
(12) United States Patent
ROesner et al.

US007805,695 B2

(10) Patent No.: US 7,805,695 B2
(45) Date of Patent: *Sep. 28, 2010

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(51)

(52)
(58)

(56)

PRESENTATION OF A SIMULATED OR
HARDWARE SYSTEM INCLUDING
CONFIGURATION ENTITIES

Inventors: Wolfgang Roesner, Austin, TX (US);
Derek Edward Williams, Austin, TX
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 370 days.

This patent is Subject to a terminal dis
claimer.

Appl. No.: 11/829,447

Filed: Jul. 27, 2007

Prior Publication Data

US 2008/OO21691A1 Jan. 24, 2008

Related U.S. Application Data
Continuation of application No. 10/902.628, filed on
Jul. 29, 2004, now Pat. No. 7,386,825.

Int. C.
G06F 7/50 (2006.01)
G06F 7700 (2006.01)
G09G 5/00 (2006.01)
U.S. Cl. 716/11:345/418; 345/619
Field of Classification Search 716/4-5,

716/11: 345/418, 619
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

5,586,052 A 12, 1996 Iannuzzi et al.
5,933,356 A * 8/1999 Rostoker et al. 703/15
6,131,080 A 10, 2000 Raimi et al.

6.421,808 B1 7/2002 Mcgeer et al.
6.421,823 B1 7/2002 Heikes
6,536,014 B1 3/2003 McClannahan et al.

6,601.221 B1 7/2003 Fairbanks
6,996,792 B2 2/2006 Pie et al.

(Continued)
OTHER PUBLICATIONS

Office Action for related U.S. Appl. No. 1 1/762,597 mailed on Aug.
7, 2009.

(Continued)

Primary Examiner Stacy A Whitmore
(74) Attorney, Agent, or Firm Dillon & Yudell LLP

(57) ABSTRACT

Within a display device, a respective one of a plurality of
design graphical representations is displayed for each of a
plurality of hierarchically arranged design entity instances
within a simulated system. The design entity instances
include a particular design entity instance containing a latch
that is represented by a particular design graphical represen
tation. A configuration entity instance associated with the
particular design entity is identified within a configuration
database associated with the simulated system. The configu
ration entity instance has a plurality of different settings that
each reflects a value of the latch. Within the display device, a
configuration graphical representation of the configuration
entity instance is presented in association with the particular
design graphical representation corresponding to the particu
lar design entity instance. In addition, a current setting of the
configuration entity instance is presented concurrently with
the configuration graphical representation.

21 Claims, 57 Drawing Sheets

3404

3406 (florio
File Edit view Tools Hels 310
TOP:TOP 13402

w 2 FBC:FBC RGOial:H 22
1124 1184

GDial:F 2:2
1160 126

Z:Z is . GDial:G w
1162

LDial:C s: CDia:
113 Iural: ;
mu-mm Na =03Fh 3408 9. bial: : 1134 ial:E32

-------- & LDr. : 150
XXO XX 8: : ;

Y.Yo 1136a ||YYO 1136b w
138a0 1380 L:1

LDial:A LDial-A 152b
1140a0; 14ObO
YY1 YY1

138a1 11381 Dia:E ;Dial.E. -- al: 8:
Dial:A k LDial:A; 154a 154
140a 114Ob1 || | | | A -------

US 7,805,695 B2
Page 2

U.S. PATENT DOCUMENTS 7,483,818 B2 1/2009 Amakai et al.

7,181,715 B2 2/2007 Sato et al. OTHER PUBLICATIONS
ck

7,386,825 B2 6/2008 Roesner et al. T16, 11 Notice of Allowance for related U.S. Appl. No. 1 1/762,597 mailed on
7,389,490 B2 6, 2008 Roesner Mar. 10, 2010. 7,398.483 B2 7/2008 Fairbanks
7.469,400 B2 12/2008 Roesner * cited by examiner

US 7,805,695 B2 Sheet 1 of 57 Sep. 28, 2010 U.S. Patent

U.S. Patent Sep. 28, 2010 Sheet 2 of 57 US 7,805,695 B2

S

S.

i
& -->

s

U.S. Patent Sep. 28, 2010 Sheet 3 Of 57 US 7,805,695 B2

O
D
n

O
O D
5),

v- er
D

S S
S N

s O

SY
5

SJ D
Sh S

O
Her
?

S.

‘CINE

US 7,805,695 B2 U.S. Patent

US 7,805,695 B2 Sheet 5 of 57 Sep. 28, 2010 U.S. Patent

@p aumfl.),
?pOO TOTH -- ?pOO TOH --

:CINE \/ CINEI :(

US 7,805,695 B2 Sheet 6 of 57 Sep. 28, 2010 U.S. Patent

009

DOEK TOE · · · · [],?ºos

en?BA ?ndu? p??eJeunue

US 7,805,695 B2 Sheet 7 Of 57 Sep. 28, 2010 U.S. Patent

| 9

BOZG

US 7,805,695 B2 Sheet 8 Of 57 Sep. 28, 2010 U.S. Patent

Og aun 6,5

US 7,805,695 B2 Sheet 9 Of 57 Sep. 28, 2010 U.S. Patent

079

Z09

„H-IO, JO „NO, :en?eA |ndu? p??eleuunue

US 7,805,695 B2 Sheet 10 Of 57 Sep. 28, 2010 U.S. Patent

009

DOEK DIK · · · · FZ
Z09

US 7,805,695 B2 Sheet 11 Of 57 Sep. 28, 2010 U.S. Patent

DOEKLK DOEK

0 | 9

EZ aun?hip

US 7,805,695 B2 U.S. Patent

90/

US 7,805,695 B2 Sheet 13 Of 57 Sep. 28, 2010 U.S. Patent

„009
~

cHO L:dOL

US 7,805,695 B2 Sheet 14 Of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 15 Of 57 Sep. 28, 2010 U.S. Patent

U.S. Patent Sep. 28, 2010 Sheet 16 Of 57 US 7,805,695 B2

C O O CD
r r s N
O O O
O X O) O SN,

ON
O SY

sy\)\ () is SN
S

S :

ÞUE

US 7,805,695 B2 U.S. Patent

ZZ6

976ON

@6 aumflae ?uÐUuÐIÐ
#796

US 7,805,695 B2 Sheet 19 Of 57 Sep. 28, 2010 U.S. Patent

5?T?T

US 7,805,695 B2 Sheet 20 Of 57 Sep. 28, 2010 U.S. Patent

{{}]]

US 7,805,695 B2 Sheet 22 Of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 23 Of 57 Sep. 28, 2010 U.S. Patent

Kelue Je?u?od

US 7,805,695 B2 Sheet 24 Of 57 Sep. 28, 2010 U.S. Patent

@ KJOueuu uu??SÁS

()OVHLEÐ

US 7,805,695 B2 U.S. Patent

US 7,805,695 B2 U.S. Patent

JOJJE

US 7,805,695 B2 Sheet 27 Of 57 Sep. 28, 2010 U.S. Patent

899), oN

US 7,805,695 B2 Sheet 29 Of 57 Sep. 28, 2010 U.S. Patent

puF

pesseoOJ?

99/,).

US 7,805,695 B2 Sheet 30 Of 57 Sep. 28, 2010 U.S. Patent

008||

US 7,805,695 B2 Sheet 32 Of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 33 Of 57 Sep. 28, 2010 U.S. Patent

6

I aumfl.),

€096|| ?JeMUDIJ?

US 7,805,695 B2 Sheet 34 of 57 Sep. 28, 2010 U.S. Patent

Z ?OZ || 30 WOOS

OZ aumflae

ZLOZ || 30 WOOS

ueOS

?nOueOS

ZIÐS OZOZ

US 7,805,695 B2 Sheet 35 of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 36 of 57 Sep. 28, 2010 U.S. Patent

?OZZ

JOJ JE ZLZZON

US 7,805,695 B2 Sheet 37 Of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 39 Of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 40 of 57 Sep. 28, 2010 U.S. Patent

& pºsseoOld

US 7,805,695 B2 Sheet 41 of 57 Sep. 28, 2010 U.S. Patent

909,Z pesseuduuOO

US 7,805,695 B2 Sheet 42 of 57 Sep. 28, 2010 U.S. Patent

0 | 92

3 pesseoOld Sue?u?od ONSe)\, 009Z

US 7,805,695 B2 Sheet 43 of 57 Sep. 28, 2010 U.S. Patent

999?

US 7,805,695 B2 Sheet 45 of 57 Sep. 28, 2010 U.S. Patent

09/Z

00/Z

US 7,805,695 B2 U.S. Patent

US 7,805,695 B2 Sheet 49 of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 50 of 57 Sep. 28, 2010 U.S. Patent

† -

?

6ZZ|.

pºñea || || 9 || … || 2 || 9

99,7 ||

US 7,805,695 B2 Sheet 52 of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 53 of 57 Sep. 28, 2010 U.S. Patent

US 7,805,695 B2 Sheet 54 Of 57 Sep. 28, 2010 U.S. Patent

___---------~~~~)_I(~~~~); No.d?HTSIOOLINGINGIDE SIE?,

US 7,805,695 B2 Sheet SS Of 57 Sep. 28, 2010 U.S. Patent

(Df7

0B99 || ||

US 7,805,695 B2

--------TOE) ~~~~--~

U.S. Patent

C

S.
cy

US 7,805,695 B2 Sheet 57 Of 57 Sep. 28, 2010 U.S. Patent

- - - - ~ ~ ~ - - - - 3

cHO L:dOL

US 7,805,695 B2
1.

PRESENTATION OF A SIMULATED OR
HARDWARE SYSTEM INCLUDING
CONFIGURATION ENTITIES

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a continuation of U.S. patent
application Ser. No. 10/902,628 (AUS920040080US1), filed
on Jul. 29, 2004, now U.S. Pat. No. 7,386,825 and entitled
“Method, System and Program Product Supporting Presen
tation of a Simulated or Hardware System Including Configu
ration Entities', which is also related to U.S. patent applica
tion Ser. No. 10/902,595 (AUS920030573US1), which is
assigned to the assignee of the present invention and incor
porated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates in general to designing, simu

lating and configuring digital devices, modules and systems,
and in particular, to methods and systems for computer-aided
design, simulation, and configuration of digital devices, mod
ules and systems described by a hardware description lan
guage (HDL) model.

2. Description of the Related Art
In a typical digital design process, Verifying the logical

correctness of a digital design and debugging the design (if
necessary) are important steps of the design process per
formed prior to developing a circuit layout. Although it is
certainly possible to test a digital design by actually building
the digital design, digital designs, particularly those imple
mented by integrated circuitry, are typically verified and
debugged by simulating the digital design on a computer, due
in part to the time and expense required for integrated circuit
fabrication.

In a typical automated design process, a circuit designer
enters into an electronic computer-aided design (ECAD) sys
tem a high-level description of the digital design to be simu
lated utilizing a hardware description language (HDL), Such
as VHDL, thus producing a digital representation of the vari
ous circuit blocks and their interconnections. In the digital
representation, the overall circuit design is frequently divided
into Smaller parts, hereinafter referred to as design entities,
which are individually designed, often by different designers,
and then combined in a hierarchical manner to create an
overall model. This hierarchical design technique is very
useful in managing the enormous complexity of the overall
design and facilitates error detection during simulation.
The ECAD system compiles the digital representation of

the design into a simulation model having a format best Suited
for simulation. A simulator then exercises the simulation
model to detect logical errors in the digital design.
A simulator is typically a software tool that operates on the

simulation model by applying a list of input stimuli represent
ing inputs of the digital system. The simulator generates a
numerical representation of the response of the circuit to the
input stimuli, which response may then either be viewed on
the display screen as a list of values or further interpreted,
often by a separate Software program, and presented on the
display Screen in graphical form. The simulator may be run
either on a general-purpose computer or on another piece of
electronic apparatus specially designed for simulation. Simu
lators that run entirely in Software on a general-purpose com
puter are referred to as “software simulators, and simulators

10

15

25

30

35

40

45

50

55

60

65

2
that run with the assistance of specially designed electronic
apparatus are referred to as “hardware simulators.”
As digital designs have become increasingly complex,

digital designs are commonly simulated at several levels of
abstraction, for example, at functional, logical and circuit
levels. At the functional level, system operation is described
in terms of a sequence of transactions between registers,
adders, memories and other functional units. Simulation at
the functional level is utilized to verify the high-level design
of digital systems. At the logical level, a digital system is
described in terms of logic elements such as logic gates and
flip-flops. Simulation at the logical level is utilized to verify
the correctness of the logic design. At the circuit level, each
logic gate is described in terms of its circuit components such
as transistors, impedances, capacitances, and other Such
devices. Simulation at the circuit level provides detailed
information about Voltage levels and Switching speeds.

In order to Verify the results of any given simulation run,
custom-developed programs written in high-level languages
such as C or C++, referred to as a reference model, are written
to process input stimuli (also referred to as test vectors) to
produce expected results of the simulation run. The test vector
is then run against the simulation execution model by the
simulator. The results of the simulation run are then compared
to the results predicted by the reference model to detect dis
crepancies, which are flagged as errors. Such a simulation
check is known in the verification art as an "end-to-end’
check.

In modern data processing systems, especially large
server-class computer systems, the number of latches that
must be loaded to configure the system for operation (or
simulation) is increasing dramatically. One reason for the
increase in configuration latches is that many chips are being
designed to Support multiple different configurations and
operating modes in order to improve manufacturer profit mar
gins and simplify system design. For example, memory con
trollers commonly require Substantial configuration informa
tion to properly interface memory cards of different types,
sizes, and operating frequencies.
A second reason for the increase in configuration latches is

the ever-increasing transistor budget within processors and
other integrated circuit chips. Often the additional transistors
available within the next generation of chips are devoted to
replicated copies of existing functional units in order to
improve fault tolerance and parallelism. However, because
transmission latency via intra-chip wiring is not decreasing
proportionally to the increase in the operating frequency of
functional logic, it is generally viewed as undesirable to cen
tralize configuration latches for all similar functional units.
Consequently, even though all instances of a replicated func
tional unit are frequently identically configured, each
instance tends to be designed with its own copy of the con
figuration latches. Thus, configuring an operating parameter
having only a few valid values (e.g., the ratio between the bus
clock frequency and processor clock frequency) may involve
setting hundreds of configuration latches in a processor chip.

Conventionally, configuration latches and their permitted
range of values have been specified by error-prone paper
documentation that is tedious to create and maintain. Com
pounding the difficulty in maintaining accurate configuration
documentation and the effort required to set configuration
latches is the fact that different constituencies within a single
company (e.g., a functional simulation team, a laboratory
debug team, and one or more customer firmware teams) often
separately develop configuration Software from the configu
ration documentation. As the configuration software is sepa
rately developed by each constituency, each team may intro

US 7,805,695 B2
3

duce its own errors and employ its own terminology and
naming conventions. Consequently, the configuration soft
ware developed by the different teams is not compatible and
cannot easily be shared between the different teams.

In addition to the foregoing shortcomings in the process of
developing configuration code, conventional configuration
Software is extremely tedious to code. In particular, the
Vocabulary used to document the various configuration bits is
often quite cumbersome. For example, in at least some imple
mentations, configuration code must specify, for each con
figuration latch bit, a full latch name, which may include fifty
or more ASCII characters. In addition, valid binary bit pat
terns for each group of configuration latches must be indi
vidually specified.

Another problem encountered in the simulation and debug
ging of simulated and hardware digital systems is that the
state of the simulated or hardware digital system is difficult to
present in a convenient format. Conventionally, a person that
is debugging a digital system will obtain a raw "dump' of the
values of the thousands of latches, registers or configuration
constructs within the digital system. The dump will then be
processed manually or utilizing a script to remove large
amount of “uninteresting data, presumably leaving a man
ageable collection of data (which may be further parsed and/
or transformed) that will aid the user in debugging the hard
ware system.

Although this convention technique of ascertaining the
state of a digital design reduces the difficulty in parsing and
interpreting the results of a system “dump, the individuals
responsible for debugging the design are often unaware of the
details of the underlying latches and configuration constructs
and are therefore left to “reverse engineer” much of the design
to understand its operation, or seek assistance from the origi
nal design team. Moreover, because the names of the signals
and latches within a design often change between revisions of
the design, the scripts and other debugging tools developed to
interpret the state of the system and facilitate debugging
cannot be reused for multiple designs.

In view of the foregoing, the present invention appreciates
that it would be useful and desirable to provide an improved
method of configuring and presenting the state of a digital
system described by an HDL model, particularly one that
Supports the selective presentation of configuration informa
tion in accordance with designers' or other users’ prefer
CCCS.

SUMMARY OF THE INVENTION

Improved methods, systems, and program products for
specifying and presenting the configuration of a digital sys
tem, Such as an integrated circuit or collection of intercon
nected integrated circuits, are disclosed. According to one
method, a respective one of a plurality of design graphical
representations is displayed within a display device for each
of a plurality of hierarchically arranged design entity
instances within a simulated System. The design entity
instances include a particular design entity instance contain
ing a latch that is represented by a particular design graphical
representation. A configuration entity instance associated
with the particular design entity is identified within a configu
ration database associated with the simulated system. The
configuration entity instance has a plurality of different set
tings that each reflects a value of the latch. Within the display
device, a configuration graphical representation of the con
figuration entity instance is presented in association with the
particular design graphical representation corresponding to
the particular design entity instance. In addition, a current

5

10

15

25

30

35

40

45

50

55

60

65

4
setting of the configuration entity instance is presented con
currently with the configuration graphical representation.

All objects, features, and advantages of the present inven
tion will become apparent in the following detailed written
description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. However, the invention,
as well as a preferred mode ofuse, will best be understood by
reference to the following detailed description of an illustra
tive embodiment when read in conjunction with the accom
panying drawings, wherein:

FIG. 1 is a high level block diagram of a data processing
system that may be utilized to implement the present inven
tion;

FIG. 2 is a diagrammatic representation of a design entity
described by HDL code:

FIG. 3 illustrates an exemplary digital design including a
plurality of hierarchically arranged design entities;

FIG. 4A depicts an exemplary HDL file including embed
ded configuration specification statements in accordance with
the present invention;

FIG. 4B illustrates an exemplary HDL file including an
embedded configuration file reference statement referring to
an external configuration file containing a configuration
specification statement in accordance with the present inven
tion;

FIG. 5A is a diagrammatic representation of an LDial
primitive in accordance with the present invention

FIG. 5B depicts an exemplary digital design including a
plurality of hierarchically arranged design entities in which
LDials are instantiated in accordance with the present inven
tion;
FIG.5C illustrates an exemplary digital design including a

plurality of hierarchically arranged design entities in which
an LDial is employed to configure signal states at multiple
different levels of the design hierarchy:
FIG.5D is a diagrammatic representation of a Switch in

accordance with the present invention;
FIG. 6A is a diagrammatic representation of an IDial in

accordance with the present invention;
FIG. 6B is a diagrammatic representation of an IDial hav

ing a split output in accordance with the present invention;
FIG. 7A is a diagrammatic representation of a CDial

employed to control other Dials in accordance with the
present invention;

FIG. 7B depicts an exemplary digital design including a
plurality of hierarchically arranged design entities in which a
CDial is employed to control lower-level Dials utilized to
configure signal states;

FIG. 7C is a diagrammatic representation of a Register in
accordance with the present invention;

FIG. 8 is a high level flow diagram of a model build process
utilized to produce a simulation executable model and asso
ciated simulation configuration database in accordance with
the present invention;
FIG.9A illustrates a portion of a digital design illustrating

the manner in which a traceback process implemented by a
configuration compiler detects inverters in the signal path
between a configured signal and an associated configuration
latch;
FIG.9B is a high level flowchart of an exemplary traceback

process implemented by a configuration compiler in accor
dance with a preferred embodiment of the present invention;

US 7,805,695 B2
5

FIG. 10 is a high level logical flowchart of an exemplary
method by which a configuration compiler parses each signal
or Dial identification within a configuration specification
statement in accordance with a preferred embodiment of the
present invention;

FIG. 11A depicts a diagrammatic representation of a Dial
group;

FIG. 11B illustrates an exemplary simulation model
including Dials grouped in multiple hierarchically arranged
Dial groups;

FIG. 12A depicts an exemplary embodiment of a simula
tion configuration database in accordance with the present
invention;

FIG. 12B is a more detailed view of an exemplary simula
tion configuration database including data structures repre
senting Dials and Registers in accordance with the present
invention;

FIG. 13 is a high level logical flowchart of a illustrative
method by which a configuration database is expanded within
Volatile memory of a data processing system in accordance
with the present invention;

FIG. 14 is a block diagram depicting the contents of Vola
tile system memory during a simulation run of a simulation
model in accordance with the present invention;

FIG. 15 is a high level logical flowchart of an exemplary
method of locating one or more Dial instance data structure
(DIDS) in a configuration database that are identified by a
instance qualifier and dialname qualifier Supplied in an API
call;

FIG. 16A is a high level logical flowchart of an illustrative
method of reading a Dial instance in an interactive mode
during simulation of a digital design in accordance with the
present invention;

FIG. 16B is a high level logical flowchart of an exemplary
method of reading a Dial group instance in an interactive
mode during simulation of a digital designin accordance with
the present invention;

FIG. 17A is a high level logical flowchart of an illustrative
method of setting a Dial instance in an interactive mode
during simulation of a digital design in accordance with the
present invention;

FIG. 17B is a high level logical flowchart of an exemplary
method of setting a Dial group instance in an interactive mode
during simulation of a digital design in accordance with the
present invention;

FIG. 18A is a high level logical flowchart of an illustrative
method of setting a Dial instance or Dial group instance in a
batch mode during simulation of a digital design in accor
dance with the present invention;

FIG. 18B is a more detailed flowchart of an end phase API
called within the process shown in FIG. 18A:

FIG. 18C is a block diagram of a data processing system
environment in which a program may be utilized to access
and modify a configuration database in order to specify phas
ing of the application of defaults;

FIG. 19 is a block diagram depicting an exemplary labo
ratory testing system in accordance with the present inven
tion;

FIG. 20 is a more detailed block diagram of an integrated
circuit chip within a data processing system formingaportion
of the laboratory testing system of FIG. 19:

FIG. 21 is a high level flow diagram of an illustrative
process for transforming a simulation configuration database
to obtain a chip hardware database Suitable for use in config
uring a hardware realization of a digital design;

10

15

25

30

35

40

45

50

55

60

65

6
FIG.22A is a high level logical flowchart of an exemplary

method of transforming a configuration database to obtain a
chip hardware database in accordance with the present inven
tion;
FIG.22B depicts an illustrative embodiment of a latch data

structure within a chip hardware database following the trans
formation process illustrated in FIG.22A;

FIG. 23A is a high level logical flowchart of an exemplary
method of loading a hardware configuration database from
non-volatile storage into volatile memory that Supports use of
the hardware configuration database with digital systems of
any arbitrary size or configuration;

FIG. 23B illustrates an exemplary embodiment of a hard
ware configuration database of a digital system in accordance
with one embodiment of the present invention;

FIG. 24 is a high level logical flowchart of an exemplary
method of identifying, by reference to a hardware configura
tion database, one or more Dial instances or Dial group
instances in a digital system that are relevant to an API call;

FIG. 25 is a high level logical flow diagram of an exem
plary process by which a hardware configuration database
developed during laboratory development and testing of sys
tem firmware can be compressed for commercial deploy
ment;

FIGS. 26A-26C together form a high level logical flow
chart of an illustrative method of compressing a hardware
configuration database utilizing a Software compression tool
in accordance with the present invention;

FIG. 27 is a graphical representation of the contents of an
exemplary configuration database including both Dials and
read-only Dials in accordance with the present invention;

FIGS. 28A-28B respectively illustrate the inclusion of
read-only parent fields within Dial instance data structures
and latch data structures of a configuration database in order
to Support read-only Dials and read-only Dial groups in
accordance with one embodiment of the present invention;

FIG. 29 is a high level logical flowchart of an exemplary
method of expanding a configuration database containing
RDial and/or RDial groups into volatile memory;

FIG. 30 is a high level flow diagram of an exemplary
process for analyzing a selected State of a hardware system,
and in particular, a failure state of a hardware system, in
accordance with the present invention;

FIG. 31 is a high level logical flowchart of an exemplary
method by which the chip analyzer tool of FIG. 30 generates
chip configuration reports and simulation setup files utilized
to analyze hardware failures in accordance with the present
invention;

FIG. 32 depicts an exemplary embodiment of a configura
tion database Supporting the selective presentation of con
figuration entity instances. Such as Dials, Dial groups, and
Registers, in accordance with the present invention;

FIG. 33 is a high level logical flowchart an exemplary
process for selectively presenting the settings of configura
tion entity instances describing the state of a simulated or
hardware system;

FIG. 34A illustrates an exemplary Graphical User Inter
face (GUI) for presenting a simulated or hardware system in
accordance with the present invention;

FIG. 34B depicts a view of system presented within the
exemplary GUI of FIG. 34A in which the displayed design
hierarchy depth is limited in accordance with the present
invention;
FIG.34C illustrates a view of system presented within the

exemplary GUI of FIG. 34A demonstrating the manner in
which the design hierarchy can beintuitive traversed in accor
dance with the present invention;

US 7,805,695 B2
7

FIG. 34D depicts a view of system presented within the
exemplary GUI of FIG. 34A demonstrating the manner in
which the additional levels of configuration hierarchy can be
exposed in accordance with the present invention;

FIG. 34E illustrates a view of system presented within the
exemplary GUI of FIG. 34A in which the configuration entity
instances are selectively omitted from presentation based
upon configuration database settings in accordance with the
present invention; and

FIG. 34F depicts a view of system presented within the
exemplary GUI of FIG. 34A in which configuration entity
instances having varying degrees of relevance are displayed
in a graphically distinct manner in accordance with the
present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENT

The present invention employs a configuration specifica
tion language and associated methods, systems, and program
products for configuring and controlling the setup of a digital
system (e.g., one or more integrated circuits or a simulation
model thereof). In at least one embodiment, configuration
specifications for signals in the digital system are created in
HDL code by the designer responsible for an associated
design entity. Thus, designers at the front end of the design
process, who are best able to specify the signal names and
associated legal values, are responsible for creating the con
figuration specification. The configuration specification is
compiled at model build time together with the HDL describ
ing the digital system to obtain a configuration database that
can then be utilized by downstream organizational groups
involved in the design, simulation, and hardware implemen
tation processes.

