referencing the latch is represented within 

simulation configuration database 814 by DIDS 1202b. As 
indicated by like reference numbers, DIDS 1202b may 
advantageously be structured similarly to DIDS 1202a in a 
preferred embodiment. Specifically, DIDS 1202b includes a 
definition field 1230 containing a definition pointer 1231 
pointing to a DDDS 1200 (not shown in FIG. 12B) that 
defines a Register entity and accordingly has a type field 1220 
having the value of “R” for Register. (It should be noted that 
the DDDS 1200 defining the Register entity has a NULL or 
absent mapping table 1224 because Registers do not map 
input or output values.) DIDS 1202b may also include an 
instance name field 1234 and an output pointer array 1236 as 
discussed above with respect to FIG. 12A. An output pointer 
1238a within output pointer array 1236 of DIDS 1202b iden 
tifies latch data structure 1204' as representing a child latch of 
the Register. The relationship between the Register and the 
latch is similarly documented by a Register parent pointer 
1242b within a Register parent field 1240b of latch data 
Structure 1204". 

As shown, DIDS 1202b may also include a parent field 
1232, default field 1229 and phase field 1227, as discussed 
above with respect to FIG. 12A. However, if the rule set 
discussed above with respect to FIG. 7C is implemented, 
parent field 1232, default field 1229 and phase ID field 1227 
are NULL or may be omitted because, according to the above 
given rule set, Registers are top-level entities that do not have 
parents and do not permit the use of default values. 

In the following description, the naming, setting, and read 
ing of Dial instances and their underlying latches are 
described in detail. Except where noted below, Register 
instances and their underlying latches (which may be shared 
with Dial instances) are accessed in an identical manner by 
virtue of the common design of the data structures represent 
ing the Dial and Register instances in configuration database 
814. 
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Referring now to FIG. 13, there is depicted a high level 
logical flowchart of a method by which configuration data 
base 814 is expanded within volatile memory of a data pro 
cessing system, Such as System memory 18 of data processing 
system 8. Because FIG. 13 depicts logical steps rather than 
operational steps, it should be understood that many of the 
steps illustrated in FIG. 13 may be performed concurrently or 
in a different order than that shown. 
As illustrated, the process begins at block 1300 and then 

proceeds to block 1302, which illustrates data processing 
system 6 copying the existing data structures within configu 
ration database 814 from non-volatile storage (e.g., disk Stor 
age or flash memory) into volatile system memory 18. Next, 
at block 1304, a determination is made whether all top-level 
pointers 1250 within top-level pointer array 1206 of configu 
ration database 814 have been processed. If so, the process 
passes to block 1320, which is discussed below. If not, the 
process proceeds to block 1306, which illustrates selection 
from top-level array 1206 of the next top-level pointer 1250 to 
be processed. 
A determination is then made at block 1308 of whether or 

not parent pointer 1233 within the DIDS 1202 identified by 
the selected top-level pointer 1250 is a NULL pointer. If not, 
which indicates that the DIDS 1202 describes a top-level Dial 
belonging to a Dial group, the process returns to block 1304. 
indicating that the top-level Dial and its associated lower 
level Dials will be processed when the Dial group to which it 
belongs is processed. 

In response to a determination at block 1308 that the parent 
pointer 1233 is a NULL pointer, data processing system 8 
creates an instance pointer 1228 to the DIDS 1202 in the 
instance array 1226 of the DDDS 1200 to which definition 
pointer 1231 in definition field 1230 of DIDS 1202 points, as 
depicted at block 1310. Next, at block 1312, data processing 
system 8 creates a Dial pointer 1252 to the DDDS 1200 of the 
top-level Dial within Dial pointer array 1208, if the Dial 
pointer 1252 is not redundant. In addition, as shown at block 
1314, data processing system 8 creates a latch pointer 1254 
within latch pointer array 1210 pointing to each latch data 
structure 1204, if any, referenced by an output pointer 1238 of 
the DIDS 1202 of the top-level Dial. As shown at block 1316, 
each branch at each lower level of the Dial tree, if any, headed 
by the top-level Dial referenced by the selected top-level 
pointer 1250 is then processed similarly by performing the 
functions illustrated at block 1310-1316 until a latch data 
structure 1204 terminating that branch is found and pro 
cessed. The process then returns to block 1304, representing 
the processing of each top-level pointer 1250 within top-level 
pointer array 1206. 

In response to a determination at block 1304 that all top 
level pointers 1250 have been processed, the process illus 
trated in FIG. 13 proceeds to block 1320. Block 1320 illus 
trates the creation of a instance set field 1239 in each DIDS 
1320 in the configuration database. As noted above, instance 
set field 1239 is a Boolean-valued field that in initialized to 
FALSE and is updated to TRUE when the associated Dial or 
Register instance is explicitly set. In addition, as depicted at 
block 1322, data processing system 8 creates a latch value 
field 1246, latch Register set field 1247, latch set field 1248, 
and set history field 1249 in each latch data structure 1204 to 
respectively indicate the current set value of the associated 
configuration latch, to indicate whether or not the configura 
tion latch is set through the associated Register instance, to 
indicate whether or not the configuration latch is currently set 
by an explicit set command, and to indicate whether or not the 
configuration latch has ever been explicitly set. Although the 
creation of the five fields indicated at block 1320-1322 is 
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illustrated separately from the processing depicted at blocks 
1304-1316 for purposes of clarity, it will be appreciated that 
it is more efficient to create instance set field 1239 as each 
DIDS 1202 is processed and to create fields 1246, 1247, 1248 
and 1249 as the latch data structures 1204 at the bottom of 
each Dial (or Register) tree are reached. The process of load 
ing the configuration database into Volatile memory thereaf 
ter terminates at block 1324. 

With the configuration database loaded into volatile 
memory, a simulation model can be configured and utilized to 
simulate a digital design through the execution of simulation 
software. With reference to FIG. 14, there is illustrated a 
block diagram depicting the contents of system memory 18 
(FIG. 1) during a simulation run of a simulation model. As 
shown, system memory 18 includes a simulation model 1400, 
which is a logical representation of the digital design to be 
simulated, as well as Software including configuration APIs 
1406, a simulator 1410 and an RTX (Run Time eXecutive) 
1420. 

Simulator 1410 loads simulation models, such as simula 
tion model 1400, into system memory 18. During a simula 
tion run, simulator 1410 resets, clocks and evaluates simula 
tion model 1400 via various APIs 1416. In addition, simulator 
1410 reads values in simulation model 1400 utilizing GET 
FAC API 1412 and writes values to simulation model 1400 
utilizing PUTFAC API 1414. Although simulator 1410 is 
implemented in FIG. 14 entirely in software, it will be appre 
ciated in what follows that the simulator can alternatively be 
implemented at least partially in hardware. 

Configuration APIs 1406 comprise software, typically 
written in a high level language Such as C or C++, that Support 
the configuration of simulation model 1400. These APIs, 
which are dynamically loaded by simulator 1410 as needed, 
include a first API that loads configuration model 814 from 
non-volatile storage and expands it in the manner described 
above with reference to FIG. 13 to provide a memory image 
of configuration database 1404. Configuration APIs 1406 
further include additional APIs to access and manipulate con 
figuration database 1404, as described in detail below. 
RTX 1420 controls simulation of simulation models, such 

as simulation model 1400. For example, RTX 1420 loads test 
cases to apply to simulation model 1400. In addition, RTX 
1420 delivers a set of API calls to configuration APIs 1406 
and the APIs provided by simulator 1410 to initialize, con 
figure, and simulate operation of simulation model 1400. 
During and after simulation, RTX 1420 also calls configura 
tion APIs 1406 and the APIs provided by simulator 1410 to 
check for the correctness of simulation model 1400 by 
accessing various Dials, Registers, configuration latches, 
counters and other entities within simulation model 1400. 
RTX 1420 has two modes by which it accesses Dials 

instantiated within simulation model 1400: interactive mode 
and batch mode. In interactive mode, RTX 1420 calls a first 
set of APIs to read from or write to one or more instances of 
a particular Dial within configuration database 1404. The 
latch value(s) obtained by reference to configuration database 
1404 take immediate effect in simulation model 1400. In 
batch mode, RTX 1420 calls a different second set of APIs to 
read or write instantiations of multiple Dials in configuration 
database 1404 and then make any changes to simulation 
model 1400 at the same time. 

In either interactive or batch mode, RTX 1420 must employ 
some syntax in its API calls to specify which Dial or Dial 
group instances within simulation model 1400 are to be 
accessed. Although a number of different syntaxes can be 
employed, including conventional regular expressions 
employing wildcarding, in an illustrative embodiment the 
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syntax utilized to specify Dial or Dial group instances in API 
calls is similar to the compact expression hereinbefore 
described. A key difference between the compact expressions 
discussed above and the syntax utilized to specify Dial or Dial 
group instances in the RTX API calls is that, in the illustrative 
embodiment, Dial and Dial group instances are specified in 
the RTX API calls by reference to the top-level design entity 
of simulation model 1400 rather than relative to the design 
entity in which the Dial or Dial group is specified. 

In the illustrative embodiment, each RTX API call target 
ing one or more Dial or Dial group instances in simulation 
model 1400 specifies the Dial or Dial group instances utiliz 
ing two parameters: an instance qualifier and a dialname 
qualifier. To refer to only a single Dial or Dial group instan 
tiation, the instance qualifier takes the form “a.b.c.d', which 
is the hierarchical instantiation identifier of the design entity 
in which the single Dial or Dial group instantiation occurs. To 
refer to multiple Dial or Dial group instances, the instance 
qualifier takes the form “a.b.cDX’, which identifies all instan 
tiations of entity X within the scope of entity instance a.b.c. In 
the degenerate form, the instance qualifier may simply be 
“X”, which identifies all instantiations of entity X anywhere 
within simulation model 1400. 

The dialname qualifier preferably takes the form “Entity 
.dialname', where “Entity” is the design entity in which the 
Dial or Dial group is instantiated and “dialname' is the name 
assigned to the Dial or Dial group in its configuration speci 
fication statement. If bracketed syntax is employed to specify 
the instance qualifier, the “Entity” field can be dropped from 
the dialname qualifier since it will match the bracketed entity 
aC. 

Referring now to FIG. 15 there is depicted a high level 
logical flowchart of an exemplary process by which configu 
ration APIs 1406 locate particular Dial or Dial group 
instances in configuration database 1404 based upon an 
instance qualifier and dialname qualifier pair in accordance 
with the present invention. As shown, the process begins at 
block 1500 in response to receipt by a configuration API 1406 
of an API call from RTX 1420 containing an instance qualifier 
and a dialname qualifier as discussed above. In response to the 
API call, the configuration API 1406 enters configuration 
database 1404 at Dial pointer array 1208, as depicted at block 
1502, and utilizes Dial pointers 1252 to locate a DDDS 1200 
having a name field 1222 that exactly matches the specified 
dialname qualifier, as illustrated at block 1504. 

Next, at block 1506, the configuration API 1406 deter 
mines whether the instance qualifier employs bracketed Syn 
tax, as described above. If so, the process passes to block 
1520, which is described below. However, if the instance 
qualifier does not employ bracketed syntax, the configuration 
API 1406 follows the instance pointers 1228 of the matching 
DDDS 1200 to locate the single DIDS 1202 having an 
instance name field 1234 that exactly matches the specified 
instance qualifier. As indicated at blocks 1510-1512, if no 
match is found, the process terminates with an error. How 
ever, ifa matching DIDS 1202 is located, a temporary “result 
pointer identifying the single matching DIDS 1202 is created 
at block 1524. The process thereafter terminates at block 
1526. 

Returning to block 1520, if bracketed syntax is employed, 
the configuration API 1406 utilizes instance pointers 1228 of 
the matching DDDS 1200 to locate one or more DIDSs 1202 
of Dial or Dial group instances within the scope specified by 
the prefix portion of the instance identifier preceding the 
bracketing. That is, a DIDS 1202 is said to “match' if the 
instance name field 1234 of the DIDS 1202 contains the prefix 
portion of the instance qualifier. Again, if no match is found, 
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the process passes through block 1522 and terminates with an 
error at block 1512. However, if one or more DIDSs 1202 
“match' the instance qualifier, temporary result pointers 
identifying the matching DIDSs 1202 are constructed at 
block 1524. The process shown in FIG. 15 thereafter termi 
nates at block 1526. 
With reference now to FIG.16A, there is illustrated a high 

level logical flowchart of an exemplary process by which 
RTX 1420 reads a value of one or more Dial instances in 
interactive mode, in accordance with the present invention. 
As shown, the process begins at block 1600 in response to 
receipt by a configuration API 1406 of a read Dial() API call 
by RTX 1420. As indicated at block 1602, a configuration API 
1406 responds to the read Dial() API call by locating within 
configuration database 1404 one or more DIDSs 1202 of Dial 
instances responsive to the API call utilizing the process 
described above with reference to FIG. 15. 
The process then enters a loop at block 1604 in which each 

of the temporary result pointers generated by the process of 
FIG. 15 is processed. If all of the result pointers returned by 
the process of FIG. 15 have been processed, the process 
passes to block 1640, which is described below. If not, the 
process proceeds from block 1606 to block 1608, which 
illustrates the configuration API 1406 selecting a next result 
pointer to be processed. Next, at block 1608, the configura 
tion API 1406 determines by reference to type field 1220 of 
the DDDS 1200 associated with the DIDS 1202 identified by 
the current result pointer whether the DIDS1202 corresponds 
to a Dial group. If so, the process illustrated in FIG. 16A 
terminates with an error condition at block 1610 indicating 
that RTX 1420 has utilized the wrong API call to read a Dial 
instance. 

In response to a determination at block 1608 that the DIDS 
1202 identified by the current result pointer does not corre 
spond to a Dial group instance, the process proceeds to block 
1620. Block 1620 depicts configuration API 1406 utilizing 
output pointers 1238 of the DIDS 1202 (and those of any 
lower-level DIDS 1202 in the Dial tree) to build a data set 
containing the latch names from the latch name fields 1244 of 
latch data structures 1204 corresponding to all configuration 
latches ultimately controlled by the Dial instance specified in 
the API call. Next, as depicted at block 1622, the configura 
tion API 1406 makes one or more API calls to GETFAC() API 
1412 of simulator 1410 to obtain from simulation model 1400 
the latch values of all of the configuration latches listed in the 
data set constructed at block 1620. 

Configuration API 1406 then verifies the latch values 
obtained from simulation model 1400 by reference to con 
figuration database 1404, as shown at block 1624. In order to 
verify the latch values, configuration API 1406 utilizes map 
ping tables 1224 to propagate the latch values up the Dial tree 
from the corresponding latch data structures through inter 
mediate DIDSs 1202, if any, until an input value for the 
requested Dial instance is determined. If at any point in this 
Verification process, a Dial instance's output value generated 
by the verification process does not correspond to one of the 
legal values enumerated in its mapping table 1224, an erroris 
detected at block 1626. Accordingly, the latch values read 
from simulation model 1400 and an error indication are 
placed in a result data structure, as illustrated at block 1630. If 
no error is detected, the Dial input value generated by the 
Verification process and a Success indication are placed in the 
result data structure, as shown at block 1628. 
As indicated by the process returning to block 1604, the 

above-described process is repeated for each temporary result 
pointer returned by the process of FIG. 15. Once all result 
pointers have been processed, the process passes from block 
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1604 to blocks 1640-1642, which illustrate the configuration 
API 1406 returning the result data structure to RTX 1420 and 
then terminating. 
RTX 1420 reads Dial instances in interactive mode utiliz 

ing the method of FIG.16A, for example, to initialize check 
ers that monitor portions of simulation model 1400 during 
simulation runs. The Dial settings of interest include not only 
those oftop-level Dial instances, but also those of lower-level 
Dial instances affiliated with the portions of the simulation 
model 1400 monitored by the checkers. 

Referring now to FIG.16B, there is illustrated a high level 
logical flowchart of an exemplary process by which RTX 
1420 reads a value of one or more Dial group instances in 
interactive mode, in accordance with the present invention. 
As can be seen by comparison of FIGS. 16A and 16B, the 
process of reading a Dial group instance is similar to the 
process of reading a Dial instance, but returns the value of one 
or more top-level Dial instances of possibly different Dial 
entities rather than one or more instances of the same Dial 
entity. 
As shown, the process shown in FIG. 16B begins at block 

1650 in response to receipt by a configuration API 1406 of a 
read Dial group() API call by RTX 1420. As indicated at 
block 1652, a configuration API 1406 responds to the read 
Dial group() API call by locating within configuration data 
base 1404 one or more DIDSs 1202 of Dial group instances 
responsive to the API call utilizing the process described 
above with reference to FIG. 15. 
The process then enters a loop at block 1654 in which each 

of the temporary result pointers generated by the process of 
FIG. 15 is processed. If all of the result pointers returned by 
the process of FIG. 15 have been processed, the process 
passes to block 1680, which is described below. If not, the 
process proceeds from block 1654 to block 1656, which 
illustrates the configuration API 1406 selecting a next result 
pointer to be processed. Next, at block 1658, the configura 
tion API 1406 identifies and creates temporary pointers to all 
of the top-level Dial instances belonging to the Dial group 
instance corresponding to the DIDS 1202 referenced by the 
current result pointer. The top-level Dial instances are iden 
tified by locating the highest-level DIDS 1202 for each output 
pointer 1238 for which the type field 1220 in the associated 
DDDS 1220 specifies a type other than Dial group. In other 
words, the configuration API 1406 may have to search down 
through one or more hierarchical Dial groups to locate the 
relevant top-level Dial instances. 
The process illustrated in FIG. 16B then enters a loop 

beginning at block 1659 in which each of the top-level Dial 
instances belonging to the Dial group corresponding to the 
Dial group DIDS 1202 referenced by the current result 
pointer is individually processed to obtain the value(s) of the 
top-level Dial instance(s). The process next proceeds to block 
1660, which depicts configuration API 1406 utilizing output 
pointers 1238 of the DIDS 1202 of the first (or next) top-level 
Dial instance (and those of any lower-level DIDS 1202 in the 
Dial tree) to build a data set containing the latch names from 
the latch name fields 1244 of latch data structures 1204 cor 
responding to all configuration latches ultimately controlled 
by the top-level Dial instance. Next, as depicted at block 
1662, the configuration API 1406 makes one or more API 
calls to GETFAC() API 1412 of simulator 1410 to obtain 
from simulation model 1400 the latch values of all of the 
configuration latches listed in the data set constructed at block 
1660. 
At block 1664, configuration API 1406 then verifies the 

latch values obtained from simulation model 1400 by refer 
ence to configuration database 1404, utilizing the same tech 
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nique described above with reference to block 1624 of FIG. 
16A. If at any point in this verification process, a Dial 
instance's output value generated by the verification process 
does not correspond to one of the legal values enumerated in 
its mapping table 1224, an error is detected at block 1666. 
Accordingly, the latch values read from simulation model 
1400 and an error indication are placed in a result data struc 
ture, as illustrated at block 1670. If no error is detected, the 
Dial input value generated by the verification process and a 
Success indication are placed in the result data structure, as 
shown at block 1668. 

Following either block 1668 or block 1670, the process 
returns to block 1659, which represents a determination of 
whether or not all top-level Dials belonging to the Dial group 
corresponding to the DIDS 1202 referenced by the current 
result pointer have been processed. If not, the process returns 
to block 1660, which has been described. However, if all 
top-level Dials have been processed, the process returns to 
block 1654, which illustrates a determination of whether or 
not all result pointers have been processed. If not, the next 
result pointer is processed at block 1656 and following 
blocks, which have been described. If, however, all result 
pointers have been processed, the process passes to block 
1680-1682, which illustrates the configuration API 1406 
returning the result data structure to RTX 1420 and then 
terminating. 