With reference now to the figures, and in particular with
reference to FIG. 1, there is depicted an exemplary embodi
ment of a data processing system in accordance with the
present invention. The depicted embodiment can be realized,
for example, as a workstation, server, or mainframe computer.
As illustrated, data processing system 6 includes one or

more processing nodes 8a-8n, which, if more than one pro
cessing node 8 is implemented, are interconnected by node
interconnect 22. Processing nodes 8a-8n may each include
one or more processors 10, a local interconnect 16, and a
system memory 18 that is accessed via a memory controller
17. Processors 10a–10m are preferably (but not necessarily)
identical and may comprise a processor within the Pow
erPCTM line of processors available from International Busi
ness Machines (IBM) Corporation of Armonk, N.Y. In addi
tion to the registers, instruction flow logic and execution units
utilized to execute program instructions, which are generally
designated as processor core 12, each of processors 10a–10m
also includes an on-chip cache hierarchy that is utilized to
stage data to the associated processor core 12 from system
memories 18.

Each of processing nodes 8a-8n further includes a respec
tive node controller 20 coupled between local interconnect 16
and node interconnect22. Each node controller 20 serves as a
local agent for remote processing nodes 8 by performing at
least two functions. First, each node controller 20 Snoops the
associated local interconnect 16 and facilitates the transmis
sion of local communication transactions to remote process
ing nodes 8. Second, each node controller 20 Snoops commu
nication transactions on node interconnect 22 and masters
relevant communication transactions on the associated local
interconnect 16. Communication on each local interconnect
16 is controlled by an arbiter 24. Arbiters 24 regulate access

10

15

25

30

35

40

45

50

55

60

65

8
to local interconnects 16 based on bus request signals gener
ated by processors 10 and compile coherency responses for
Snooped communication transactions on local interconnects
16.

Local interconnect 16 is coupled, via mezzanine bus bridge
26, to a mezzanine bus 30. Mezzanine bus bridge 26 provides
both a low latency path through which processors 10 may
directly access devices among I/O devices 32 and storage
devices 34 that are mapped to bus memory and/or I/O address
spaces and a high bandwidth path through which I/O devices
32 and storage devices 34 may access system memory 18. I/O
devices 32 may include, for example, a display device, a
keyboard, a graphical pointer, and serial and parallel ports for
connection to external networks or attached devices. Storage
devices 34 may include, for example, optical or magnetic
disks that provide non-volatile storage for operating system,
middleware and application Software. In the present embodi
ment, such application software includes an ECAD system
35, which can be utilized to develop, verify and simulate a
digital circuit design in accordance with the methods and
systems of the present invention.

Simulated digital circuit design models created utilizing
ECAD system 35 are comprised of at least one, and usually
many, Sub-units referred to hereinafter as design entities.
Referring now to FIG. 2, there is illustrated a block diagram
representation of an exemplary design entity 200 which may
be created utilizing ECAD system 35. Design entity 200 is
defined by a number of components: an entity name, entity
ports, and a representation of the function performed by
design entity 200. Each design entity within a given model
has a unique entity name (not explicitly shown in FIG. 2) that
is declared in the HDL description of the design entity. Fur
thermore, each design entity typically contains a number of
signal interconnections, known as ports, to signals outside the
design entity. These outside signals may be primary input/
outputs (I/OS) of an overall design or signals connected to
other design entities within an overall design.

Typically, ports are categorized as belonging to one of three
distinct types: input ports, output ports, and bi-directional
ports. Design entity 200 is depicted as having a number of
input ports 202 that convey signals into design entity 200.
Input ports 202 are connected to input signals 204. In addi
tion, design entity 200 includes a number of output ports 206
that convey signals out of design entity 200. Output ports 206
are connected to a set of output signals 208. Bi-directional
ports 210 are utilized to convey signals into and out of design
entity 200. Bi-directional ports 210 are in turn connected to a
set of bi-directional signals 212. A design entity, Such as
design entity 200, need not contain ports of all three types,
and in the degenerate case, contains no ports at all. To accom
plish the connection of entity ports to external signals, a
mapping technique, known as a "port map', is utilized. A port
map (not explicitly depicted in FIG. 2) consists of a specified
correspondence between entity port names and external sig
nals to which the entity is connected. When building a simu
lation model, ECAD software 35 is utilized to connect exter
nal signals to appropriate ports of the entity according to a
port map specification.
As further illustrated in FIG. 2, design entity 200 contains

a body section 214 that describes one or more functions
performed by design entity 200. In the case of a digital design,
body section 214 contains an interconnection of logic gates,
storage elements, etc., in addition to instantiations of other
entities. By instantiating an entity within another entity, a
hierarchical description of an overall design is achieved. For
example, a microprocessor may contain multiple instances of
an identical functional unit. As such, the microprocessor itself

US 7,805,695 B2

will often be modeled as a single entity. Within the micropro
cessor entity, multiple instantiations of any duplicated func
tional entities will be present.

Each design entity is specified by one or more HDL files
that contain the information necessary to describe the design
entity. Although not required by the present invention, it will
hereafter be assumed for ease of understanding that each
design entity is specified by a respective HDL file.

With reference now to FIG.3, there is illustrated a diagram
matic representation of an exemplary simulation model 300
that may be employed by ECAD system 35 to represent a
digital design (e.g., an integrated circuit chip or a computer
system) in a preferred embodiment of the present invention.
For visual simplicity and clarity, the ports and signals inter
connecting the design entities within simulation model 300
have not been explicitly shown.

Simulation model 300 includes a number of hierarchically
arranged design entities. As within any simulation model,
simulation model 300 includes one and only one “top-level
entity encompassing all other entities within simulation
model 300. That is to say, top-level entity 302 instantiates,
either directly or indirectly, all descendant entities within the
digital design. Specifically, top-level entity 302 directly
instantiates (i.e., is the directancestor of) two instances, 304a
and 304b, of the same FiXed-point execution Unit (FXU)
entity 304 and a single instance of a Floating Point Unit (FPU)
entity 314. FXU entity instances 304, having instantiation
names FXU0 and FXU1, respectively, in turn instantiate addi
tional design entities, including multiple instantiations of
entity A 306 having instantiation names A0 and A1, respec
tively.

Each instantiation of a design entity has an associated
description that contains an entity name and an instantiation
name, which must be unique among all descendants of the
directancestor entity, if any. For example, top-level entity 302
has a description 320 including an entity name 322 (i.e., the
“TOP preceding the colon) and also includes an instantiation
name 324 (i.e., the “TOP' following the colon). Within an
entity description, it is common for the entity name to match
the instantiation name when only one instance of that particu
lar entity is instantiated within the ancestor entity. For
example, single instances of entity B310 and entity C 312
instantiated within each of FXU entity instantiations 304a
and 304b have matchingentity and instantiation names. How
ever, this naming convention is not required by the present
invention as shown by FPU entity 314 (i.e., the instantiation
name is FPU0, while the entity name is FPU).
The nesting of entities within other entities in a digital

design can continue to an arbitrary level of complexity, pro
vided that all entities instantiated, whether singly or multiply,
have unique entity names and the instantiation names of all
descendant entities within any direct ancestor entity are
unique with respect to one another.

Associated with each design entity instantiation is a so
called “instantiation identifier. The instantiation identifier
for a given instantiation is a string including the enclosing
entity instantiation names proceeding from the top-level
entity instantiation name. For example, the design instantia
tion identifier of instantiation 312a of entity C 312 within
instantiation 304a of FXU entity 304 is “TOPFXU0.B.C.
This instantiation identifier serves to uniquely identify each
instantiation within a simulation model.
As discussed above, a digital design, whether realized uti

lizing physical integrated circuitry or as a software model
Such as simulation model 300, typically includes configura
tion latches utilized to configure the digital design for proper
operation. In contrast to prior art design methodologies,

10

15

25

30

35

40

45

50

55

60

65

10
which employ stand-alone configuration Software created
after a design is realized to load values into the configuration
latches, the present invention introduces a configuration
specification language that permits a digital designer to
specify configuration values for signals as a natural part of the
design process. In particular, the configuration specification
language of the present invention permits a design configu
ration to be specified utilizing statements either embedded in
one or more HDL files specifying the digital design (as illus
trated in FIG. 4A) or in one or more external configuration
files referenced by the one or more HDL files specifying the
digital design (as depicted in FIG. 4B).

Referring now to FIG. 4A, there is depicted an exemplary
HDL file 400, in this case a VHDL file, including embedded
configuration statements in accordance with the present
invention. In this example, HDL file 400 specifies entity A
306 of simulation model 300 and includes three sections of
VHDL code, namely, a port list 402 that specifies ports 202,
206 and 210, signal declarations 404 that specify the signals
within body section 214, and a design specification 406 that
specifies the logic and functionality of body section 214.
Interspersed within these sections are conventional VHDL
comments denoted by an initial double-dash (“--”). In addi
tion, embedded within design specification 406 are one or
more configuration specification statements in accordance
with the present invention, which are collectively denoted by
reference numerals 408 and 410. As shown, these configura
tion specification statements are written in a special comment
form beginning with "--if” in order to permit a compiler to
easily distinguish the configuration specification statements
from the conventional HDL code and HDL comments. Con
figuration specification statements preferably employ a syn
tax that is insensitive to case and white space.

With reference now to FIG. 4B, there is illustrated an
exemplary HDL file 400' that includes a reference to an exter
nal configuration file containing one or more configuration
specification statements inaccordance with the present inven
tion. As indicated by prime notation (), HDL file 400' is
identical to HDL file 400 in all respects except that configu
ration specification statements 408,410 are replaced with one
or more (and in this case only one) configuration file reference
statement 412 referencing a separate configuration file 414
containing configuration specification statements 408, 410.

Configuration file reference statement 412, like the embed
ded configuration specification statements illustrated in FIG.
4A, is identified as a configuration statement by the identifier
"--if” Configuration file reference statement 412 includes
the directive “cfg file', which instructs the compiler to locate
a separate configuration file 414, and the filename of the
configuration file (i.e., “file(00'). Configuration files, such as
configuration file 412, preferably all employ a selected file
name extension (e.g., ".cfg) so that they can be easily
located, organized, and managed within the file system
employed by data processing system 6.
As discussed farther below with reference to FIG. 8, con

figuration specification statements, whether embedded
within an HDL file or collected in one or more configuration
files 414, are processed by a compiler together with the asso
ciated HDL files.

In accordance with a preferred embodiment of the present
invention, configuration specification statements, such as
configuration specification statements 408, 410, facilitate
configuration of configuration latches within a digital design
by instantiating one or more instances of a configuration
entity referred to herein generically as a “Dial.” A Dials
function is to map between an input value and one or more
output values. In general. Such output values ultimately

US 7,805,695 B2
11

directly or indirectly specify configuration values of configu
ration latches. Each Dial is associated with a particular design
entity in the digital design, which by convention is the design
entity specified by the HDL source file containing the con
figuration specification statement or configuration file refer
ence statement that causes the Dial to be instantiated. Conse
quently, by virtue of their association with particular design
entities, which all have unique instantiation identifiers, Dials
within a digital design can be uniquely identified as long as
unique Dial names are employed within any given design
entity. As will become apparent, many different types of Dials
can be defined, beginning with a Latch Dial (or “LDial').

Referring now to FIG. 5A, there is depicted a representa
tion of an exemplary LDial 500. In this particular example,
LDial 500, which has the name “bus ratio’, is utilized to
specify values for configuration latches in a digital design in
accordance with an enumerated input value representing a
selected ratio between a component clock frequency and bus
clock frequency.
As illustrated, LDial 500, like all Dials, logically has a

single input 502, one or more outputs 504, and a mapping
table 503 that maps each input value to a respective associated
output value for each output 504. That is, mapping table 503
specifies a one-to-one mapping between each of one or more
unique input values and a respective associated unique output
value. Because the function of an LDial is to specify the legal
values of configuration latches, each output 504 of LDial 500
logically controls the value loaded into a respective configu
ration latch 505. To prevent conflicting configurations, each
configuration latch 505 is directly specified by one and only
one Dial of any type that is capable of setting the configura
tion latch 505.

At input 502, LDial 500 receives an enumerated input
value (i.e., a string) among a set of legal values including
“2:1”, “3:1” and “4:1. The enumerated input value can be
provided directly by software (e.g., by a software simulator or
service processor firmware) or can be provided by the output
of another Dial, as discussed further below with respect to
FIG. 7A. For each enumerated input value, the mapping table
503 of LDial 500 indicates a selected binary value (i.e., “0” or
“1”) for each configuration latch 505.

With reference now to FIG. 5B, there is illustrated a dia
grammatic representation of a simulation model logically
including Dials. Simulation model 300' of FIG. 5B, which as
indicated by prime notation includes the same design entities
arranged in the same hierarchical relation as simulation
model 300 of FIG. 3, illustrates two properties of Dials,
namely, replication and scope.

Replication is a process by which a Dial that is specified in
or referenced by an HDL file of a design entity is automati
cally instantiated each time that the associated design entity is
instantiated. Replication advantageously reduces the amount
of data entry a designer is required to perform to create
multiple identical instances of a Dial. For example, in order to
instantiate the six instances of LDials illustrated in FIG. 5B,
the designer need only code two LDial configuration speci
fication statements utilizing either of the two techniques illus
trated in FIGS. 4A and 4.B. That is, the designer codes a first
LDial configuration specification statement (or configuration
file reference statement pointing to an associated configura
tion file) into the HDL file of design entity A 306 in order to
automatically instantiate LDials 506a0, 506a1, 506b0 and
506b1 within entity Ainstantiations 306a0,306a1,306b0 and
306b1, respectively. The designer codes a second LDial con
figuration specification statement (or configuration file refer
ence statement pointing to an associated configuration file)
into the HDL file of design entity FXU 304 in order to auto

10

15

25

30

35

40

45

50

55

60

65

12
matically instantiate LDials 510a and 510b within FXU
entity instantiations 304a and 304b, respectively. The mul
tiple instances of the LDials are then created automatically as
the associated design entities are replicated by the compiler.
Replication of Dials within a digital design can thus signifi
cantly reduce the input burden on the designer as compared to
prior art methodologies in which the designer had to individu
ally enumerate in the configuration Software each configura
tion latch value by hand. It should be noted that the property
of replication does not necessarily require all instances of a
Dial to generate the same output values; different instances of
the same Dial can be set to generate different outputs by
providing them different inputs.
The “scope of a Dial is defined herein as the set of entities

to which the Dial can refer in its specification. By convention,
the scope of a Dial comprises the design entity with which the
Dial is associated (i.e., the design entity specified by the HDL
Source file containing the configuration specification state
ment or configuration file reference statement that causes the
Dial to be instantiated) and any design entity contained within
the associated design entity (i.e., the associated design entity
and its descendents). Thus, a Dial is not constrained to operate
at the level of the design hierarchy at which it is instantiated,
but can also specify configuration latches at any lower level of
the design hierarchy within its scope. For example, LDials
510a and 510b, even though associated with FXU entity
instantiations 304a and 304b, respectively, can specify con
figuration latches within entity C instantiations 312a and
312b, respectively.

FIG. 5B illustrates another important property of LDials
(and other Dials that directly specify configuration latches).
In particular, as shown diagrammatically in FIG. 5B, design
ers, who are accustomed to specifying signals in HDL files,
are permitted in a configuration specification statement to
specify signal States set by a Dial rather than values to be
loaded into an "upstream” configuration latch that determines
the signal state. Thus, in specifying LDial 506, the designer
can specify possible signal states for a signal 514 set by a
configuration latch 512. Similarly, in specifying LDial 510,
the designer can specify possible signal states for signal 522
set by configuration latch 520. The ability to specify signal
states rather than latch values not only coincides with design
ers’ customary manner of thinking about a digital design, but
also reduces possible errors introduced by the presence of
inverters between the configuration latch 512, 520 and the
signal of interest 514,522, as discussed further below.

Referring now to FIG. 5C, there is depicted another dia
grammatic representation of a simulation model including an
LDial. As indicated by prime notation, simulation model 300"
of FIG. 5C includes the same design entities arranged in the
same hierarchical relation as simulation model 300 of FIG.3.
As shown, simulation model 300" of FIG. 5C includes an

LDial 524 associated with top-level design entity 302. LDial
524 specifies the signal states of each signal sig1 514, which
is determined by a respective configuration latch 512, the
signal states of each signal sig2522, which is determined by
a respective configuration latch 520, the signal state of signal
sig4532, which is determined by configuration latch 530, and
the signal state of signal sig3 536, which is determined by
configuration latch 534. Thus, LDial 524 configures the sig
nal states of numerous different signals, which are all instan
tiated at or below the hierarchy level of LDial 524 (which is
the top level).
As discussed above with respect to FIGS. 4A and 4B,

LDial 524 is instantiated within top-level entity 302 of simu
lation model 300" by embedding within the HDL file of
top-level entity 302 a configuration specification statement

US 7,805,695 B2
13

specifying LDial 524 or a configuration file reference state
ment referencing a separate configuration file containing a
configuration specification statement specifying LDial 524.
In either case, an exemplary configuration specification State
ment for LDial 524 is as follows:

The exemplary configuration specification statement given
above begins with the keyword “LDial.” which specifies that
the type of Dial being declared is an LDial, and the Dial name,
which in this case is “bus ratio. Next, the configuration
specification statement enumerates the signal names whose
states are controlled by the LDial. As indicated above, the
signal identifier for each signal is specified hierarchically
(e.g., FXU0.A0.SIG1 for signal 514aO) relative to the default
scope of the associated design entity so that different signal
instances having the same signal name are distinguishable.
Following the enumeration of the signal identifiers, the con
figuration specification statement includes a mapping table
listing the permitted enumerated input values of the LDial and
the corresponding signal values for each enumerated input
value. The signal values are associated with the signal names
implicitly by the orderin which the signal names are declared.
It should again be noted that the signal states specified for all
enumerated values are unique, and collectively represent the
only legal patterns for the signal states.

Several different syntaxes can be employed to specify the
signal States. In the example given above, signal states are
specified in either binary format, which specifies a binary
constant preceded by the prefix "Ob', or in hexadecimal for
mat, which specifies a hexadecimal constant preceded by the
prefix "Ox'. Although not shown, signal states can also be
specified in integer format, in which case no prefix is
employed. For ease of data entry, the configuration specifica
tion language of ECAD system 35 also preferably supports a
concatenated syntax in which one constant value, which is
automatically extended with leading Zeros, is utilized to rep
resent the concatenation of all of the desired signal values. In
this concatenated syntax, the mapping table of the configu
ration specification statement given above can be rewritten as:

{2:1 => 0,
3:1 => 0x183821,
4:1 => 0x1FFFFF

in order to associate enumerated input value 2:1 with a con
catenated bit pattern of all Zeros, to associate the enumerated
input value 3:1 with the concatenated bit pattern

5

10

15

25

30

35

40

45

50

55

60

65

14
Ob1 10000011100000100001, and to associate the enumer
ated input value 4:1 with a concatenated bit pattern of all ones.

With reference now to FIG. 5D, there is illustrated a dia
grammatic representation of a special case of an LDial having
a one-bit output, which is defined herein as a Switch. As
shown, a Switch 540 has a single input 502, a single 1-bit
output 504 that controls the setting of a configuration latch
505, and a mapping table 503 that maps each enumerated
input value that may be received at input 502 to a 1-bit output
value driven on output 504.

Because Switches frequently comprise a significant major
ity of the Dials employed in a digital design, it is preferable if
the enumerated value sets for all Switches in a simulation
model of a digital design are the same (e.g., “ON”/"OFF"). In
a typical embodiment of a Switch, the “positive’ enumerated
input value (e.g., “ON”) is mapped by mapping table 503 to
an output value of Ob1 and the “negative’ enumerated input
value (e.g., "OFF") is mapped to an output value of Ob0. In
order to facilitate use of logic of the opposite polarity, a
Negative Switch or NSwitch declaration is also preferably
supported that reverses this default correspondence between
input values and output values in mapping table 503.
The central advantage to defining a Switch primitive is a

reduction in the amount of input that designers are required to
enter. In particular, to specify a comparable 1-bit LDial, a
designer would be required to enter a configuration specifi
cation statement of the form:

LDial mode (signal) =
{ON =>b1;
OFF =>bO

A Switch performing the same function, on the other hand,
can be specified with the configuration specification State
ment:

Switch mode (signal);
Although the amount of data entry eliminated by the use of
Switches is not particularly significant when only a single
Switch is considered, the aggregate reduction in data entry is
significant when the thousands of Switches in a complex
digital design are taken into consideration.

Referring now to FIG. 6A, there is depicted a diagrammatic
representation of an Integer Dial (“IDial”) in accordance with
a preferred embodiment of the present invention. Like an
LDial, an IDial directly specifies the value loaded into each of
one or more configuration latches 605 by indicating within
mapping table 603 a correspondence between each input
value received at an input 602 and an output value for each
output 604. However, unlike LDials, which can only receive
as legal input values the enumerated input values explicitly
set forth in their mapping tables 503, the legal input value set
of an IDial includes all possible integer values within the bit
size of output 604. (Input integer values containing fewer bits
than the bit size of output(s) 604 are right justified and
extended with Zeros to fill all available bits.) Because it would
be inconvenient and tedious to enumerate all of the possible
integer input values in mapping table 603, mapping table 603
simply indicates the manner in which the integer input value
received at input 602 is applied to the one or more outputs
604.

IDials are ideally suited for applications in which one or
more multi-bit registers must be initialized and the number of
legal values includes most values of the register(s). For

US 7,805,695 B2
15

example, if a 4-bit configuration register comprising 4 con
figuration latches and an 11-bit configuration register com
prising 11 configuration latches were both to be configured
utilizing an LDial, the designer would have to explicitly enu
merate up to 2' input values and the corresponding output bit
patterns in the mapping table of the LDial. This case can be
handled much more simply with an IDial utilizing the follow
ing configuration specification statement:

IDial cnt value (sig1(0... 3), sig2(0... 10));
In the above configuration specification statement, “IDial'
declares the configuration entity as an IDial, “cnt value' is
the name of the IDial, “sig1' is a 4-bit signal output by the
4-bit configuration register and 'sig2' is an 1'-bit signal
coupled to the 1'-bit configuration register. In addition, the
ordering and number of bits associated with each of sig1 and
sig2 indicate that the 4 high-order bits of the integer input
value will be utilized to configure the 4-bit configuration
register associated with sig1 and the 11 lower-order bits will
be utilized to configure the 11-bit configuration register asso
ciated with sig2. Importantly, although mapping table 603
indicates which bits of the integer input values are routed to
which outputs, no explicit correspondence between input val
ues and output values is specified in mapping table 603.

IDials may also be utilized to specify the same value for
multiple replicated configuration registers, as depicted in
FIG. 6B. In the illustrated embodiment, an IDial 610, which
can be described as an IDial “splitter, specifies the configu
ration of three sets of replicated configuration registers each
comprising 15 configuration latches 605 based upon a single
15-bit integer input value. An exemplary configuration speci
fication statement for instantiating IDial 610 may be given as
follows:

IDial cnt value(AO.sig1 (0.7), A.O.sig2(8.14):
A1.sig1 (0.7), A1.sig2(8.14):
A3..sig1 (0.7), A3...sig2(8.14)

In the above configuration specification statement, “IDial'
declares the configuration entity as an IDial, and 'cnt value'
is the name of the IDial. Following the IDial name are three
scope fields separated by semicolons (“:”). Each scope field
indicates how the bits of the input integer value are applied to
particular signals. For example, the first scope field specifies
that the 8 high-order bits of the integer input value will be
utilized to configure the 8-bit configuration register associ
ated with the signal A0.sig1 and the 7 lower-order bits will be
utilized to configure the 7-bit configuration register associ
ated with A0.sig2. The second and third scope fields specify
that the corresponding configuration registers within design
entities A1 and A3 will be similarly configured. Importantly,
the integer input bits can be allocated differently in each
Scope field as long as the total number of bits specified in each
Scope field is the same.

Although the configuration of a digital design can be fully
specified utilizing LDials alone or utilizing LDials and IDials,
in many cases it would be inefficient and inconvenient to do
so. In particular, for hierarchical digital designs such as that
illustrated in FIG. 5C, the use of LDials and/or IDials alone
would force many Dials to higher levels of the design hierar
chy, which, from an organizational standpoint, may be the
responsibility of a different designer or design group than is
responsible for the design entities containing the configura
tion latches controlled by the Dials. As a result, proper con

10

15

25

30

35

40

45

50

55

60

65

16
figuration of the configuration latches would require not only
significant organizational coordination between design
groups, but also that designers responsible for higher levels of
the digital design learn and include within their HDL files
details regarding the configuration of lower level design enti
ties. Moreover, implementing Dials at higher levels of the
hierarchy means that lower levels of the hierarchy cannot be
independently simulated since the Dials controlling the con
figuration of the lower level design entities are not contained
within the lower level design entities themselves.

In view of the foregoing, the present invention recognizes
the utility of providing a configuration entity that Supports the
hierarchical combination of Dials to permit configuration of
lower levels of the design hierarchy by lower-level Dials and
control of the lower-level Dials by one or more higher-level
Dials. The configuration specification language of the present
invention terms a higher-level Dial that controls one or more
lower-level Dials as a Control Dial (“CDial”).

Referring now to FIG. 7A, there is depicted a diagrammatic
representation of a CDial 700a in accordance with the present
invention. CDial 700a, like all Dials, preferably has a single
input 702, one or more outputs 704, and a mapping table 703
that maps each input value to a respective associated output
value for each output 704. Unlike LDials and IDials, which
directly specify configuration latches, a CDial 700 does not
directly specify configuration latches. Instead, a CDial 700
controls one or more other Dials (i.e., CDials and/or LDials
and/or IDials) logically coupled to CDial 700 in an n-way
“Dial tree' in which each lower-level Dial forms at least a
portion of a “branch' that ultimately terminates in “leaves” of
configuration latches. Dial trees are preferably constructed so
that no Dial is instantiated twice in any Dial tree.

In the exemplary embodiment given in FIG. 7A, CDial
700a receives at input 702 an enumerated input value (i.e., a
string) among a set of legal values including 'A'. ... , 'N'. If
CDial 700a (oran LDial or IDial) is a top-level Dial (i.e., there
are no Dials “above' it in a Dial tree), CDial 700a receives the
enumerated input value directly from Software (e.g., simula
tion software or firmware). Alternatively, if CDial 700a forms
part of a “branch” of a dial tree, then CDial 700a receives the
enumerated input value from the output of another CDial. For
each legal enumerated input value that can be received at
input 702, CDial 700a specifies a selected enumerated value
orbit value for each connected Dial (e.g., Dials 700b, 500 and
600) in mapping table 703. The values in mapping table 703
associated with each output 704 are interpreted by ECAD
system 35 in accordance with the type of lower-level Dial
coupled to the output 704. That is, values specified for LDials
and CDials are interpreted as enumerated values, while values
specified for IDials are interpreted as integer values. With
these values, each of Dials 700b, 500 and 600 ultimately
specifies, either directly or indirectly, the values for one or
more configuration latches 705.

With reference now to FIG. 7B, there is illustrated another
diagrammatic representation of a simulation model contain
ing a Dial tree including a top-level CDial that controls mul
tiple lower-level LDials. As indicated by prime notation,
simulation model 300" of FIG. 7B includes the same design
entities arranged in the same hierarchical relation as simula
tion model 300 of FIG.3 and contains the same configuration
latches and associated signals as simulation model 300" of
FIG.S.C.
As shown, simulation model 300" of FIG. 7B includes a

top-level CDial 710 associated with top-level design entity
302. Simulation model 300" further includes four LDials
712a, 712b, 714 and 716. LDial 712a, which is associated
with entity instantiation A0304a, controls the signal states of

US 7,805,695 B2
17

each signal sig1 514a, which is determined by a respective
configuration latch 512a, and the signal state of signal sig2
522a, which is determined by configuration latch 520a. LDial
712b, which is a replication of LDial 712a associated with
entity instantiation A1304b, similarly controls the signal
states of each signal sig1 514b, which is determined by a
respective configuration latch 512b, and the signal state of
signal sig2 522b, which is determined by configuration latch
520b. LDial 714, which is associated with top-level entity
302, controls the signal state of signal sig4 532, which is
determined by configuration latch 530. Finally, LDial 716,
which is associated with entity instantiation FPU0314, con
trols the signal state of signal sig3 536, which is determined
by configuration latch 534. Each of these four LDials is
controlled by CDial 710 associated with top-level entity 302.
As discussed above with respect to FIGS. 4A and 4B,

CDial 710 and each of the four LDials depicted in FIG. 7B is
instantiated within the associated design entity by embedding
a configuration specification statement (or a configuration file
reference statement pointing to a configuration file containing
a configuration specification statement) within the HDL file
of the associated design entity. An exemplary configuration
specification statement utilized to instantiate each Dial shown
in FIG. 7B is given below:

CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO,
FPUO.BUSRATIO,

BUSRATIO)=
{2:1 => 2:1, 2:1, 2:1, 2:1;
3:1 => 3:1, 3:1, 3:1, 3:1;

4:1 => 4:1, 4:1, 4:1, 4:1
}:

LDial Buskatio (AO.sig1, A1.sig1, B.C.sig2(0.5)) =
{2:1 => Ob0, Ob0, 0x00;
3:1 => Ob1, Ob1, 0x01;

4:1 => Ob1, Ob1, 0x3F,
}:

LDial BusPatio (sig3) =
{2:1 => Ob0;
3:1 => Ob0;
4:1 => Ob1

}:
LDial BusPatio (sig4(0.3)) =

{2:1 => 0x0;
3:1 => 0x1;
4:1 => OxF

}:

By implementing a hierarchical Dial tree in this manner,
several advantages are realized. First, the amount of software
code that must be entered is reduced since the automatic
replication of LDials 712 within FXU entity instantiations
304a and 304b allows the code specifying LDials 712 to be
entered only once. Second, the organizational boundaries of
the design process are respected by allowing each designer
(or design team) to specify the configuration of signals within
the design entity for which he is responsible. Third, coding of
upper level Dials (i.e., CDial 710) is greatly simplified, reduc
ing the likelihood of errors. Thus, for example, the CDial and
LDial collection specified immediately above performs the
same function as the “large LDial specified above with ref
erence to FIG. 5C, but with much less complexity in any one
Dial.
Many Dials, for example, Switches utilized to disable a

particular design entity in the event an uncorrectable error is
detected, have a particular input value that the Dial should
have in nearly all circumstances. For such Dials, the configu
ration specification language of the present invention permits
a designer to explicitly specify in a configuration specifica

10

15

25

30

35

40

45

50

55

60

65

18
tion statement a default input value for the Dial. In an exem
plary embodiment, a Default value is specified by including
“=default value' following the specification of a Dial and
prior to the concluding semicolon. For example, a default
value for a CDial, can be given as follows:

CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO,
FPUO.BUSRATIO,

BUSRATIO)=
(2:1 => 2:1, 2:1, 2:1, 2:1;
3:1 => 3:1, 3:1, 3:1, 3:1;

4:1 => 4:1, 4:1, 4:1, 4:1
} = 2:1:

It should be noted that for CDials and LDials, the specified
default value is required to be one of the legal enumerated
values, which are generally (i.e., except for Switches) listed in
the mapping table. For Switches, the default value must be
one of the predefined enumerated values of “ON” and "OFF".
A default value for an IDial can similarly be specified as

follows:

IDial cnt value(AO.sig1 (0.7), A.O.sig2(8.14):
A1.sig1 (0.7), A1.sig2(8.14):
A3..sig1 (0.7), A3...sig2(8.14)

) = 0x7FFF;

In this case, a constant, which can be given in hexadecimal,
decimal orbinary format, provides the default output value of
each signal controlled by the IDial. In order to apply the
specified constant to the indicated signal(s), high order bits
are truncated or padded with Zeros, as needed.
The configuration specification language of the present

invention also permits control of the time at which particular
default values are applied. Control of the application of
defaults is important, for example, in simulating or executing
in hardware the boot sequence for an integrated circuit. Dur
ing the initial stages of the boot sequence, the clock signals to
different sections of the integrated circuit may be started at
different times, meaning that latches in different sections of
the integrated circuit must be loaded at different times in
accordance with the specified Dial default values.

In accordance with the present invention, control of the
timing of the application of default values is Supported
through the association of one or more phase identifiers (IDS)
with a default value. Phase IDs are strings that label collec
tions of Dials to which default values should be applied
substantially concurrently. Multiple phase IDs may be asso
ciated with a particular Dial to promote flexibility. For
example, in different system configurations, the boot
sequence for a constituent integrated circuit may be different.
Accordingly, it may be necessary or desirable to apply a
default value to a particular Dial during different phases,
depending upon the system configuration.

In one exemplary syntax one or more phase IDs (e.g.,
phaseido and phaseid1) can optionally be specified in a
comma delimited list enclosed by parenthesis and following a
default declaration in a Dial declaration statement as follows:

US 7,805,695 B2
19

CDial BusRatio (FXUO.BUSRATIO, FXU1.BUSRATIO,
FPUO.BUSRATIO,

BUSRATIO)=
{2:1 => 2:1, 2:1, 2:1, 2:1;
3:1 => 3:1, 3:1, 3:1, 3:1;

4:1 => 4:1, 4:1, 4:1, 4:1
} = 2:1 (phaseidO, phaseid1);

It is preferably an error to specify a phase ID for a Dial for
which no default value is specified, and as noted above, the
specification of any phase ID is preferably entirely optional,
as indicated by the exemplary CDial and IDial declarations
given previously.
The use of default values for Dials is subject to a number of

rules. First, a default value may be specified for any type of
Dial including LDials, IDials (including those with split out
puts) and CDials. Default values are preferably not supported
for Dial groups (which are discussed below with respect to
FIGS. 11A-11B). Second, if default values are specified for
multiple Dials in a multiple-level Dial tree, only the highest
level default value affecting each “branch of the Dial tree is
applied (including that specified for the top-level Dial), and
the remaining default values, if any, are ignored. Despite this
rule, it is nevertheless beneficial to specify default values for
lower-level Dials in a Dial tree because the default values may
be applied in the event a smaller portion of a model is inde
pendently simulated, as discussed above. In the event that the
combination of default values specified for lower-level Dials
forming the “branches” of a Dial tree do not correspond to a
legal output value set for a higher-level Dial, the compiler will
flag an error. Third, a default value is overridden when a Dial
receives an input to actively set the Dial.
By specifying default values for Dials, a designer greatly

simplifies use of Dials by downstream organizational groups
by reducing the number of Dials that must be explicitly set for
simulation or hardware configuration. In addition, as dis
cussed further below, use of default values assists in auditing
which Dials have been actively set.

In at least one embodiment of the present invention, the
configuration specification language of the present invention
Supports the definition and use of an additional construct
referred to hereinas a Register. A Register associates a logical
name with an arbitrary collection of latches, thus permitting
the values of the latches to be set and read by reference to the
logical name. In this regard, Registers are similar to the Dials
described above. However, unlike the LDials and IDials
described above, Registers can include latches that are refer
enced by other Dials, such as LDials and IDials (as well as
latches that are not referenced by any Dial).

Referring now to FIG. 7C, there is illustrated a diagram
matic representation of a Register 720 in accordance with the
present invention. Register 720 has an input 722 and one or
more one-bit outputs 724 (e.g., outputs 724a-724h). As
shown, outputs 724a–724h of Register 720 are each logically
coupled to a respective one of one-bit latches 705a-705h. Of
these latches 705, latches 705a-705b are logically coupled to
a Dial tree having CDial 700 as the top-level Dial. In addition,
latches 705c-705d are logically coupled to an LDial 500, and
latches 705e-705f are logically coupled to an IDial 600.
Latches 705g-705h are not referenced by any Dial.
The illustrated arrangement of Register 720 and Dials 500,

600 and 700 advantageously permits latches 705a-705f to be
set and read utilizing the most convenient conceptualization
of latches 705a-705f. It is often the case that a collection of

10

15

25

30

35

40

45

50

55

60

65

20
latches, such as latches 705a-705f. are conveniently concep
tualized as a number of different subfields, which may, for
example, derive their values from different sources, represent
different data types (e.g., integer or enumerated value), have
different ranges of legal values, etc. Thus, by employing
multiple Dials to delineate some or all of the subfields, the
legal values and data types of the subfields can be efficiently
documented within the code defining an HDL model.
On the other hand, certain constituencies involved in the

development of a digital design may find it more convenient
to conceptualize and access latches 705a-705h as a mono
lithic entity, which in this case is Register 720. For example,
because code that addresses latches 705a-705f as a plurality
of different subfields and therefore accesses latches 705a
705f via Dials 500, 600, 700 is larger than code that addresses
latches 705a-705h as a monolithic register, firmware devel
opers and others interested in minimizing the size of the code
image may prefer to access latches 705a-705h as Register 720
and leave it to the human user to perform the combination of
the Subfields needed to obtain the sequence of bits comprising
the Register value.

Although a wide variety of syntax may be employed to
declare a Register, exemplary syntax for a Register declara
tion statement utilized to declare a Register within an HDL
file 400 or configuration file 414 may be given as follows:
REGISTER my reg(x.y.signal(0 to 4), signal2(0 to 6));

In this exemplary declaration statement, the keyword "REG
ISTER’ identifies the statement as a register declaration,
“my reg” is the name of the Register, and “x.y.signal(0 to 4)
and “signal2(0 to 6) are output signals of the set of latches
included in the Register. (Of course, any arbitrary number of
signals can be included within the Register.)
As with the Dials described above, a variety of rule sets can

be constructed to define the permitted uses and functions of
Registers. In one exemplary embodiment, the following rules
are enforced for Registers by the model build process
described below with respect to FIG. 8:

(1) Registers do not support default values;
(2) Registers can reference latches also referenced by

Dials;
(3) A Register cannot reference a latch (or signal) refer

enced by another Register;
(4) Registers cannot be referenced by a Dial (e.g., CDial)

and are therefore top-level entities:
(5) Registers can reference latches not referred to by any

Dial (and in a degenerate case, all latches referenced by
a Register may be referenced only by that Register).

As will be appreciated by those skilled in the art, other
embodiments of the present invention may employ a different
rule sets, which may support default values for register sets,
hierarchical arrangement of Registers, and other alternative
or additional rules.

In addition to defining syntax for configuration specifica
tion statements specifying Dials and Registers, the configu
ration specification language of the present invention Sup
ports at least two additional HDL semantic constructs:
comments and attribute specification statements. A comment,
which may have the form:

BusRatio.comment="The bus ratio Dial configures the cir
cuit in accordance with a selected processor/intercon
nect frequency ratio’;

permits designers to associate arbitrary strings delimited by
quotation marks with particular Dial names. As discussed
below with reference to FIG. 8, these comments are processed
during compilation and included within a configuration docu

US 7,805,695 B2
21

mentation file in order to explain the functions, relationships,
and appropriate settings of the Dials.

Attribute specification statements are statements that
declare an attribute name and attribute value and associate the
attribute name with a particular entity name. For example, an
attribute specification statement may have the form:

BusPatio.attribute (myattribute)=scom57(0:9);

In this example, “BusRatio.attribute' declares that this state
ment is an attribute specification statement associating an
attribute with a Dial having “BusRatio” as its Dial name,
“myattribute” is the name of the attribute, and “scom57(0.9)
is a string that specifies the attribute value. Attributes Support
custom features and language extensions to the base configu
ration specification language.

Referring now to FIG. 8, there is depicted a high level flow
diagram of a model build process in which HDL files con
taining configuration statements are compiled to obtain a
simulation executable model and a simulation configuration
database for a digital design. The process begins with one or
more design entity HDL source code files 800, which include
configuration specification statements and/or configuration
file reference Statements, and, optionally, one or more con
figuration specification reference files 802. HDL compiler
804 processes HDL file(s) 800 and configuration specifica
tion file(s) 802, if any, beginning with the top level entity of a
simulation model and proceeding in a recursive fashion
through all HDL file(s) 800 describing a complete simulation
model. As HDL compiler 804 processes each HDL file 800,
HDL compiler 804 creates “markers' in the design interme
diate files 806 produced in memory to identify configuration
statements embedded in the HDL code and any configuration
specification files referenced by an embedded configuration
file reference statement.

Thereafter, the design intermediate files 806 in memory are
processed by a configuration compiler 808 and model build
tool 810 to complete the model build process. Model build
tool 810 processes design intermediate files 806 into a simu
lation executable model 816, that when executed, models the
logical functions of the digital design, which may represent,
for example, a portion of an integrated circuit, an entire inte
grated circuit or module, or a digital system including mul
tiple integrated circuits or modules. In this processing, model
build tool 810 preferably generates an m-way tree indicating
the hierarchical relationships between the design entities
comprising the simulation model.

Configuration compiler 808 processes the configuration
specification statements marked in design intermediate files
806 and creates from those statements a configuration docu
mentation file 812 and a configuration database 814. Configu
ration documentation file 812 lists, in human-readable for
mat, information describing the Dials associated with the
simulation model. The information includes the Dials
names, their mapping tables, the structure of Dial trees, if any,
instance information, etc. In addition, as noted above, con
figuration documentation file 812 includes strings contained
in comment statements describing the functions and settings
of the Dials in the digital design. In this manner, configuration
documentation suitable for use with both a simulation model
and a hardware implementation of a digital design is aggre
gated in a “bottom-up’ fashion from the designers respon
sible for creating the Dials. The configuration documentation
is then made available to all downstream organizational
groups involved in the design, simulation, laboratory hard
ware evaluation, and commercial hardware implementation
of the digital design.

10

15

25

30

35

40

45

50

55

60

65

22
Configuration database 814 preferably contains the m-way

tree generated by model build tool 810 that describes the
hierarchical relationships of the design entities within simu
lation executable model 816, as well as a number of data
structures pertaining to Dials and other configuration entities.
As described in detail below, these data structures include
Dial data structures describing Dial entities, latch data struc
tures, and Dial instance data structures. These data structures
associate particular Dial inputs with particular configuration
values used to configure the digital design (i.e., simulation
executable model 816). In a preferred embodiment, the con
figuration values can be specified in terms of either signal
states or configuration latch values, and the selection of which
values are used is user-selectable. Configuration database 814
is accessed via Application Programming Interface (API)
routines during simulation of the digital design utilizing
simulation executable model 816 and is further utilized to
generate similar configuration databases for configuring
physical realizations of the digital design. In a preferred
embodiment, the APIs are designed so that only top-level
Dials (i.e., LDials, IDials or CDials without a CDial logically
“above' them) can be set and all Dial values can be read.
As described above, the configuration specification lan

guage of the present invention advantageously permits the
specification of the output values of LDials and IDials by
reference to signal names (e.g., "sig1'). As noted above, a key
motivation for this feature is that designers tend to think in
terms of configuring operative signals to particular signal
states, rather than configuring the associated configuration
latches. In practice, however, a signal that a designer desires
to configure to a particular state may not be directly connected
to the output of an associated configuration latch. Instead, a
signal to be configured may be coupled to an associated
configuration latch through one or more intermediate circuit
elements, such as buffers and inverters. Rather than burden
ing the designer with manually tracing back each config
urable signal to an associated configuration latch and then
determining an appropriate value for the configuration latch,
configuration compiler 808 automatically traces back a speci
fied signal to the first storage element (i.e., configuration
latch) coupled to the signal and performs any necessary inver
sions of the designer-specified signal state value to obtain the
proper value to load into the configuration latch.

With reference now to FIG.9A, there is illustrated a portion
of a digital design including an LDial 900 that controls the
states of a plurality of signals 904a-904e within the digital
design. When configuration compiler 808 performs a trace
back of signal 904a, no inversion of the designer-specified
signal states is required because signal 904a is directly con
nected to configuration latch 902a. Accordingly, configura
tion compiler 808 stores into configuration database 814 the
designer-specified values from the configuration specifica
tion statement of LDial 900 as the values to be loaded into
configuration latch 902a. Traceback of signal 904b to con
figuration latch902b similarly does not result in the inversion
of any designer-specified values from the configuration speci
fication statement of LDial 900 because the only intervening
element between signal 904b and configuration register 902b
is a non-inverting buffer 906.

Configuration latches, such as configuration latches 902c
and 902d. are frequently instantiated by designers through
inclusion in an HDL file 800 of an HDL statement referencing
a latch primitive in an HDL design library. The latch entity
903a, 903b inserted into the simulation executable model in
response to such HDL library references may include invert
ers, such as inverters 908,910, which are not explicitly “vis
ible' to the designer in the HDL code. The automatic trace

US 7,805,695 B2
23

back performed by configuration compiler 808 nevertheless
detects these inverters, thus preventing possible configuration
COS.

Accordingly, when performing a traceback of signal 904c.
configuration compiler 808 automatically inverts the 5
designer-specified configuration value specified for signal
904c before storing the configuration value for configuration
latch902c in configuration database 814 because of the pres
ence of an inverter 908 between signal 904c and configuration
latch 902c. When configuration compiler 808 performs tra- 10
ceback of signal 904d, however, configuration compiler 808
does not invert the designer-specified signal state values
despite the presence of inverters 910,914 and buffer 912 in
the signal path because the logic is collectively non-inverting.
It should be noted that configuration compiler 808 can accu- 15
rately process both “hidden' inverters like inverter 910 and
explicitly declared inverters like inverter 914.

FIG. 9A finally illustrates a signal 904e that is coupled to
multiple configuration latches 902e and 902f through an
intermediate AND gate 916. In cases like this in which the 20
traceback process detects fanout logic between the specified
signal and the closest configuration latch, it is possible to
configure configuration compiler 808 to generate appropriate
configuration values for configuration latches 902e, 902f
based upon the designer-specified signal state values for sig- 25
nal 904e. However, it is preferable if configuration compiler
808 flags the configuration specification statement for LDial
900 as containing an error because the compiler-selected
values for configuration latches 902e, 902fmay affect other
circuitry that receives the configuration values from configu- 30
ration latches 902 in unanticipated ways.

Referring now to FIG. 9B, there is depicted a high level
logical flowchart of the traceback process implemented by
configuration compiler 808 for each signal name specified in
a configuration specification statement. As shown, the pro- 35
cess begins at block 920 and then proceeds to block 922–924,
which illustrate configuration compiler 808 initializing an
inversion count to Zero and then locating the signal identified
by the signal name specified in a configuration specification
Statement. 40

The process then enters a loop comprising blocks 926-936,
which collectively represent configuration compiler 808 trac
ing back the specified signal to the first latch element in the
signal path. Specifically, as illustrated at blocks 926-930,
configuration compiler 808 determines whether the next 45
“upstream circuit element in the signal path is a latch (926),
buffer (928) or inverter (930). If the circuit element is a latch,
the process exits the loop and passes to block 940, which is
described below. If, however, the circuit element is a buffer,
the process passes to block 934, which illustrates configura- 50
tion compiler moving to the next upstream circuit element to
be processed without incrementing the inversion count. If the
circuit element is an inverter, the process passes to blocks 936
and 934, which depicts incrementing the inversion count and
then moving to the next upstream circuit element to be pro- 55
cessed. In this manner, configuration compiler traces back a
specified signal to a configuration latch while determining a
number of inversions of signal state implemented by the
circuit elements in the path. As noted above, if configuration
compiler 808 detects a circuit element other than a buffer or 60
inverter in the signal path, configuration compiler 808 pref
erably flags an error, as shown at block 946. The process
thereafter terminates at block 950.