Reading Dial and Dial group instances in a batch mode of 
RTX 1420 is preferably handled by configuration APIs 1406 
in the same manner as interactive mode, with one exception. 
Whereas in interactive mode latch values are always read 
from simulation model 1440 via calls to GETFAC() API 1412 
at blocks 1622 and 1662, in batch mode a latch value is 
preferably obtained from latch value field 1246 of a latch data 
structure 1204 in configuration database 1404 iflatch set field 
1248 indicates that the corresponding configuration latch has 
been set. If the configuration latch has not been set, the latch 
value is obtained from simulation model 1440 by a call to 
GETFAC() API 1412. This difference ensures that Dial set 
tings made in batch mode, which may not yet have been 
reflected in simulation model 1400, are correctly reported. 

With reference now to FIG. 17A, there is illustrated a high 
level logical flowchart of an exemplary process by which an 
RTX sets a Dial instance in an interactive mode in accordance 
with the present invention. The process begins at block 1700 
in response to receipt by a configuration API 1406 of a set 
Dial() API call from RTX 1420. In response to the set 
Dial() API call, the configuration API 1406 first locates and 
generates temporary result pointers pointing to the DIDS 
1202 of the Dial instance(s) specified in the set Dial() API 
call utilizing the technique described above with reference to 
FIG. 15, as illustrated at block 1702. Next, the configuration 
API 1406 determines at block 1704 whether or not all of the 
temporary result pointers point to DIDSs 1202 of top-level 
Dial instances. This determination can be made, for example, 
by examining the parent pointer 1233 of each such DIDS 
1202 (and that of any higher level DIDS 1202 linked by a 
parent pointer 1233) and the type fields 1220 of the associated 
DDDSs 1200. The DIDS 1202 of a top-level Dial instance 
will have either a NULL parent pointer 1233 or a non-NULL 
parent pointer 1233 pointing to another DIDS 1202 that the 
type field 1220 of the associated DDDS 1200 indicates rep 
resents a Dial group. If any of the DIDSs 1202 referenced by 
the result pointers does not correspond to a top-level Dial 
instance, the process terminates at block 1708 with an error 
condition. 

In response to a determination at block 1704 that all of the 
DIDSs 1202 referenced by the result pointers correspond to 
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top-level Dial instances, a further determination is made at 
block 1706 whether or not the specified value to which the 
Dial instance(s) are to be set is one of the values specified in 
the mapping table 1224 of the associated DDDS 1200. If not, 
the process terminates with an error at block 1708. However, 
in response to a determination at block 1706 that the specified 
value to which the Dial instance(s) are to be set is one of the 
legal values, the process enters a loop including blocks 1710 
1716 in which each result pointer is processed to set a respec 
tive Dial instance. 

At block 1710, configuration API 1406 determines 
whether or not all result pointers have been processed. If so, 
the process terminates at block 1720. If, however, additional 
result pointers remain to be processed, the next result pointer 
to be processed is selected at block 1712. Next, at block 1714, 
configuration API 1406 propagates the Dial setting specified 
in the set Dial() API call down the Dial tree headed by the 
top-level Dial instance associated with the DIDS 1202 refer 
enced by the current result pointer. In order to propagate the 
desired Dial setting, mapping table 1224 in the DDDS 1200 
associated with the DIDS 1202 referenced by the current 
result pointer is first referenced, if necessary, (i.e., for CDials 
and LDials) to determine the output values for each of output 
pointers 1238 in the output pointer array 1236 of the DIDS 
1202 referenced by the current result pointer. These output 
values are propagated down the Dial tree as the input values of 
the next lower-level Dial instances, if any, corresponding to 
the DIDSs 1202 referenced by output pointers 1238. This 
propagation continues until a latch value is determined for 
each configuration latch terminating the Dial tree (which are 
represented in configuration database 1404 by latch data 
structures 1204). As shown at block 1716, as each latch value 
for a configuration latch is determined, the configuration API 
1406 makes a call to PUTFAC() API 1414 to set the configu 
ration latch in simulation model 1400 to the determined value 
utilizing the latch name specified within the latch name field 
1244 of the corresponding latch data structure 1204. 

Thereafter, the process returns to block 1710, which rep 
resents the processing of the top-level Dial corresponding to 
the next result pointer. After all result pointers are processed, 
the process terminates at block 1720. 

Referring now to FIG. 17B, there is depicted a high level 
logical flowchart of an illustrative process by which an RTX 
sets a Dial group in an interactive mode in accordance with 
the present invention. The process begins at block 1730 in 
response to receipt by a configuration API 1406 of a set Di 
al group() API call from an RTX 1420. In response to the 
set Dial group() API call, the configuration API 1406 first 
locates and generates temporary result pointers pointing to 
the DIDS 1202 of the Dial group instance(s) specified in the 
set Dial group() API call utilizing the technique described 
above with reference to FIG. 15, as depicted at block 1732. 
Next, the configuration API 1406 determines at block 1734 
whether or not all of the temporary result pointers point to 
DIDSs 1202 of top-level Dial group instances. This determi 
nation can be made, for example, by examining the parent 
pointer 1233 of each such DIDS 1202 to ascertain whether the 
parent pointer 1233 is NULL. If any of the DIDSs 1202 
referenced by the result pointers does not correspond to a 
top-level Dial group (i.e., has a non-NULL parent pointer 
1233), the process terminates at block 1736 with an error 
condition. 

In response to a determination at block 1734 that each of 
the DIDSs 1202 referenced by the result pointers corresponds 
to a top-level Dial group, the process passes to blocks 1738 
1740. Block 1738 illustrates configuration API 1406 locating 
all of the top-level Dial instances within each Dial group for 
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which the corresponding DIDS 1202 is referenced by a result 
pointer. Then, as depicted at block 1740, the configuration 
API 1406 determines whether or not the specified value to 
which each top-level Dial instance is to be set is one of the 
values specified in the mapping table 1224 of the correspond 
ing DDDS 1200. If not, the process terminates with an error at 
block 1736. 

In the illustrated embodiment, the prevalidation steps illus 
trated at blocks 1734, 1738 and 1740 are performed prior to 
setting any Dial instances because it is deemed preferable to 
implement setting a Dial group instance as an atomic opera 
tion that either successfully sets all relevant top-level Dial 
instances or completely fails. In this manner, a complex con 
dition in which some top-level Dial instances within the Dial 
group instance are set and others are not can be avoided. 

In response to a determination at block 1740 that the speci 
fied value to which each top-level Dial instance is to be set is 
one of the legal values, the process enters a loop including 
blocks 1750-1756 in which each result pointer is processed to 
set the top-level Dial instance(s) belonging to each Dial group 
instance. 
At block 1750, the configuration API 1406 determines 

whether or not all result pointers have been processed. If so, 
the process terminates at block 1760. If, however, additional 
result pointers remain to be processed, the next result pointer 
to be processed is selected at block 1752. Next, at block 1754, 
configuration API 1406 propagates the Dial setting specified 
for each top-level Dial in the set Dial group() API call down 
the Dial trees of the top-level Dial instances belonging to the 
Dial group instance corresponding to the DIDS 1202 refer 
enced by the current result pointer. The propagation of Dial 
settings down the Dial trees is performed in the same manner 
discussed above with reference to block 1714 of FIG.17A. As 
shown at block 1756, as each latch value for a configuration 
latch is determined, the configuration API 1406 makes a call 
to PUTFAC( ) API 1414 to set the configuration latch in 
simulation model 1400 to the determined value utilizing the 
latch name specified within the latch name field 1244 of the 
corresponding latch data structure 1204. Thereafter, the pro 
cess returns to block 1750, which represents the processing of 
the top-level Dial corresponding to the next result pointer, if 
any. 

With reference now to FIG. 18A, there is illustrated a high 
level logical flowchart of an exemplary method of setting 
Dial, Dial group and Register instances in batch mode in 
accordance with the present invention. As illustrated, the 
process begins at block 1800 and thereafter proceeds to block 
1802, which illustrates RTX 1420 initializing configuration 
database 1404 by calling a configuration API 1406 (e.g., 
start batch()) in order to initialize configuration database 
1404. The start batch() API routine initializes configuration 
database 1404, for example, by setting each instance set field 
1239, latch Register set field 1247, latch set field 1248, and set 
history field 1249 in configuration database 1404 to FALSE. 
By resetting all of the “set fields in configuration database 
1404, the Dials, Registers and configuration latches that are 
not set by the current batch mode call sequence can be easily 
detected, as discussed below. Importantly, if any of latch 
Register set fields 1247 or set history fields 1249 are subse 
quently set during the batch mode call sequence, these fields 
will stay set (i.e., these fields are persistent) during all phases 
of default application. 

Following initialization of configuration database 1404 at 
block 1802, the process shown in FIG. 18A proceeds to block 
1804. Block 1804 illustrates RTX 1420 optionally issuing one 
or more read Dial() or read Dial group() API calls to read 
one or more Dials, Registers or Dial groups as discussed 
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above with respect to FIGS. 16A and 16B, and optionally 
issuing one or more batch mode set Dial() or set Dial 
group() API calls to enter settings for Dial and Register 
instances and their underlying configuration latches into con 
figuration database 1404. A configuration API 1406 responds 
to the “set API calls in the same manner described above 
with respect to FIG. 17A (for setting Dial and Register 
instances) or FIG.17B (for setting Dial group instances), with 
two exceptions. First, when any top-level or lower-level Dial 
or Register instances are set, whether as a result of a set 
Dial() or set Dial group() API call, the instance set field 
1239 of the corresponding DIDS 1202 is set to TRUE. Sec 
ond, no latch values are written to simulation model 1400 by 
the “set API routines, as illustrated at blocks 1716 and 1756 
of FIGS. 17A-17B. Instead, the latch values are written into 
latch value fields 1246 of the latch data structure 1204 corre 
sponding to each affected configuration latch, and the latch 
set field 1248 is updated to TRUE. In this manner, the Dial and 
Register instances and configuration latches that are explic 
itly set by the API call can be readily identified during sub 
sequent processing. 

Following block 1804, the process passes to block 1806, 
which illustrates RTX 1420 calling an end batch() API rou 
tine among configuration APIs 1406 to complete the present 
phase of default application. As indicated at block 1806 and 
as described in detail below with respect to FIG. 18B, the 
end batch() API routine applies selected default values, if 
any, to specified Dial and Register instances and propagates 
these default values to underlying configuration latches into 
configuration database 1404. The latch values of all configu 
ration latches set explicitly or with a default value are then 
potentially applied to latches within the simulation model. 
Finally, preparation is made for a next phase, if any. 

If RTX 1420 has an additional phase of default application, 
the process passes from block 1806 to block 1808 and then 
returns to block 1804, which represents RTX 1420 initiating 
a next phase of default application. If, however, all phases of 
default application have been processed, the process illus 
trated in FIG. 18A passes from block 1806 through block 
1808 to block 1810, where the batch process terminates. 

Referring now to FIG. 18B, there is depicted a high level 
logical flowchart of an exemplary embodiment of the end 
phase() API routine called at block 1806 of FIG. 18A. As 
shown, the process begins at block 1820 when the end 
phase() API routine is called by RTX 1420, for example, with 
the following Statement: 

End phase(phases, unnamed, instance qualifier, apply) 
In this exemplary API call, the “phases' parameter is a 

string specifying the phase ID(s) of defaults to be applied at 
the end of the current phase; “unnamed is a Boolean param 
eter indicating whether or not defaults values without any 
associated phase ID should be applied during the current 
phase; “apply’ is a Boolean-valued parameter indicating 
whether or not configuration latch values should be immedi 
ately applied to simulation model 1400; and “instance quali 
fier is one or more regular expressions that can be utilized to 
limit which instances of a particular Dial are processed to 
apply defaults. 
By specifying an instance qualifier parameter for the end 

phase( ) API routine, a user can limit the application of 
defaults to only a portion of simulation model 1400. The 
ability to restrict the application of defaults in this manner is 
particularly useful in cases in which two sections of the simu 
lation model 1400 (e.g., sections representing two different 
integrated circuit chips) have different phasing requirements 
but use the same phase IDS. Thus, collisions in phase IDs can 
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be resolved by appropriate specification of 
instance qualifier used in conjunction with the phase ID. 
The end phase() API routine then enters a processing loop 

including blocks 1822-1838 in which DIDSs 1202 within 
configuration database 1404 are processed to apply appropri 
ate Dial default values, if any. Referring first to block 1822, 
the end phase() API determines whether or not all top-level 
pointers 1250 within top-level pointer array 1206 have been 
processed. If so, the process proceeds from block 1822 to 
block 1840, which is described below. If not all top-level 
pointers 1250 within top-level pointer array 1206 have been 
processed, the process proceeds to block 1824. Block 1824 
represents the end phase() API routine recursively scanning 
the DIDSs 1202 pointed to by a next top-level pointer 1250 
and its descendant DIDSs 1202, if any, to apply the default 
values indicated by the parameters of the end phase() API 
call. If the end phase() API routine determines at block 1826 
that it has processed all necessary DIDSs 1202 in the subtree 
of the top-level DIDS 1202 identified by the current top-level 
pointer 1250, then the process returns to block 1822, which 
has been described. If, however, at least one DIDS 1202 in the 
subtree of the top-level DIDS 1202 identified by the current 
top-level pointer 1250 remains to be processed, the process 
passes from block 1826 to block 1828. 

Block 1828 illustrates the end phase() API routine exam 
ining a next DIDS 1202 to determine whether or not its 
default field 1229 has a non-NULL value. If the current DIDS 
1202 does not contain a non-NULL default field 1229, the 
process returns to block 1824, representing the end phase 
API routine continuing the recursive processing of DIDSs 
1202 in the subtree of the top-level DIDS 1202 pointed to by 
the current top-level pointer 1250. If the default field 1229 
contains a non-NULL value, the process passes to block 
1830, which depicts a determination of whether or not the 
instance set field 1239 is set, that is, whether the Dial instance 
was previously explicitly set at block 1804 of FIG. 18A. If the 
instance set field 1239 is set, the default value contained in 
default field 1229 is ignored (since the simulation user has 
already explicitly specified a value for the associated Dial 
instance). And because simulation database 1400 is con 
structed so that any descendant of a DIDS 1202 having a 
specified default cannot have a default value, the process 
passes to block 1836, which illustrates the end phase() API 
routine skipping the processing of any DIDS 1202 in the 
subtree of the current DIDS 1202. Thereafter, the process 
returns to block 1824, which has been described. 

Returning to block 1830, in response to a determination 
that the instance set field 1239 of the current DIDS 1202 is not 
set, the process proceeds to block 1832. Block 1832 illus 
trates end phase() API interrogating phase ID field 1227 of 
the current DIDS 1202 to determine whether the default value 
stored in default field 1229 has one or more associated phase 
IDs. If not, the process passes to block 1833, which is 
described below. In response to a determination at block 1832 
that phase ID field 1227 stores at least one phase ID, the 
end phase() API next determines at block 1834 whether the 
phases parameter of the end phase( ) API call specifies a 
phase ID that matches a phase ID contained within phase ID 
field 1227. If no match is found, the process passes from block 
1834 to block 1836, which has been described. If, on the other 
hand, a phase ID specified in the phases parameter of the 
end phase() API call matches a phase ID contained within 
the phase ID field 1227 of the current DIDS 1202, the end 
phase() API next determines at block 1835 whether or not the 
Dial instance name contained in instance name field 1234 of 
the current DIDS 1202 matches the qualifying expression 
passed as the instance qualifier parameter of the end 

the 
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phase() API call. Again, in response to a negative determi 
nation at block 1835, the process passes to block 1836, which 
has been described. If, on the other hand, the Dial instance 
name contained within instance name field 1234 is qualified 
by the instance qualifier parameter, the process proceeds to 
block 1838, which is described below. 

Returning to block 1833, if the current DIDS 1202 does not 
have one or more phase IDs specified within phase ID field 
1227, a further determination is made whether or not the 
unnamed parameter of the end phase() API call has a value 
of TRUE to indicate the default values without any associated 
phase information should be applied during the current phase. 
If not, the process passes from block 1833 to block 1836, 
which has been described. If, on the other hand, the end 
phase() API determines at block 1833 that defaults without 
associated phase information should be applied during the 
current phase, the process proceeds to block 1835, which has 
been described above. 

Thus, when the end phase( ) API reaches block 1838, 
end phase( ) API has, by the determinations illustrated at 
1830, 1832, 1833, 1834 and 1835 determined that the default 
specified for the Dial instance corresponding to the current 
DIDS 1202 should be applied in the current phase of batch 
mode execution. Accordingly, at block 1838, the end 
phase() API routine applies the default value specified in the 
default field 1229 to mapping table 1224 to generate one or 
more Dial output signal(s), which are then propagated down 
the Dial tree of the current DIDS 1202 in the manner herein 
before described. Ultimately, the latch value fields 1246 and 
latch set field 1248 of each of the underlying latch data struc 
tures 1204 within configuration database 1404 are set to val 
ues corresponding to the Dial default value, if the latch Reg 
ister set field 1247 of the latch data structure 1204 is not set. 
That is, a default value is preferably applied to a latch only if 
the latch has not previously been set via a Register. If a latch 
has previously been set via a Register during any preceding 
phase of the configuration process, the default value is not 
applied (at least until the start batch() API is called again). 
The process then proceeds from block 1838 to block 1836, 
which has been described. 

Returning to block 1822, in response to a determination 
that the Dial trees of all of the DIDS 1202 pointed to by 
top-level pointers 1250 have been processed to apply any 
appropriate default values in the manner described above, the 
process next passes to block 1840. Block 1840 depicts end 
phase( ) API examining the apply parameter of the end 
phase() API call to determine whether or not the configura 
tion latch values within latch data structures 1204 should be 
applied to simulation model 1400. The added degree of con 
trol represented by this determination is advantageous in that 
different sections of simulation model 1400, which may have 
colliding phase IDs, can be independently configured within 
configuration database 1404 in different phases, but the 
resulting configuration latch values can be applied to simula 
tion model 1400 at the same time, if desired. If the apply 
parameter has the value FALSE, meaning that the configura 
tion latch values are not to be applied to simulation model 
1400 during the current phase, the process passes directly to 
block 1844. 

If, however, configuration latch values are to be applied to 
simulation model 1400 during the current phase, as indicated 
by an apply parameter value of TRUE, the end phase() API 
routine proceeds to block 1842. At block 1842, the end 
phase() API utilizes latch pointer array1210 to examine each 
latch data structure 1204 in configuration database 1404. For 
each latch data structure 1204 in which latch set field 1248 has 
the value TRUE, the end batch( ) API routine issues 
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a call to PUTFAC() API 1414 of simulator 1410 to update 
simulation model 1400 with the latch value contained in latch 
value field 1246. In addition, as shown at block 1844, the 
end phase() API performs a logical OR operation between 
the value of latch set field 1248 and set history field 1249, 
storing the result within set history field 1249. In this manner, 
each set history field 1249 maintains an indication of whether 
or not the corresponding configuration latch has been set 
during any phase of the batch mode process. 

Following block 1844, the end batch API proceeds to 
block 1846, which depicts the end batch API routine reset 
ting all of instance set fields 1239 in DIDS 1202 and all latch 
set fields 1248 in preparation of a next phase, if any. There 
after, the end phase API routine terminates at block 1848. 