Following detection of a configuration latch at block 926,
configuration compiler 808 determines whether the inversion 65
count is odd or even. As shown at blocks 940-944, if the
inversion count is odd, configuration compiler inverts the

24
designer-specified configuration values for the signal at block
942 prior to inserting the values into configuration database
814. No inversion is performed prior to inserting the configu
ration values into configuration database 814 if the inversion
count is even. The process thereafter terminates at block 950.
As has been described, the present invention provides a

configuration specification language that permits a designer
of a digital system to specify a configuration for the digital
system utilizing configuration statements embedded in the
HDL design files describing the digital system. The configu
ration statements logically instantiate within the digital
design one or more Dials, which provide configuration values
for the digital design in response to particular inputs. The
Dials, like the design entities comprising the digital design,
may be hierarchically arranged. The configuration specifica
tion statements are compiled together with the HDL files
describing the digital design to produce a configuration data
base that may be accessed to configure a simulation execut
able model or (after appropriate transformations) a physical
realization of the digital design. The compilation of the con
figuration specification statements preferably supports a tra
ceback process in which designer-specified configuration
values for a signal are inverted in response to detection of an
odd number of inverters coupled between the signal and an
associated configuration latch.

With reference again to FIG. 5C, recall that an exemplary
configuration specification statement for LDial 524 includes
a parenthetical signal enumeration of the form:

It should be noted that the signal enumeration section of the
configuration specification statement individually, hierarchi
cally and explicitly enumerates the signal identifier of each
signal instance configured by the Dial, beginning from the
scope of the design entity with which the Dial is associated
(which by convention is the design entity in whose HDL file
the configuration specification Statement or configuration ref
erence statement instantiating the Dial is embedded). This
syntax is referred to herein as a “full expression of a signal
identifier. Employing “full expression' syntax in the signal
enumeration section of the configuration specification State
ment for an LDial or IDial or in the Dial enumeration section
of the configuration specification statement of a CDial
requires the designer to know and correctly enter the hierar
chical identifier for each instance of a signal (or lower-level
Dial) controlled by the Dial. Consequently, if a new instance
of the same signal (or lower-level Dial) were later added to the
digital design, the designer must carefully review the configu
ration specification statement of the Dial(s) referencing other
instances of the same signal (or Dial) and update the signal (or
Dial) enumeration section to include the full expression of the
newly added instance.

In order to reduce the amount of input required to input the
signal (or Dial) enumeration sections of configuration speci
fication statements and to reduce the burden of code mainte
nance as new signal and Dial instances are added to the digital
design, an ECAD system 35 in accordance with the present
invention also supports a "compact expression' syntax for the

US 7,805,695 B2
25

signal (or Dial) enumeration sections of configuration speci
fication statements. This syntax is referred to herein more
specifically as “compact signal expression' when applied to
the configuration specification statements of LDials and IDi
als and is referred to as “compact Dial expression” when
referring to the configuration specification statements of CDi
als.

In a compact expression of a signal or Dial enumeration, all
instances of an entity within a selected scope for which a
common configuration is desired can be enumerated with a
single identifier. For example, in FIG. 5C, if the designer
wants a common configuration for all four instantiations of
signal sig1 514, the designer could enumerate all four instan
tiations in the configuration specification statement of LDial
524 with the single compact signal expression "A. sig1'.
where the bracketed term is the name of the entity in which the
signal of interest occurs. In compact expressions, the default
Scope of the expression is implied as the scope of the design
entity (in this case top-level entity 302) with which the Dial is
associated. The identifier “A.sig1' thus specifies all four
instantiations of signal sig1 514 within A entity instantiations
304 within the default scope of top-level entity 302.
The scope of the identifier in a compact expression can

further be narrowed by explicitly enumerating selected levels
of the design hierarchy. For example, the compact expression
“FXU1.A.sig1 refers only to signal sig1 instantiations
514b0 and 514b1 within FXU1 entity instantiation 304b, but
does not encompass signal sig1 instantiations 514a.0 and
514a1 within FXU0 entity instantiation 304a.
Of course, when only a single instance of a signal or Dial is

instantiated at higher levels of the design hierarchy, the com
pact expression and the full expression will require approxi
mately the same amount of input (e.g., “FPU0.sig3 versus
“FPU).sig3” to identify signal sig3536). However, it should
be noted that if another FPU entity 314 were later added to
simulation model 300", the compact expression of the iden
tification would advantageously apply to any later added FPU
entities within the scope of top-level entity 302.

Utilizing compact expression, the configuration specifica
tion statement for LDial 524 can now be rewritten more
compactly as follows:

LDial bus ratio (A). SIG1, C.SIG2(0.5),
FPUO.SIG3, SIG4(0.3)

If the concatenation syntax described above is applied to the
mapping table, the mapping table can be further reduced to:

In the concatenation syntax, the signal values are specified in
the mapping table with a single respective bit field for each
entity identifier, irrespective of the number of actual entity
instances. For example, all instances encompassed by “A
..sig1' are represented by 1 bit of the specified configuration

10

15

25

30

35

40

45

50

55

60

65

26
value, all instances encompassed by “C.sig2' are repre
sented by 6 bits of the specified configuration value, the single
instance identified by “FPU0.sig3” is represented by 1 bit of
the specified configuration value, and the single instance of
“sig4(0 . . . 3) is represented by 4 bits of the specified
configuration value. Thus, utilizing concatenation syntax, the
21 bits collectively specified by LDial 524 can be specified by
an equivalent 12-bit pattern.
Compact Dial expressions are constructed and parsed by

the compiler in the same manner as compact signal expres
sions. For example, the configuration specification statement
for CDial 710 of FIG. 7B can be rewritten utilizing compact
Dial expression as follows:

CDial BusRatio (FXU).BUSRATIO, FPU). BUSRATIO, BUSRATIO)=
{2:1 => 2:1, 2:1, 2:1;
3:1 => 3:1, 3:1, 3:1;
4:1 => 4:1, 4:1, 4:1

Again, this configuration specification statement advanta
geously permits CDial 710 to automatically control any addi
tional LDials named "Bus ratio’ that are latter added to simu
lation model 300" through the instantiation of additional
FXU entities 304 or FPU entities 314 without any code modi
fication.

Referring now to FIG. 10, there is depicted a high level
logical flowchart of an exemplary method by which configu
ration compiler 808 parses each signal or Dial identification
within a configuration specification statement in accordance
with the present invention. As described above, each signal or
Dial identification is constructed hierarchically from one or
more fields separated by periods (“ ”). The last field specifies
an instance name of a signal (e.g., "sig1') or Dial (e.g.,
“Bus Ratio), and the precedingfields narrow the scope from
the default scope, which by convention is the scope of the
design entity with which the Dial is associated.
As shown, the process begins at block 1000 and then pro

ceeds to block 1002, which illustrates configuration compiler
808 determining whether the first or current field of the signal
or Dial identification contains an entity identifier enclosed in
brackets (e.g., “A”), that is, whether the identification is a
compact expression. If so, the process passes to block 1020,
which is described below. If not, configuration compiler 808
determines at block 1004 whether the identification is a full
expression, by determining whether the first or current field of
the identification is the last field of the identification. If so, the
signal or Dial identification is a full expression, and the pro
cess passes to block 1010. If, on the other hand, the current
field of the identification is not the last field, configuration
compiler 808 narrows a current scope to the design entity
instantiation identified in the current field of the identifica
tion, as depicted at block 1006. For example, if configuration
compiler 808 were processing the identification
“FPU0.SIG3' within the configuration specification state
ment of CDial 710 of FIG. 7B, configuration compiler 808
would narrow the scope from the default scope of top entity
302 to FPU entity instantiation 314. If the entity instantiation
indicated by the current field of the identification exists, as
shown at block 1008, the process returns to block 1002 after
updating the current field to be the next field, as shown at
block 1009. If, however, the entity instantiation specified by
the current field does not exist within the current scope, con
figuration compiler 808 flags an error at block 1032 and
terminates processing of the signal or Dial identification.

US 7,805,695 B2
27

Referring again to block 1004, when configuration com
piler 808 detects that it has reached the last field of a full
expression, the process shown in FIG. 10 passes from block
1004 to block 1010. Block 1010 illustrates configuration
compiler 1010 attempting to locate within the current scope
the single signal or Dial instance having a name matching that
specified in the last field of the signal or Dial identification. If
configuration compiler 808 determines at block 1012 that no
matching instance is found within the current scope, the pro
cess passes to block 1032, and configuration compiler 808
flags an error. However, if configuration compiler 808 locates
the matching signal or Dial instance, then configuration com
piler 808 makes an entry in configuration database 814 bind
ing the signal or Dial instance to the parameters specified in
the mapping table of the configuration specification statement
of the Dial being processed, as shown at block 1014. There
after, processing of the signal or Dial identification terminates
at block 1030.

With reference now to block 1020 and following blocks,
the processing of a signal or Dial identification employing
compact expression will now be described. Block 1020
depicts configuration compiler 808 attempting to locate,
within each of one or more instances in the current scope of
the entity indicated by the bracketed field, each Dial or signal
instance matching that specified in the signal or Dial identi
fication. For example, when processing the compact expres
sion “FXU1A.sig1' for simulation model 300" of FIG.7B,
configuration compiler 808, upon reaching the field “A”.
searches FXU1 for instantiations of entity A306, and upon
finding entity instantiations 306a0 and 306a1, searches
within each of these two entity instantiations to locate signals
instantiations sig1 514a.0 and 514a1. If configuration com
piler 808 determines at block 1022 that no matching signal or
Dial instance is found within the current scope, the process
passes to block 1032, which depicts configuration compiler
808 terminating processing of the signal or Dial identification
after flagging an error. However, if configuration compiler
808 locates one or more matching signal or Dial instances,
then the process passes from block 1022 to block 1024. Block
1024 illustrates configuration compiler 808 making one or
more entries in configuration database 814 binding each
matching signal or Dial instance to the parameters specified
in the mapping table of the configuration specification State
ment of the Dial being processed. Thereafter, processing of
the signal or Dial identification terminates at block 1030.

Utilizing the compact expressions Supported by the present
invention, the amount of code a designer must enter in a
configuration specification statement can be advantageously
reduced. The use of compact expressions not only reduces
input requirements and the likelihood of input errors, but also
simplifies code maintenance through the automatic applica
tion of specified configuration parameters to later entered
instances of signals and Dials falling within a selected Scope.
As described above, every Dial has a one-to-one mapping

between each of its input values and a unique output value of
the Dial. In other words, each input value has a unique output
value different than the output value for any other input value.
For CDials and LDials, the mapping table must explicitly
enumerate each legal input value and its associated mapping.
The requirement that the input values must be explicitly

enumerated in the mapping table limits the overall complex
ity of any given LDial or CDial. For example, consider the
case of an integrated circuit (e.g., a memory controller) con
taining 10 to 20 configuration registers each having between
5 and 20 legal values. In many cases, these registers have
mutual dependencies—the value loaded in one register can
affect the legal possibilities of one or more of the other reg

5

10

15

25

30

35

40

45

50

55

60

65

28
isters. Ideally, it would be convenient to specify values for all
of the registers utilizing a Dial tree controlled by a single
CDial. In this manner, the configuration of all of the 10 to 20
registers could be controlled as a group.

Unfortunately, given the assumptions set forth above, the
10 to 20 registers collectively may have over 300,000 legal
combinations of values. The specification of a CDial in such
a case, although theoretically possible, is undesirable and
practically infeasible. Moreover, even if a looping construct
could be employed to automate construction of the configu
ration specification statement of the CDial, the configuration
specification statement, although informing simulation Soft
ware which input values are legal, would not inform users
how to set a CDial of this size.

In recognition of the foregoing, the configuration specifi
cation language of the present invention provides a “Dial
group' construct. A Dial group is a collection of Dials among
which the designer desires to create an association. The runt
ime APIs utilized to provide Dial input values observe this
association by preventing the individual Dials within a Dial
group from being set individually. In other words, all Dials in
a Dial group must be set at the same time so that individual
Dials are not set independently without concern for the inter
actions between Dials. Because software enforces an obser
vance of the grouping of the Dials forming a Dial group, use
of Dial groups also provides a mechanism by which a
designer can warn the "downstream” user community that an
unstated set of interdependencies exists between the Dials
comprising the Dial group.

With reference now to FIG. 11A, there is illustrated a
diagrammatic representation of a Dial group 1100a. A Dial
group 1100a is defined by a group name 1102 (e.g.,
“GroupG”) and a Dial list 1104 listing one or more Dials or
other Dial groups. Dial groups do not have any inputs or
outputs. The Dials listed within Dial list 1104, which are all
top-level Dials 1110a-1110?, may be LDials, CDials and/or
IDials.

FIG. 11A illustrates that a Dial group 1100a may be imple
mented as a hierarchical Dial group that refers to one or more
other Dial groups 1100b-1100m in its Dial list 1104. These
lower-level Dial groups in turn refer to one or more top-level
Dials 1110g-1110k and 1110m-1110r (or other Dial groups)
in their respective Dial lists.
One motivation for implementing Dial groups hierarchi

cally is to coordinate configuration of groups of Dials span
ning organizational boundaries. For example, considera digi
tal system in which 30 Dials logically belong in a Dial group
and 10 of the Dials are contained within a first design entity
that is the responsibility of a first designer and 20 of the Dials
are contained within a second design entity that is the respon
sibility of a second designer. Without a hierarchical Dial
group, a single Dial group explicitly listing all 30 Dials in its
Dial list 1104 would have to be specified at a higher level of
the design hierarchy encompassing both of the first and sec
ond design entities. This implementation would be inconve
nient in that the designer (or design team) responsible for the
higher-level design entity would have to know all of the
related Dials in the lower-level design entities and specifically
identify each of the 30 Dials in the Dial list 1104 of the Dial
group.
An alternative hierarchical approach would entail creating

a first Dial group containing the 10 Dials within the first
design entity, a second Dial group containing the 20 Dials
within the second design entity, and a third higher-level Dial
group that refers to the first and second Dial groups. Impor
tantly, the Dial list 1104 of the higher-level Dial group must
only refer to the two lower-level Dial groups, thus shielding

US 7,805,695 B2
29

designers responsible for higher levels of the design hierarchy
from low-level details. In addition, code maintenance is
reduced since changing which Dials belong to the two lower
level Dial groups would not affect the Dial list 1104 of the
upper-level Dial group.

Dial groups are subject to a number of rules. First, no Dial
or Dial group may be listed in the Dial list1104 of more than
one Dial group. Second, a Dial group must refer to at least one
Dial or other Dial group in its Dial list1104. Third, in its Dial
list 1104, a Dial group can only refer to Dials or Dial groups
within its scope, which by convention (and like the concept of
Scope as applied to Dials) is that of its associated design entity
(i.e., the design entity itself and any lower level design entity
within the design entity). Fourth, each Dial referred to in a
Dial list 1104 of a Dial group must be a top-level Dial.

Referring now to FIG. 11B, there is depicted an exemplary
simulation model 1120 illustrating the use of Dial groups.
Exemplary simulation model 1120 includes a top-level
design entity 1122 having instantiation identifier “TOP:
TOP’. Within top-level design entity 1122, two design enti
ties 1124 and 1126 are instantiated, which have entity names
FBC and L2, respectively. FBC entity instantiation 1124 in
turn instantiates a Dial instance 1130 having Dial name “C”.
a Zentity instantiation 1132 containing a Dial instance 1134
having Dial name “B”, and two instantiations of entity X
1136, which are respectively named “X0 and “X1. Each
entity X instantiation 1136 contains two entity Y instantia
tions 1138, each further instantiating a Dial instance 1140
having Dial name 'A'. L2 entity instantiation 1126 contains
a Dial instance 1150 having Dial name "D' and two entity L
instantiations 1152, each containing a Dial instance 1154
having Dial name “E”.
As shown, FBC entity instantiation 1124 has an associated

Dial group instance 1160 having a group name “F”. As indi
cated by arrows, Dial group instance 1160 includes each of
Dials instances 1130, 1134 and 1140 within FBC entity
instantiation 1124. L2 entity instantiation 1126 similarly has
an associated Dial group instance 1162 that includes each of
Dial instances 1150 and 1154 within L2 entity instantiation
1126. Both of these Dial group instances in turn belong to a
higher-level Dial group instance 1164 having group name
“H”, which is associated with top-level design entity 1122.

Each Dial group instance is created by including within the
HDL file of the associated design entity an appropriate con
figuration statement. For example, exemplary syntax for con
figuration statements creating Dial groups “F”, “G” and “H”
are respectively given as follows:

GDial F(C, Z.B, Y.A);
GDial G(D, L.E):
GDial H(FBC.F. L2.G):

In each configuration statement, a Dial group is declared by
the keyword “GDial’, which is followed by string (e.g., “F”)
representing the group name. Within the parenthesis follow
ing the group name, the Dial list for the Dial group is speci
fied. As indicated in the configuration statement for Dial
group “H”, the Dial list for a hierarchical Dial group specifies
other Dial groups in the same manner as Dials. It should also
be noted that the compact dial expression syntax discussed
above can be employed in specifying Dials or Dial groups in
the Dial list, as indicated in the configuration statements for
Dial groups “F” and “G”.
Now that basic types of Dials, syntax for their specifica

tion, and the application and Dial groups have been described,

10

15

25

30

35

40

45

50

55

60

65

30
a description of an exemplary implementation of configura
tion database 814 and its use will be provided. To promote
understanding of the manner in which particular Dial instan
tiations (or multiple instantiations of a Dial) can be accessed
in configuration database 814, a nomenclature for Dials
within configuration database 814 will be described.
The nomenclature employed in a preferred embodiment of

the present invention first requires a designer to uniquely
name each Dial specified within any given design entity, i.e.,
the designer cannot declare any two Dials within the same
design entity with the same Dial name. Observing this
requirement prevents name collisions between Dials instan
tiated in the same design entity and promotes the arbitrary
re-use of design entities in models of arbitrary size. This
constraint is not too onerous in that a given design entity is
usually created by a specific designer at a specific point in
time, and maintaining unique Dial names within Such a lim
ited circumstance presents only a moderate burden.

Because it is desirable to be able to individually access
particular instantiations of a Dial entity that may have mul
tiple instantiations in a given simulation model (e.g., due to
replication), use of a Dial name alone is not guaranteed to
uniquely identify a particular Dial entity instantiation in a
simulation model. Accordingly, in a preferred embodiment,
the nomenclature for Dials leverages the unique instantiation
identifier of the associated design entity required by the native
HDL to disambiguate multiple instances of the same Dial
entity with an “extended Dial identifier for each Dial within
the simulation model.
As an aside, it is recognized that some HDLS do not strictly

enforce a requirement for unique entity names. For example,
conventional VHDL entity naming constructs permit two
design entities to share the same entity name, entity name.
However, VHDL requires that such identically named entities
must be encapsulated within different VHDL libraries from
which a valid VHDL model may be constructed. In such a
circumstance, the entity name is equivalent to the VHDL
library name concatenated by a period (“ ”) to the entity name
as declared in the entity declaration. Thus, pre-pending a
distinct VHDL library name to the entity name disambiguates
entities sharing the same entity name. Most HDLS include a
mechanism such as this for uniquely naming each design
entity.

In a preferred embodiment, an extended Dial identifier that
uniquely identifies a particular instantiation of a Dial entity
includes three fields: an instantiation identifier field, a design
entity name, and a Dial name. The extended Dial identifier
may be expressed as a string in which adjacent fields are
separated by a period (“ ”) as follows:

<instantiation identifiers.<design entity name>.<Dial
name

In the extended Dial identifier, the design entity field con
tains the entity name of the design entity in which the Dial is
instantiated, and the Dial name field contains the name
declared for the Dial in the Dial configuration specification
statement. As described above, the instantiation identifier
specified in the instantiation identifier field is a sequence of
instantiation identifiers, proceeding from the top-level entity
of the simulation model to the directancestor design entity of
the given Dial instance, with adjacent instance identifiers
separated by periods (“ ”). Because no design entity can
include two Dials of the same name, the instantiation identi
fier is unique for each and every instance of a Dial within the
model.
The uniqueness of the names in the design entity name field

is a primary distinguishing factor between Dials. By includ
ing the design entity name in the extended Dial identifier,

US 7,805,695 B2
31

each design entity is, in effect, given a unique namespace for
the Dials associated with that design entity, i.e., Dials within
a given design entity cannot have name collisions with Dials
associated with other design entities. It should also be noted
that it is possible to uniquely name each Dial by using the
instantiation identifier field alone. That is, due to the unique
ness of instantiation identifiers, Dial identifiers formed by
only the instantiation identifier field and the Dial name field
will be necessarily unique. However, Such a naming scheme
does not associate Dials with a given design entity. In prac
tice, it is desirable to associate Dials with the design entity in
which they occur through the inclusion of the design entity
field because all the Dials instantiations can then be centrally
referenced without the need to ascertain the names of all the
design entity instantiations containing the Dial.
As noted above, use of extended Dial identifiers permits the

unique identification of a particular instantiation of a Dial and
permits the re-use of design entities within any arbitrary
model without risk of Dial name collisions. For example,
referring again to FIG. 11B, Dial A entity instantiations
1140a0, 1140a1, 1140b0 and 1140b1 can be respectively
uniquely identified by the following extended Dial identifi
CS

FBCXO.Y.O.Y.A

With an understanding of a preferred nomenclature of
Dials, reference is now made to FIG. 12A, which is a dia
grammatic representation of an exemplary format for a con
figuration database 814 created by configuration compiler
808. In this exemplary embodiment, configuration database
814 includes at least four different types of data structures:
Dial definition data structures (DDDS) 1200, Dial instance
data structures (DIDS) 1202, latch data structures 1204 and
top-level pointer array 1206. Configuration database 814 may
optionally include additional data structures, such as Dial
pointer array 1208, latch pointer array 1210, instance pointer
array 1226 and other data structures depicted in dashed-line
illustration, which may alternatively be constructed in vola
tile memory when configuration database 814 is loaded, as
described further below. Generating these additional data
structures only after configuration database 814 is loaded into
Volatile memory advantageously promotes a more compact
configuration database 814.
A respective Dial definition data structure (DDDS) 1200 is

created within configuration database 814 for each Dial or
Dial group in the digital system. Preferably, only one DDDS
1200 is created in configuration database 814 regardless of
the number of instantiations of the Dial (or Dial group) in the
digital system. As discussed below, information regarding
particular instantiations of a Dial described in a DDDS 1200
is specified in separate DIDSs 1202.
As shown, each DDDS 1200 includes a type field 1220

denoting whether DDDS 1200 describes a Dial or Dial group,
and if a Dial, the type of Dial. In one embodiment, the value
set for type field 1220 includes “G” for Dial group, “I” for
integer Dial (IDial), “L” for latch Dial (LDial), and “C” for
control Dial (CDial). DDDS 1200 further includes a name
field 1222, which specifies the name of the Dial or Dial group
described by DDDS 1200. This field preferably contains the
design entity name of the Dial (or Dial group), followed by a
period (“ ”), followed by the name of Dial (or Dial group)
given in the configuration specification Statement of the Dial
(or Dial group). The contents of name field 1222 correspond
to the design entity name and Dial name fields of the extended
dial identifier for the Dial.

10

15

25

30

35

40

45

50

55

60

65

32
DDDS 1200 also includes a mapping table 1224 that con

tains the mapping from the input of the given Dial to its
output(s), if required. For LDials and CDials, mapping table
1224 specifies relationships between input values and output
values much like the configuration specification statements
for these Dials. For Dial groups and IDials not having a split
output, mapping table 1220 is an empty data structure and is
not used. In the case of an IDial with a split output, mapping
table 1220 specifies the width of the replicated integer field
and the number of copies of that field. This information is
utilized to map the integer input value to the various copies of
the integer output fields.

Finally, DDDS 1200 may include an instance pointer array
1226 containing one or more instance pointers 1228a-1228m
pointing to each instance of the Dial or Dial group defined by
the DDDS 1200. Instance pointer array 1226 facilitates
access to multiple instances of a particular Dial or Dial group.
As further illustrated in FIG. 12A, configuration database

814 contains a DIDS 1202 corresponding to each Dial instan
tiation or Dial group instantiation within a digital design.
Each DIDS 1202 contains a definition field 1230 containing a
definition pointer 1231 pointing to the DDDS 1200 of the Dial
for which the DIDS 1202 describes a particular instance.
Definition pointer 1231 permits the Dial name, Dial type and
mapping table of an instance to be easily accessed once a
particular Dial instance is identified.
DIDS 1202 further includes a parent field 1232 that, in the

case of an IDial, CDial or LDial, contains a parent pointer
1233 pointing to the DIDS 1202 of the higher-level Dial
instance, if any, having an output logically connected to the
input of the corresponding Dial instance. In the case of a Dial
group, parent pointer 1233 points to the DIDS 1202 of the
higher-level Dial group, if any, that hierarchically includes
the present Dial group. If the Dial instance corresponding to
a DIDS 1202 is a top-level Dial and does not belong to any
Dial group, parent pointer 1233 in parent field 1232 is a
NULL pointer. It should be noted that a Dial can be a top-level
Dial, but still belong to a Dial group. In that case, parent
pointer 1233 is not NULL, but rather points to the DIDS 1202
of the Dial group containing the top-level Dial.

Thus, parent fields 1232 of the DIDSs 1202 in configura
tion database 814 collectively describe the hierarchical
arrangement of Dial entities and Dial groups that are instan
tiated in a digital design. As described below, the hierarchical
information provided by parent fields 1232 advantageously
enables a determination of the input value of any top-level
Dial given the configuration values of the configuration
latches ultimately controlled by that top-level Dial.

Instance name field 1234 of DIDS 1202 gives the fully
qualified instance name of the Dial instance described by
DIDS 1202 from the top-level design entity of the digital
design. For Dial instances associated with the top-level entity,
instance name field 1234 preferably contains a NULL string.
DIDS 1202 may further include a default field 1229, a

phase ID field 1227, and a instance set field 1239. At compile
time, configuration compiler 808 preferably initially inserts a
default field 1229 into at least each DIDS 1202 for which the
configuration specification statement for the associated Dial
has a default specified. Default field 1229 stores the specified
default value; if no default value is specified, default field
1229 is NULL or is omitted. Configuration compiler 808
Subsequently analyzes configuration database 814 utilizing a
recursive traversal and removes (or set to NULL) the default
field 1229 of any Dial instance that has an ancestor Dial
instance having a default. In this manner, default values of
Dial instances higher in the hierarchy override defaults speci
fied for lower level Dial instances. For each remaining (or

US 7,805,695 B2
33

non-NULL) default field 1229, configuration compiler 808
inserts into the DIDS 1202 a phase ID field 1227 for storing
one or more phase IDs, if any, associated with the default
value. The phase ID(s) stored within phase ID field 1227 may
be specified within a Dial definition statement within an HDL
file 800 or configuration specification file 802, or may alter
natively be supplied by direct manipulation of configuration
database 814 by a downstream user, as discussed further
below with respect to FIG. 18C.
As indicated by dashed-line notation, a instance set field

1239 is preferably inserted within each DIDS 1302 in con
figuration database 814 when configuration database 814 is
loaded into volatile memory. instance set field 1239 is a
Boolean-valued field that in initialized to FALSE and is
updated to TRUE when the associated Dial instance is explic
itly set.

Finally, DIDS 1202 includes an output pointer array 1236
containing pointers 1238a–1238n pointing to data structures
describing the lower-level instantiations associated with the
corresponding Dial instance or Dial group instance. Specifi
cally, in the case of IDials and LDials, output pointers 1238
refer to latch data structures 1204 corresponding to the con
figuration latches coupled to the Dial instance. For non-split
IDials, the configuration latch entity referred to by output
pointer 1238a receives the high order bit of the integer input
value, and the configuration latch entity referred to by output
pointer 1238n receives the low order bit of the integer input
value. In the case of a CDial, output pointers 1238 refer to
other DIDSs 1202 corresponding to the Dial instances con
trolled by the CDial. For Dial groups, output pointers 1238
refer to the top-level Dial instances or Dial group instances
hierarchically included within the Dial group instance corre
sponding to DIDS 1202.

Configuration database 814 further includes a respective
latch data structure 1204 for each configuration latch in simu
lation executable model 816 to which an output of an LDial or
IDial is logically coupled. Each latch data structure 1204
includes a parent field 1240 containing a parent pointer 1242
to the DIDS 1200 of the LDial or IDial directly controlling the
corresponding configuration latch. In addition, latch data
structure 1204 includes a latch name field 1244 specifying the
hierarchical latch name, relative to the entity containing the
Dial instantiation identified by parent pointer 1242. For
example, if an LDial Xhaving an instantiation identifiera.b.c
refers to a configuration latch having the hierarchical name
“a.b.c.d. latch1, latch name field 1244 will contain the string
“d.latch1. Prepending contents of an instance name field
1234 of the DIDS 1202 identified by parent pointer 1242 to
the contents of a latch name field 1244 thus provides the fully
qualified name of any instance of a given configuration latch
configurable utilizing configuration database 814.

Still referring to FIG. 12A, as noted above, configuration
database 814 includes top-level pointer array 1206, and
optionally, Dial pointer array 1208 and latch pointer array
1210. Top-level pointer array 1206 contains top-level point
ers 1250 that, for each top-level Dial and each top-level Dial
group, points to an associated DIDS 1202 for the top-level
entity instance. Dial pointer array 1208 includes Dial pointers
1252 pointing to each DDDS 1200 in configuration database
814 to permit indirect access to particular Dial instances
through Dial and/or entity names. Finally, latch pointer array
1210 includes latch pointers 1254 pointing to each latch data
structure 1204 within configuration database 814 to permit
easy access to all configuration latches.
Once a configuration database 814 is constructed, the con

tents of configuration database 814 can be loaded into volatile
memory, such as system memory 18 of data processing sys

10

15

25

30

35

40

45

50

55

60

65

34
tem 8 of FIG. 1, in order to appropriately configure a simu
lation model for simulation. In general, data structures 1200,
1202, 1204 and 1206 can be loaded directly into system
memory 18, and may optionally be augmented with addi
tional fields, as described below. However, as noted above, if
it is desirable for the non-volatile image of configuration
database 814 to be compact, it is helpful to generate addi
tional data structures, such as Dial pointer array 1208, latch
pointer array 1210 and instance pointer arrays 1226, in the
Volatile configuration database image in system memory 18.

Referring now to FIG. 12B, there is illustrated a more
detailed view of a portion of an exemplary simulation con
figuration database 814 including data structures representing
Dials and Registers in accordance with the present invention.
In order to avoid unnecessary complexity some features of
simulation configuration database 814 shown in FIG. 12A are
omitted from FIG. 12B.

Turning now to a consideration of the figure, FIG. 12B
illustrates a latch data structure 1204' representing a latch,
such as configuration latch 705a of FIG.7C, that is referenced
by both a Dial and a Register. The Dial referencing the latch
is represented within simulation configuration database 814
by DIDS 1202a, as discussed above with respect to FIG.12A.
To represent the logical connection between the Dial and the
latch, latch data structure 1204 includes a Dial parent field
1240a containing a Dial parent pointer 1242a pointing to a
DIDS 1202a, and DIDS 1202a includes an output pointer
1238n within output pointer array 1236 that points to latch
data structure 1204' to identify the latch as a “child' of the
parent Dial.
The Register referencing the latch is represented within

simulation configuration database 814 by DIDS 1202b. As
indicated by like reference numbers, DIDS 1202b may
advantageously be structured similarly to DIDS 1202a in a
preferred embodiment. Specifically, DIDS 1202b includes a
definition field 1230 containing a definition pointer 1231
pointing to a DDDS 1200 (not shown in FIG. 12B) that
defines a Register entity and accordingly has a type field 1220
having the value of “R” for Register. (It should be noted that
the DDDS 1200 defining the Register entity has a NULL or
absent mapping table 1224 because Registers do not map
input or output values.) DIDS 1202b may also include an
instance name field 1234 and an output pointer array 1236 as
discussed above with respect to FIG. 12A. An output pointer
1238a within output pointer array 1236 of DIDS 1202b iden
tifies latch data structure 1204' as representing a child latch of
the Register. The relationship between the Register and the
latch is similarly documented by a Register parent pointer
1242b within a Register parent field 1240b of latch data
Structure 1204".

As shown, DIDS 1202b may also include a parent field
1232, default field 1229 and phase field 1227, as discussed
above with respect to FIG. 12A. However, if the rule set
discussed above with respect to FIG. 7C is implemented,
parent field 1232, default field 1229 and phase ID field 1227
are NULL or may be omitted because, according to the above
given rule set, Registers are top-level entities that do not have
parents and do not permit the use of default values.

In the following description, the naming, setting, and read
ing of Dial instances and their underlying latches are
described in detail. Except where noted below, Register
instances and their underlying latches (which may be shared
with Dial instances) are accessed in an identical manner by
virtue of the common design of the data structures represent
ing the Dial and Register instances in configuration database
814.

US 7,805,695 B2
35

Referring now to FIG. 13, there is depicted a high level
logical flowchart of a method by which configuration data
base 814 is expanded within volatile memory of a data pro
cessing system, Such as System memory 18 of data processing
system 8. Because FIG. 13 depicts logical steps rather than
operational steps, it should be understood that many of the
steps illustrated in FIG. 13 may be performed concurrently or
in a different order than that shown.
As illustrated, the process begins at block 1300 and then

proceeds to block 1302, which illustrates data processing
system 6 copying the existing data structures within configu
ration database 814 from non-volatile storage (e.g., disk Stor
age or flash memory) into volatile system memory 18. Next,
at block 1304, a determination is made whether all top-level
pointers 1250 within top-level pointer array 1206 of configu
ration database 814 have been processed. If so, the process
passes to block 1320, which is discussed below. If not, the
process proceeds to block 1306, which illustrates selection
from top-level array 1206 of the next top-level pointer 1250 to
be processed.
A determination is then made at block 1308 of whether or

not parent pointer 1233 within the DIDS 1202 identified by
the selected top-level pointer 1250 is a NULL pointer. If not,
which indicates that the DIDS 1202 describes a top-level Dial
belonging to a Dial group, the process returns to block 1304.
indicating that the top-level Dial and its associated lower
level Dials will be processed when the Dial group to which it
belongs is processed.

In response to a determination at block 1308 that the parent
pointer 1233 is a NULL pointer, data processing system 8
creates an instance pointer 1228 to the DIDS 1202 in the
instance array 1226 of the DDDS 1200 to which definition
pointer 1231 in definition field 1230 of DIDS 1202 points, as
depicted at block 1310. Next, at block 1312, data processing
system 8 creates a Dial pointer 1252 to the DDDS 1200 of the
top-level Dial within Dial pointer array 1208, if the Dial
pointer 1252 is not redundant. In addition, as shown at block
1314, data processing system 8 creates a latch pointer 1254
within latch pointer array 1210 pointing to each latch data
structure 1204, if any, referenced by an output pointer 1238 of
the DIDS 1202 of the top-level Dial. As shown at block 1316,
each branch at each lower level of the Dial tree, if any, headed
by the top-level Dial referenced by the selected top-level
pointer 1250 is then processed similarly by performing the
functions illustrated at block 1310-1316 until a latch data
structure 1204 terminating that branch is found and pro
cessed. The process then returns to block 1304, representing
the processing of each top-level pointer 1250 within top-level
pointer array 1206.

In response to a determination at block 1304 that all top
level pointers 1250 have been processed, the process illus
trated in FIG. 13 proceeds to block 1320. Block 1320 illus
trates the creation of a instance set field 1239 in each DIDS
1320 in the configuration database. As noted above, instance
set field 1239 is a Boolean-valued field that in initialized to
FALSE and is updated to TRUE when the associated Dial or
Register instance is explicitly set. In addition, as depicted at
block 1322, data processing system 8 creates a latch value
field 1246, latch Register set field 1247, latch set field 1248,
and set history field 1249 in each latch data structure 1204 to
respectively indicate the current set value of the associated
configuration latch, to indicate whether or not the configura
tion latch is set through the associated Register instance, to
indicate whether or not the configuration latch is currently set
by an explicit set command, and to indicate whether or not the
configuration latch has ever been explicitly set. Although the
creation of the five fields indicated at block 1320-1322 is

5

10

15

25

30

35

40

45

50

55

60

65

36
illustrated separately from the processing depicted at blocks
1304-1316 for purposes of clarity, it will be appreciated that
it is more efficient to create instance set field 1239 as each
DIDS 1202 is processed and to create fields 1246, 1247, 1248
and 1249 as the latch data structures 1204 at the bottom of
each Dial (or Register) tree are reached. The process of load
ing the configuration database into Volatile memory thereaf
ter terminates at block 1324.

With the configuration database loaded into volatile
memory, a simulation model can be configured and utilized to
simulate a digital design through the execution of simulation
software. With reference to FIG. 14, there is illustrated a
block diagram depicting the contents of system memory 18
(FIG. 1) during a simulation run of a simulation model. As
shown, system memory 18 includes a simulation model 1400,
which is a logical representation of the digital design to be
simulated, as well as Software including configuration APIs
1406, a simulator 1410 and an RTX (Run Time eXecutive)
1420.

Simulator 1410 loads simulation models, such as simula
tion model 1400, into system memory 18. During a simula
tion run, simulator 1410 resets, clocks and evaluates simula
tion model 1400 via various APIs 1416. In addition, simulator
1410 reads values in simulation model 1400 utilizing GET
FAC API 1412 and writes values to simulation model 1400
utilizing PUTFAC API 1414. Although simulator 1410 is
implemented in FIG. 14 entirely in software, it will be appre
ciated in what follows that the simulator can alternatively be
implemented at least partially in hardware.

Configuration APIs 1406 comprise software, typically
written in a high level language Such as C or C++, that Support
the configuration of simulation model 1400. These APIs,
which are dynamically loaded by simulator 1410 as needed,
include a first API that loads configuration model 814 from
non-volatile storage and expands it in the manner described
above with reference to FIG. 13 to provide a memory image
of configuration database 1404. Configuration APIs 1406
further include additional APIs to access and manipulate con
figuration database 1404, as described in detail below.
RTX 1420 controls simulation of simulation models, such

as simulation model 1400. For example, RTX 1420 loads test
cases to apply to simulation model 1400. In addition, RTX
1420 delivers a set of API calls to configuration APIs 1406
and the APIs provided by simulator 1410 to initialize, con
figure, and simulate operation of simulation model 1400.
During and after simulation, RTX 1420 also calls configura
tion APIs 1406 and the APIs provided by simulator 1410 to
check for the correctness of simulation model 1400 by
accessing various Dials, Registers, configuration latches,
counters and other entities within simulation model 1400.
RTX 1420 has two modes by which it accesses Dials

instantiated within simulation model 1400: interactive mode
and batch mode. In interactive mode, RTX 1420 calls a first
set of APIs to read from or write to one or more instances of
a particular Dial within configuration database 1404. The
latch value(s) obtained by reference to configuration database
1404 take immediate effect in simulation model 1400. In
batch mode, RTX 1420 calls a different second set of APIs to
read or write instantiations of multiple Dials in configuration
database 1404 and then make any changes to simulation
model 1400 at the same time.

In either interactive or batch mode, RTX 1420 must employ
some syntax in its API calls to specify which Dial or Dial
group instances within simulation model 1400 are to be
accessed. Although a number of different syntaxes can be
employed, including conventional regular expressions
employing wildcarding, in an illustrative embodiment the

US 7,805,695 B2
37

syntax utilized to specify Dial or Dial group instances in API
calls is similar to the compact expression hereinbefore
described. A key difference between the compact expressions
discussed above and the syntax utilized to specify Dial or Dial
group instances in the RTX API calls is that, in the illustrative
embodiment, Dial and Dial group instances are specified in
the RTX API calls by reference to the top-level design entity
of simulation model 1400 rather than relative to the design
entity in which the Dial or Dial group is specified.

In the illustrative embodiment, each RTX API call target
ing one or more Dial or Dial group instances in simulation
model 1400 specifies the Dial or Dial group instances utiliz
ing two parameters: an instance qualifier and a dialname
qualifier. To refer to only a single Dial or Dial group instan
tiation, the instance qualifier takes the form “a.b.c.d', which
is the hierarchical instantiation identifier of the design entity
in which the single Dial or Dial group instantiation occurs. To
refer to multiple Dial or Dial group instances, the instance
qualifier takes the form “a.b.cDX’, which identifies all instan
tiations of entity X within the scope of entity instance a.b.c. In
the degenerate form, the instance qualifier may simply be
“X”, which identifies all instantiations of entity X anywhere
within simulation model 1400.

The dialname qualifier preferably takes the form “Entity
.dialname', where “Entity” is the design entity in which the
Dial or Dial group is instantiated and “dialname' is the name
assigned to the Dial or Dial group in its configuration speci
fication statement. If bracketed syntax is employed to specify
the instance qualifier, the “Entity” field can be dropped from
the dialname qualifier since it will match the bracketed entity
aC.

Referring now to FIG. 15 there is depicted a high level
logical flowchart of an exemplary process by which configu
ration APIs 1406 locate particular Dial or Dial group
instances in configuration database 1404 based upon an
instance qualifier and dialname qualifier pair in accordance
with the present invention. As shown, the process begins at
block 1500 in response to receipt by a configuration API 1406
of an API call from RTX 1420 containing an instance qualifier
and a dialname qualifier as discussed above. In response to the
API call, the configuration API 1406 enters configuration
database 1404 at Dial pointer array 1208, as depicted at block
1502, and utilizes Dial pointers 1252 to locate a DDDS 1200
having a name field 1222 that exactly matches the specified
dialname qualifier, as illustrated at block 1504.

Next, at block 1506, the configuration API 1406 deter
mines whether the instance qualifier employs bracketed Syn
tax, as described above. If so, the process passes to block
1520, which is described below. However, if the instance
qualifier does not employ bracketed syntax, the configuration
API 1406 follows the instance pointers 1228 of the matching
DDDS 1200 to locate the single DIDS 1202 having an
instance name field 1234 that exactly matches the specified
instance qualifier. As indicated at blocks 1510-1512, if no
match is found, the process terminates with an error. How
ever, ifa matching DIDS 1202 is located, a temporary “result
pointer identifying the single matching DIDS 1202 is created
at block 1524. The process thereafter terminates at block
1526.

Returning to block 1520, if bracketed syntax is employed,
the configuration API 1406 utilizes instance pointers 1228 of
the matching DDDS 1200 to locate one or more DIDSs 1202
of Dial or Dial group instances within the scope specified by
the prefix portion of the instance identifier preceding the
bracketing. That is, a DIDS 1202 is said to “match' if the
instance name field 1234 of the DIDS 1202 contains the prefix
portion of the instance qualifier. Again, if no match is found,

10

15

25

30

35

40

45

50

55

60

65

38
the process passes through block 1522 and terminates with an
error at block 1512. However, if one or more DIDSs 1202
“match' the instance qualifier, temporary result pointers
identifying the matching DIDSs 1202 are constructed at
block 1524. The process shown in FIG. 15 thereafter termi
nates at block 1526.
With reference now to FIG.16A, there is illustrated a high

level logical flowchart of an exemplary process by which
RTX 1420 reads a value of one or more Dial instances in
interactive mode, in accordance with the present invention.
As shown, the process begins at block 1600 in response to
receipt by a configuration API 1406 of a read Dial() API call
by RTX 1420. As indicated at block 1602, a configuration API
1406 responds to the read Dial() API call by locating within
configuration database 1404 one or more DIDSs 1202 of Dial
instances responsive to the API call utilizing the process
described above with reference to FIG. 15.
The process then enters a loop at block 1604 in which each

of the temporary result pointers generated by the process of
FIG. 15 is processed. If all of the result pointers returned by
the process of FIG. 15 have been processed, the process
passes to block 1640, which is described below. If not, the
process proceeds from block 1606 to block 1608, which
illustrates the configuration API 1406 selecting a next result
pointer to be processed. Next, at block 1608, the configura
tion API 1406 determines by reference to type field 1220 of
the DDDS 1200 associated with the DIDS 1202 identified by
the current result pointer whether the DIDS1202 corresponds
to a Dial group. If so, the process illustrated in FIG. 16A
terminates with an error condition at block 1610 indicating
that RTX 1420 has utilized the wrong API call to read a Dial
instance.

In response to a determination at block 1608 that the DIDS
1202 identified by the current result pointer does not corre
spond to a Dial group instance, the process proceeds to block
1620. Block 1620 depicts configuration API 1406 utilizing
output pointers 1238 of the DIDS 1202 (and those of any
lower-level DIDS 1202 in the Dial tree) to build a data set
containing the latch names from the latch name fields 1244 of
latch data structures 1204 corresponding to all configuration
latches ultimately controlled by the Dial instance specified in
the API call. Next, as depicted at block 1622, the configura
tion API 1406 makes one or more API calls to GETFAC() API
1412 of simulator 1410 to obtain from simulation model 1400
the latch values of all of the configuration latches listed in the
data set constructed at block 1620.

Configuration API 1406 then verifies the latch values
obtained from simulation model 1400 by reference to con
figuration database 1404, as shown at block 1624. In order to
verify the latch values, configuration API 1406 utilizes map
ping tables 1224 to propagate the latch values up the Dial tree
from the corresponding latch data structures through inter
mediate DIDSs 1202, if any, until an input value for the
requested Dial instance is determined. If at any point in this
Verification process, a Dial instance's output value generated
by the verification process does not correspond to one of the
legal values enumerated in its mapping table 1224, an erroris
detected at block 1626. Accordingly, the latch values read
from simulation model 1400 and an error indication are
placed in a result data structure, as illustrated at block 1630. If
no error is detected, the Dial input value generated by the
Verification process and a Success indication are placed in the
result data structure, as shown at block 1628.
As indicated by the process returning to block 1604, the

above-described process is repeated for each temporary result
pointer returned by the process of FIG. 15. Once all result
pointers have been processed, the process passes from block

US 7,805,695 B2
39

1604 to blocks 1640-1642, which illustrate the configuration
API 1406 returning the result data structure to RTX 1420 and
then terminating.
RTX 1420 reads Dial instances in interactive mode utiliz

ing the method of FIG.16A, for example, to initialize check
ers that monitor portions of simulation model 1400 during
simulation runs. The Dial settings of interest include not only
those oftop-level Dial instances, but also those of lower-level
Dial instances affiliated with the portions of the simulation
model 1400 monitored by the checkers.

Referring now to FIG.16B, there is illustrated a high level
logical flowchart of an exemplary process by which RTX
1420 reads a value of one or more Dial group instances in
interactive mode, in accordance with the present invention.
As can be seen by comparison of FIGS. 16A and 16B, the
process of reading a Dial group instance is similar to the
process of reading a Dial instance, but returns the value of one
or more top-level Dial instances of possibly different Dial
entities rather than one or more instances of the same Dial
entity.
As shown, the process shown in FIG. 16B begins at block

1650 in response to receipt by a configuration API 1406 of a
read Dial group() API call by RTX 1420. As indicated at
block 1652, a configuration API 1406 responds to the read
Dial group() API call by locating within configuration data
base 1404 one or more DIDSs 1202 of Dial group instances
responsive to the API call utilizing the process described
above with reference to FIG. 15.
The process then enters a loop at block 1654 in which each

of the temporary result pointers generated by the process of
FIG. 15 is processed. If all of the result pointers returned by
the process of FIG. 15 have been processed, the process
passes to block 1680, which is described below. If not, the
process proceeds from block 1654 to block 1656, which
illustrates the configuration API 1406 selecting a next result
pointer to be processed. Next, at block 1658, the configura
tion API 1406 identifies and creates temporary pointers to all
of the top-level Dial instances belonging to the Dial group
instance corresponding to the DIDS 1202 referenced by the
current result pointer. The top-level Dial instances are iden
tified by locating the highest-level DIDS 1202 for each output
pointer 1238 for which the type field 1220 in the associated
DDDS 1220 specifies a type other than Dial group. In other
words, the configuration API 1406 may have to search down
through one or more hierarchical Dial groups to locate the
relevant top-level Dial instances.
The process illustrated in FIG. 16B then enters a loop

beginning at block 1659 in which each of the top-level Dial
instances belonging to the Dial group corresponding to the
Dial group DIDS 1202 referenced by the current result
pointer is individually processed to obtain the value(s) of the
top-level Dial instance(s). The process next proceeds to block
1660, which depicts configuration API 1406 utilizing output
pointers 1238 of the DIDS 1202 of the first (or next) top-level
Dial instance (and those of any lower-level DIDS 1202 in the
Dial tree) to build a data set containing the latch names from
the latch name fields 1244 of latch data structures 1204 cor
responding to all configuration latches ultimately controlled
by the top-level Dial instance. Next, as depicted at block
1662, the configuration API 1406 makes one or more API
calls to GETFAC() API 1412 of simulator 1410 to obtain
from simulation model 1400 the latch values of all of the
configuration latches listed in the data set constructed at block
1660.
At block 1664, configuration API 1406 then verifies the

latch values obtained from simulation model 1400 by refer
ence to configuration database 1404, utilizing the same tech

10

15

25

30

35

40

45

50

55

60

65

40
nique described above with reference to block 1624 of FIG.
16A. If at any point in this verification process, a Dial
instance's output value generated by the verification process
does not correspond to one of the legal values enumerated in
its mapping table 1224, an error is detected at block 1666.
Accordingly, the latch values read from simulation model
1400 and an error indication are placed in a result data struc
ture, as illustrated at block 1670. If no error is detected, the
Dial input value generated by the verification process and a
Success indication are placed in the result data structure, as
shown at block 1668.

Following either block 1668 or block 1670, the process
returns to block 1659, which represents a determination of
whether or not all top-level Dials belonging to the Dial group
corresponding to the DIDS 1202 referenced by the current
result pointer have been processed. If not, the process returns
to block 1660, which has been described. However, if all
top-level Dials have been processed, the process returns to
block 1654, which illustrates a determination of whether or
not all result pointers have been processed. If not, the next
result pointer is processed at block 1656 and following
blocks, which have been described. If, however, all result
pointers have been processed, the process passes to block
1680-1682, which illustrates the configuration API 1406
returning the result data structure to RTX 1420 and then
terminating.