In Summary, the end phase( ) API routine applies Dial 
default values to configuration database 1404 that match the 
limiting phase and instance qualifiers and then optionally 
applies the resulting configuration latch values to simulation 
model 1400 in accordance with the apply parameter. Finally, 
the end phase() API routine tracks which latch data struc 
tures 1204 have been set utilizing set history fields 1249, and 
resets various set fields to prepare for a next phase, if any. 

Heretofore, default values have been described solely with 
respect to designer-Supplied phase information specified 
within HDL files 800 or configuration specification files 802. 
For many simulation models 1400, designers have only lim 
ited knowledge of the boot sequence of the simulation model 
1400 and corresponding hardware implementations and 
therefore have limited understanding of the phasing of 
defaults required to appropriately initialize the simulation 
model 1400 or corresponding hardware realization. Accord 
ingly, it is desirable to provide downstream users, such as 
simulation users, laboratory users or deployment Support per 
Sonnel, with the ability to specify phase information govern 
ing the application of Dial default values. 
As shown in FIG. 18C, in one embodiment, users are 

permitted to supply and/or modify the phase ID(s) stored 
within phase ID fields 1227 of configuration database 1404 or 
a corresponding hardware configuration database (discussed 
below) utilizing a program 1860. Program 1860 includes a set 
of database manipulation API routines 1862 that, when called 
with appropriate parameters, permits a user to read and write 
phase IDs within configuration database 1404 (or the corre 
sponding hardware configuration database). 

Referring again to FIG. 14, configuration APIs 1406 pref 
erably further include a find unset latch() API that, follow 
ing a batch mode setting of Dial or Dial group instances in 
configuration database 1404, audits all of the latch data struc 
tures 1204 in configuration database 1204 by reference to 
latch pointer array 1210 in order to detect configuration 
latches that have not been configured by an explicit or default 
setting (i.e., those having set history field 1249 set to FALSE). 
For each Such unset configuration latch, the find unset 
latch() API preferably returns the fully qualified instance 
name of the configuration latch from latch name field 1244 in 
the corresponding latch data structure 1204 and the fully 
qualified instantiation identifier of the top-level Dial instance 
that controls the unset latch. The find unset latch() API thus 
provides an automated mechanism for a user to Verify that all 
Dial and latchinstances requiring an explicitor default setting 
are properly configured for a simulation run. 

Configuration APIs 1406 preferably further include a 
check model ( ) API that, when called, utilizes top-level 
pointer array 1206 to verify by reference to the appropriate 
mapping tables 1224 that each top-level CDial and LDial 
instance in simulation model 1400 is set to one of its legal 
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values. Any top-level LDial or CDial set to an illegal value is 
returned by the check model () API. 
The Dial and Dial group primitives introduced by the 

present invention can be employed not only to configure a 
simulation model of a digital design as described above, but 
also to configure hardware realizations of the digital design 
for laboratory testing and customer use. In accordance with 
an important aspect of the present invention, hardware real 
izations of the digital design are configured by reference to a 
hardware configuration database, which like configuration 
databases 814 and 1404 discussed above, is derived from 
configuration specification statements coded by the design 
ers. In this manner, continuity in configuration methodology 
exists from design, through simulation and laboratory testing, 
to commercial deployment of a digital design. 

Referring now to FIG. 19, there is illustrated a high-level 
block diagram of a laboratory testing system for testing and 
debugging hardware realizations of one or more digital 
designs in accordance with an embodiment of the present 
invention. As illustrated, the laboratory testing system 1900 
includes a data processing system 1902, which is intended for 
commercial sale and deployment. For laboratory testing and 
debugging, data processing system 1902 is coupled by a test 
interface 1903 to a workstation computer 1904 that commu 
nicates with data processing system 1902 via test interface 
1903 to configure the various components of data processing 
system 1902 for proper operation. When commercially 
deployed, data processing system 1902 includes the illus 
trated components, but is not typically coupled to workstation 
computer 1904 by test interface 1903. 

Data processing system 1902 may be, for example, a mul 
tiprocessor computer System, Such as data processing system 
6 of FIG. 1. As such, data processing system 1902 includes 
multiple integrated circuit chips 1910 representing the vari 
ous processing units, controllers, bridges and other compo 
nents of a data processing system. As is typical of commercial 
data processing systems, data processing system 1902 may 
contain multiple instances of Some integrated circuit chips, 
Such as integrated circuit chips 1910a, and single instances of 
other integrated circuit chips, such as integrated circuit chip 
1910. 

In addition to their respective functional logic, integrated 
circuit chips 1910 each have a respective test port controller 
1912 that supports external configuration of the integrated 
circuit chip utilizing multiple scan chains, as discussed in 
detail below with reference to FIG. 20. To permit such exter 
nal configuration, each test port controller 1912 is coupled by 
a test access port (TAP) 1914 to a service processor 1920 
within data processing system 1902. 

Service processor 1920 is a general-purpose or special 
purpose computer system utilized to initialize and configure 
data processing system 1902, for example, at power-on or in 
response to a reboot. Service processor 1920 includes at least 
one processing unit 1922a for executing software instruc 
tions, a flash read-only memory (ROM) 1924 providing non 
volatile storage for software and data, an I/O interface 1926a 
interfacing service processor 1920 with test port controllers 
1912 and workstation computer 1904, and a volatile memory 
1928a that buffers instructions and data for access by pro 
cessing unit 1922a. 
Among the software and data stored in flash ROM 1924 is 

system firmware 1930a. System firmware 1930a is executed 
by processing unit 1922a of service processor 1920 at power 
on to sequence power to integrated circuit chips 1910, per 
form various initialization procedures and tests, synchronize 
communication between integrated circuit chips 1910, and 
initiate operation of the functional clocks. System firmware 
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1930a controls the startup behavior of integrated circuit chips 
1910 by communication via test access ports 1914. 

In addition to system firmware 1930a, flash ROM 1924 
stores hardware (HW) configuration APIs 1934a and a HW 
configuration database 1932a describing integrated circuit 
chips 1910. As described below, during commercial deploy 
ment, processing unit 1922a calls various HW configuration 
APIs 1934a to access HW configuration database 1932a in 
order to appropriately configure integrated circuits 1910 via 
I/O interface 1926a and TAPS 1914. 

Workstation computer 1904, which may be implemented, 
for example, as a multiprocessor computer system like data 
processing system 6 of FIG. 1, includes many components 
that are functionally similar to those of service processor 
1920. Accordingly, like reference numerals designate pro 
cessing unit 1922b, volatile memory 1928b. I/O interface 
1926b, and the system firmware 1930b, HW configuration 
database 1932b, and HW configuration APIs 1934b residing 
in non-volatile storage 1940 (e.g., disk storage). It will be 
appreciated by those skilled in the art that, because the system 
firmware 1930b, HW configuration database 1932b and HW 
configuration APIs 1934b residing in non-volatile storage 
1940 are specifically designed to initialize and configure data 
processing system 1902 in the context of laboratory testing 
and debugging, they may have Smaller, larger or simply dif 
ferent feature sets and capabilities than the corresponding 
Software and data within flash ROM 1924. 

During laboratory testing and debugging, workstation 
computer 1904 assumes most of the functions of service 
processor 1920. For example, workstation computer 1904 
initializes and configures data processing system 1902 by 
executing system firmware 1930b and various HW configu 
ration APIs 1934b in order to generate various I/O com 
mands. These I/O commands are then communicated to data 
processing system 1902 via test interface 1903 and I/O inter 
faces 1926a and 1926b. System firmware 1930a, which 
executes within service processor 1920 in a “bypass mode' in 
which most of its native functionality is disabled, responds to 
these external I/O commands by issuing them to integrated 
circuit chips 1910 via test access ports 1914 in order to ini 
tialize and configure integrated circuit chips 1910. 

With reference now to FIG. 20, there is illustrated a more 
detailed block diagram of an exemplary integrated circuit 
chip 1910 in accordance with the present invention. As noted 
above, integrated circuit chip 1910 includes a test port con 
troller 2000 supporting external communication with I/O 
interface 1926 of service processor 1920 of FIG. 19 and 
control of various internal functions of integrated circuit chip 
1910, including the operation of functional clock 2002 and 
scan clock 2010. Integrated circuit chip 1910 further includes 
functional logic (not explicitly illustrated) comprising the 
digital integrated circuitry that performs the “work' the inte 
grated circuit is designed to do, for example, processing soft 
ware instructions, in response to the clock pulses of func 
tional clock 2002. Throughout the functional logic is 
distributed a plurality of functional latches 2004 that, during 
normalfunctional operation of the functional logic (i.e., when 
functional clock 2002 clocks the functional logic), hold bits 
representing the dynamic state of the functional logic and 
data and/or instructions. These functional latches 2004 
include those that hold mode and configuration bits utilized to 
configure the functional logic in a desired configuration. 
As shown, groups of functional latches 2004 are intercon 

nected to form multiple test scan chains 2006 and multiple 
SCOM (scan communication) chains 2008. Although not 
illustrated for the sake of clarity, some functional latches 
2004 are, in practice, members of both a test scan chain 2006 
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and an SCOM chain 2008. The test scan chains 2006 are 
utilized to scan bits into functional latches 2004 in response to 
pulses of scan clock 2010, and the SCOM chains 2008 are 
utilized to scan bits into functional latches 2004 in response to 
pulses of functional clock 2002. Functional clock 2002 and 
scan clock 2010 do not both output pulses at the same time to 
prevent a conflict between values loaded into functional 
latches 2004. 

As depicted, each functional latch 2004 in a test scan chain 
2006 includes at least two data inputs, a scan input (Scanin) 
and a functional input (D), and two clock inputs, a scan 
clock input (Sclk) and a functional clock input (fclk). Each 
functional latch 2004 further includes at least two data out 
puts, namely, a scan output (scanout) and a functional output 
(D). To form a test scan chain 2006, the scan input of a first 
functional latch 2004 and the scan output of a last functional 
latch 2004 are coupled to test port controller 2000, and the 
scan output of each functional latch 2004 in the test scan chain 
2006 (other than the last) is connected to the scan input of a 
next functional latch 2004. 

Each functional latch 2004 latches in the data bit present at 
its Scanin and latches out its former value at Scanout in 
response to a pulse of scan clock 2010 on Sclk, and latches in 
the data bit present at D, and latches out its former value in 
response to receipt of a pulse of functional clock 2002 onfclk. 
Thus, by repeated pulsing of scan clock 2010, the functional 
latches 2004 forming a test scan chain 2006 transfer data bits 
in from and out to test port controller 2000 in a “bit-bucket 
brigade' fashion, thereby allowing test port controller 2000 to 
read or write one or more functional latches 2004 inatest scan 
chain 2006. 
SCOM chains 2008 are utilized to read and write func 

tional latches 2004 when functional clock 2002 is active and 
Scan clock 2010 is inactive. Each SCOM chain 2008 includes 
multiple sequentially connected SCOM cells 2012, the first 
and last of which are connected to test port controller 2000 to 
permit test port controller 2000 to scan data bits into and out 
of SCOM cells 2012. As depicted, in the exemplary embodi 
ment, each SCOM cell 2008 contains a functional latch 2004 
forming a portion of an “SCOM register,” as well as a shadow 
latch 2014 forming a portion of a “shadow register'. It is 
preferred if all shadow latches 2014, like functional latches 
2004, also belong to a test scan chain 2006. 
As shown, each functional latch 2004 in each SCOM cell 

2012 is connected to an associated multiplexer 2020 having a 
scan input (Scomin) coupled to the output of the correspond 
ing shadow latch 2014 and a data input (D) coupled by a 
hold path to the data output (D) of the associated functional 
latch 2004. Multiplexer 2020 selects the data bit present at 
one of data input (D) and scomin as an input of functional 
latch 2004 in response to select signal sel2. Functional latch 
2004 latches the selected data bit in response to functional 
clock folk. 

Shadow latch 2014 in each SCOM cell 2012 is similarly 
connected to an associated multiplexer 2022 having a data 
input (D) coupled to the data output (D) of functional 
latch 2004, a hold input coupled by a hold path to the output 
of shadow latch 2014, and scan input (scomin). In the first 
SCOM cell 2012, the scan input is connected to test port 
controller 2000, and in the remaining SCOM cells 2012, the 
scan input is connected to the output of the shadow latch 2014 
in the preceding SCOM cell 2012. The output of the shadow 
register 2014 of the last SCOM cell 2012 in eachSCOM chain 
is connected to test port controller 2000. Multiplexer 2022 
selects among the data bits present at its inputs as the input of 
the associated shadow latch 2014 in response to select signal 
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sel1. Shadow latch 2014 latches the selected data bit in 
response to functional clock felk. 
The chain of shadow registers is used to read values from 

and write values to the associated SCOM registers. For 
example, to set an SCOM register, test port controller 2000 
scans a new value into shadow latches 2014 via the scomin 
inputs of multiplexers 2022 by asserting appropriate values of 
selects sel1. Once all shadow latches 2014 have been loaded, 
test port controller 2000 controls select inputs sel2 to cause 
functional registers 2004 to load the values from shadow 
latches 2014. To read a value from the SCOM registers, test 
port controller 2000 drives sel1 to read the values out of the 
functional latches 2004 into the shadow latches 2014 and then 
scans the values out of the shadow latches 2014 by asserting 
appropriate values of selects sel1. 

In the exemplary embodiment, SCOM chains 2008 employ 
shadow latches 2014 to read and write functional latches 2004 
to avoid disrupting the proper functional operation of inte 
grated circuit chip 1910, or even data processing system 
1902. By loading all shadow latches 2014 prior to updating 
any functional latches 2004, all functional latches 2004 
within a SCOM chain 2008 can be updated at once without 
disrupting their values for multiple cycles of functional clock 
2002. It should be understood that the particular implemen 
tation of SCOM chains 2008 illustrated in FIG. 20 is not 
required to practice the present invention, and that other alter 
native designs may be employed, including some that do not 
include shadow latches 2014. 

Thus, by loading the appropriate values into functional 
latches 2004 and by appropriate control of functional clock 
2002 and scan clock 2010, each test port controller 2000 can 
initialize and configure its integrated circuit chip 1910 in a 
desired manner based upon inputs from service processor 
1920 and/or workstation computer 1904. 

In order to configure hardware functional latches 2004 in 
the manner described above, a HW configuration database 
1932 that accounts for the differences between simulation 
and hardware environments must be generated. In general, 
the structure and contents of HW configuration database 1932 
reflect at least two central differences from the configuration 
database 814 for simulation described above. 
The first difference is in the manner in which latches are 

addressed in hardware. In particular, instead of utilizing a 
fully qualified instantiation identifier for the configuration 
latch as in simulation, each hardware functional latch 2004 
within a particular integrated circuit 1910 is addressed and 
accessed for test Scanning by an ordered pair consisting of a 
scan chain (or ring) identifier specifying a particular test Scan 
chain 2006 and an offset indicating the latch's bit position in 
the test scan chain 2006. Functional latches 2004 within 
SCOM rings 2008 are similarly addressed and accessed for 
SCOM scanning using a similar ordered pair of (ring identi 
fier, offset), specifying a particular SCOM chain 2008 and the 
offset of the corresponding shadow latch 2014. Importantly, 
the SCOMring identifier and offset for a particular functional 
latch 2004 do not have the same values as the corresponding 
test scan ring identifier and offset. In fact, in alternate SCOM 
implementations, different SCOM hardware may be used, 
and the offset can be expressed as a tuple: (ring ID, register, 
offset). It will therefore be appreciated that functional regis 
ters 2004 may be addressed and accessed utilizing multiple 
access methods, each of which may have its own addressing 
scheme, all of which will likely differ from that employed in 
simulation. 
A second important difference between HW configuration 

database 1932 and the configuration database 814 employed 
in simulation is the overall database structure. As described 
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above, configuration database 814 is a monolithic database 
that may be utilized to represent an arbitrarily selected digital 
design of any size or complexity by nesting design entities 
hierarchically. A new configuration database 814 is generated 
by configuration compiler 808 for each different digital 
design that is simulated. Although this approach is satisfac 
tory in a simulation environment, the monolithic database 
structure employed in simulation does not correspond to the 
actual physical mechanisms utilized to access and set hard 
ware latches in a hardware digital design. Moreover, it is 
desirable in a laboratory environment to avoid developing an 
entirely new system firmware 1930 and HW configuration 
database 1932 for each different hardware permutation. For 
example, it is desirable to minimize development time and 
cost by reusing some or all of a particular HW configuration 
database 1932 and system firmware 1930 to initialize and 
configure each server computer in a server product line Sup 
porting between 8 and 32 processing units and 1 to 4 different 
memory controllers. 

Consequently, as described in detail below, HW configu 
ration database 1932 is preferably structured as a federation 
of smaller databases that each corresponds to aparticular type 
(not instance) of integrated circuit chip present within the 
hardware digital design. This database structure Supports 
construction of a HW configuration database 1932 for a hard 
ware system of any desired size and complexity from the 
same “building block” per-chip-type databases. Moreover, 
this database structure reflects the fact that hardware latches 
are accessed by system firmware 1930 on a per-chip basis. 

Referring now to FIG. 21, there is depicted a high level flow 
diagram of an exemplary process by which the simulation 
configuration database 814 of each integrated circuit chip is 
transformed to obtain a chip HW database utilized to con 
struct a HW configuration database 1932 suitable for labora 
tory testing and debugging and commercial deployment. The 
illustrated process may be implemented through the execu 
tion of software on data processing system 6 of FIG. 1. 

The process begins with the execution of a scan chain 
detection tool 2100. Scan chain detection tool 2100 processes 
the simulation model 1400 of each integrated circuit chip 
1910 withina target hardware system, Such as data processing 
system 1902, to produce a respective output file correspond 
ing to each functional latch access path/method for latches 
within the integrated circuit chip 1910. For example, in the 
exemplary embodiment, Scan chain detection tool 2100 gen 
erates a test scan definition file 2104 corresponding to test 
scanning and a SCOM definition file 2102 corresponding to 
SCOM scanning. Each of these files 2102.2104 provides, for 
latches within simulation model 1400, a correspondence 
between the latch's scan ring identifier and offset (or other 
hardware address for the associated access method) and its 
fully qualified latch instance name for simulation purposes. 
The test Scan definition file 2104 and SCOM definition file 

2102 and the simulation configuration database 814 for the 
integrated circuit chip are then processed by a database trans 
formation tool 2106 to generate a chip HW database 2108that 
can be utilized as a building block to obtain a HW configu 
ration database 1932 for a hardware system of any arbitrary 
system size and component list. 

With reference now to FIG.22A, there is illustrated a high 
level logical flowchart of an exemplary process by which 
database transformation tool 2106 generates a chip HW data 
base 2108 from the corresponding simulation configuration 
database 814 for the integrated circuit chip by reference to test 
Scan definition file 2104 and SCOM definition file 2102. As 
illustrated, the process begins at block 2200 and then pro 
ceeds to block 2201, which illustrates loading the simulation 
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configuration database 814 from non-volatile data storage 
into Volatile memory and augmenting its fields in the manner 
discussed above with respect to FIG. 13 to obtain an expanded 
configuration database 1404. Test scan definition file 2104 
and SCOM definition file 2102 are also loaded into volatile 
memory. 

Next, at block 2202, a determination is made whether or 
not all latch data structures 1204 referenced by latch pointer 
array 1210 have been processed. If so, the process terminates 
at block 2204. However, if all latch data structures 1204 have 
not yet been processed, the process passes from block 2202 to 
block 2206, which illustrates the selection for processing of 
the latch data structure 1204 pointed to by the next latch 
pointer 1254 in latch pointer array 1210. Next, at block 2208, 
the fully qualified latch name of the latch corresponding to the 
latch data structure 1204 under consideration is formed by 
using the parent pointer 1242 to access the contents of 
instance name field 1234 of the Dial instance controlling the 
latch and appending those contents to the contents of latch 
name field 1244. 