Reading Dial and Dial group instances in a batch mode of
RTX 1420 is preferably handled by configuration APIs 1406
in the same manner as interactive mode, with one exception.
Whereas in interactive mode latch values are always read
from simulation model 1440 via calls to GETFAC() API 1412
at blocks 1622 and 1662, in batch mode a latch value is
preferably obtained from latch value field 1246 of a latch data
structure 1204 in configuration database 1404 iflatch set field
1248 indicates that the corresponding configuration latch has
been set. If the configuration latch has not been set, the latch
value is obtained from simulation model 1440 by a call to
GETFAC() API 1412. This difference ensures that Dial set
tings made in batch mode, which may not yet have been
reflected in simulation model 1400, are correctly reported.

With reference now to FIG. 17A, there is illustrated a high
level logical flowchart of an exemplary process by which an
RTX sets a Dial instance in an interactive mode in accordance
with the present invention. The process begins at block 1700
in response to receipt by a configuration API 1406 of a set
Dial() API call from RTX 1420. In response to the set
Dial() API call, the configuration API 1406 first locates and
generates temporary result pointers pointing to the DIDS
1202 of the Dial instance(s) specified in the set Dial() API
call utilizing the technique described above with reference to
FIG. 15, as illustrated at block 1702. Next, the configuration
API 1406 determines at block 1704 whether or not all of the
temporary result pointers point to DIDSs 1202 of top-level
Dial instances. This determination can be made, for example,
by examining the parent pointer 1233 of each such DIDS
1202 (and that of any higher level DIDS 1202 linked by a
parent pointer 1233) and the type fields 1220 of the associated
DDDSs 1200. The DIDS 1202 of a top-level Dial instance
will have either a NULL parent pointer 1233 or a non-NULL
parent pointer 1233 pointing to another DIDS 1202 that the
type field 1220 of the associated DDDS 1200 indicates rep
resents a Dial group. If any of the DIDSs 1202 referenced by
the result pointers does not correspond to a top-level Dial
instance, the process terminates at block 1708 with an error
condition.

In response to a determination at block 1704 that all of the
DIDSs 1202 referenced by the result pointers correspond to

US 7,805,695 B2
41

top-level Dial instances, a further determination is made at
block 1706 whether or not the specified value to which the
Dial instance(s) are to be set is one of the values specified in
the mapping table 1224 of the associated DDDS 1200. If not,
the process terminates with an error at block 1708. However,
in response to a determination at block 1706 that the specified
value to which the Dial instance(s) are to be set is one of the
legal values, the process enters a loop including blocks 1710
1716 in which each result pointer is processed to set a respec
tive Dial instance.

At block 1710, configuration API 1406 determines
whether or not all result pointers have been processed. If so,
the process terminates at block 1720. If, however, additional
result pointers remain to be processed, the next result pointer
to be processed is selected at block 1712. Next, at block 1714,
configuration API 1406 propagates the Dial setting specified
in the set Dial() API call down the Dial tree headed by the
top-level Dial instance associated with the DIDS 1202 refer
enced by the current result pointer. In order to propagate the
desired Dial setting, mapping table 1224 in the DDDS 1200
associated with the DIDS 1202 referenced by the current
result pointer is first referenced, if necessary, (i.e., for CDials
and LDials) to determine the output values for each of output
pointers 1238 in the output pointer array 1236 of the DIDS
1202 referenced by the current result pointer. These output
values are propagated down the Dial tree as the input values of
the next lower-level Dial instances, if any, corresponding to
the DIDSs 1202 referenced by output pointers 1238. This
propagation continues until a latch value is determined for
each configuration latch terminating the Dial tree (which are
represented in configuration database 1404 by latch data
structures 1204). As shown at block 1716, as each latch value
for a configuration latch is determined, the configuration API
1406 makes a call to PUTFAC() API 1414 to set the configu
ration latch in simulation model 1400 to the determined value
utilizing the latch name specified within the latch name field
1244 of the corresponding latch data structure 1204.

Thereafter, the process returns to block 1710, which rep
resents the processing of the top-level Dial corresponding to
the next result pointer. After all result pointers are processed,
the process terminates at block 1720.

Referring now to FIG. 17B, there is depicted a high level
logical flowchart of an illustrative process by which an RTX
sets a Dial group in an interactive mode in accordance with
the present invention. The process begins at block 1730 in
response to receipt by a configuration API 1406 of a set Di
al group() API call from an RTX 1420. In response to the
set Dial group() API call, the configuration API 1406 first
locates and generates temporary result pointers pointing to
the DIDS 1202 of the Dial group instance(s) specified in the
set Dial group() API call utilizing the technique described
above with reference to FIG. 15, as depicted at block 1732.
Next, the configuration API 1406 determines at block 1734
whether or not all of the temporary result pointers point to
DIDSs 1202 of top-level Dial group instances. This determi
nation can be made, for example, by examining the parent
pointer 1233 of each such DIDS 1202 to ascertain whether the
parent pointer 1233 is NULL. If any of the DIDSs 1202
referenced by the result pointers does not correspond to a
top-level Dial group (i.e., has a non-NULL parent pointer
1233), the process terminates at block 1736 with an error
condition.

In response to a determination at block 1734 that each of
the DIDSs 1202 referenced by the result pointers corresponds
to a top-level Dial group, the process passes to blocks 1738
1740. Block 1738 illustrates configuration API 1406 locating
all of the top-level Dial instances within each Dial group for

10

15

25

30

35

40

45

50

55

60

65

42
which the corresponding DIDS 1202 is referenced by a result
pointer. Then, as depicted at block 1740, the configuration
API 1406 determines whether or not the specified value to
which each top-level Dial instance is to be set is one of the
values specified in the mapping table 1224 of the correspond
ing DDDS 1200. If not, the process terminates with an error at
block 1736.

In the illustrated embodiment, the prevalidation steps illus
trated at blocks 1734, 1738 and 1740 are performed prior to
setting any Dial instances because it is deemed preferable to
implement setting a Dial group instance as an atomic opera
tion that either successfully sets all relevant top-level Dial
instances or completely fails. In this manner, a complex con
dition in which some top-level Dial instances within the Dial
group instance are set and others are not can be avoided.

In response to a determination at block 1740 that the speci
fied value to which each top-level Dial instance is to be set is
one of the legal values, the process enters a loop including
blocks 1750-1756 in which each result pointer is processed to
set the top-level Dial instance(s) belonging to each Dial group
instance.
At block 1750, the configuration API 1406 determines

whether or not all result pointers have been processed. If so,
the process terminates at block 1760. If, however, additional
result pointers remain to be processed, the next result pointer
to be processed is selected at block 1752. Next, at block 1754,
configuration API 1406 propagates the Dial setting specified
for each top-level Dial in the set Dial group() API call down
the Dial trees of the top-level Dial instances belonging to the
Dial group instance corresponding to the DIDS 1202 refer
enced by the current result pointer. The propagation of Dial
settings down the Dial trees is performed in the same manner
discussed above with reference to block 1714 of FIG.17A. As
shown at block 1756, as each latch value for a configuration
latch is determined, the configuration API 1406 makes a call
to PUTFAC() API 1414 to set the configuration latch in
simulation model 1400 to the determined value utilizing the
latch name specified within the latch name field 1244 of the
corresponding latch data structure 1204. Thereafter, the pro
cess returns to block 1750, which represents the processing of
the top-level Dial corresponding to the next result pointer, if
any.

With reference now to FIG. 18A, there is illustrated a high
level logical flowchart of an exemplary method of setting
Dial, Dial group and Register instances in batch mode in
accordance with the present invention. As illustrated, the
process begins at block 1800 and thereafter proceeds to block
1802, which illustrates RTX 1420 initializing configuration
database 1404 by calling a configuration API 1406 (e.g.,
start batch()) in order to initialize configuration database
1404. The start batch() API routine initializes configuration
database 1404, for example, by setting each instance set field
1239, latch Register set field 1247, latch set field 1248, and set
history field 1249 in configuration database 1404 to FALSE.
By resetting all of the “set fields in configuration database
1404, the Dials, Registers and configuration latches that are
not set by the current batch mode call sequence can be easily
detected, as discussed below. Importantly, if any of latch
Register set fields 1247 or set history fields 1249 are subse
quently set during the batch mode call sequence, these fields
will stay set (i.e., these fields are persistent) during all phases
of default application.

Following initialization of configuration database 1404 at
block 1802, the process shown in FIG. 18A proceeds to block
1804. Block 1804 illustrates RTX 1420 optionally issuing one
or more read Dial() or read Dial group() API calls to read
one or more Dials, Registers or Dial groups as discussed

US 7,805,695 B2
43

above with respect to FIGS. 16A and 16B, and optionally
issuing one or more batch mode set Dial() or set Dial
group() API calls to enter settings for Dial and Register
instances and their underlying configuration latches into con
figuration database 1404. A configuration API 1406 responds
to the “set API calls in the same manner described above
with respect to FIG. 17A (for setting Dial and Register
instances) or FIG.17B (for setting Dial group instances), with
two exceptions. First, when any top-level or lower-level Dial
or Register instances are set, whether as a result of a set
Dial() or set Dial group() API call, the instance set field
1239 of the corresponding DIDS 1202 is set to TRUE. Sec
ond, no latch values are written to simulation model 1400 by
the “set API routines, as illustrated at blocks 1716 and 1756
of FIGS. 17A-17B. Instead, the latch values are written into
latch value fields 1246 of the latch data structure 1204 corre
sponding to each affected configuration latch, and the latch
set field 1248 is updated to TRUE. In this manner, the Dial and
Register instances and configuration latches that are explic
itly set by the API call can be readily identified during sub
sequent processing.

Following block 1804, the process passes to block 1806,
which illustrates RTX 1420 calling an end batch() API rou
tine among configuration APIs 1406 to complete the present
phase of default application. As indicated at block 1806 and
as described in detail below with respect to FIG. 18B, the
end batch() API routine applies selected default values, if
any, to specified Dial and Register instances and propagates
these default values to underlying configuration latches into
configuration database 1404. The latch values of all configu
ration latches set explicitly or with a default value are then
potentially applied to latches within the simulation model.
Finally, preparation is made for a next phase, if any.

If RTX 1420 has an additional phase of default application,
the process passes from block 1806 to block 1808 and then
returns to block 1804, which represents RTX 1420 initiating
a next phase of default application. If, however, all phases of
default application have been processed, the process illus
trated in FIG. 18A passes from block 1806 through block
1808 to block 1810, where the batch process terminates.

Referring now to FIG. 18B, there is depicted a high level
logical flowchart of an exemplary embodiment of the end
phase() API routine called at block 1806 of FIG. 18A. As
shown, the process begins at block 1820 when the end
phase() API routine is called by RTX 1420, for example, with
the following Statement:

End phase(phases, unnamed, instance qualifier, apply)
In this exemplary API call, the “phases' parameter is a

string specifying the phase ID(s) of defaults to be applied at
the end of the current phase; “unnamed is a Boolean param
eter indicating whether or not defaults values without any
associated phase ID should be applied during the current
phase; “apply’ is a Boolean-valued parameter indicating
whether or not configuration latch values should be immedi
ately applied to simulation model 1400; and “instance quali
fier is one or more regular expressions that can be utilized to
limit which instances of a particular Dial are processed to
apply defaults.
By specifying an instance qualifier parameter for the end

phase() API routine, a user can limit the application of
defaults to only a portion of simulation model 1400. The
ability to restrict the application of defaults in this manner is
particularly useful in cases in which two sections of the simu
lation model 1400 (e.g., sections representing two different
integrated circuit chips) have different phasing requirements
but use the same phase IDS. Thus, collisions in phase IDs can

10

15

25

30

35

40

45

50

55

60

65

44
be resolved by appropriate specification of
instance qualifier used in conjunction with the phase ID.
The end phase() API routine then enters a processing loop

including blocks 1822-1838 in which DIDSs 1202 within
configuration database 1404 are processed to apply appropri
ate Dial default values, if any. Referring first to block 1822,
the end phase() API determines whether or not all top-level
pointers 1250 within top-level pointer array 1206 have been
processed. If so, the process proceeds from block 1822 to
block 1840, which is described below. If not all top-level
pointers 1250 within top-level pointer array 1206 have been
processed, the process proceeds to block 1824. Block 1824
represents the end phase() API routine recursively scanning
the DIDSs 1202 pointed to by a next top-level pointer 1250
and its descendant DIDSs 1202, if any, to apply the default
values indicated by the parameters of the end phase() API
call. If the end phase() API routine determines at block 1826
that it has processed all necessary DIDSs 1202 in the subtree
of the top-level DIDS 1202 identified by the current top-level
pointer 1250, then the process returns to block 1822, which
has been described. If, however, at least one DIDS 1202 in the
subtree of the top-level DIDS 1202 identified by the current
top-level pointer 1250 remains to be processed, the process
passes from block 1826 to block 1828.

Block 1828 illustrates the end phase() API routine exam
ining a next DIDS 1202 to determine whether or not its
default field 1229 has a non-NULL value. If the current DIDS
1202 does not contain a non-NULL default field 1229, the
process returns to block 1824, representing the end phase
API routine continuing the recursive processing of DIDSs
1202 in the subtree of the top-level DIDS 1202 pointed to by
the current top-level pointer 1250. If the default field 1229
contains a non-NULL value, the process passes to block
1830, which depicts a determination of whether or not the
instance set field 1239 is set, that is, whether the Dial instance
was previously explicitly set at block 1804 of FIG. 18A. If the
instance set field 1239 is set, the default value contained in
default field 1229 is ignored (since the simulation user has
already explicitly specified a value for the associated Dial
instance). And because simulation database 1400 is con
structed so that any descendant of a DIDS 1202 having a
specified default cannot have a default value, the process
passes to block 1836, which illustrates the end phase() API
routine skipping the processing of any DIDS 1202 in the
subtree of the current DIDS 1202. Thereafter, the process
returns to block 1824, which has been described.

Returning to block 1830, in response to a determination
that the instance set field 1239 of the current DIDS 1202 is not
set, the process proceeds to block 1832. Block 1832 illus
trates end phase() API interrogating phase ID field 1227 of
the current DIDS 1202 to determine whether the default value
stored in default field 1229 has one or more associated phase
IDs. If not, the process passes to block 1833, which is
described below. In response to a determination at block 1832
that phase ID field 1227 stores at least one phase ID, the
end phase() API next determines at block 1834 whether the
phases parameter of the end phase() API call specifies a
phase ID that matches a phase ID contained within phase ID
field 1227. If no match is found, the process passes from block
1834 to block 1836, which has been described. If, on the other
hand, a phase ID specified in the phases parameter of the
end phase() API call matches a phase ID contained within
the phase ID field 1227 of the current DIDS 1202, the end
phase() API next determines at block 1835 whether or not the
Dial instance name contained in instance name field 1234 of
the current DIDS 1202 matches the qualifying expression
passed as the instance qualifier parameter of the end

the

US 7,805,695 B2
45

phase() API call. Again, in response to a negative determi
nation at block 1835, the process passes to block 1836, which
has been described. If, on the other hand, the Dial instance
name contained within instance name field 1234 is qualified
by the instance qualifier parameter, the process proceeds to
block 1838, which is described below.

Returning to block 1833, if the current DIDS 1202 does not
have one or more phase IDs specified within phase ID field
1227, a further determination is made whether or not the
unnamed parameter of the end phase() API call has a value
of TRUE to indicate the default values without any associated
phase information should be applied during the current phase.
If not, the process passes from block 1833 to block 1836,
which has been described. If, on the other hand, the end
phase() API determines at block 1833 that defaults without
associated phase information should be applied during the
current phase, the process proceeds to block 1835, which has
been described above.

Thus, when the end phase() API reaches block 1838,
end phase() API has, by the determinations illustrated at
1830, 1832, 1833, 1834 and 1835 determined that the default
specified for the Dial instance corresponding to the current
DIDS 1202 should be applied in the current phase of batch
mode execution. Accordingly, at block 1838, the end
phase() API routine applies the default value specified in the
default field 1229 to mapping table 1224 to generate one or
more Dial output signal(s), which are then propagated down
the Dial tree of the current DIDS 1202 in the manner herein
before described. Ultimately, the latch value fields 1246 and
latch set field 1248 of each of the underlying latch data struc
tures 1204 within configuration database 1404 are set to val
ues corresponding to the Dial default value, if the latch Reg
ister set field 1247 of the latch data structure 1204 is not set.
That is, a default value is preferably applied to a latch only if
the latch has not previously been set via a Register. If a latch
has previously been set via a Register during any preceding
phase of the configuration process, the default value is not
applied (at least until the start batch() API is called again).
The process then proceeds from block 1838 to block 1836,
which has been described.

Returning to block 1822, in response to a determination
that the Dial trees of all of the DIDS 1202 pointed to by
top-level pointers 1250 have been processed to apply any
appropriate default values in the manner described above, the
process next passes to block 1840. Block 1840 depicts end
phase() API examining the apply parameter of the end
phase() API call to determine whether or not the configura
tion latch values within latch data structures 1204 should be
applied to simulation model 1400. The added degree of con
trol represented by this determination is advantageous in that
different sections of simulation model 1400, which may have
colliding phase IDs, can be independently configured within
configuration database 1404 in different phases, but the
resulting configuration latch values can be applied to simula
tion model 1400 at the same time, if desired. If the apply
parameter has the value FALSE, meaning that the configura
tion latch values are not to be applied to simulation model
1400 during the current phase, the process passes directly to
block 1844.

If, however, configuration latch values are to be applied to
simulation model 1400 during the current phase, as indicated
by an apply parameter value of TRUE, the end phase() API
routine proceeds to block 1842. At block 1842, the end
phase() API utilizes latch pointer array1210 to examine each
latch data structure 1204 in configuration database 1404. For
each latch data structure 1204 in which latch set field 1248 has
the value TRUE, the end batch() API routine issues

10

15

25

30

35

40

45

50

55

60

65

46
a call to PUTFAC() API 1414 of simulator 1410 to update
simulation model 1400 with the latch value contained in latch
value field 1246. In addition, as shown at block 1844, the
end phase() API performs a logical OR operation between
the value of latch set field 1248 and set history field 1249,
storing the result within set history field 1249. In this manner,
each set history field 1249 maintains an indication of whether
or not the corresponding configuration latch has been set
during any phase of the batch mode process.

Following block 1844, the end batch API proceeds to
block 1846, which depicts the end batch API routine reset
ting all of instance set fields 1239 in DIDS 1202 and all latch
set fields 1248 in preparation of a next phase, if any. There
after, the end phase API routine terminates at block 1848.

In Summary, the end phase() API routine applies Dial
default values to configuration database 1404 that match the
limiting phase and instance qualifiers and then optionally
applies the resulting configuration latch values to simulation
model 1400 in accordance with the apply parameter. Finally,
the end phase() API routine tracks which latch data struc
tures 1204 have been set utilizing set history fields 1249, and
resets various set fields to prepare for a next phase, if any.

Heretofore, default values have been described solely with
respect to designer-Supplied phase information specified
within HDL files 800 or configuration specification files 802.
For many simulation models 1400, designers have only lim
ited knowledge of the boot sequence of the simulation model
1400 and corresponding hardware implementations and
therefore have limited understanding of the phasing of
defaults required to appropriately initialize the simulation
model 1400 or corresponding hardware realization. Accord
ingly, it is desirable to provide downstream users, such as
simulation users, laboratory users or deployment Support per
Sonnel, with the ability to specify phase information govern
ing the application of Dial default values.
As shown in FIG. 18C, in one embodiment, users are

permitted to supply and/or modify the phase ID(s) stored
within phase ID fields 1227 of configuration database 1404 or
a corresponding hardware configuration database (discussed
below) utilizing a program 1860. Program 1860 includes a set
of database manipulation API routines 1862 that, when called
with appropriate parameters, permits a user to read and write
phase IDs within configuration database 1404 (or the corre
sponding hardware configuration database).

Referring again to FIG. 14, configuration APIs 1406 pref
erably further include a find unset latch() API that, follow
ing a batch mode setting of Dial or Dial group instances in
configuration database 1404, audits all of the latch data struc
tures 1204 in configuration database 1204 by reference to
latch pointer array 1210 in order to detect configuration
latches that have not been configured by an explicit or default
setting (i.e., those having set history field 1249 set to FALSE).
For each Such unset configuration latch, the find unset
latch() API preferably returns the fully qualified instance
name of the configuration latch from latch name field 1244 in
the corresponding latch data structure 1204 and the fully
qualified instantiation identifier of the top-level Dial instance
that controls the unset latch. The find unset latch() API thus
provides an automated mechanism for a user to Verify that all
Dial and latchinstances requiring an explicitor default setting
are properly configured for a simulation run.

Configuration APIs 1406 preferably further include a
check model () API that, when called, utilizes top-level
pointer array 1206 to verify by reference to the appropriate
mapping tables 1224 that each top-level CDial and LDial
instance in simulation model 1400 is set to one of its legal

US 7,805,695 B2
47

values. Any top-level LDial or CDial set to an illegal value is
returned by the check model () API.
The Dial and Dial group primitives introduced by the

present invention can be employed not only to configure a
simulation model of a digital design as described above, but
also to configure hardware realizations of the digital design
for laboratory testing and customer use. In accordance with
an important aspect of the present invention, hardware real
izations of the digital design are configured by reference to a
hardware configuration database, which like configuration
databases 814 and 1404 discussed above, is derived from
configuration specification statements coded by the design
ers. In this manner, continuity in configuration methodology
exists from design, through simulation and laboratory testing,
to commercial deployment of a digital design.

Referring now to FIG. 19, there is illustrated a high-level
block diagram of a laboratory testing system for testing and
debugging hardware realizations of one or more digital
designs in accordance with an embodiment of the present
invention. As illustrated, the laboratory testing system 1900
includes a data processing system 1902, which is intended for
commercial sale and deployment. For laboratory testing and
debugging, data processing system 1902 is coupled by a test
interface 1903 to a workstation computer 1904 that commu
nicates with data processing system 1902 via test interface
1903 to configure the various components of data processing
system 1902 for proper operation. When commercially
deployed, data processing system 1902 includes the illus
trated components, but is not typically coupled to workstation
computer 1904 by test interface 1903.

Data processing system 1902 may be, for example, a mul
tiprocessor computer System, Such as data processing system
6 of FIG. 1. As such, data processing system 1902 includes
multiple integrated circuit chips 1910 representing the vari
ous processing units, controllers, bridges and other compo
nents of a data processing system. As is typical of commercial
data processing systems, data processing system 1902 may
contain multiple instances of Some integrated circuit chips,
Such as integrated circuit chips 1910a, and single instances of
other integrated circuit chips, such as integrated circuit chip
1910.

In addition to their respective functional logic, integrated
circuit chips 1910 each have a respective test port controller
1912 that supports external configuration of the integrated
circuit chip utilizing multiple scan chains, as discussed in
detail below with reference to FIG. 20. To permit such exter
nal configuration, each test port controller 1912 is coupled by
a test access port (TAP) 1914 to a service processor 1920
within data processing system 1902.

Service processor 1920 is a general-purpose or special
purpose computer system utilized to initialize and configure
data processing system 1902, for example, at power-on or in
response to a reboot. Service processor 1920 includes at least
one processing unit 1922a for executing software instruc
tions, a flash read-only memory (ROM) 1924 providing non
volatile storage for software and data, an I/O interface 1926a
interfacing service processor 1920 with test port controllers
1912 and workstation computer 1904, and a volatile memory
1928a that buffers instructions and data for access by pro
cessing unit 1922a.
Among the software and data stored in flash ROM 1924 is

system firmware 1930a. System firmware 1930a is executed
by processing unit 1922a of service processor 1920 at power
on to sequence power to integrated circuit chips 1910, per
form various initialization procedures and tests, synchronize
communication between integrated circuit chips 1910, and
initiate operation of the functional clocks. System firmware

10

15

25

30

35

40

45

50

55

60

65

48
1930a controls the startup behavior of integrated circuit chips
1910 by communication via test access ports 1914.

In addition to system firmware 1930a, flash ROM 1924
stores hardware (HW) configuration APIs 1934a and a HW
configuration database 1932a describing integrated circuit
chips 1910. As described below, during commercial deploy
ment, processing unit 1922a calls various HW configuration
APIs 1934a to access HW configuration database 1932a in
order to appropriately configure integrated circuits 1910 via
I/O interface 1926a and TAPS 1914.

Workstation computer 1904, which may be implemented,
for example, as a multiprocessor computer system like data
processing system 6 of FIG. 1, includes many components
that are functionally similar to those of service processor
1920. Accordingly, like reference numerals designate pro
cessing unit 1922b, volatile memory 1928b. I/O interface
1926b, and the system firmware 1930b, HW configuration
database 1932b, and HW configuration APIs 1934b residing
in non-volatile storage 1940 (e.g., disk storage). It will be
appreciated by those skilled in the art that, because the system
firmware 1930b, HW configuration database 1932b and HW
configuration APIs 1934b residing in non-volatile storage
1940 are specifically designed to initialize and configure data
processing system 1902 in the context of laboratory testing
and debugging, they may have Smaller, larger or simply dif
ferent feature sets and capabilities than the corresponding
Software and data within flash ROM 1924.

During laboratory testing and debugging, workstation
computer 1904 assumes most of the functions of service
processor 1920. For example, workstation computer 1904
initializes and configures data processing system 1902 by
executing system firmware 1930b and various HW configu
ration APIs 1934b in order to generate various I/O com
mands. These I/O commands are then communicated to data
processing system 1902 via test interface 1903 and I/O inter
faces 1926a and 1926b. System firmware 1930a, which
executes within service processor 1920 in a “bypass mode' in
which most of its native functionality is disabled, responds to
these external I/O commands by issuing them to integrated
circuit chips 1910 via test access ports 1914 in order to ini
tialize and configure integrated circuit chips 1910.

With reference now to FIG. 20, there is illustrated a more
detailed block diagram of an exemplary integrated circuit
chip 1910 in accordance with the present invention. As noted
above, integrated circuit chip 1910 includes a test port con
troller 2000 supporting external communication with I/O
interface 1926 of service processor 1920 of FIG. 19 and
control of various internal functions of integrated circuit chip
1910, including the operation of functional clock 2002 and
scan clock 2010. Integrated circuit chip 1910 further includes
functional logic (not explicitly illustrated) comprising the
digital integrated circuitry that performs the “work' the inte
grated circuit is designed to do, for example, processing soft
ware instructions, in response to the clock pulses of func
tional clock 2002. Throughout the functional logic is
distributed a plurality of functional latches 2004 that, during
normalfunctional operation of the functional logic (i.e., when
functional clock 2002 clocks the functional logic), hold bits
representing the dynamic state of the functional logic and
data and/or instructions. These functional latches 2004
include those that hold mode and configuration bits utilized to
configure the functional logic in a desired configuration.
As shown, groups of functional latches 2004 are intercon

nected to form multiple test scan chains 2006 and multiple
SCOM (scan communication) chains 2008. Although not
illustrated for the sake of clarity, some functional latches
2004 are, in practice, members of both a test scan chain 2006

US 7,805,695 B2
49

and an SCOM chain 2008. The test scan chains 2006 are
utilized to scan bits into functional latches 2004 in response to
pulses of scan clock 2010, and the SCOM chains 2008 are
utilized to scan bits into functional latches 2004 in response to
pulses of functional clock 2002. Functional clock 2002 and
scan clock 2010 do not both output pulses at the same time to
prevent a conflict between values loaded into functional
latches 2004.

As depicted, each functional latch 2004 in a test scan chain
2006 includes at least two data inputs, a scan input (Scanin)
and a functional input (D), and two clock inputs, a scan
clock input (Sclk) and a functional clock input (fclk). Each
functional latch 2004 further includes at least two data out
puts, namely, a scan output (scanout) and a functional output
(D). To form a test scan chain 2006, the scan input of a first
functional latch 2004 and the scan output of a last functional
latch 2004 are coupled to test port controller 2000, and the
scan output of each functional latch 2004 in the test scan chain
2006 (other than the last) is connected to the scan input of a
next functional latch 2004.

Each functional latch 2004 latches in the data bit present at
its Scanin and latches out its former value at Scanout in
response to a pulse of scan clock 2010 on Sclk, and latches in
the data bit present at D, and latches out its former value in
response to receipt of a pulse of functional clock 2002 onfclk.
Thus, by repeated pulsing of scan clock 2010, the functional
latches 2004 forming a test scan chain 2006 transfer data bits
in from and out to test port controller 2000 in a “bit-bucket
brigade' fashion, thereby allowing test port controller 2000 to
read or write one or more functional latches 2004 inatest scan
chain 2006.
SCOM chains 2008 are utilized to read and write func

tional latches 2004 when functional clock 2002 is active and
Scan clock 2010 is inactive. Each SCOM chain 2008 includes
multiple sequentially connected SCOM cells 2012, the first
and last of which are connected to test port controller 2000 to
permit test port controller 2000 to scan data bits into and out
of SCOM cells 2012. As depicted, in the exemplary embodi
ment, each SCOM cell 2008 contains a functional latch 2004
forming a portion of an “SCOM register,” as well as a shadow
latch 2014 forming a portion of a “shadow register'. It is
preferred if all shadow latches 2014, like functional latches
2004, also belong to a test scan chain 2006.
As shown, each functional latch 2004 in each SCOM cell

2012 is connected to an associated multiplexer 2020 having a
scan input (Scomin) coupled to the output of the correspond
ing shadow latch 2014 and a data input (D) coupled by a
hold path to the data output (D) of the associated functional
latch 2004. Multiplexer 2020 selects the data bit present at
one of data input (D) and scomin as an input of functional
latch 2004 in response to select signal sel2. Functional latch
2004 latches the selected data bit in response to functional
clock folk.

Shadow latch 2014 in each SCOM cell 2012 is similarly
connected to an associated multiplexer 2022 having a data
input (D) coupled to the data output (D) of functional
latch 2004, a hold input coupled by a hold path to the output
of shadow latch 2014, and scan input (scomin). In the first
SCOM cell 2012, the scan input is connected to test port
controller 2000, and in the remaining SCOM cells 2012, the
scan input is connected to the output of the shadow latch 2014
in the preceding SCOM cell 2012. The output of the shadow
register 2014 of the last SCOM cell 2012 in eachSCOM chain
is connected to test port controller 2000. Multiplexer 2022
selects among the data bits present at its inputs as the input of
the associated shadow latch 2014 in response to select signal

10

15

25

30

35

40

45

50

55

60

65

50
sel1. Shadow latch 2014 latches the selected data bit in
response to functional clock felk.
The chain of shadow registers is used to read values from

and write values to the associated SCOM registers. For
example, to set an SCOM register, test port controller 2000
scans a new value into shadow latches 2014 via the scomin
inputs of multiplexers 2022 by asserting appropriate values of
selects sel1. Once all shadow latches 2014 have been loaded,
test port controller 2000 controls select inputs sel2 to cause
functional registers 2004 to load the values from shadow
latches 2014. To read a value from the SCOM registers, test
port controller 2000 drives sel1 to read the values out of the
functional latches 2004 into the shadow latches 2014 and then
scans the values out of the shadow latches 2014 by asserting
appropriate values of selects sel1.

In the exemplary embodiment, SCOM chains 2008 employ
shadow latches 2014 to read and write functional latches 2004
to avoid disrupting the proper functional operation of inte
grated circuit chip 1910, or even data processing system
1902. By loading all shadow latches 2014 prior to updating
any functional latches 2004, all functional latches 2004
within a SCOM chain 2008 can be updated at once without
disrupting their values for multiple cycles of functional clock
2002. It should be understood that the particular implemen
tation of SCOM chains 2008 illustrated in FIG. 20 is not
required to practice the present invention, and that other alter
native designs may be employed, including some that do not
include shadow latches 2014.

Thus, by loading the appropriate values into functional
latches 2004 and by appropriate control of functional clock
2002 and scan clock 2010, each test port controller 2000 can
initialize and configure its integrated circuit chip 1910 in a
desired manner based upon inputs from service processor
1920 and/or workstation computer 1904.

In order to configure hardware functional latches 2004 in
the manner described above, a HW configuration database
1932 that accounts for the differences between simulation
and hardware environments must be generated. In general,
the structure and contents of HW configuration database 1932
reflect at least two central differences from the configuration
database 814 for simulation described above.
The first difference is in the manner in which latches are

addressed in hardware. In particular, instead of utilizing a
fully qualified instantiation identifier for the configuration
latch as in simulation, each hardware functional latch 2004
within a particular integrated circuit 1910 is addressed and
accessed for test Scanning by an ordered pair consisting of a
scan chain (or ring) identifier specifying a particular test Scan
chain 2006 and an offset indicating the latch's bit position in
the test scan chain 2006. Functional latches 2004 within
SCOM rings 2008 are similarly addressed and accessed for
SCOM scanning using a similar ordered pair of (ring identi
fier, offset), specifying a particular SCOM chain 2008 and the
offset of the corresponding shadow latch 2014. Importantly,
the SCOMring identifier and offset for a particular functional
latch 2004 do not have the same values as the corresponding
test scan ring identifier and offset. In fact, in alternate SCOM
implementations, different SCOM hardware may be used,
and the offset can be expressed as a tuple: (ring ID, register,
offset). It will therefore be appreciated that functional regis
ters 2004 may be addressed and accessed utilizing multiple
access methods, each of which may have its own addressing
scheme, all of which will likely differ from that employed in
simulation.
A second important difference between HW configuration

database 1932 and the configuration database 814 employed
in simulation is the overall database structure. As described

US 7,805,695 B2
51

above, configuration database 814 is a monolithic database
that may be utilized to represent an arbitrarily selected digital
design of any size or complexity by nesting design entities
hierarchically. A new configuration database 814 is generated
by configuration compiler 808 for each different digital
design that is simulated. Although this approach is satisfac
tory in a simulation environment, the monolithic database
structure employed in simulation does not correspond to the
actual physical mechanisms utilized to access and set hard
ware latches in a hardware digital design. Moreover, it is
desirable in a laboratory environment to avoid developing an
entirely new system firmware 1930 and HW configuration
database 1932 for each different hardware permutation. For
example, it is desirable to minimize development time and
cost by reusing some or all of a particular HW configuration
database 1932 and system firmware 1930 to initialize and
configure each server computer in a server product line Sup
porting between 8 and 32 processing units and 1 to 4 different
memory controllers.

Consequently, as described in detail below, HW configu
ration database 1932 is preferably structured as a federation
of smaller databases that each corresponds to aparticular type
(not instance) of integrated circuit chip present within the
hardware digital design. This database structure Supports
construction of a HW configuration database 1932 for a hard
ware system of any desired size and complexity from the
same “building block” per-chip-type databases. Moreover,
this database structure reflects the fact that hardware latches
are accessed by system firmware 1930 on a per-chip basis.

Referring now to FIG. 21, there is depicted a high level flow
diagram of an exemplary process by which the simulation
configuration database 814 of each integrated circuit chip is
transformed to obtain a chip HW database utilized to con
struct a HW configuration database 1932 suitable for labora
tory testing and debugging and commercial deployment. The
illustrated process may be implemented through the execu
tion of software on data processing system 6 of FIG. 1.

The process begins with the execution of a scan chain
detection tool 2100. Scan chain detection tool 2100 processes
the simulation model 1400 of each integrated circuit chip
1910 withina target hardware system, Such as data processing
system 1902, to produce a respective output file correspond
ing to each functional latch access path/method for latches
within the integrated circuit chip 1910. For example, in the
exemplary embodiment, Scan chain detection tool 2100 gen
erates a test scan definition file 2104 corresponding to test
scanning and a SCOM definition file 2102 corresponding to
SCOM scanning. Each of these files 2102.2104 provides, for
latches within simulation model 1400, a correspondence
between the latch's scan ring identifier and offset (or other
hardware address for the associated access method) and its
fully qualified latch instance name for simulation purposes.
The test Scan definition file 2104 and SCOM definition file

2102 and the simulation configuration database 814 for the
integrated circuit chip are then processed by a database trans
formation tool 2106 to generate a chip HW database 2108that
can be utilized as a building block to obtain a HW configu
ration database 1932 for a hardware system of any arbitrary
system size and component list.

With reference now to FIG.22A, there is illustrated a high
level logical flowchart of an exemplary process by which
database transformation tool 2106 generates a chip HW data
base 2108 from the corresponding simulation configuration
database 814 for the integrated circuit chip by reference to test
Scan definition file 2104 and SCOM definition file 2102. As
illustrated, the process begins at block 2200 and then pro
ceeds to block 2201, which illustrates loading the simulation

10

15

25

30

35

40

45

50

55

60

65

52
configuration database 814 from non-volatile data storage
into Volatile memory and augmenting its fields in the manner
discussed above with respect to FIG. 13 to obtain an expanded
configuration database 1404. Test scan definition file 2104
and SCOM definition file 2102 are also loaded into volatile
memory.

Next, at block 2202, a determination is made whether or
not all latch data structures 1204 referenced by latch pointer
array 1210 have been processed. If so, the process terminates
at block 2204. However, if all latch data structures 1204 have
not yet been processed, the process passes from block 2202 to
block 2206, which illustrates the selection for processing of
the latch data structure 1204 pointed to by the next latch
pointer 1254 in latch pointer array 1210. Next, at block 2208,
the fully qualified latch name of the latch corresponding to the
latch data structure 1204 under consideration is formed by
using the parent pointer 1242 to access the contents of
instance name field 1234 of the Dial instance controlling the
latch and appending those contents to the contents of latch
name field 1244.

Test scan definition file 2104 is then searched for this fully
qualified latch name, as depicted at block 2210. If the fully
qualified latch name is not found within test scan definition
file 2104, an error is flagged at block 2212 because, in the
exemplary embodiment, all configurable latches must be
scannable. Otherwise, database transformation tool 2106
calls the API routine add access method(method id, meth
od name) at block 2214 to augment latch data structure 1204
to form a new latch data structure 2230. The method id
parameter of the API calls identifies a particular access
method (e.g., with a string or integer), and the method name
parameter specifies a “name utilized by the associated
access method to access, inhardware, the latch corresponding
to the new latch data structure 2230. As illustrated in FIG.
22B, the new latch data structure 2230 is created at block
2214 by adding to latch data structure 1204 a method ID field
2232a specifying a method identifier of this access method
(which is “0” by convention) and a method name field 2234a
specifying a test scan ring identifier and offset value for the
latch.
The process proceeds from block 2214 to block 2216,

which represents repeating the search for the fully qualified
latch instance name performed at block 2210 using the defi
nition file for the next access method, in this case, SCOM
definition file 2102. If no match for the fully qualified latch
instance name is found within SCOM definition file 2102, no
error is logged because not all latches belong to SCOM
chains, and the process simply passes to block 2220, which is
described below. If, on the other hand, a match is found, the
add access method() API routine is again called at block
2218 to augment latch data structure 2230 with a method ID
field 2232n specifying the method identifier of this access
method and a method name field 2234n specifying a SCOM
scan ring identifier and offset value for the latch.

Finally, at block 2220, the API routine delete latch
name() is called to delete latch name field 1244 from latch
data structure 2230. Latch name field 1244 is no longer
needed because a ring identifier and offset pair uniquely
identifies any latch within the integrated circuit chip 1910.
The process then returns to block 2202, which has been
described.
The method of FIG. 22A thus alters the simulation con

figuration database of each integrated circuit chip to include
information indicating the access methods available for each
hardware functional latch and the “method name' (i.e., iden
tifier) of the latch for each available access method. Although
the illustrated process depicts the modification of a simula

US 7,805,695 B2
53

tion configuration database to support two particular access
methods, the illustrated method can be employed to handle
any number or types of access methods.
Once all of the simulation configuration databases for each

integrated circuit in a system have been processed in the
manner illustrated in FIGS. 21 and 22A, the resulting chip
hardware databases 2108 can then be combined to form HW
configuration database 1932 illustrated in FIG. 19. In a pre
ferred embodiment, HW configuration database 1932 is con
structed from chip HW databases 2108 by creating a chip
pointer data structure 2320 (FIG. 23B) that contains a respec
tive chip database pointer 2322 referencing the chip HW
database 2108 of each type of chip in data processing system
1902. For example, if data processing system 1902 includes
32 identical integrated circuit processor chips, chip pointer
data structure 2320 will contain (in addition to other chip
database pointers 2322 corresponding to other types of inte
grated circuit chips) only one chip database pointer 2322 to a
single chip HW database 2108 describing the digital design
embodied by the 32 integrated circuit processor chips. This
HW configuration database 1932 is then stored in non-vola
tile storage, such as non-volatile storage 1940 or flash ROM
1924, as shown in FIG. 19.

In order to configure a hardware digital design utilizing a
HW configuration database 1932, the HW configuration data
base 1932 is first loaded from non-volatile storage into vola
tile memory in accordance with the exemplary process
depicted in FIG.23A. The process shown in FIG.23A may be
performed, for example, in a laboratory environment by
workstation computer 1904 through the execution of system
firmware 1930b by processing unit 1922b. Similarly, when
data processing system 1902 is deployed commercially, ser
vice processor 1920 executes system firmware 1930a accord
ing to the process of FIG. 23A to load HW configuration
database 1932a from flash ROM 1924 to volatile memory
1928.
As illustrated, the process of FIG. 23A begins at block

2300 and then proceeds to block 2302, which illustrates a
determination of the types of integrated circuit chips and
number of each type present within a target data processing
system, such as data processing system 1902. In an exemplary
embodiment, the determination illustrated at block 2302 is
made by system firmware 1930, which consults a set of so
called Vital Product Data (VPD) to determine which of the
thousands of possible machine configuration is represented
by data processing system 1902.

The process then proceeds to blocks 2306-2310, which
collectively form a loop in which chip pointer data structure
2320 is walked to process the chip HW databases 2108 of the
integrated circuit chips comprising data processing system
1902. First, at block 2306 a determination is made whether
the chip HW database 2108 of each type of integrated circuit
chip within data processing system 1902 has been processed.
If so, loading of HW configuration database 1932 into volatile
memory is complete, and the process terminates at block
2312. If, however, the chip HW database 2108 corresponding
to each type of integrated circuit chip identified by the VPD
has not been processed, a next chip HW database 2108 is
loaded into volatile memory 1928 of workstation 1904 for
processing at block 2308.
As shown in FIG. 23B, which depicts an in-memory view

of HW configuration database 1932, loading of the chip HW
database 2108 creates in-memory data structures as described
above, such as a Dial pointer array 1208, latch pointer array
1210, and an instance pointer array1226 within each DDDS
1200 (see FIG. 12). In addition, a latch value field 2324, a
latch set field 2326, and set history field 2325 are created

10

15

25

30

35

40

45

50

55

60

65

54
within each latch data structure 2230, and a instance set field
2328 is created within each DIDS 1202. Each of these three
fields is implemented as an array in which each entry corre
sponds to a particular instance of the integrated circuit chip
1910 corresponding to the current chip HW database 2108.
Finally, an empty chip mapping table 2325 is created.
Next at block 2310, a respective entry is added to chip

mapping table 2325 for each instance of the type of integrated
circuit chip corresponding to the current chip HW database
2108. This step is preferably performed by system firmware
1930 via a call to a HW configuration API 1934 that accesses
the VPD to determine how many instances of the type of
integrated circuit chip corresponding to the current chip HW
database 2108 are contained in the present hardware digital
design. By convention, the order of the entries within chip
mapping table 2325 corresponds to the order of array entries
in instance set field 2328, latch value field 2324 and latch set
field 2326.
As shown in FIG. 23B, each entry within chip mapping

table 2325 associates two firmware-supplied values: (1) a
chip instance name, which is a string like that identifying the
design entity representing the integrated circuit chip instance
in the simulation model of data processing system 1902 (e.g.,
a.b.c.d) and (2) a chip ID specifying an identifier of the test
access port 1914 by which service processor 1920 commu
nicates with that integrated circuit chip instance. Thus, any
latch in data processing system 1902 can now be readily
addressed by the tuple (chip ID, scan ring, offset), which is
associated by chip mapping table 2325 with the chip-identi
fying portion of the fully qualified latch name employed by
HW configuration APIs 1934. Thereafter, the process returns
to block 2306, which has been described.
The process depicted in FIG.23A thus permits a single HW

configuration database 1932 to be utilized to build an in
memory HW configuration database for a data processing
system of any arbitrary size or configuration, eliminating the
need to develop and store a separate monolithic configuration
database for each possible system size and configuration.

With HW configuration database 1932 loaded into a vola
tile memory 1928, system firmware 1930 can then be
executed by processing unit 1922a of service processor 1920
or processing unit 1922b of workstation computer 1904 to
call HW configuration APIs 1934 to read or set a configura
tion of one or more integrated circuit chips 1910 of data
processing system 1902. As in simulation, HW configuration
APIs 1934 preferably include separate API routines to read
Dials and Dial groups in interactive and batch modes. Also
like simulation, the API calls by system firmware 1930
specify an instance qualifier (e.g., a.b.c.d or a,b.cx) and a
dialname qualifier (e.g., Entity.dialname) for each Dial or
Dial group instance to be set or read.

Because multiple access methods can be utilized to set or
read a Dial or Dial group, API calls to set or reada Dial or Dial
group instance preferably include an additional parameter,
access method. In a preferred embodiment, the access
method parameter can take the values SCAN, which indicates
test scanning, SCOM, which indicates SCOM scanning, and
AUTO, which indicates that the HW configuration API 1934
is to select the access method. In response to an AUTO value
for the access method parameter, a HW configuration API
1934 selects an access method based upon the supported
access method(s) indicated by the method ID(s) 2232 in the
latch data structure(s) 2230 targeted by the API call and upon
which of functional clock 2002 and scan clock 2010 is run
ning. As described above, SCOM scanning is only available
when functional clock 2002 is running, and test Scanning is
only available when scan clock 2010 is running.

US 7,805,695 B2
55

Before any HW configuration API 1934 can set or read a
Dial or Dial group instance, the HW configuration API 1934
must first determine which Dial or Dial group instances are
identified by the instance qualifier and dialname qualifier
specified in the API call. Referring now to FIG. 24 there is
depicted a high level logical flowchart of an exemplary pro
cess by which a HW configuration API 1934 locates particu
lar Dial or Dial group instances in HW configuration database
1932 in accordance with the present invention. The illustrated
process is analogous to the process depicted in FIG. 15 and
described above.
As shown, the process begins at block 2400 in response to

receipt by a HW configuration API 1934 of an API call from
firmware 1930 having as an argument an instance qualifier
and a dialname qualifier of one or more Dial or Dial group
instances, as discussed above. In response to the API call, the
configuration API 1934 enters HW configuration database
1932 at chip pointer array 2320 and, as depicted at block
2402, enters a loop in which chip database pointers 2322 are
processed until one or more matching Dial instances are
located within a particular chip HW database 2108 or until all
chip database pointers 2322 have been processed. In response
to a determination at block 2402 that all chip database point
ers 2322 have been processed without locating any matching
Dial instances, the process terminates with an error at block
2403. However, if fewer than all of chip database pointers
2322 have been processed, the next chip database pointer
2322 is selected from chip pointer data structure 2320 for
processing, as depicted at block 2406. The selected chip
database pointer 2322 is utilized to locate the associated chip
HW database 2108.

Following block 2406, the process proceeds to block 2408
and following blocks, which represent a processing loop in
which each Dial pointer 1252 in the Dial pointer array 1208 of
the current chip HW database 2108 is processed until a par
ticular Dial matching the API call is located or until all Dial
pointers 1252 (FIG. 12) have been processed without finding
any matching Dial instances. In response to a determination at
block 2408 that all Dial pointers 1252 have been processed
without locating any matching Dial entity, the process returns
from block 2408 to block 2402 in order to process the next
chip database pointer 2322 in chip pointer array 2320 (i.e., to
process the next chip HW database 2108). If, on the other
hand, a determination is made at block 2408 that not all Dial
pointers 1252 within Dial pointer array 1208 have been pro
cessed, the process proceeds to block 2410, which illustrates
the selection from Dial pointer array 1208 of the next Dial
pointer 1252 for processing.

Next, a determination is made at block 2412 of whether or
not the DDDS 1200 referenced by the current Dial pointer
1252 has a name field 1222 that exactly matches the specified
dialname qualifier. With respect to name fields 1222, two
implementations are possible. First, reuse of Dial names can
be prohibited so that every Dial name is unique throughout
not only its own integrated circuit chip, but also throughout
the entire system (e.g., data processing system 1902). A sec
ond, less restrictive approach is to require each Dial name to
be unique only within its integrated circuit chip 1910 and to
permit multiple uses of a Dial name in different integrated
circuits. In order to support the second approach, name field
1222 takes the form “chiptype.Dial name', where “chiptype'
is a unique String identifying the type of integrated circuit
chip 1910, thus disambiguating identical Dial names applied
to Dial entities instantiated in different integrated circuit
chips 1910.