Test scan definition file 2104 is then searched for this fully 
qualified latch name, as depicted at block 2210. If the fully 
qualified latch name is not found within test scan definition 
file 2104, an error is flagged at block 2212 because, in the 
exemplary embodiment, all configurable latches must be 
scannable. Otherwise, database transformation tool 2106 
calls the API routine add access method(method id, meth 
od name) at block 2214 to augment latch data structure 1204 
to form a new latch data structure 2230. The method id 
parameter of the API calls identifies a particular access 
method (e.g., with a string or integer), and the method name 
parameter specifies a “name utilized by the associated 
access method to access, inhardware, the latch corresponding 
to the new latch data structure 2230. As illustrated in FIG. 
22B, the new latch data structure 2230 is created at block 
2214 by adding to latch data structure 1204 a method ID field 
2232a specifying a method identifier of this access method 
(which is “0” by convention) and a method name field 2234a 
specifying a test scan ring identifier and offset value for the 
latch. 
The process proceeds from block 2214 to block 2216, 

which represents repeating the search for the fully qualified 
latch instance name performed at block 2210 using the defi 
nition file for the next access method, in this case, SCOM 
definition file 2102. If no match for the fully qualified latch 
instance name is found within SCOM definition file 2102, no 
error is logged because not all latches belong to SCOM 
chains, and the process simply passes to block 2220, which is 
described below. If, on the other hand, a match is found, the 
add access method() API routine is again called at block 
2218 to augment latch data structure 2230 with a method ID 
field 2232n specifying the method identifier of this access 
method and a method name field 2234n specifying a SCOM 
scan ring identifier and offset value for the latch. 

Finally, at block 2220, the API routine delete latch 
name() is called to delete latch name field 1244 from latch 
data structure 2230. Latch name field 1244 is no longer 
needed because a ring identifier and offset pair uniquely 
identifies any latch within the integrated circuit chip 1910. 
The process then returns to block 2202, which has been 
described. 
The method of FIG. 22A thus alters the simulation con 

figuration database of each integrated circuit chip to include 
information indicating the access methods available for each 
hardware functional latch and the “method name' (i.e., iden 
tifier) of the latch for each available access method. Although 
the illustrated process depicts the modification of a simula 
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tion configuration database to support two particular access 
methods, the illustrated method can be employed to handle 
any number or types of access methods. 
Once all of the simulation configuration databases for each 

integrated circuit in a system have been processed in the 
manner illustrated in FIGS. 21 and 22A, the resulting chip 
hardware databases 2108 can then be combined to form HW 
configuration database 1932 illustrated in FIG. 19. In a pre 
ferred embodiment, HW configuration database 1932 is con 
structed from chip HW databases 2108 by creating a chip 
pointer data structure 2320 (FIG. 23B) that contains a respec 
tive chip database pointer 2322 referencing the chip HW 
database 2108 of each type of chip in data processing system 
1902. For example, if data processing system 1902 includes 
32 identical integrated circuit processor chips, chip pointer 
data structure 2320 will contain (in addition to other chip 
database pointers 2322 corresponding to other types of inte 
grated circuit chips) only one chip database pointer 2322 to a 
single chip HW database 2108 describing the digital design 
embodied by the 32 integrated circuit processor chips. This 
HW configuration database 1932 is then stored in non-vola 
tile storage, such as non-volatile storage 1940 or flash ROM 
1924, as shown in FIG. 19. 

In order to configure a hardware digital design utilizing a 
HW configuration database 1932, the HW configuration data 
base 1932 is first loaded from non-volatile storage into vola 
tile memory in accordance with the exemplary process 
depicted in FIG.23A. The process shown in FIG.23A may be 
performed, for example, in a laboratory environment by 
workstation computer 1904 through the execution of system 
firmware 1930b by processing unit 1922b. Similarly, when 
data processing system 1902 is deployed commercially, ser 
vice processor 1920 executes system firmware 1930a accord 
ing to the process of FIG. 23A to load HW configuration 
database 1932a from flash ROM 1924 to volatile memory 
1928. 
As illustrated, the process of FIG. 23A begins at block 

2300 and then proceeds to block 2302, which illustrates a 
determination of the types of integrated circuit chips and 
number of each type present within a target data processing 
system, such as data processing system 1902. In an exemplary 
embodiment, the determination illustrated at block 2302 is 
made by system firmware 1930, which consults a set of so 
called Vital Product Data (VPD) to determine which of the 
thousands of possible machine configuration is represented 
by data processing system 1902. 

The process then proceeds to blocks 2306-2310, which 
collectively form a loop in which chip pointer data structure 
2320 is walked to process the chip HW databases 2108 of the 
integrated circuit chips comprising data processing system 
1902. First, at block 2306 a determination is made whether 
the chip HW database 2108 of each type of integrated circuit 
chip within data processing system 1902 has been processed. 
If so, loading of HW configuration database 1932 into volatile 
memory is complete, and the process terminates at block 
2312. If, however, the chip HW database 2108 corresponding 
to each type of integrated circuit chip identified by the VPD 
has not been processed, a next chip HW database 2108 is 
loaded into volatile memory 1928 of workstation 1904 for 
processing at block 2308. 
As shown in FIG. 23B, which depicts an in-memory view 

of HW configuration database 1932, loading of the chip HW 
database 2108 creates in-memory data structures as described 
above, such as a Dial pointer array 1208, latch pointer array 
1210, and an instance pointer array1226 within each DDDS 
1200 (see FIG. 12). In addition, a latch value field 2324, a 
latch set field 2326, and set history field 2325 are created 
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within each latch data structure 2230, and a instance set field 
2328 is created within each DIDS 1202. Each of these three 
fields is implemented as an array in which each entry corre 
sponds to a particular instance of the integrated circuit chip 
1910 corresponding to the current chip HW database 2108. 
Finally, an empty chip mapping table 2325 is created. 
Next at block 2310, a respective entry is added to chip 

mapping table 2325 for each instance of the type of integrated 
circuit chip corresponding to the current chip HW database 
2108. This step is preferably performed by system firmware 
1930 via a call to a HW configuration API 1934 that accesses 
the VPD to determine how many instances of the type of 
integrated circuit chip corresponding to the current chip HW 
database 2108 are contained in the present hardware digital 
design. By convention, the order of the entries within chip 
mapping table 2325 corresponds to the order of array entries 
in instance set field 2328, latch value field 2324 and latch set 
field 2326. 
As shown in FIG. 23B, each entry within chip mapping 

table 2325 associates two firmware-supplied values: (1) a 
chip instance name, which is a string like that identifying the 
design entity representing the integrated circuit chip instance 
in the simulation model of data processing system 1902 (e.g., 
a.b.c.d) and (2) a chip ID specifying an identifier of the test 
access port 1914 by which service processor 1920 commu 
nicates with that integrated circuit chip instance. Thus, any 
latch in data processing system 1902 can now be readily 
addressed by the tuple (chip ID, scan ring, offset), which is 
associated by chip mapping table 2325 with the chip-identi 
fying portion of the fully qualified latch name employed by 
HW configuration APIs 1934. Thereafter, the process returns 
to block 2306, which has been described. 
The process depicted in FIG.23A thus permits a single HW 

configuration database 1932 to be utilized to build an in 
memory HW configuration database for a data processing 
system of any arbitrary size or configuration, eliminating the 
need to develop and store a separate monolithic configuration 
database for each possible system size and configuration. 

With HW configuration database 1932 loaded into a vola 
tile memory 1928, system firmware 1930 can then be 
executed by processing unit 1922a of service processor 1920 
or processing unit 1922b of workstation computer 1904 to 
call HW configuration APIs 1934 to read or set a configura 
tion of one or more integrated circuit chips 1910 of data 
processing system 1902. As in simulation, HW configuration 
APIs 1934 preferably include separate API routines to read 
Dials and Dial groups in interactive and batch modes. Also 
like simulation, the API calls by system firmware 1930 
specify an instance qualifier (e.g., a.b.c.d or a,b.cx) and a 
dialname qualifier (e.g., Entity.dialname) for each Dial or 
Dial group instance to be set or read. 

Because multiple access methods can be utilized to set or 
read a Dial or Dial group, API calls to set or reada Dial or Dial 
group instance preferably include an additional parameter, 
access method. In a preferred embodiment, the access 
method parameter can take the values SCAN, which indicates 
test scanning, SCOM, which indicates SCOM scanning, and 
AUTO, which indicates that the HW configuration API 1934 
is to select the access method. In response to an AUTO value 
for the access method parameter, a HW configuration API 
1934 selects an access method based upon the supported 
access method(s) indicated by the method ID(s) 2232 in the 
latch data structure(s) 2230 targeted by the API call and upon 
which of functional clock 2002 and scan clock 2010 is run 
ning. As described above, SCOM scanning is only available 
when functional clock 2002 is running, and test Scanning is 
only available when scan clock 2010 is running. 
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Before any HW configuration API 1934 can set or read a 
Dial or Dial group instance, the HW configuration API 1934 
must first determine which Dial or Dial group instances are 
identified by the instance qualifier and dialname qualifier 
specified in the API call. Referring now to FIG. 24 there is 
depicted a high level logical flowchart of an exemplary pro 
cess by which a HW configuration API 1934 locates particu 
lar Dial or Dial group instances in HW configuration database 
1932 in accordance with the present invention. The illustrated 
process is analogous to the process depicted in FIG. 15 and 
described above. 
As shown, the process begins at block 2400 in response to 

receipt by a HW configuration API 1934 of an API call from 
firmware 1930 having as an argument an instance qualifier 
and a dialname qualifier of one or more Dial or Dial group 
instances, as discussed above. In response to the API call, the 
configuration API 1934 enters HW configuration database 
1932 at chip pointer array 2320 and, as depicted at block 
2402, enters a loop in which chip database pointers 2322 are 
processed until one or more matching Dial instances are 
located within a particular chip HW database 2108 or until all 
chip database pointers 2322 have been processed. In response 
to a determination at block 2402 that all chip database point 
ers 2322 have been processed without locating any matching 
Dial instances, the process terminates with an error at block 
2403. However, if fewer than all of chip database pointers 
2322 have been processed, the next chip database pointer 
2322 is selected from chip pointer data structure 2320 for 
processing, as depicted at block 2406. The selected chip 
database pointer 2322 is utilized to locate the associated chip 
HW database 2108. 

Following block 2406, the process proceeds to block 2408 
and following blocks, which represent a processing loop in 
which each Dial pointer 1252 in the Dial pointer array 1208 of 
the current chip HW database 2108 is processed until a par 
ticular Dial matching the API call is located or until all Dial 
pointers 1252 (FIG. 12) have been processed without finding 
any matching Dial instances. In response to a determination at 
block 2408 that all Dial pointers 1252 have been processed 
without locating any matching Dial entity, the process returns 
from block 2408 to block 2402 in order to process the next 
chip database pointer 2322 in chip pointer array 2320 (i.e., to 
process the next chip HW database 2108). If, on the other 
hand, a determination is made at block 2408 that not all Dial 
pointers 1252 within Dial pointer array 1208 have been pro 
cessed, the process proceeds to block 2410, which illustrates 
the selection from Dial pointer array 1208 of the next Dial 
pointer 1252 for processing. 

Next, a determination is made at block 2412 of whether or 
not the DDDS 1200 referenced by the current Dial pointer 
1252 has a name field 1222 that exactly matches the specified 
dialname qualifier. With respect to name fields 1222, two 
implementations are possible. First, reuse of Dial names can 
be prohibited so that every Dial name is unique throughout 
not only its own integrated circuit chip, but also throughout 
the entire system (e.g., data processing system 1902). A sec 
ond, less restrictive approach is to require each Dial name to 
be unique only within its integrated circuit chip 1910 and to 
permit multiple uses of a Dial name in different integrated 
circuits. In order to support the second approach, name field 
1222 takes the form “chiptype.Dial name', where “chiptype' 
is a unique String identifying the type of integrated circuit 
chip 1910, thus disambiguating identical Dial names applied 
to Dial entities instantiated in different integrated circuit 
chips 1910. 

In response to a determination at block 2412that name field 
1222 does not match the specified dialname qualifier, the 
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process returns to block 2408 for processing of the next Dial 
pointer 1252, if any, as described above. If, however, a match 
is found, the process then enters a processing loop comprising 
blocks 2420-2434 in which the Dial instances represented by 
individual DIDS 1202 are examined for a match with the API 
calls instance qualifier utilizing the instance pointers 1228 in 
the instance pointer array 1226 of the DDDS 1200 of the 
matching Dial entity. In this processing loop, a determination 
is first made at block 2420 of whether or not all instance 
pointers 1228 within the current DDDS 1200 have been pro 
cessed. If so, a further determination is made at block 2434 of 
whether or not at least one matching instance of the Dial 
entity corresponding to the current DDDS 1200 was found. 
This determination is made because the construction of HW 
configuration database 1932 ensures that at most one match 
ing Dial (not Dial instance) in only one chip HW database 
2108 will match the instance qualifier and dialname qualifier 
specified in the API call. Consequently, ifa matching instance 
is found for a particular Dial entity, no further Dial entities or 
chip HW databases 2108 need be searched. Accordingly, if a 
determination that at least one matching Dial instance has 
been found for the Dial entity corresponding to the current 
DDDS 1200, the process passes from block 2434 to block 
2438 and terminates. If, however, a determination is made at 
block 2434 that no match was found, the process passes 
through page connector A and terminates with an error at 
block 2403. 

Returning to block 2420, in response to a determination 
that all instance pointers 1228 of the current DDDS 1200 have 
not been processed, the process proceeds to block 2422, 
which illustrates the selection of the next instance pointer 
1228 and its associated DIDS 1202 for processing. A deter 
mination is then made at block 2424 whether the DIDS 1202 
has been processed with respect to the Dial instance in each of 
the integrated circuit chips 1910 corresponding to the current 
chip HW database 2108 by processing each entry in chip 
mapping table 2326. If so, the process passes to block 2436, 
which is described below. If processing of all entries in chip 
mapping table 2325 has not been completed, the process 
proceeds to block 2426. 

Block 2426 depicts forming the next fully qualified Dial 
instance name to be matched against the instance qualifier 
specified in the API call by prepending the chip instance name 
in the next entry of chip mapping table 2325 to the instance 
name field 1234 of the current DIDS 1202. This fully quali 
fied Dial instance name is then compared to the instance 
qualifier at block 2430. If they do not match, the process 
returns to block 2424, which has been described. If they do 
match, a temporary result pointer and associated chip vector 
are created at block 2432, if they do not already exist. The 
temporary result pointer points to the current DIDS 1202 to 
identify the corresponding Dial instance as matching the 
instance qualifier specified in the access request. An entry is 
also placed in the associated chip vector to indicate the par 
ticular integrated circuit chip instance 1910 in which this 
matching Dial instance is located. In an exemplary embodi 
ment, the chip vector may simply comprise a same number of 
bits as there are entries in chip mapping table 2325, with a bit 
value of “1” indicating that the corresponding integrated cir 
cuit chip instance 1910 contains a matching Dial instance. 
Following block 2432, the process returns to block 2424. 
The processing loop represented by blocks 2424-2432 is 

repeated for each entry in chip mapping table 2325. After all 
entries have been processed, the process passes from block 
2424 to block 2436, which depicts a determination of whether 
the dialname qualifier was specified utilizing non-bracketed 
Syntax and, if so, whether or not a match was found for the 
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specified dialname qualifier among the Dial instances repre 
sented by the current DIDS 1202. If the determination is 
negative, it is possible that additional matching Dial instances 
associated with another DIDS 1202 may exist. Accordingly, 
the process returns to block 2420 to process the next instance 
pointer 1228 of the current DDDS 1200. If, however, the 
determination at block 2436 is positive, it is known that all 
matching Dial instances have been located and identified with 
temporary result pointers and associated chip vectors. The 
process therefore terminates at block 2438. 

After the Dial or Dial group instances specified by the 
instance qualifier and dialname qualifier have been deter 
mined by the process shown in FIG. 24, the Dial or Dial group 
instance(s) are set or read in much the same fashion as 
described above with respect to FIGS. 16A (reading a Dial 
instance in interactive mode), 16B (reading a Dial group 
instance in interactive mode), 17A (setting a Dial instance in 
interactive mode), 17B (setting a Dial group instance in inter 
active mode) and 18A-18E3 (setting a Dial instance or Dial 
group instance in batch mode). A few differences are 
required, however, to account for the use of a single chip HW 
database 2108 to represent possibly multiple integrated cir 
cuit chips 1910 and for the availability of multiple different 
access methods to access integrated circuit chips 1910. These 
differences are detailed below. 
When reading Dial instances or Dial group instances, latch 

values are verified by propagating the latch values “up the 
Dial trees in the configuration database, as described with 
reference to block 1624 of FIG. 16A. Conversely, when set 
ting Dial instances or Dial group instances, Dial values are 
propagated "down the Dial trees in the configuration data 
base to the latch data structures, as described above with 
reference to block 1714 of FIG. 17A. In simulation, only one 
latch value at a time is propagated “downto or “up' from any 
one latch data structure 1204. However, because HW con 
figuration database 1932 represents multiple integrated cir 
cuit chips 1910 of the same type with a single chip HW 
database 2108, reading or setting a Dial or Dial group 
instance by reference to a chip HW database 2108 represent 
ing multiple physical integrated circuit chips 1910 entails 
propagating multiple elements of a value set up or down the 
Dial tree in parallel, where each element of the value set is the 
value for a particular chip instance identified by the tempo 
rary result pointer and chip vector constructed in FIG. 24. 

Similarly, in simulation, each of instance set field 1239, 
latch valuefield 1246, latch set field 1248, and set history field 
1249 within configuration database 1404 contains only a 
single value. In contrast, the corresponding instance set fields 
2328, latch value fields 2324, latch set fields 2326, and set 
history fields 2325 within HW configuration database 1932 
are implemented as arrays in which each element corresponds 
to an individual Dial or latch instance for a particular inte 
grated circuit chip 1910. Accordingly, when Dial, Dial group 
and latch instances are set, the elements within instance set 
fields 2328, latch value fields 2324, latch set fields 2326, and 
set history fields 2325 corresponding to the set instances are 
updated in accordance with the temporary result pointer and 
chip vector constructed in FIG. 24. 

Because laboratory or commercial use of HW configura 
tion database 1932 entails accessing physical hardware (i.e., 
integrated circuit chips 1910) utilizing multiple possible 
access methods, three additional differences from a simula 
tion environment are noted in a preferred embodiment. First, 
a set or read operation requested in an API call preferably fails 
(i.e., is not performed) if a HW configuration API 1934 deter 
mines that the access method indicated by the access method 
parameter contained within the API call is not available for 
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any of the Dial instances identified by the temporary result 
pointer(s) and chip vector(s) obtained by the process of FIG. 
24. As described above, the access method(s) by which each 
latch can be set or read is indicated by the method ID field(s) 
2232 of each latch data structure 2230. 

Second, a set or read operation requested in an API call 
preferably succeeds only if a HW configuration API 1934 
determines that the functional clock 2002 and scan clock 
2010 within each integrated circuit chip 1910 targeted by the 
API call are in the appropriate states for the access method 
parameter contained within the API call. That is, if the 
access method parameter has the value SCAN, the func 
tional clock 2002 must be disabled, and the scan clock 2010 
must be enabled. Conversely, if the access method parameter 
has the value SCOM, the functional clock 2002 must be 
enabled, and the scan clock 2010 must be disabled. If the 
access method parameter has the value AUTO, the functional 
clock 2002 and scan clock 2010 of each integrated circuit chip 
1910 containing a latch targeted by the API call must be in 
states that permitat least one access method of each Such latch 
to be employed. 

Third, the HW configuration APIs 1934 utilized to read and 
set hardware latches, read latch() and write latch(), prefer 
ably minimize scan accesses to integrated circuit chips 1910 
by implementing shadow scan chain buffers in Volatile 
memory 1928 and by accessing such scan chain buffers when 
possible in lieu of scanning a scan chain in an integrated 
circuit chip 1910. For example, the read latch( ) HW con 
figuration API 1934, which corresponds to the GETFAC() 
API 1412 employed in simulation, preferably obtains latch 
value(s) from the corresponding shadow scan chain buffers in 
volatile memory 1928 in cases in which the latch value(s) in 
volatile memory 1928 are known to be current. In addition, 
multiple updates to latch values via the write latch() API, 
which corresponds to the PUTFAC() API 1414 utilized in 
simulation, are preferably buffered in the shadow scan chain 
buffers in volatile memory 1928. In this manner, multiple 
writes to latches in a particular scan chain of an integrated 
circuit chip 1910 can be made by scanning the particular scan 
chain only once. 
HW configuration APIs 1934 preferably further include a 

check chip() API similar to the check model () API avail 
able in simulation. When called, the check chip() API uti 
lizes top-level pointer array 1206 within a specified chip HW 
database 2108 to verify that each top-level CDial and LDial 
instance within the chip HW database 2108 is set to one of its 
legal values. Specifically, the check chip() API propagates 
the underlying hardware latch values up the Dial tree of each 
top-level CDial and LDial instance by reference to its map 
ping table 1224 and the mapping table(s) 1224 of any lower 
level Dial instance(s) in its Dial tree. Any top-level LDial or 
CDial instance set to an illegal value is returned by the check 
chip() API. 

Referring again to FIG. 19, in many commercial embodi 
ments of data processing system 1902, the storage capacity of 
non-volatile storage (e.g., flash ROM 1924) within service 
processor 1920 is significantly less than that of the non 
volatile storage 1940 (e.g., hard disk storage) of the worksta 
tion computer 1904 utilized to store system firmware 1930b 
and HW configuration database 1932b. Accordingly, it is 
usually desirable or necessary to reduce the size of the system 
firmware 1930b and HW configuration database 1932b devel 
oped in a laboratory hardware testing environment to obtain 
the system firmware 1930a and HW configuration database 
1932a commercially deployed within flash ROM 1924 (or 
other non-volatile storage) of data processing system 1902. 
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Accordingly, with reference now to FIG. 25, there is illus 
trated a high level logical flow diagram of an exemplary 
process by which each chip HW database 2108 developed 
during laboratory development and testing of system firm 
ware 1930 can be compressed through the elimination of 5 
unnecessary information in order to obtain a HW configura 
tion database 1932a suitable for commercial deployment. 
The process begins by generating Dial usage information 
2500 indicating which Dial instances within a particular type 
of integrated circuit chip 1910 have been set and/or read and 
the values to which Dial instances have been set. 

The determination of which Dial instances are set or read 
and the values to which Dial instances have been set can be 
accomplished in a number of ways well known to those 
skilled in the art. For example, system firmware 1930 can be 
manually examined to generate Dial usage information 2500. 
Alternatively, system firmware 1930 can be executed in a 
number of possible machine configurations that cover all the 
settings to which Dial instances in the type of integrated 
circuit chip 1910 under consideration may be set. The Dial 
instances that are set and read and the values to which Dial 
instances are set can then be logged as Dial usage information 
2SOO. 

In a preferred embodiment, all that is recorded within Dial 
usage information 2500 for IDial instances is whether or not 
the IDial instance is set or read. No IDial instance values are 
recorded because it is assumed, for purposes of generating 
Dial usage information 2500, that if an IDial instance is set, 
all of its possible values may be utilized. There are, however, 
particular IDial instances that developers know will only be 
set to a single value. To permit the elimination of these IDials 
from HW configuration database 1932a, these IDials and 
their associated values can optionally be specified by a devel 
oper within an override file 2502. Override file 2502 may also 
contain a list of Dial instances, if any, that the developer 
desires to explicitly preserve within HW configuration data 
base 1932a, regardless of whether or not the Dial instance is 
read or set. 

Thus, for each chip HW database 2108, Dial usage infor 
mation 2500 and override file 2502 are preferably obtained 
that collectively contain at least the following information: 

1) a list of all the top-level non-IDial instances set within 
any of the instances of the integrated circuit chip in any 
configuration and a list of any top-level IDials set to any 
value within any of the instances of the integrated circuit 
chip in any configuration; 

2) a list of all the values of each non-IDial instance that is 
Set, 

3) a separate list of IDials set to a single value; and 
4) a list of all Dial instances that are read. 
As further illustrated in FIG. 25, this information is then 

utilized by a software compression tool 2504 (e.g., executed 
by workstation computer 1904) to eliminate unnecessary 
information from the associated chip HW database 2108. 
Compression tool 2504 produces two outputs: (1) a com 
pressed chip HW database 2506 forming a portion of HW 
configuration database 1932a and (2) initial scan chain 
images 2508 utilized to develop the scan chain images to 
which test scan chains 2006 in the integrated circuit chip 1910 
are initialized during execution of system firmware 1930a. As 
indicated, these initial scan chain images 2508 may be non 
destructively combined with additional scan chain inputs 
2510 to obtain final scan chain images 2512. 

Referring now to FIGS. 26A-26C, there is depicted a high 
level logical flowchart of a method by which compression 
tool 2504 compresses a chip HW database 2108 in accor 
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dance with the present invention. As described in detail 
below, the illustrated method implements at least three size 
optimizations. 

First, information related to a Dial instance may be elimi 
nated from a chip HW database 2108 if the Dial instance will 
never be set or read by system firmware 1930a. Because such 
Dial instances will never be set or read by system firmware 
1930a, the DIDS 1202 corresponding to such Dial instances 
will never be referenced within HW configuration database 
1932a and may accordingly be removed. It is important to 
note that the fact that system firmware 1930a does not set or 
read a Dial instance does not necessarily mean that the Dial 
instance is not set or read during simulation or laboratory 
debugging. Many Dial instances (e.g. mode Switches) are 
never set by system firmware 1930a, but are tested during 
simulation to ensure that the mode Switches work properly if 
needed by a later firmware revision. 
A second reason that information related to a Dial instance 

may be unnecessary is if the Dial instance is set to only one 
value in all configurations. In this case, the DIDS 1202 cor 
responding to the Dial instance can be removed from chip 
HW database 2108 because the effects of setting the Dial 
instance can instead be achieved by setting the final scan 
chain image 2512 scanned into an integrated circuit chip 1910 
with the latch value(s) that would be obtained by setting the 
Dial instance. The code within system firmware 1930b that 
sets the Dial instance can likewise be eliminated to reduce the 
size of system firmware 1930a ultimately obtained from labo 
ratory testing and debugging. 

Third, mapping tables 1224 in DDDSs 1200 may be opti 
mized by eliminating values to which Dials are never set by 
system firmware 1930a. 

In making the foregoing optimizations, special consider 
ation is given to Dial instances that are read. In general, when 
a Dial instance is read, it is assumed in the exemplary com 
pression methodology described below that the entire Dial 
tree containing the Dial instance that is read must be pre 
served within its chip HW database. In addition, it is assumed 
that all entries within the mapping tables of Dials in Dial trees 
containing Dial instances that are read must be preserved 
because, in commercial deployment, the hardware may set 
the underlying latches to values other than those read by 
system firmware. Consequently, it cannot be determined a 
priori which mapping table entries will be required to read a 
Dial instance. Although these assumptions limit compres 
Sion, they ensure that each Dial instance that is read can be 
easily accessed, regardless of whether or not the Dial instance 
is a top-level Dial instance or a lower-level Dial instance. 

Referring first to FIG. 26A, the process begins at block 
2600 and then proceeds to block 2602, which illustrates com 
pression tool 2504 loading a chip HW database 2108 into 
volatile memory 1928b and creating in-memory data struc 
tures 1208, 1210 and 2325, as described above. In addition, as 
depicted at block 2604, compression tool 2504 creates, in 
association with each DIDS 1202, some additional temporary 
fields in memory used only by compression tool 2506. These 
temporary fields include a Dial Instance Value Structure 
(DIVS) for storing the values, if any, to which the associated 
Dial instance is set within Dial usage information 2500. For 
IDial instances, the DIVS is handled specially. In particular, 
the DIVS will either be empty, contain a token indicating the 
IDial instance is set, or, for top-level IDial instances only, 
contain the single value to which the IDial instance is set, if 
applicable. The temporary fields created for each DIDS 1202 
at block 2604 also include a Dial Instance Preserve Field 
(DIPF), which is set to TRUE if the associated DIDS should 
be preserved (i.e., not deleted from the compressed chip HW 
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database) and is set to FALSE otherwise. The DIPF of each 
DIDS 1202, if any, explicitly listed in override file 2502 as a 
DIDS to be preserved is initialized to TRUE, and all other 
DIPFs are initialized to FALSE. 
The process then proceeds from block 2604 to block 2606, 

which illustrates compression tool 2504 entering a loop in 
which each top-level pointer 1250 in top-level pointer array 
1206 is processed to enter relevant information from Dial 
usage information 2500 in the DIPF and DIVS of each DIDS 
1202. If all top-level pointers 1250 have been processed, the 
processes passes through page connector B to FIG. 26B, 
which is described below. If, however, all top-level pointers 
1250 have not yet been processed, the next top-level pointer 
1250 within top-level pointer array 1206 is selected for pro 
cessing at block 2608. 
The process then passes from block 2608 to blocks 2610 

and 2612. Block 2610 illustrates compression tool 2504 pro 
cessing each non-IDial in the Dial tree headed by the Dial 
instance corresponding to the DIDS 1202 referenced by the 
current top-level pointer 1250. Compression tool 2504 adds 
to the DIVS of each Such DIDS 1202 the values for the 
corresponding Dial instance contained within the Dial usage 
information 2500. In addition, as shown at block 2612, com 
pression tool 2504 processes each IDial within the Dial tree 
headed by the Dial instance corresponding to the DIDS 1202 
referenced by the current top-level pointer 1250. For each 
such IDial, compression tool 2504 adds a set token to the 
DIVS if Dial usage information 2500 indicates that the IDial 
has been set. 

Next, at block 2614, compression tool 2504 sets the DIPF 
of every DIDS 1202 in the Dial tree headed by the Dial 
instance corresponding to the DIDS 1202 referenced by the 
current top-level pointer 1250 if Dial usage information 2500 
indicates that any Dial in the Dial tree was read. In other 
words, each DIPF in the Dial tree is set to TRUE if any Dial 
instance in the Dial tree is read. The process then proceeds to 
block 2616, which illustrates compression tool 2504 exam 
ining each top-level IDial, if any, corresponding to the DIDS 
1202 referenced by the current top-level pointer 1250 to 
determine whether override file 2502 indicates that the IDial 
is set to only a single value. If so, compression tool 2504 adds 
to the DIVS of those top-level IDials the value contained 
within override file 2502 and removes a set token, if present. 

Thereafter, the process returns to block 2606, which illus 
trates the continuation of the processing loop until all top 
level pointers 1250 within top-level pointer array 1206 have 
been processed. Once all top-level pointers 1250 have been 
processed, the process passes through page connector B to 
FIG. 26B. 

With reference now to FIG. 26B, the process proceeds from 
page connector B to block 2620, which illustrates a second 
processing loop in which each top-level pointer 1250 within 
top-level pointer array 1206 is processed. Ifa determination is 
made at block 2620 that all top-level pointers 1250 within 
top-level pointer array 1206 have been processed in the cur 
rent processing loop, the process passes through page con 
nector C and continues in FIG. 26C. Otherwise, the process 
proceeds to block 2622, which depicts the selection of the 
next top-level pointer 1250 within top-level pointer array 
1206 for processing. 

Following block 2622, the DIVS and DIPF associated with 
the DIDS 1202 referenced by the current top-level pointer 
1250 are examined for one of three conditions respectively 
represented by decision blocks 2624, 2630, and 2640. If a 
determination is made at block 2624 that the DIPF has a value 
of TRUE or if type field 1220 in the associated DDDS 1200 
indicates that the DIDS 1202 corresponds to a Dial group, the 
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process simply returns from block 2624 to block 2620 for 
processing of the next top-level pointer 1250, if any. 

If, however, a determination is made at block 2630 that the 
DIPF associated with the DIDS 1202 referenced by the cur 
rent top-level pointer 1250 has a value of FALSE and the 
associated DIVS is empty, then compression tool 2504 can 
remove the DIDS 1202 from chip HW database 2108 because 
none of the corresponding Dial instances is set or read. 
Accordingly, as illustrated at block 2632, compression tool 
2504 deletes the DIDS 1202 from chip HW database 2108, as 
well as each lower-level DIDS 1202, if any, in the Dial tree 
headed by the deleted top-level DIDS 1202. In addition, com 
pression tool 2504 deletes the associated top-level pointer 
1250 from top-level pointer array 1206, and sets the instance 
pointer 1228 pointing to each deleted DIDS 1202 to NULL. A 
determination is then made at block 2634 of whether or not 
the parent pointer 1233 of the deleted DIDS 1202 was set to 
NULL. If so, the process returns to block 2620, which has 
been described. If, on the other hand, the parent pointer was 
not NULL, then the top-level Dial instance(s) corresponding 
to the deleted DIDS 1202 belonged to Dial group instance(s). 
Because the top-level Dial instance(s) were never set or read, 
each such top-level Dial instance may be safely removed from 
its respective Dial group instance. Accordingly, as shown at 
block 2636, compression tool 2504 deletes from the DIDS 
1202 corresponding to the Dial group instance(s) the output 
pointer 1238 to the deleted DIDS 1202 of the top-level Dial 
instance. If the deletion of the output pointer 1238 from the 
DIDS 1202 of the Dial group instances removes the last 
member of the Dial group, the DIDS 1202 corresponding to 
the Dial group instance(s) is also deleted from chip HW 
database 2108. This process continues, collapsing hierarchi 
cal levels of Dial groups, if possible. Following block 2636, 
the process returns to block 2620, which has been described. 

Returning to block 2640, compression tool 2504 deter 
mines whether the DIPF associated with the DIDS 1202 
referenced by the current top-level pointer 1250 has a value of 
FALSE and the associated DIVS contains a single value. If 
not, the process returns to block 2620, which has been 
described. If so, a further determination is made at block 2642 
by reference to parent field 1232 of the DIDS 1202 of whether 
the Dial instance belongs to a Dial group. If so, the process 
preferably returns to block 2620 without further processing, 
signifying that the DIDS 1202 will be preserved. The DIDS 
1202 is preferably preserved because operations setting a 
Dial group are atomic and will failifa removed Dial instance 
is referenced in the set Dial group() API call. In response to 
a determination at block 2642 that the Dial instance corre 
sponding to the DIDS 1202 referenced by the top-level 
pointer 1250 does not belong to a Dial group, the process 
proceeds to block 2644. 

Block 2644 illustrates propagating the single Dial value 
contained in the DIVS down the Dial tree by reference to 
mapping tables 1224 (if necessary) in order to determine the 
latch values of the latches terminating the Dial tree. The latch 
values determined at block 2644 are then placed within initial 
scan chain images 2508 in scan chain locations determined by 
reference to chip mapping table 2325, as illustrated at block 
2646. Therefore, as shown as block 2648, the DIDS 1202 
referenced by the current top-level pointer 1250, its lower 
level Dial tree, and top-level pointer 1250 itself are all 
removed from the chip HW database 2108, as described 
above with respect to block 2632. In addition, the set Dial() 
API call utilized to set the top-level Dial instances corre 
sponding to the deleted DIDS 1202 is removed (typically by 
a human programmer) from system firmware 1930b, as 
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shown at block 2650. Thereafter, the process returns to block 
2620, which has been described. 

Referring now to FIG. 26C, processing begins at page 
connector C and proceeds to block 2660, which illustrates a 
processing loop in which all Dial pointers 1252 within Dial 
pointer array 1208 are processed to eliminate from chip HW 
database 2108 any unnecessary DDDSs 1200 and any unnec 
essary entries within mapping tables 1224. After all Dial 
pointers 1252 within Dial pointer array 1208 have been pro 
cessed, the process passes to block 2690, which is described 
below. If, however, less than all Dial pointers 1252 have been 
processed, the process proceeds from block 2660 to block 
2662, which illustrates selection of the next Dial pointer 1252 
for processing. 

Following selection of a next Dial pointer 1252, compres 
sion tool 2504 determines at block 2664 whether all instance 
pointers 1228 within instance pointer array 1226 of the 
DDDS 1200 referenced by the current Dial pointer 1252 are 
NULL. If so, the entire DDDS 1200 is unnecessary and is 
removed from the chip HW database 2108, as shown at block 
2666. Following block 2666, the process returns to block 
2660, which has been described. 

In response to a determination at block 2664 that all 
instance pointers 1228 within the DDDS 1200 referenced by 
the Dial pointer 1252 are not NULL, a further determination 
is made at block 2670 of whether or not type field 1220 
indicates that DDDS 1200 defines a IDial. If so, no optimi 
Zation to mapping table 1224 is possible, and the process 
returns to block 2660. If compression tool 2504 determines 
that block 2670 that the DDDS referenced by the current Dial 
pointer 1252 does not define an IDial, the process proceeds to 
block 2672. Block 2672 depicts a determination of whether or 
not any DIPF associated with any DIDS 1202 referenced by 
an instance pointer 1228 has a value of TRUE. If so, this 
condition indicates that at least one Dial instance of the Dial 
defined by DDDS 1200 has been read and therefore requires 
a full mapping table 1224. Accordingly, the process returns to 
block 2660 without performing any optimization to mapping 
table 1224. 

If, however, compression tool 2504 determines at block 
2672 that all DIPFs associated with DIDSs 1202 referenced 
by instance pointers 1228 have a value of FALSE, the process 
proceeds from 2672 to the processing loop illustrated at 
blocks 2674, 2676, and 2678. This processing loop represents 
compression tool 2504 processing each instance pointer 1228 
within the instance pointer array 1226 of the DDDS 1200 
referenced by the current Dial pointer 1252 in order to build 
a Dial value set containing all values to which the Dial 
instances corresponding to the DIDSs 1202 were set by sys 
tem firmware 1930. As indicated at block 2678, the Dial 
values are obtained from the DIVS associated with each 
DIDS 1202. After the Dial value set has been built through 
processing each instance pointer 1228, the process passes 
from block 2674 to block 2680. Block 2680 illustrates com 
pression tool 2504 removing each entry in mapping table 
1224 of the DDDS 1200 referenced by the current Dial 
pointer 1252 whose Dial input value is not found within the 
Dial value set. This process continues down the Dial tree, 
eliminating mapping table entries that are not utilized to 
generate the Dial value set. Thus, mapping tables 1224 of 
individual Dials are optimized by the removal of unneeded 
entries. Thereafter, the process returns to block 2660. 

In response to a determination at block 2660 that all Dial 
pointers 1252 within Dial pointer array 1206 have been pro 
cessed, compression tool 2504 performs a last compression at 
block 2690 by replacing common portions of instance names 
within instance name fields 1234 with pointers to a “dictio 
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nary providing the full instance name portions. This com 
pression technique, which is well known to those skilled in 
the art, replaces instance names (or portions thereof) with 
pointers, which are typically significantly shorter than the 
instance name or instance name portions they replace. These 
pointers can then be replaced within instance name fields 
1234 as a step in the process in which HW configuration 
database 1932a is loaded into volatile memory 1928a of 
service processor 1920. Following block 2690, compression 
tool 2504 terminates processing at block 2692. 

After all of the chip HW databases 2108 have been com 
pressed by compression tool 2504 in accordance with the 
method depicted in FIG. 26A-26C, the compressed chip HW 
databases 2108 can then be utilized to construct hardware 
configuration database 1932a stored within flash ROM 1924 
by simply constructing a chip pointer data structure 2320. It 
should be noted that the compression methodology imple 
mented by compression tool 2504 is not exclusive. HW con 
figuration APIs 1934bpreferably include a suite of APIs that 
permit a developer to remove individual DIDSs 1202, remove 
an entry in a mapping table 1224, and perform other optimi 
zations similar to those illustrated in FIG. 26A-26C. 

In the embodiments of the present invention described 
above, it has been assumed that each Dial (i.e., LDial or IDial) 
that is logically coupled to a simulation configuration latch or 
hardware latch can set the value contained in the simulation 
configuration latch or hardware latch. In practice, however, it 
is often desirable to be able to read such latches without 
permitting system firmware or a simulator to set (or alter) the 
latch values. 

In view of the foregoing, a preferred embodiment of the 
present invention supports an additional class of configura 
tion entities referred to herein as read-only Dials or RDials. 
There is preferably a read-only configuration entity corre 
sponding to each type of Dial and Dial group described above, 
that is, a read-only LDial, CDial, IDial and Dial group. For 
ease of understanding, each read-only configuration entity is 
referred to herein by the Dial or Dial group type name (e.g., 
LDial, CDial, IDial and Dial group) preceded by an “R” 
designating the configuration entity as read-only (e.g., 
RLDial, RCDial, RIDial and RDial group). 

RDials and RDial groups are subject to a number of rule 
sets. First, RDials and RDial groups are read-only and, by 
definition, cannot be set by a simulator or system firmware. 
Consequently, RDials and RDial groups cannot be assigned 
default values. 

Second, the syntax defining an RDial or RDial group 
within a configuration specification statement is preferably 
the same as that described above for the corresponding non 
read-only configuration entity, except that the keyword defin 
ing the configuration entity is preceded by an “R”. For 
example, an exemplary configuration specification statement 
for an RLDial can be given as follows: 

RLDial state machine (state vector(0.1) 
) : 

{idle =>Ob00; 
start =>Ob01; 
wait=>Ob10; 
end =>Ob11 

The exemplary configuration specification statement given 
above begins with the keyword “RLDial,” which specifies 
that the type of RDial being declared is an RLDial, and the 
RDial name, which in this case is “state machine. Next, the 
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configuration specification statement enumerates the signal 
name(s) whose states are read by the RLDial. Following the 
enumeration of the signal identifiers, the configuration speci 
fication statement includes a mapping table listing the per 
mitted enumerated “input values (or settings) of the RLDial 
and the corresponding signal (i.e., "output') values for each 
enumerated input value. It should again be noted that the 
signal states specified for all enumerated values are unique, 
and collectively represent the only legal patterns for the signal 
States. 

Third, RDials have a different set of rules regarding inter 
connection with Dials and RDials and grouping of Dials 
and/or RDials to form RDial groups. These rules are set forth 
in detail below with reference to FIG. 27, which is a graphical 
representation of a portion of an exemplary configuration 
database 2700 including Dials and RDials having specified 
logical connections to latches 2760-2778 of a simulation 
model or hardware system. 
As an initial matter, RDials are subject to similar restric 

tions on interconnection to other RDials and latches as set 
forth above with respect to the corresponding Dials. That is, in 
a preferred embodiment, an RIDial or an RLDial, but not an 
RCDial, can have its output directly coupled to a latch, and an 
RCDial, but not an RIDial or RLDial, can have its output 
connected to the input of a lower level RDial. Thus, for 
example, RCDial 2740 has an output connected to the input of 
RCDial 2742, which in turn has two outputs respectively 
connected to the inputs of RLDial 2744 and RIDial 2746. 
RLDial 2744 and RIDial 2746 have outputs connected to 
latches 2770 and 2772, respectively. 

In addition, an RCDial can have its output connected to the 
input of any type of Dial, but no Dial is permitted to have its 
output connected to the input of any RDial. For example, 
RCDial 2740 has an output coupled to the input of CDial 
2724. Although not explicitly illustrated in FIG. 27, it should 
be noted that an RDial may have outputs connected to the 
inputs of RDials and/or Dials at multiple different levels of 
the same subtree. 

To prevent conflicting settings, the Dials and Dial groups 
defined hereinabove permit each latch, Dial, and Dial group 
to have at most one Dial or Dial group as a parent hierarchi 
cally "above it in an n-way Dial tree. For example, each of 
CDial 2722 and CDial 2724 has only one Dial parent (i.e., 
CDial 2720), each of LDial 2726 and IDial 2728 has only one 
Dial parent (i.e., CDial 2722), and each of LDial 2730 and 
IDial 2732 has only one Dial parent (i.e., CDial 2724). How 
ever, because RDials and RDial groups are, by definition, 
read-only, any Dial or RDial may have one or more RDial or 
RDial group parents without any possibility of conflict 
between Dial settings. That is, an RDial may have its output 
connected to a latch, Dial or RDial to which the output of 
another RDial or Dial is also connected, subject to the other 
rules and provided that no closed loop is formed. Stated 
another way, each latch and Dial is permitted to have at most 
one Dial parent, but each latch, Dial and RDial can have one 
or more RDial parents, regardless of whether the latch or Dial 
also has a Dial parent. For example, in configuration database 
2700 of FIG. 27, an output of each of RCDial 2740 and 
RCDial 2750 is connected to the input of RCDial 2742. 
Similarly, CDial 2720 and RCDial 274.0 each have an output 
connected to the input of CDial 2724. Also, RLDial 2752 and 
LDial 2754 each have an output connected to latch 2776. 
The final rule regards the construction of RDial groups. As 

described above in detail with reference to FIG. 11A, in a 
preferred embodiment, a Dial group may only contain top 
level Dial(s) and/or other hierarchically nested Dial group(s). 
In contrast, an RDial group may contain an RDial or Dial at 
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any level of hierarchy and/or a Dial group or RDial group. 
This additional flexibility is permitted because RDial groups, 
like RDials, are never set by a simulator or system firmware. 
The implementation of RDials and RDial groups within a 

configuration database in combination with the Dials and 
Dial groups previously described inaccordance with the rules 
set forth above permits construction of three classes of trees. 
First, as exemplified by Dial trees 2702 and 2708, a tree may 
comprise Dial(s) and latch(es), but no RDials. Second, a 
RDial tree, for example, RDial tree 2706, may comprise 
RDial(s) and latch(es), but no Dials. Third, a hybrid tree may 
be constructed that contains one or more RDials, one or more 
Dials, and one or more latches, as illustrated by hybrid tree 
2704. 

In order to Support RDials and RDial groups, some modi 
fications are made to a simulation configuration database and 
a HW configuration database. First, the value set of the type 
field 1220 within each DDDS 1200 is augmented to include 
additional values identifying RDial groups and the additional 
types of RDials. For example, the value set may be augmented 
with values RL, RC, RI and RG to respectively identify 
DDDSs 1200 corresponding to RLDials, RCDials, RIDials 
and RDial groups. The addition of these new values ensures 
that a set Dial() or set Dial group() API call, which pref 
erably test the type field 1220 of the associated DDDS 1200 
prior to attempting to set any instance, will not attempt to set 
an RDial or RDial group. 

In addition, as illustrated in FIG. 28A, each DIDS 1202 is 
expanded to include a read-only parent field 2800 including 
Zero or more read-only parent pointers 2801. Each non 
NULL read-only parent pointer 2801 defines either a connec 
tion between the input of the instance represented by the 
DIDS 1202 and the output of a higher-level RDial or the 
inclusion of the instance represented by the DIDS 1202 
within an RDial group. As noted above, in addition to a Dial 
or Dial group parent, if any, an instance represented by a 
DIDS 1202 can have multiple RDial parents and/or belong to 
multiple RDial groups. 
As depicted in FIG. 28B, latch data structures within a 

configuration database (e.g., latch data structure 2230 of a 
HW configuration database or latch data structure 1204 of a 
simulation configuration database) are similarly augmented 
to include a read-only parent field 2802 including one or more 
read-only parent pointers 2803. Each non-NULL read-only 
parent pointer 2803 defines a connection between the input of 
the latch instance represented by the latch data structure and 
the output of a RIDial or RLDial. As noted above, in simula 
tion, latch names within latch name field 1244 (FIG. 12) are 
preferably specified with reference to the scope of the LDial 
or IDial indicated by parent pointer 1242. If parent pointer 
1242 is NULL, indicating that the configuration latch corre 
sponding to the latch data structure 1204 has no Dial parent, 
the latch name contained within latch name field 1244 is 
preferably specified with reference to the scope of the RLDial 
or RIDial corresponding to the DIDS 1202 identified by the 
first read-only parent pointer 2803 within read-only parent 
field 2802. 

Finally, top-level pointer array 1206 (FIG. 12), although 
structurally unchanged, is increased in length to Support 
RDials and RDial groups. Specifically, top-level pointer array 
1206 includes top-level pointers 1250 to the DIDS 1202 of 
each top-level RDial group, each top-level RDial included 
within an RDial group (i.e., having a non-NULL read-only 
parent field 2800), and each top-level RDial not included 
within an RDial group (i.e., having a NULL read-only parent 
field 2800). 
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The foregoing modifications to the data structures in a 
configuration database to Support RDials and RDial groups 
necessitates concomitant modifications to the method of 
loading and expanding a configuration database from non 
Volatile storage into volatile storage that was described above 
with reference to FIG. 13. FIG. 29 is a high level logical 
flowchart of an exemplary method of loading a configuration 
database containing RDial and/or RDial groups from non 
Volatile storage into Volatile memory in accordance with a 
preferred embodiment of the present invention. As indicated 
by the use of like reference numerals, the method illustrated 
in FIG.29 is substantially similar to that described above with 
reference to FIG. 13, with some additions to ensure that each 
data structure is processed only once. 
As indicated by prime notation (), a first modification to 

the method previously described is made at block 1308. In 
the method of FIG. 13, block 1308 represents a determination 
of whether or not the DIDS 1202 referenced by the current 
top-level pointer 1250 corresponds to a Dial or Dial group 
belonging to a Dial group. Block 1308 in FIG.29 adds to this 
determination a further determination of whether or not the 
DIDS 1202 referenced by the current top-level pointer 1250 
corresponds to a Dial, RDial, Dial group or RDial group 
belonging to a RDial group. If either determination obtains an 
affirmative response, processing of the current top-level 
pointer 1250 terminates as indicated by the process returning 
to block 1304 because the DIDS 1202 referenced by the 
current top-level pointer 1250 will be processed when the 
Dial group or RDial group is processed. This determination 
ensures that the DIDS 1202 of top-level Dials and RDials are 
processed only once. 

To ensure that lower-level data structures are also pro 
cessed only one time during the process of loading the con 
figuration database into Volatile memory, a further determi 
nation is made at block 2900 whether the DIDS 1202 
referenced by the current top-level pointer 1250 corresponds 
to a RDial or RDial group. If not, that is, if the tree rooted at 
the DIDS 1202 corresponds to a Dial or Dial group, then none 
of the “children' in the tree can be RDials or RDial groups. 
Accordingly, the subtree below the current DIDS 1202 can be 
processed as before, as indicated by the process passing from 
block 2900 to block 1316. 

However, in response to a determination at block 2900 that 
the DIDS 1202 referenced by the current top-level pointer 
1250 corresponds to a RDial or RDial group, the process 
passes to block 2902 and following blocks, which represent 
processing the subtree of the RDial or RDial group to ensure 
that each data structure in the configuration database is pro 
cessed only once. To track which data structures have been 
processed, the current DIDS 1202 is first marked as processed 
at block 2902. Then, as indicated at block 2904, the process 
enters a processing loop in which each output pointer 1238 
within the output pointer array 1236 of the current top-level 
DIDS 1202 is processed. Once all output pointers 1238 have 
been processed, the process exits the processing loop and 
returns to block 1304, which represents a determination of 
whether or not any additional top-level pointers remain to be 
processed. 

If a determination is made at block 2904 that not all output 
pointers 1238 have been processed, the next output pointer 
1238 within output pointer array 1236 is selected for process 
ing at block 2906. The process then proceeds to blocks 2910 
and 2912, which respectively illustrate a determination of 
whether or not the selected output pointer 1238 points to a 
DIDS 1202 corresponding to a Dial or Dial group, or whether 
the DIDS 1202 referenced by the output pointer is a RDial or 
RDial group that has been marked as previously processed. If 
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a positive result is obtained at block 2910, an interface 
between an RDial or RDial group and a Dial or Dial group has 
been located. Because the subtree headed by the Dial or Dial 
group will be processed when another top-level pointer 1250 
is selected for processing, processing of this subtree termi 
nates, and the process returns to block 2904. Processing of the 
Subtree similarly terminates in response to a determination at 
block 2912 that the DIDS 1202 referenced by the current 
output pointer 1238 (which corresponds to a RDial or RDial 
group) is marked as previously processed. 

If, on the other hand, the determinations illustrated at 
blocks 2910 and 2912 yield negative results, the DIDS 1202 
or latch data structure 1204 referenced by the current output 
pointer 1238 is marked and processed at block 2914. The 
processing performed at block 2914 is the same as that illus 
trated at block 1310, 1312, 1314 and 1316 and described 
above. As further indicated at block 2914, each lower level 
data structure in the Subtree up to and including the latch(es) 
terminating the Subtree is similarly marked and processed, 
subject to the two conditions depicted at block 2912 and 
2914. That is, processing of any subtree is discontinued if an 
interface with a Dial or Dial group is detected or if a data 
structure (e.g., a latch data structure 1204 or DIDS 1202 
corresponding to a RDial or RDial group) that has been 
marked is detected. Following block 2914, the process returns 
to block 2904, which has been described. 
The implementation of RDials and RDial groups also 

entails some adjustments in the manner in which Dials, Dial 
groups, RDials, and RDial groups are read for both simula 
tion and hardware implementations of the digital design. In 
particular, as the trees are traversed to create the latch set of 
interest ultimately targeted by a read Dial() or read Dial 
group() API call, for example, at blocks 1620 (FIG.16A) and 
1660 (FIG. 16B), the “branches” (i.e., DIDS 1202 corre 
sponding to Dials or RDials) traversed to create the latch set 
are preferably recorded or marked. In this manner, when the 
latch values of the latches in the latch set are propagated “up' 
the trees to obtain Dial and RDial settings, for example, as 
illustrated at block 1624 (FIG.16A) and 1664 (FIG.16B), the 
correct branches are upwardly traversed from the latch data 
structures 1204 to obtain the Dial or RDial settings of interest. 
In other words, becausea Dial or RDial may have one or more 
RDial parents in addition to a single Dial parent, if any, the 
parent pointers of the branches traversed downwardly to 
obtain the latch values must be recorded or marked to ensure 
that the same branches are traversed upwardly to obtain the 
desired Dial or RDial setting. 

Another adjustment is preferably made to the compression 
routine illustrated in FIGS. 26A-26C. In the described 
embodiment, block 2632 of FIG. 26B depicts removing the 
entire Dial tree of a top-level DIDS 1202 that Dial usage 
information 2500 (and therefore the DIPF) indicates was not 
set or read. With the implementation of RDials and RDial 
groups, which as shown in FIG. 27 permits the upward 
branching of trees, it is preferable if this step is modified to 
preserve any lower level DIDSs 1202 also belonging to the 
subtree of a RDial instance that was read. In this modification, 
after the top-level DIDS 1202 is removed, the DIPF of each 
lower level DIDS 1202 in the Subtree of the deleted DIDS 
1202 is tested to determine if it has the value TRUE, which 
indicates that the lower level DIDS 1202 also belongs to a tree 
that was read. If not, the lower level DIDS 1202 can also be 
removed, and the removal process continues down the Sub 
tree. However, if a lower level DIDS 1202 having a DIPF set 
to TRUE is located, that lower level DIDS 1202 and its 
subtree are not removed. However, its parent pointer 1233 is 
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set to NULL to reflect the removal of the parent DIDS 1202 
referenced by parent pointer 1233. 
When debugging and testing a hardware digital design in a 

laboratory environment or responding to a failure of a 
deployed hardware system, analysis of failures to determine 
their causes is a crucial task. Conventionally, to facilitate the 
determination of the causes of a failure, a scan dump of all of 
the test Scan chains within the hardware digital system is 
obtained. The scan chain images are then analyzed to deter 
mine the cause of the failure. Frequently, particular scan chain 
bits are hand-selected and input into a simulation model of the 
digital system in an attempt to reproduce the failure in simu 
lation. Simulation of hardware failures enables the improved 
signal visibility and stepping capability of a simulator to be 
leveraged to assist in the determination of the causes of the 
failures. 

This conventional failure analysis is tedious and error 
prone in that a user must first attempt to determine which bits 
in the “sea of bits’ provided by the scan dump are important 
to port to the simulation system in order to recreate the error 
condition. The user must then scan through the scan dump by 
handby reference to possibly erroneous paper documentation 
in order to determine the values of the bits of interest. Finally, 
the user must program a RTX or other software program to 
load the latches of the simulation model with the appropriate 
bit values. 

The present invention improves upon Such prior art analy 
sis techniques by leveraging the features of the configuration 
specification language and the hardware and simulation con 
figuration databases described above. With reference now to 
FIG. 30, there is depicted a high level logical flowchart of an 
exemplary process for utilizing a simulation model to analyze 
a selected State of a hardware system, and in particular, a 
failure state of a hardware system. As shown, the process 
begins with the operation of a chip analyzer tool 3004, which 
preferably comprises software executing on a computer sys 
tem, Such as data processing system 6 of FIG. 1. Chip ana 
lyzer tool 3004 receives as inputs test scan chain images 3000, 
which collectively represent the system failure state and 
which each contain the latch values of all of the latches of a 
respective integrated circuit chip within a hardware digital 
design (e.g., a server computer system under test). In addi 
tion, chip analyzer tool 3004 receives the per-chip-type chip 
HW database 2108 for each type of integrated circuit chip 
within the hardware digital design. Finally, chip analyzer tool 
3004 is provided a selected Dial list 3002, which identifies 
which Dials within each chip HW database 2108 are deemed 
relevant to approximate the hardware failure state in simula 
tion. 

Chip analyzer tool 3004 processes the scan chain images 
3000 and the selected Dial list3002 by reference to chip HW 
databases 2108 to generate a respective chip configuration 
report 3006 and simulation setup file 3008 for each integrated 
circuit chip in the hardware digital design. Each chip configu 
ration report 3006 comprises a human-readable and printable 
listing of all of the Dial instances associated with a particular 
integrated circuit in the hardware digital design, together with 
the setting (if a legal value is available) of each Dial instance 
at the point of failure. For Dial instances for which legal 
values are not available, the underlying latch values are 
reported. Each simulation setup file 3008 is a machine-read 
able file specifying the setting (if a legal value is available) of 
each Dial identified in selected Dial list 3002 that is associ 
ated with the corresponding integrated circuit chip. As 
explained below, an RTX 1420 (FIG. 14) utilizes simulation 
setup files 3008 to configure a simulation model 1400 of the 
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hardware digital system to a state approximating the failure 
state of the hardware digital design. 

Referring now to FIG. 31, there is illustrated a high level 
logical flowchart of an illustrative method by which chip 
analyzer tool 3004 of FIG. 30 generates the chip configura 
tion reports 3006 and simulation setup files 3008 utilized to 
analyze hardware failures in accordance with the present 
invention. As illustrated, the process begins at block 3100 and 
then proceeds to block 3102, which depicts chip analyzer tool 
3004 determining whether the scan chain images 3000 of 
each integrated circuit chip within the hardware digital design 
have been processed. If the scan chain images 3000 of all 
integrated circuit chips have been processed, the process ter 
minates at block 3130. If, however, fewer than all of the scan 
chain images 3000 have been processed, the scan chain 
images 3000 and chip HW database 2108 of the next inte 
grated circuit chip to be processed are selected at block 3104. 
The process shown in FIG.31 then enters a processing loop 

at blocks 3106-3110 in which each latch value of interest 
scanned from the current integrated circuit chip is processed 
by reference to the latch pointers 1254 in the latch pointer 
array 1210 of chip HW database 2108. Specifically, chip 
analyzer tool 3004 determines at block 3106 whether or not 
all latch pointers 1254 have been processed. If so, the process 
passes from block 3106 to block 3120, which is described 
below. If, however, all latch pointers 1254 have not yet been 
processed, the next latch pointer 1254 within latch pointer 
array 1210 is selected for processing at block 3108. Next, at 
block 3110, chip analyzer tool 3004 utilizes the test scan ring 
identifier and offset value pair contained in the method name 
field 2234a (FIG. 23B) of the latch data structure 2230 refer 
enced by the current latch pointer 1254 to locate within scan 
ring images 3000 the latch value of the hardware latch corre 
sponding to the latch data structure 2230. This latch value is 
then stored within the appropriate entry of latch value field 
2324, which is determined by reference to the position of the 
chipID of the current integrated circuit chip within chip map 
ping table 2325. Thereafter, the process returns to block 3106. 

In response to a determination at block 3106 that all latch 
pointers 1254 within the latch pointer array 1210 of the cur 
rent chip HW database 2108 have been processed, the process 
proceeds to block 3.120. Block 3120 depicts chip analyzer 
tool 3004 propagating the set of latch values contained in each 
latch valuefield 2324 up all branches of the DIDS trees within 
the chip HW database 2108 by reference to mapping tables 
1224 in order to obtain the setting (i.e., input value) of each 
Dial and RDial, if possible. Given the fact that the latch values 
within latch value fields 2324 correspond to a hardware fail 
ure state, it is frequently the case that an attempt to propagate 
at least Some latch values up a tree will result in at least one 
"output value that is not among the legal output values 
specified within the mapping table 1224 for a Dial or RDial 
instance. In such cases, the Dial or RDial instance (and any 
RDial or Dial above it in the same tree) is flagged as having an 
illegal value. Such illegal values frequently suggest the cause 
of the hardware failure. 

It should be noted that the ability to derive Dial and RDial 
values from latch values depends upon the invertibility of the 
configuration specification language introduced by the 
present invention. That is, without a one-to-one mapping 
between Dial (and RDial) inputs and outputs, Dial (and 
RDial) settings cannot be definitely determined from latch 
values, as shown at block 3120. 

Following block 3120, the process proceeds to block 3122. 
which depicts chip analyzer tool 3004 creating a chip con 
figuration report 3006 for the current integrated circuit chip. 
As noted above, chip configuration report 3006 is a human 
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readable file containing a listing of all Dial and RDial 
instances within the current chip HW database 2108 and their 
corresponding settings, if any, determined at block3120. Dial 
and RDial instances having illegal values are flagged in chip 
configuration report 3006, and the latch values of the under 
lying latches are listed to facilitate analysis. As shown at 
block 3124, chip analysis tool 3004 also creates an RTX 
compatible simulation setup file 3008 for the current inte 
grated circuit. Simulation setup file 3008 preferably includes 
the Dial settings of only the Dial instances specified within 
selected Dial list 3002, and if a Dial instance specified in 
selected Dial list 3002 has an illegal value, the latch values of 
the underlying latches in the latch set controlled by the Dial. 
These Dial instance settings and latch values can then be 
applied automatically to a simulation model 1400 by an RTX 
1420 running in a simulation environment, as explained 
below. 

It should be appreciated that because the number of latches 
controlled by Dials is typically only a small percentage of the 
overall number of latches in an integrated circuit, the designer 
of the digital system, through the use of the configuration 
specification language of the present invention to associate 
Dials with particular configuration latches, has already 
greatly reduced the number of latch values to be considered in 
recreating the system failure State and has identified those 
latches most likely to be necessary to reproduce the hardware 
failure State. Selected Dial list 3002 further reduces the 
amount of hardware state information to be ported back into 
a simulation model 1400 by designating particular user-se 
lected Dial instances (not RDial instances) of interest. 

Following block 3124, the process depicted in FIG. 31 
returns to block 3102 for the processing of the next integrated 
circuit chip in the hardware digital design, if any. After all 
integrated circuit chips within the hardware digital design are 
processed, the process terminates at block 3130. 

Referring again to FIG. 30, following the creation of a 
respective simulation setup file 3008 for each integrated cir 
cuit chip within the hardware digital design in accordance 
with the process of FIG. 31, the hardware failure state is 
approximated within a simulation model 1400 of the digital 
design through the execution of RTX 1420. As an aside, it 
should be noted that it is generally undesirable to reproduce 
the exact hardware failure state in simulation because the 
digital design, by definition, will not operate correctly from 
the failure state. 

In order to approximate the hardware failure state in simu 
lation, RTX 1420 first makes standard API calls to the APIs 
provided by simulator 1410 in order to perform the normal 
initialization procedures utilized to initialize simulation 
model 1400 for simulation. Next, RTX 1420 may optionally 
make individual user-specified customizations to the configu 
ration of simulation model 1400 based upon the contents of a 
user-provided custom initialization modifications file 3010. 
These custom modifications may be made, for example, to 
adjust a parameter to expose a particular failure mode or to 
improve the visibility of certain types of failures. Finally, 
RTX 1420 applies the Dial instance settings and latch values 
contained in simulation setup files 3008. As described in 
detail above with reference to FIGS. 14 and 17A, RTX 1420 
sets Dial instances through set Dial() API calls to a configu 
ration API 1406, which, after reflecting the Dial instance 
settings in simulation configuration database 1404, calls 
PUTFAC() API 1414 to set corresponding latch values in 
simulation model 1400. RTX 1420 similarly utilizes API calls 
to set the configuration latches of simulation model 1400 and 
latch value fields 1246 (FIG. 12) of configuration database 
1404 with the latch values contained within simulation setup 
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files 3008 that correspond to illegal Dial values. With simu 
lation model 1400 thus configured, RTX 1420 directs execu 
tion of one or more test cases against simulation model 1400 
by simulator 1410 in order to attempt reproduction of the 
hardware failure state in simulation. 

As described above, the use of configuration entities such 
as Dials, Dial groups and Registers, and in particular, RDials 
and RDial groups, facilitates the interpretation and analysis of 
a "dump' of the state of a digital system (e.g., a simulation 
model or hardware system) because information regarding 
the state of the system, Such as Dial and Register names and 
values, is presented in human readable format rather than as a 
“sea of bits”. However, when a “dump' of the entire state of 
a large digital system is requested, the amount of data 
returned can still be overwhelming, even with the interpretive 
guidance provided by the Dial, Dial group and Register 
names and values. It would therefore be desirable to be able to 
selectively control the conditions under which particular 
Dials, Dial groups and Registers are presented in response to 
a request for a partial or full dump of the state of a simulated 
or hardware system. 

In order to permit the selective presentation of Dial, Dial 
groups and Registers in this manner, the configuration speci 
fication language of the present invention is extended to per 
mit a “controlling value set for a configuration entity (e.g., 
Dial, Dial group or Register) to be specified in the definition 
of the Dial, Dial group or Register in order to control the 
conditions under which the setting of the Dial, Dial group or 
Register will be presented. In one of a number of possible 
embodiments, the controlling value set for a Dial, Dial group 
or Register is specified in a parenthetical field appearing 
immediately prior to the terminating semicolon of the Dial, 
Dial group or Register definition (i.e., following Dial default 
values and phase IDs, if any), and the controlling value set 
specifies Dial or Register settings for which the Dial, Dial 
group or Register are not to be presented. In other embodi 
ments, of course, the controlling value set can be expressed 
with different syntax, and the controlling value set specifies 
Dial or Register settings for which the Dial, Dial group or 
Register are to be presented. 
To illustrate exemplary syntax defining a controlling value 

set, consider again the exemplary RLDial state machine 
defined above. Assuming a default interpretation of the con 
trolling value set expression in which the RLDial will not be 
displayed for the specified set of controlling values, the 
RLDial state machine will not be presented in a system dump 
if it has either of the settings "idle' or “end” and will be 
presented in a system dump if it has the setting “start” or 
“wait' if the following syntax is employed: 

RLDial state machine (state vector(0.1) 
) : 

{idle =>Ob00; 
start =>Ob01; 
wait=>Ob10; 
end =>Ob11 
(idle,end); 

Using conventional notation for negation, the same outcome 
can be achieved by alternatively specifying the RLDial state 
machine as follows: 
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RLDial state machine (state vector(0.1) 
) : 

{idle =>Ob00; 5 
start =>Ob01; 
wait=>Ob10; 
end =>Ob11 
((start, wait)); 

10 
In the above examples, the controlling values are specified 

as enumerated values among the set of legal settings for the 
RLDial. For other Dial and Register types, of course, the 
controlling values are tailored to the type of Dial or Register. 
For example, for IDials, the controlling values are integers 15 
and can be specified in decimal, hexadecimal or octal format. 

In a preferred embodiment, the controlling value field fur 
ther Supports one or more keywords that govern the manner in 
which or conditions, if any, under which the configuration 
entity will be presented. For example, the keyword".<no dis- 20 
playo” may be employed to specify that the configuration 
entity and its settings are never to be presented in a system 
dump. Angle brackets (i.e., “K” and “d') or some other special 
characters are preferably utilized to delimit keywords appear 
ing within the controlling value field to prevent confusion 25 
when parsing similar enumerated Dial settings. 

For Dial groups, selective presentation of the member 
Dials is accomplished by specifying one or more controlling 
Dials hierarchically contained within the Dial group and a set 
of one or more controlling values for each controlling Dial. 30 
For example, consider exemplary Dial group F of FIG. 11B, 
which is defined by the following statement: 

GDial F(C, Z.B, Y.A); 
Dial C can be selected as the controlling Dial of Dial group F 
by adding a controlling value field as follows: 

GDial F(C, Z.B, Y.A)(C-idle); 

35 

This configuration specification Statement will cause the set 
tings of the Dials within the Dial group F to not be presented 
if Dial Chas the setting “idle.” Alternatively, if it is desirable 40 
to present the settings of the Dials comprising Dial group F if 
Dial C is in the "idle' setting, then the configuration statement 
can be expressed as follows: 

GDial F(C, Z.B, Y.A)(C-idle); 
As will be appreciated by those skilled in the art, more 

complex controlling value expressions can also be employed 
for Dials, Dial groups, and Registers. For example, logical 
expressions dependent upon the settings of more than one 
Dial or Register can be utilized to control the presentation of 
Dials, Dial groups and Registers. For example, considering 50 
again Dial group F, the controlling value set for the presenta 
tion of Dial group F can be specified as dependent on the 
setting of both Dials Cand B as follows: 

GDial F(C, Z.B, Y.A)(C-idle AND Bidle); 

45 

55 
Similar logical expressions employing the logical operators 
AND, OR, and NOT can be utilized to define the controlling 
value set for Dials and Registers. 

It will also be appreciated that the controlling value expres 
sion may also be expressed utilizing compact, bracketed Syn- 60 
tax. In Such cases, the settings of the Dial, Dial group or 
Register will not be subject to presentation unless all Dials, 
Dial groups and/or Registers indicated by the controlling 
value expression have the specified controlling value. 

With reference now to FIG. 32, there is depicted an exem- 65 
plary embodiment of a configuration database 814, 1404, 
1932 or 2108 that supports the selective presentation of Dials, 
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Dial groups, and Registers in accordance with the present 
invention. That is, configuration database 814 (and any simu 
lation configuration database 1404 or hardware configuration 
database 1932, 2108 derived therefrom) records the control 
ling value sets of Dial, Dial groups and Registers that were 
specified in the HDL files defining the design. Those skilled 
in the art will appreciate from the following description that 
the illustrated database structure is only one of a large number 
of possible data structures for storing the controlling value 
information of configuration entities. 
As can seen by comparison of FIG. 32 with FIG. 12A, 

configuration database 814 of FIG. 32 is identical to that 
described above with respect to FIG. 12A except that Dial 
instance data structure (DIDS) 1202' is augmented with addi 
tional fields to support the selective presentation of Dials, 
Dial groups, and Registers. In particular, DIDS 1202 is 
expanded to include a controlling value set table 3200 that 
stores the controlling value set for the configuration entity 
instance (e.g., Dial, Dial group or Register instance) corre 
sponding to DIDS 1202. In addition, DIDS 1202' is expanded 
to include controlling Dial field 3204, which for DIDSs cor 
responding to Dial groups contains a respective pointer to 
each of the one or more controlling Dials of the Dial group. 
For the DIDSs of other configuration entity instances, con 
trolling Dial field 3204 is NULL. 

Utilizing the controlling value information recorded within 
database 814 (or any loaded simulation configuration data 
base 1404 or hardware configuration database 1932, 2108 
derived therefrom), a large variety of algorithms can then be 
implemented to selectively present Dial, Dial group and Reg 
ister settings of a simulated or hardware system in response to 
the controlling value information within the corresponding 
configuration database. In one preferred embodiment, Such 
algorithms are implemented as APIs that may be called by 
simulation software (e.g., RTX 1420 of FIG. 14) or firmware 
(e.g., system firmware 1930 of FIG. 19). An exemplary 
embodiment of a process that may be implemented by an API 
to selective present configuration entity instances (e.g., Dials, 
Dial groups and Registers) in a dump of the state of a simu 
lated or hardware system is illustrated in FIG. 33 and 
described below. 

Referring now to FIG. 33, there is illustrated a high level 
logical flowchart of an exemplary process for selectively pre 
senting the state of a hardware or simulated system in accor 
dance with the present invention. The illustrated process 
selectively presents, in textual and/or graphical form, the 
settings of Dials, Dial groups and Registers by reference to a 
configuration database associated with the simulated or hard 
ware system of interest. Thus, for large hardware systems 
comprising multiple integrated circuit chips, each of which 
has an associated configuration database, the illustrated pro 
cess is preferably performed for each such database within 
the parameters specified by the API call invoking the depicted 
process. Those skilled in the art will appreciate that, as a 
logical flowchart, many of the indicated steps may be per 
formed concurrently or in a different order than illustrated. 
As shown in FIG.33, the process begins at block 3300 and 

thereafter proceeds to block 3302, which represents the itera 
tion over each top-level pointer 1250 within top-level pointer 
array 1206 of the configuration database 814, 1404, 1932 or 
2108 to process each Dial group instance within the configu 
ration database. If all top-level pointers 1250 within top-level 
pointer array 1206 have been accessed, the process passes to 
block 3350, which is described below. If, however, not all 
top-level pointers 1250 within top-level pointer array 1206 
have been accessed, the process passes from block 3302 to 
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block 3304, which illustrates accessing the next top-level 
pointer 1250 within top-level pointer array 1206. 
A determination is next made at block 3306 regarding 

whether or not the current top-level pointer 1250 points to a 
Dial group instance. This determination can be made, for 
example, by determining whether or not type field 1220 of the 
DDDS 1200 pointed to by the parent pointer 1233 of the 
DIDS 1202 pointed to by the current top-level pointer 1250 
indicates that the DIDS 1202 defines a Dial group instance. If 
the DIDS 1202 pointed to by the current top-level pointer 
1250 does not define a Dial group instance, the process 
returns to block 3302, which has been described. 

If, however, the current DIDS 1202 under consideration 
does define a Dial group instance, the process proceeds to 
block3310. Block 3310 depicts a determination of whether or 
not the API call that invoked the process of FIG.33 included 
a “region' parameter specifying a region of interest within the 
system to which the presentation is to be limited, and if so, 
whether instance name field 1234 indicates that the present 
Dial group instance is within the region of interest. For 
example, the region parameter may be expressed utilizing 
regular expressions or other known techniques for specifying 
design entities in order to narrow the scope of the system that 
is subject to presentation. If the Dial group instance defined 
by the DIDS 1202 pointed to by the current top-level pointer 
1250 falls outside the scope of the region parameter specified 
in the API call, the process returns to block 3302, which has 
been described. If, on the other hand, the Dial group instance 
defined by the DIDS 1202 pointed to by the current top-level 
pointer 1250 falls within the scope of the region parameter, if 
any, specified in the API call, the process proceeds to block 
3312. 

Block 3312 depicts a determination of whether or not the 
controlling value set table 3200 of the current DIDS 1202 
specifies a controlling value set for the Dial group instance. If 
so, the process passes to block 3330, which illustrates a deter 
mination of whether or not controlling value set specified 
within controlling value set table 3200 indicates that the Dial 
group instance should be presented. This determination may 
be made, for example, by determining if the current setting of 
the controlling Dial(s) identified by controlling Dial field 
3204 (which Dial setting(s) may be obtained in accordance 
with the process of FIG.16A, for example) indicates that the 
Dial group instance should be presented. If the determination 
shown at block 3330 has a negative result, the process returns 
to block 3302. If the determination has a positive result, the 
process proceeds to block 3334, which is described below. 

Returning to block 3312, if the current DIDS 12021" does 
not specify a controlling value set within its controlling value 
set table 3200, another determination is made at block 3320 
regarding whether the API call itself or one of its parameters 
indicates a default policy regarding the inclusion or exclusion 
of Dial groups having no controlling value sets. If a determi 
nation is made at block 3320 that the default policy indicated 
by the API call or its parameters is to exclude from presenta 
tion Dial group instances having no controlling value set, then 
the process returns to block 3302 If, however, a determination 
is made at bock 3320 that the default policy is to include in the 
presentation those Dial group instances having no controlling 
value set, the process proceeds to block 3334. 

Blocks 3334-3336 represent building an output file for 
presentation that contains settings of top-level Dials within 
the Dial group instance defined by the current DIDS 1202. 
Although in alternative embodiments of the invention the 
settings of all Dial instances belonging to the Dial group 
instance may be included in a presentation once a determina 
tion is made to include the Dial group instance in the presen 
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tation, in the present embodiment Dial and Dial group 
instances belonging to the top-level Dial group instance under 
consideration may still be excluded from the presentation 
based upon their controlling value sets, if any. In order to 
build the presentation output file, the process first “walks” the 
output pointer array 1236 of the top-level Dial group instance 
under consideration, as shown at block 3334. As indicated at 
block 3334, any Dial group instance within the top-level Dial 
group instance that has a controlling value settable 3200 in its 
respective DIDS 1202 indicating that the lower level Dial 
group instance should not be presented is omitted from the 
presentation output file, along with any Dial or Dial group 
instances within its subtree. In addition, as further indicated at 
block 3334, top-level Dial instances are omitted from the 
presentation output file if field 3200 in their respective DIDS 
1202 indicate that the Dial instances should be omitted, given 
the current Dial settings (as determined in accordance with 
FIG. 16A). Any top-level Dial instances within the top-level 
Dial group under consideration and not excluded from the 
presentation output file by the additional “pruning of the 
Dial tree of the top-level Dial group instance depicted at block 
3334, are included within the presentation output file at block 
3336. For example, the presentation output file may indicate 
the instance name and current setting of each Such top-level 
Dial instance. 

It should be appreciated from the description of blocks 
3334-3336 that the inclusion within the presentation output 
file of only top-level Dial instances is a design choice and that, 
in alternative embodiments, non-top-level Dial instance 
names and settings may also be included within the presen 
tation output file. Moreover, it should be understood that the 
default policy of inclusion or exclusion of Dial and Dial group 
instances having no associated controlling value sets can be 
applied not only to top-level Dial group instances (as at block 
3320), but also to lower level Dial and Dial group instances 
(e.g., at block 3334). Following block 3336, the process 
returns to block 3302, which has been described. 

Referring again to block 3302, in response to a determina 
tion at block 3302 that all top-level pointers 1250 within 
top-level pointer array 1206 have been accessed, the process 
proceeds to block 3350, which illustrates returning to the top 
entry of top-level pointer array 1206. The process then enters 
a second iteration through top-level pointer array 1206, rep 
resented by block 3352, in which top-level Dial instances not 
belonging to any Dial group instance are processed. Accord 
ingly, at block 3352, a determination is made regarding 
whether or not all top-level pointers 1250 within the top-level 
pointer array 1206 have been accessed. If so, the process 
proceeds to block 3378, which is described below. If, how 
ever, a determination is made at block 3352 that fewer than all 
top-level pointers 1250 within top-level pointer array 1206 
have been accessed, the process passes from block 3352 to 
block 3360, which illustrates accessing the next top-level 
pointer 1250 within top-level pointer array 1206. 

Next, at block 3362, a determination is made by reference 
to the type field 1220 of the DDDS 1200 identified by the 
parent pointer 1233 of the DIDS 1202 pointed to by the 
current top-level pointer 1250 whether or not the DIDS 1202 
defines a Dial group instance. If so, no further processing is 
performed on the Dial group instance (having already been 
accomplished in the first processing loop represented by 
block 3302), and the process returns to block 3352. If, how 
ever, the DIDS 1202 pointed to by the current top-level 
pointer 1250 defines a Dial or Register instance, a determi 
nation is made at block 3364 regarding whether instance 
name field 1234 indicates that the entity instance in question 
falls within the region of interest specified by the region 
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parameter of the API call, if any. This determination is analo 
gous to that performed at block 3310. If the Dial or Register 
instance in question does not fall within the Scope of interest 
specified by the region parameter of the API call, then the 
process returns to block 3352, which has been described. If, 
however, no region parameter is specified in the API call or if 
the entity instance satisfies the region parameter, the process 
proceeds to block 3366. 

Block 3366 depicts a determination regarding whether or 
not to include information regarding the instance in the pre 
sentation output file. In particular, if the entity instance has a 
controlling value set specified in the controlling value table 
3200 of its DIDS 1202 a determination is made whether or 
not the current instance entity should be excluded or included 
from the presentation based upon the setting of the entity 
instance (determined in accordance with the method of FIG. 
16A). If the instance entity does not have a controlling value 
set specified within controlling value set table 3200 of its 
DIDS 1202', then the determination depicted at block 3366 is 
made by reference to the default inclusion or exclusion policy 
of the API call or one of its parameters. If a determination is 
made at block 3366 that information regarding the entity 
instance should not be included within the presentation out 
put file, then the process simply returns to block 3352 without 
including information regarding the entity instance in the 
presentation output file. If, however, a determination is made 
at block 3366 to include information regarding the entity 
instance within the presentation output file, the process passes 
to block 3370, which depicts including the instance name of 
the entity instance (from instance name field 1234 of DIDS 
1202') and the setting of the entity instance within the pre 
sentation output file. Thereafter, the process returns to block 
3352, which has been described. 

In response to a determination at block 3352 that all top 
level pointers 1250 within top-level pointer array 1206 have 
been accessed, the process proceeds from block 3352 to block 
3378. Block 3378 depicts the presentation of the presentation 
output file to the user, for example, via printing a hardcopy 
report or a graphical display of the Dial group, Dial and 
Register instance names and associated settings. In one par 
ticularly preferred embodiment, the presentation output file is 
presented to users in a graphical user interface that permits the 
user to graphically and intuitively navigate the simulated or 
hardware system and to examine particular settings of inter 
est. Following block 3378, the process depicted in FIG. 33 
terminates at block 3380. 

With reference now to FIG. 34A, there is depicted an 
exemplary graphical user interface (GUI)3400 for presenting 
graphical representations of simulated and hardware systems 
and portions thereof inaccordance with the present invention. 
As is well known in the art, GUI 3400 is typically presented 
by software (e.g., an API implementing the process of FIG.33 
or a separate program) within the display device of a data 
presentation system, Such as data processing system 6 of FIG. 
1 or workstation computer 1904 of FIG. 19. Any software 
capable of causing a data presentation system to present GUI 
3400 based upon the contents of an underlying configuration 
database (e.g., simulation configuration database 1404 or 
hardware configuration database 1932) and optionally one or 
more other data sources (e.g., a simulation model 1400 or 
simulation executable model 816) is herein referred to as 
“graphical interface software.” 
As shown, GUI 3400 includes conventional GUI compo 

nents, such as window 3402, control buttons 3404, pull down 
menus 3406, and a cursor 3408 controlled by a user input 
device, such as a mouse. Although not illustrated, GUI 3400 
may, of course, include other additional conventional or non 
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conventional GUI features, such as toolbars, scroll bars, etc. 
to facilitate user interaction with and manipulation of GUI 
3400. 
Window 3402 contains a frame 3410 within which a 

graphical representation of a simulation system (or portion 
thereof) is presented. In the depicted example, the system that 
is graphically presented within frame 3410 is nearly identical 
to that illustrated in FIG. 11B and described above and 
accordingly employs like reference numerals to identify like 
features. That is, as specified by the above-described or alter 
native data structures within a configuration database, the 
system includes a top-level design entity instance (named 
TOP:TOP) 1122 hierarchically containing design entity 
instances FBC:FBC 1124 and L2:L2 1126. Design entity 
instance 1124, in turn, contains instances 1136a, 1136b of 
design entity X (which each contains two instances 1138 of 
design entity Y) and design entity Z 1132. Further, design 
entity instance 1126 contains instances 1152a. 1152b of 
design entity L. As described in detail above, the design entity 
instances, whether belonging to a simulated or hardware sys 
tem, are initially defined by one or more HDL files. As will be 
appreciated by those skilled in the art, in at least one embodi 
ment, the graphical interface Software generates representa 
tions of design entities within a simulation system by refer 
ence to an m-way tree describing the design entity hierarchy. 
As noted above with respect to FIG. 8, this data structure may 
be included within the simulation database. 
The configuration database further associates various con 

figuration entity instances (e.g., Dials, Dial groups, and/or 
Registers) with various ones of the HDL-defined design enti 
ties. In the present example, the configuration database asso 
ciates RGDial (i.e., read-only Dial group) instance 1164, 
which has the name “H”, with design entity instance 1122. 
associates GDial instance 1160 with design entity instance 
1124, associates GDial instance 1162 with design entity 
instance 1126, and so on. In one preferred embodiment, the 
association between a configuration entity instance and its 
associated design entity instance is graphically represented 
within GUI 3400 by the display of a graphical element (e.g., 
rectangle) representing the configuration entity instance 
within the boundary of the graphical element representing the 
design entity instance but outside the boundary of the graphi 
cal element(s) representing any lower level design entity 
instance(s) contained by the associated design entity 
instance. Of course, in other embodiments, other techniques 
can be employed to represent the association between design 
entity instances and configuration entity instances. 
GUI 3400 preferably provides a number of tools and/or 

options that permita user to enhance their visualization of the 
system. For example, in at least one mode, GUI 3400 prefer 
ably presents the settings of selected or all configuration 
entity instances in association with the graphical representa 
tions of those configuration entity instances. For example, in 
the example shown in FIG. 34A, the user has selected a 
presentation mode in which only the settings of IDial 
instances, such as IDial instances 1132 and 1150, are pre 
sented. Such presentation can also be conditioned upon a user 
graphically selecting a configuration entity instance of inter 
est with cursor 3408. 

In at least one preferred embodiment, GUI 3400 further 
includes depth control to permit the user to cause the data 
presentation system to present only selected levels of a sys 
tem's design hierarchy. The depth control may be accessed 
and adjusted, for example, via one or more pull down menus 
3406. In one preferred embodiment, the depth control permits 
the user to specify a desired number of levels of design 
hierarchy presented at one time. Permitted values include 
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integer values greater or equal to 2 and "All which will cause 
all levels of the design hierarchy to be concurrently presented. 
For example, FIG. 34A depicts an exemplary presentation 
scenario in which the depth control has a value of All,” while 
FIG. 34B illustrates an exemplary presentation scenario for 
the same system in which the depth control has a value of 2. 
It should be noted that in the exemplary embodiment shown in 
FIG.34B, the configuration entity instance(s) associated with 
all but the lowest displayed level of design hierarchy are 
presented, which in this case is the single configuration entity 
instance 1164. The user canthus control the amount of infor 
mation concurrently presented, greatly facilitating the com 
prehension of the structure and settings of complex systems, 
having multiple chips and/or multiple levels of design hier 
archy. 
GUI 3400 preferably permits the user to graphically and 

intuitively change the presentation level of the design hierar 
chy in order to logically ascendand descend within the design 
hierarchy. For example, in one embodiment, GUI 3400 will 
present the design hierarchy of the system from the perspec 
tive of a lower level of design hierarchy in response to user 
selection utilizing cursor 3408 of a location within a lower 
level design entity within a current view. Thus, FIG. 34C 
depicts the view that is presented in response to user selection 
utilizing cursor 3408 of a location within design entity 
instance 1124 of FIG. 34.B. Note again by comparison with 
FIG. 34A that the view shown in FIG.34C presents only two 
levels of the design hierarchy, together with the configuration 
entity instances (i.e., GDial 1160 and LDial 1130) associated 
with all but the lowest displayed level of design hierarchy. 
The user can similarly ascend (if possible) in the presented 
view of the design hierarchy by selection, utilizing cursor 
3408, of a location within frame 3410 outside of the highest 
currently displayed level of design entity. Thus, the view 
given in FIG. 34B will again be displayed in response to the 
user selection in the view of FIG. 34C of a location within 
frame 3410 outside of the boundary of design entity instance 
1124. 

In at least one embodiment, GUI 3400 also permits a user 
to selectively expose additional levels of configuration entity 
hierarchy. For example, referring again to FIG. 34C, in one 
preferred embodiment user selection of an output 3420 of a 
parent configuration entity instance (e.g., GDial 1160) will 
cause all child configuration entity instances at the next lower 
level of configuration entity hierarchy to be presented. Thus, 
user selection utilizing cursor 3408 of Dial output 3420 of 
GDial 1160 in the view presented in FIG.34C will cause GUI 
3400 to reveal all child configuration entity instances of 
GDial 1160 at the next lowest level of configuration entity 
hierarchy, as shown in FIG. 34D. It should be noted that, 
because parent-child relationships of configuration entity 
instances can extend across multiple levels of design hierar 
chy, the presentation of the next lowest level of the configu 
ration entity hierarchy may entail the display of multiple 
additional levels of design hierarchy, as also illustrated in 
FIG. 34D. The ability to selectively expose additional levels 
of configuration entity hierarchy is particularly useful when 
the user is attempting to debug a CDial or RCDial set to an 
erroneous value and therefore desires to view the settings of 
its child Dials. 
As noted briefly above in the description of FIG. 33, in 

some preferred embodiments of the present invention, GUI 
3400 further supports a relevance control to cause the data 
presentation system to condition the manner of presentation 
of configuration entity instances upon their relevance, as 
determined by their controlling value set (if any) and current 
settings. In one preferred embodiment, the relevance control 
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has at least three settings corresponding to three presentation 
modes—Full view, Selective view and Mixed view. These 
three presentation modes, which are independent of, but can 
be employed in conjunction with the previous modes of pre 
sentation, are respectively illustrated in FIGS. 34A, 34E and 
34F. 

Referring again to FIG. 34A, the view of the system pre 
sented by GUI 3400 depicts configuration entity instances 
regardless of their values or the controlling values within the 
configuration database of the system. Thus, with respect to 
the presentation of configuration entity instances, FIG. 34A 
illustrates a Full view. 

Turning now to FIG. 34E, it should be noted that configu 
ration entity instances 1134, 1140a0, 1140b1,3414,3416 and 
1154b are selectively omitted from presentation by GUI3400 
in accordance with the process depicted in FIG. 33 based 
upon the associated controlling values specified in the con 
figuration database and their current settings. Thus, FIG. 34E 
depicts a Selective view in which configuration entity 
instances that are not likely to be relevant to the user based 
upon their current settings are filtered out of the presentation 
in order to permit the user to focus on those configuration 
entity instances most likely to be relevant to an understanding 
of the state of the system. 

With reference finally to FIG. 34F, a Mixed view of the 
system is illustrated in which the configuration entity 
instances having lower relevance to the user are presented in 
a graphically distinct manner from other configuration 
instance entities. In the particular embodiment shown in FIG. 
34F, the graphical distinction between configuration entity 
instances of higher relevance and lower relevance is made by 
displaying configuration instance entities of lower relevance 
utilizing a different line weight (e.g., dashed line illustration). 
Of course, in other embodiments, the distinction between 
graphical elements representing configuration entity 
instances could alternatively or additionally be made by uti 
lizing different colors, brightness, sizes, shapes and/or other 
graphical characteristic, such as the amount of information 
presented. For example, the settings of configuration entity 
instances of higher relevance may be presented, while the 
settings of configuration entity instances of lower relevance 
may be omitted from the presentation. The Mixed view thus 
presents to the user all configuration entity instances that 
would be displayed given the selected depth control setting, 
but presents configuration entity instances having lower rel 
evance in agraphically distinct manner so that the user will be 
able to visually distinguish them from configuration entity 
instances of higher relevance to an understanding of the sys 
ten State. 

While the invention has been particularly shown as 
described with reference to a preferred embodiment, it will be 
understood by those skilled in the art that various changes in 
form and detail may be made therein without departing from 
the spirit and scope of the invention. For example, it will be 
appreciated that the concepts disclosed herein may be 
extended or modified to apply to other types of configuration 
entities than those disclosed herein. In addition, those skilled 
in the understand upon reference to the foregoing that any of 
a wide variety of rules may be applied to determine which 
configuration entities are presented, meaning that the particu 
lar syntax and presentation rules described herein are merely 
exemplary and not exhaustive. Furthermore, although aspects 
of the present invention have been described with respect to a 
computer system executing software that directs the functions 
of the present invention, it should be understood that present 
invention may alternatively be implemented as a program 
product for use with a data processing system. Programs 
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defining the functions of the present invention can be deliv 
ered to a data processing system via a variety of signal 
bearing media, which include, without limitation, non-rewrit 
able storage media (e.g., CD-ROM), rewritable storage media 
(e.g., a floppy diskette or hard disk drive), and communica 
tion media, Such as digital and analog networks. It should be 
understood, therefore, that such signal-bearing media, when 
carrying or encoding computer readable instructions that 
direct the functions of the present invention, represent alter 
native embodiments of the present invention. 
What is claimed is: 
1. A computer-implemented method of presenting a 

designed system, said method comprising: 
a computer displaying, with a display device, a respective 

one of a plurality of design graphical representations for 
each of a plurality of hierarchically arranged design 
entity instances within the designed system, said plural 
ity of design entity instances including a particular 
design entity instance containing a latch, wherein said 
particular design entity instance is represented by a par 
ticular design graphical representation and wherein the 
plurality of design graphical representations is dis 
played in hierarchical arrangement with at least one of 
the plurality of design graphical representations con 
tained within another of the plurality of design graphical 
representations; 

the computer identifying, within a configuration database 
associated with the designed system, a configuration 
entity instance associated with said particular design 
entity, wherein said configuration entity instance has a 
plurality of different settings that each differs from but 
reflects a respective one of multiple values of the latch; 

with the display device, the computer presenting, in asso 
ciation with the particular design graphical representa 
tion corresponding to the particular design entity 
instance, a configuration graphical representation of 
said configuration entity instance; and 

with the display device, the computer presenting a current 
setting of said configuration entity instance concurrently 
with the configuration graphical representation. 

2. The method of claim 1, and further comprising: 
storing within the configuration database at least one data 

structure defining said configuration entity instance and 
said association between said configuration entity 
instance and said particular design entity instance; 

storing in said at least one data structure a controlling value 
set for said configuration entity instance, wherein said 
controlling value set indicates settings affecting presen 
tation of information regarding said configuration entity 
instance; and 

in response to a request to present at least a partial state of 
the designed system, presenting a state of at least one 
other configuration entity instance based upon said con 
figuration database and excluding from presentation a 
current setting of the configuration entity instance by 
reference to said at least one data structure in said con 
figuration database. 

3. The method of claim 2, wherein said excluding from 
presentation comprises always excluding from presentation 
said current setting of said configuration entity instance based 
upon a keyword in said configuration database. 

4. The method of claim 1, wherein said step of displaying 
a respective one of a plurality of design graphical represen 
tations for each of a plurality of hierarchically arranged 
design entity instances comprises presenting design graphi 
cal representations for only selected design entity instances 
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and excluding from presentation a design graphical represen 
tation for at least one other design entity instance in response 
to a region parameter. 

5. The method of claim 1, wherein said design entity 
instances are hierarchically arranged in at least three levels, 
wherein said displaying comprises concurrently displaying 
fewer than all of said levels. 

6. The method of claim 5, and further comprising: 
displaying a user-controllable graphical pointer within said 

display device; and 
modifying which of said levels are displayed within said 

display device in response to selection of a design 
graphical representation utilizing a graphical pointer. 

7. The method of claim 1, and further comprising: 
displaying a user-controllable graphical pointer within said 

display device; and 
modifying a presentation of said designed system within 

said display device in response to user selection of a 
configuration graphical representation utilizing the 
graphical pointer. 

8. A data processing system for presenting a graphical 
representation of a designed system, said data processing 
system comprising: 

a display device; 
processing resources; and 
data storage coupled to the processing resources and 

including at least one database representing said simu 
lated system and a presentation program executable by 
the processing resources to presentagraphical represen 
tation of said designed system within said display 
device, wherein said presentation program causes the 
processing resources to: 
display within the display device a respective one of a 

plurality of design graphical representations for each 
of a plurality of hierarchically arranged design entity 
instances within the designed system, said plurality of 
design entity instances including a particular design 
entity instance containing a latch, wherein said par 
ticular design entity instance is represented by a par 
ticular design graphical representation and wherein 
the plurality of design graphical representations is 
displayed in hierarchical arrangement with at least 
one of the plurality of design graphical representa 
tions contained within another of the plurality of 
design graphical representations; 

identify, within said at least one database, a configura 
tion entity instance associated with said particular 
design entity, wherein said configuration entity 
instance has a plurality of different settings that each 
differs from but reflects a respective one of multiple 
values of the latch; 

present, within the display device, a configuration 
graphical representation of said configuration entity 
instance in association with the particular design 
graphical representation corresponding to the particu 
lar design entity instance; and 

present, within the display device, a current setting of 
said configuration entity instance concurrently with 
the configuration graphical representation. 

9. The data processing system of claim 8, wherein: 
said at least one database includes a configuration database 

storing at least one data structure defining said configu 
ration entity instance and said association between said 
configuration entity instance and said particular design 
entity instance, said at least one data structure indicating 
a controlling value set for said configuration entity 
instance, wherein said controlling value set indicates 