In response to a determination at block 2412that name field
1222 does not match the specified dialname qualifier, the

10

15

25

30

35

40

45

50

55

60

65

56
process returns to block 2408 for processing of the next Dial
pointer 1252, if any, as described above. If, however, a match
is found, the process then enters a processing loop comprising
blocks 2420-2434 in which the Dial instances represented by
individual DIDS 1202 are examined for a match with the API
calls instance qualifier utilizing the instance pointers 1228 in
the instance pointer array 1226 of the DDDS 1200 of the
matching Dial entity. In this processing loop, a determination
is first made at block 2420 of whether or not all instance
pointers 1228 within the current DDDS 1200 have been pro
cessed. If so, a further determination is made at block 2434 of
whether or not at least one matching instance of the Dial
entity corresponding to the current DDDS 1200 was found.
This determination is made because the construction of HW
configuration database 1932 ensures that at most one match
ing Dial (not Dial instance) in only one chip HW database
2108 will match the instance qualifier and dialname qualifier
specified in the API call. Consequently, ifa matching instance
is found for a particular Dial entity, no further Dial entities or
chip HW databases 2108 need be searched. Accordingly, if a
determination that at least one matching Dial instance has
been found for the Dial entity corresponding to the current
DDDS 1200, the process passes from block 2434 to block
2438 and terminates. If, however, a determination is made at
block 2434 that no match was found, the process passes
through page connector A and terminates with an error at
block 2403.

Returning to block 2420, in response to a determination
that all instance pointers 1228 of the current DDDS 1200 have
not been processed, the process proceeds to block 2422,
which illustrates the selection of the next instance pointer
1228 and its associated DIDS 1202 for processing. A deter
mination is then made at block 2424 whether the DIDS 1202
has been processed with respect to the Dial instance in each of
the integrated circuit chips 1910 corresponding to the current
chip HW database 2108 by processing each entry in chip
mapping table 2326. If so, the process passes to block 2436,
which is described below. If processing of all entries in chip
mapping table 2325 has not been completed, the process
proceeds to block 2426.

Block 2426 depicts forming the next fully qualified Dial
instance name to be matched against the instance qualifier
specified in the API call by prepending the chip instance name
in the next entry of chip mapping table 2325 to the instance
name field 1234 of the current DIDS 1202. This fully quali
fied Dial instance name is then compared to the instance
qualifier at block 2430. If they do not match, the process
returns to block 2424, which has been described. If they do
match, a temporary result pointer and associated chip vector
are created at block 2432, if they do not already exist. The
temporary result pointer points to the current DIDS 1202 to
identify the corresponding Dial instance as matching the
instance qualifier specified in the access request. An entry is
also placed in the associated chip vector to indicate the par
ticular integrated circuit chip instance 1910 in which this
matching Dial instance is located. In an exemplary embodi
ment, the chip vector may simply comprise a same number of
bits as there are entries in chip mapping table 2325, with a bit
value of “1” indicating that the corresponding integrated cir
cuit chip instance 1910 contains a matching Dial instance.
Following block 2432, the process returns to block 2424.
The processing loop represented by blocks 2424-2432 is

repeated for each entry in chip mapping table 2325. After all
entries have been processed, the process passes from block
2424 to block 2436, which depicts a determination of whether
the dialname qualifier was specified utilizing non-bracketed
Syntax and, if so, whether or not a match was found for the

US 7,805,695 B2
57

specified dialname qualifier among the Dial instances repre
sented by the current DIDS 1202. If the determination is
negative, it is possible that additional matching Dial instances
associated with another DIDS 1202 may exist. Accordingly,
the process returns to block 2420 to process the next instance
pointer 1228 of the current DDDS 1200. If, however, the
determination at block 2436 is positive, it is known that all
matching Dial instances have been located and identified with
temporary result pointers and associated chip vectors. The
process therefore terminates at block 2438.

After the Dial or Dial group instances specified by the
instance qualifier and dialname qualifier have been deter
mined by the process shown in FIG. 24, the Dial or Dial group
instance(s) are set or read in much the same fashion as
described above with respect to FIGS. 16A (reading a Dial
instance in interactive mode), 16B (reading a Dial group
instance in interactive mode), 17A (setting a Dial instance in
interactive mode), 17B (setting a Dial group instance in inter
active mode) and 18A-18E3 (setting a Dial instance or Dial
group instance in batch mode). A few differences are
required, however, to account for the use of a single chip HW
database 2108 to represent possibly multiple integrated cir
cuit chips 1910 and for the availability of multiple different
access methods to access integrated circuit chips 1910. These
differences are detailed below.
When reading Dial instances or Dial group instances, latch

values are verified by propagating the latch values “up the
Dial trees in the configuration database, as described with
reference to block 1624 of FIG. 16A. Conversely, when set
ting Dial instances or Dial group instances, Dial values are
propagated "down the Dial trees in the configuration data
base to the latch data structures, as described above with
reference to block 1714 of FIG. 17A. In simulation, only one
latch value at a time is propagated “downto or “up' from any
one latch data structure 1204. However, because HW con
figuration database 1932 represents multiple integrated cir
cuit chips 1910 of the same type with a single chip HW
database 2108, reading or setting a Dial or Dial group
instance by reference to a chip HW database 2108 represent
ing multiple physical integrated circuit chips 1910 entails
propagating multiple elements of a value set up or down the
Dial tree in parallel, where each element of the value set is the
value for a particular chip instance identified by the tempo
rary result pointer and chip vector constructed in FIG. 24.

Similarly, in simulation, each of instance set field 1239,
latch valuefield 1246, latch set field 1248, and set history field
1249 within configuration database 1404 contains only a
single value. In contrast, the corresponding instance set fields
2328, latch value fields 2324, latch set fields 2326, and set
history fields 2325 within HW configuration database 1932
are implemented as arrays in which each element corresponds
to an individual Dial or latch instance for a particular inte
grated circuit chip 1910. Accordingly, when Dial, Dial group
and latch instances are set, the elements within instance set
fields 2328, latch value fields 2324, latch set fields 2326, and
set history fields 2325 corresponding to the set instances are
updated in accordance with the temporary result pointer and
chip vector constructed in FIG. 24.

Because laboratory or commercial use of HW configura
tion database 1932 entails accessing physical hardware (i.e.,
integrated circuit chips 1910) utilizing multiple possible
access methods, three additional differences from a simula
tion environment are noted in a preferred embodiment. First,
a set or read operation requested in an API call preferably fails
(i.e., is not performed) if a HW configuration API 1934 deter
mines that the access method indicated by the access method
parameter contained within the API call is not available for

10

15

25

30

35

40

45

50

55

60

65

58
any of the Dial instances identified by the temporary result
pointer(s) and chip vector(s) obtained by the process of FIG.
24. As described above, the access method(s) by which each
latch can be set or read is indicated by the method ID field(s)
2232 of each latch data structure 2230.

Second, a set or read operation requested in an API call
preferably succeeds only if a HW configuration API 1934
determines that the functional clock 2002 and scan clock
2010 within each integrated circuit chip 1910 targeted by the
API call are in the appropriate states for the access method
parameter contained within the API call. That is, if the
access method parameter has the value SCAN, the func
tional clock 2002 must be disabled, and the scan clock 2010
must be enabled. Conversely, if the access method parameter
has the value SCOM, the functional clock 2002 must be
enabled, and the scan clock 2010 must be disabled. If the
access method parameter has the value AUTO, the functional
clock 2002 and scan clock 2010 of each integrated circuit chip
1910 containing a latch targeted by the API call must be in
states that permitat least one access method of each Such latch
to be employed.

Third, the HW configuration APIs 1934 utilized to read and
set hardware latches, read latch() and write latch(), prefer
ably minimize scan accesses to integrated circuit chips 1910
by implementing shadow scan chain buffers in Volatile
memory 1928 and by accessing such scan chain buffers when
possible in lieu of scanning a scan chain in an integrated
circuit chip 1910. For example, the read latch() HW con
figuration API 1934, which corresponds to the GETFAC()
API 1412 employed in simulation, preferably obtains latch
value(s) from the corresponding shadow scan chain buffers in
volatile memory 1928 in cases in which the latch value(s) in
volatile memory 1928 are known to be current. In addition,
multiple updates to latch values via the write latch() API,
which corresponds to the PUTFAC() API 1414 utilized in
simulation, are preferably buffered in the shadow scan chain
buffers in volatile memory 1928. In this manner, multiple
writes to latches in a particular scan chain of an integrated
circuit chip 1910 can be made by scanning the particular scan
chain only once.
HW configuration APIs 1934 preferably further include a

check chip() API similar to the check model () API avail
able in simulation. When called, the check chip() API uti
lizes top-level pointer array 1206 within a specified chip HW
database 2108 to verify that each top-level CDial and LDial
instance within the chip HW database 2108 is set to one of its
legal values. Specifically, the check chip() API propagates
the underlying hardware latch values up the Dial tree of each
top-level CDial and LDial instance by reference to its map
ping table 1224 and the mapping table(s) 1224 of any lower
level Dial instance(s) in its Dial tree. Any top-level LDial or
CDial instance set to an illegal value is returned by the check
chip() API.

Referring again to FIG. 19, in many commercial embodi
ments of data processing system 1902, the storage capacity of
non-volatile storage (e.g., flash ROM 1924) within service
processor 1920 is significantly less than that of the non
volatile storage 1940 (e.g., hard disk storage) of the worksta
tion computer 1904 utilized to store system firmware 1930b
and HW configuration database 1932b. Accordingly, it is
usually desirable or necessary to reduce the size of the system
firmware 1930b and HW configuration database 1932b devel
oped in a laboratory hardware testing environment to obtain
the system firmware 1930a and HW configuration database
1932a commercially deployed within flash ROM 1924 (or
other non-volatile storage) of data processing system 1902.

US 7,805,695 B2
59

Accordingly, with reference now to FIG. 25, there is illus
trated a high level logical flow diagram of an exemplary
process by which each chip HW database 2108 developed
during laboratory development and testing of system firm
ware 1930 can be compressed through the elimination of 5
unnecessary information in order to obtain a HW configura
tion database 1932a suitable for commercial deployment.
The process begins by generating Dial usage information
2500 indicating which Dial instances within a particular type
of integrated circuit chip 1910 have been set and/or read and
the values to which Dial instances have been set.

The determination of which Dial instances are set or read
and the values to which Dial instances have been set can be
accomplished in a number of ways well known to those
skilled in the art. For example, system firmware 1930 can be
manually examined to generate Dial usage information 2500.
Alternatively, system firmware 1930 can be executed in a
number of possible machine configurations that cover all the
settings to which Dial instances in the type of integrated
circuit chip 1910 under consideration may be set. The Dial
instances that are set and read and the values to which Dial
instances are set can then be logged as Dial usage information
2SOO.

In a preferred embodiment, all that is recorded within Dial
usage information 2500 for IDial instances is whether or not
the IDial instance is set or read. No IDial instance values are
recorded because it is assumed, for purposes of generating
Dial usage information 2500, that if an IDial instance is set,
all of its possible values may be utilized. There are, however,
particular IDial instances that developers know will only be
set to a single value. To permit the elimination of these IDials
from HW configuration database 1932a, these IDials and
their associated values can optionally be specified by a devel
oper within an override file 2502. Override file 2502 may also
contain a list of Dial instances, if any, that the developer
desires to explicitly preserve within HW configuration data
base 1932a, regardless of whether or not the Dial instance is
read or set.

Thus, for each chip HW database 2108, Dial usage infor
mation 2500 and override file 2502 are preferably obtained
that collectively contain at least the following information:

1) a list of all the top-level non-IDial instances set within
any of the instances of the integrated circuit chip in any
configuration and a list of any top-level IDials set to any
value within any of the instances of the integrated circuit
chip in any configuration;

2) a list of all the values of each non-IDial instance that is
Set,

3) a separate list of IDials set to a single value; and
4) a list of all Dial instances that are read.
As further illustrated in FIG. 25, this information is then

utilized by a software compression tool 2504 (e.g., executed
by workstation computer 1904) to eliminate unnecessary
information from the associated chip HW database 2108.
Compression tool 2504 produces two outputs: (1) a com
pressed chip HW database 2506 forming a portion of HW
configuration database 1932a and (2) initial scan chain
images 2508 utilized to develop the scan chain images to
which test scan chains 2006 in the integrated circuit chip 1910
are initialized during execution of system firmware 1930a. As
indicated, these initial scan chain images 2508 may be non
destructively combined with additional scan chain inputs
2510 to obtain final scan chain images 2512.

Referring now to FIGS. 26A-26C, there is depicted a high
level logical flowchart of a method by which compression
tool 2504 compresses a chip HW database 2108 in accor

10

15

25

30

35

40

45

50

55

60

65

60
dance with the present invention. As described in detail
below, the illustrated method implements at least three size
optimizations.

First, information related to a Dial instance may be elimi
nated from a chip HW database 2108 if the Dial instance will
never be set or read by system firmware 1930a. Because such
Dial instances will never be set or read by system firmware
1930a, the DIDS 1202 corresponding to such Dial instances
will never be referenced within HW configuration database
1932a and may accordingly be removed. It is important to
note that the fact that system firmware 1930a does not set or
read a Dial instance does not necessarily mean that the Dial
instance is not set or read during simulation or laboratory
debugging. Many Dial instances (e.g. mode Switches) are
never set by system firmware 1930a, but are tested during
simulation to ensure that the mode Switches work properly if
needed by a later firmware revision.
A second reason that information related to a Dial instance

may be unnecessary is if the Dial instance is set to only one
value in all configurations. In this case, the DIDS 1202 cor
responding to the Dial instance can be removed from chip
HW database 2108 because the effects of setting the Dial
instance can instead be achieved by setting the final scan
chain image 2512 scanned into an integrated circuit chip 1910
with the latch value(s) that would be obtained by setting the
Dial instance. The code within system firmware 1930b that
sets the Dial instance can likewise be eliminated to reduce the
size of system firmware 1930a ultimately obtained from labo
ratory testing and debugging.

Third, mapping tables 1224 in DDDSs 1200 may be opti
mized by eliminating values to which Dials are never set by
system firmware 1930a.

In making the foregoing optimizations, special consider
ation is given to Dial instances that are read. In general, when
a Dial instance is read, it is assumed in the exemplary com
pression methodology described below that the entire Dial
tree containing the Dial instance that is read must be pre
served within its chip HW database. In addition, it is assumed
that all entries within the mapping tables of Dials in Dial trees
containing Dial instances that are read must be preserved
because, in commercial deployment, the hardware may set
the underlying latches to values other than those read by
system firmware. Consequently, it cannot be determined a
priori which mapping table entries will be required to read a
Dial instance. Although these assumptions limit compres
Sion, they ensure that each Dial instance that is read can be
easily accessed, regardless of whether or not the Dial instance
is a top-level Dial instance or a lower-level Dial instance.

Referring first to FIG. 26A, the process begins at block
2600 and then proceeds to block 2602, which illustrates com
pression tool 2504 loading a chip HW database 2108 into
volatile memory 1928b and creating in-memory data struc
tures 1208, 1210 and 2325, as described above. In addition, as
depicted at block 2604, compression tool 2504 creates, in
association with each DIDS 1202, some additional temporary
fields in memory used only by compression tool 2506. These
temporary fields include a Dial Instance Value Structure
(DIVS) for storing the values, if any, to which the associated
Dial instance is set within Dial usage information 2500. For
IDial instances, the DIVS is handled specially. In particular,
the DIVS will either be empty, contain a token indicating the
IDial instance is set, or, for top-level IDial instances only,
contain the single value to which the IDial instance is set, if
applicable. The temporary fields created for each DIDS 1202
at block 2604 also include a Dial Instance Preserve Field
(DIPF), which is set to TRUE if the associated DIDS should
be preserved (i.e., not deleted from the compressed chip HW

US 7,805,695 B2
61

database) and is set to FALSE otherwise. The DIPF of each
DIDS 1202, if any, explicitly listed in override file 2502 as a
DIDS to be preserved is initialized to TRUE, and all other
DIPFs are initialized to FALSE.
The process then proceeds from block 2604 to block 2606,

which illustrates compression tool 2504 entering a loop in
which each top-level pointer 1250 in top-level pointer array
1206 is processed to enter relevant information from Dial
usage information 2500 in the DIPF and DIVS of each DIDS
1202. If all top-level pointers 1250 have been processed, the
processes passes through page connector B to FIG. 26B,
which is described below. If, however, all top-level pointers
1250 have not yet been processed, the next top-level pointer
1250 within top-level pointer array 1206 is selected for pro
cessing at block 2608.
The process then passes from block 2608 to blocks 2610

and 2612. Block 2610 illustrates compression tool 2504 pro
cessing each non-IDial in the Dial tree headed by the Dial
instance corresponding to the DIDS 1202 referenced by the
current top-level pointer 1250. Compression tool 2504 adds
to the DIVS of each Such DIDS 1202 the values for the
corresponding Dial instance contained within the Dial usage
information 2500. In addition, as shown at block 2612, com
pression tool 2504 processes each IDial within the Dial tree
headed by the Dial instance corresponding to the DIDS 1202
referenced by the current top-level pointer 1250. For each
such IDial, compression tool 2504 adds a set token to the
DIVS if Dial usage information 2500 indicates that the IDial
has been set.

Next, at block 2614, compression tool 2504 sets the DIPF
of every DIDS 1202 in the Dial tree headed by the Dial
instance corresponding to the DIDS 1202 referenced by the
current top-level pointer 1250 if Dial usage information 2500
indicates that any Dial in the Dial tree was read. In other
words, each DIPF in the Dial tree is set to TRUE if any Dial
instance in the Dial tree is read. The process then proceeds to
block 2616, which illustrates compression tool 2504 exam
ining each top-level IDial, if any, corresponding to the DIDS
1202 referenced by the current top-level pointer 1250 to
determine whether override file 2502 indicates that the IDial
is set to only a single value. If so, compression tool 2504 adds
to the DIVS of those top-level IDials the value contained
within override file 2502 and removes a set token, if present.

Thereafter, the process returns to block 2606, which illus
trates the continuation of the processing loop until all top
level pointers 1250 within top-level pointer array 1206 have
been processed. Once all top-level pointers 1250 have been
processed, the process passes through page connector B to
FIG. 26B.

With reference now to FIG. 26B, the process proceeds from
page connector B to block 2620, which illustrates a second
processing loop in which each top-level pointer 1250 within
top-level pointer array 1206 is processed. Ifa determination is
made at block 2620 that all top-level pointers 1250 within
top-level pointer array 1206 have been processed in the cur
rent processing loop, the process passes through page con
nector C and continues in FIG. 26C. Otherwise, the process
proceeds to block 2622, which depicts the selection of the
next top-level pointer 1250 within top-level pointer array
1206 for processing.

Following block 2622, the DIVS and DIPF associated with
the DIDS 1202 referenced by the current top-level pointer
1250 are examined for one of three conditions respectively
represented by decision blocks 2624, 2630, and 2640. If a
determination is made at block 2624 that the DIPF has a value
of TRUE or if type field 1220 in the associated DDDS 1200
indicates that the DIDS 1202 corresponds to a Dial group, the

10

15

25

30

35

40

45

50

55

60

65

62
process simply returns from block 2624 to block 2620 for
processing of the next top-level pointer 1250, if any.

If, however, a determination is made at block 2630 that the
DIPF associated with the DIDS 1202 referenced by the cur
rent top-level pointer 1250 has a value of FALSE and the
associated DIVS is empty, then compression tool 2504 can
remove the DIDS 1202 from chip HW database 2108 because
none of the corresponding Dial instances is set or read.
Accordingly, as illustrated at block 2632, compression tool
2504 deletes the DIDS 1202 from chip HW database 2108, as
well as each lower-level DIDS 1202, if any, in the Dial tree
headed by the deleted top-level DIDS 1202. In addition, com
pression tool 2504 deletes the associated top-level pointer
1250 from top-level pointer array 1206, and sets the instance
pointer 1228 pointing to each deleted DIDS 1202 to NULL. A
determination is then made at block 2634 of whether or not
the parent pointer 1233 of the deleted DIDS 1202 was set to
NULL. If so, the process returns to block 2620, which has
been described. If, on the other hand, the parent pointer was
not NULL, then the top-level Dial instance(s) corresponding
to the deleted DIDS 1202 belonged to Dial group instance(s).
Because the top-level Dial instance(s) were never set or read,
each such top-level Dial instance may be safely removed from
its respective Dial group instance. Accordingly, as shown at
block 2636, compression tool 2504 deletes from the DIDS
1202 corresponding to the Dial group instance(s) the output
pointer 1238 to the deleted DIDS 1202 of the top-level Dial
instance. If the deletion of the output pointer 1238 from the
DIDS 1202 of the Dial group instances removes the last
member of the Dial group, the DIDS 1202 corresponding to
the Dial group instance(s) is also deleted from chip HW
database 2108. This process continues, collapsing hierarchi
cal levels of Dial groups, if possible. Following block 2636,
the process returns to block 2620, which has been described.

Returning to block 2640, compression tool 2504 deter
mines whether the DIPF associated with the DIDS 1202
referenced by the current top-level pointer 1250 has a value of
FALSE and the associated DIVS contains a single value. If
not, the process returns to block 2620, which has been
described. If so, a further determination is made at block 2642
by reference to parent field 1232 of the DIDS 1202 of whether
the Dial instance belongs to a Dial group. If so, the process
preferably returns to block 2620 without further processing,
signifying that the DIDS 1202 will be preserved. The DIDS
1202 is preferably preserved because operations setting a
Dial group are atomic and will failifa removed Dial instance
is referenced in the set Dial group() API call. In response to
a determination at block 2642 that the Dial instance corre
sponding to the DIDS 1202 referenced by the top-level
pointer 1250 does not belong to a Dial group, the process
proceeds to block 2644.

Block 2644 illustrates propagating the single Dial value
contained in the DIVS down the Dial tree by reference to
mapping tables 1224 (if necessary) in order to determine the
latch values of the latches terminating the Dial tree. The latch
values determined at block 2644 are then placed within initial
scan chain images 2508 in scan chain locations determined by
reference to chip mapping table 2325, as illustrated at block
2646. Therefore, as shown as block 2648, the DIDS 1202
referenced by the current top-level pointer 1250, its lower
level Dial tree, and top-level pointer 1250 itself are all
removed from the chip HW database 2108, as described
above with respect to block 2632. In addition, the set Dial()
API call utilized to set the top-level Dial instances corre
sponding to the deleted DIDS 1202 is removed (typically by
a human programmer) from system firmware 1930b, as

US 7,805,695 B2
63

shown at block 2650. Thereafter, the process returns to block
2620, which has been described.

Referring now to FIG. 26C, processing begins at page
connector C and proceeds to block 2660, which illustrates a
processing loop in which all Dial pointers 1252 within Dial
pointer array 1208 are processed to eliminate from chip HW
database 2108 any unnecessary DDDSs 1200 and any unnec
essary entries within mapping tables 1224. After all Dial
pointers 1252 within Dial pointer array 1208 have been pro
cessed, the process passes to block 2690, which is described
below. If, however, less than all Dial pointers 1252 have been
processed, the process proceeds from block 2660 to block
2662, which illustrates selection of the next Dial pointer 1252
for processing.

Following selection of a next Dial pointer 1252, compres
sion tool 2504 determines at block 2664 whether all instance
pointers 1228 within instance pointer array 1226 of the
DDDS 1200 referenced by the current Dial pointer 1252 are
NULL. If so, the entire DDDS 1200 is unnecessary and is
removed from the chip HW database 2108, as shown at block
2666. Following block 2666, the process returns to block
2660, which has been described.

In response to a determination at block 2664 that all
instance pointers 1228 within the DDDS 1200 referenced by
the Dial pointer 1252 are not NULL, a further determination
is made at block 2670 of whether or not type field 1220
indicates that DDDS 1200 defines a IDial. If so, no optimi
Zation to mapping table 1224 is possible, and the process
returns to block 2660. If compression tool 2504 determines
that block 2670 that the DDDS referenced by the current Dial
pointer 1252 does not define an IDial, the process proceeds to
block 2672. Block 2672 depicts a determination of whether or
not any DIPF associated with any DIDS 1202 referenced by
an instance pointer 1228 has a value of TRUE. If so, this
condition indicates that at least one Dial instance of the Dial
defined by DDDS 1200 has been read and therefore requires
a full mapping table 1224. Accordingly, the process returns to
block 2660 without performing any optimization to mapping
table 1224.

If, however, compression tool 2504 determines at block
2672 that all DIPFs associated with DIDSs 1202 referenced
by instance pointers 1228 have a value of FALSE, the process
proceeds from 2672 to the processing loop illustrated at
blocks 2674, 2676, and 2678. This processing loop represents
compression tool 2504 processing each instance pointer 1228
within the instance pointer array 1226 of the DDDS 1200
referenced by the current Dial pointer 1252 in order to build
a Dial value set containing all values to which the Dial
instances corresponding to the DIDSs 1202 were set by sys
tem firmware 1930. As indicated at block 2678, the Dial
values are obtained from the DIVS associated with each
DIDS 1202. After the Dial value set has been built through
processing each instance pointer 1228, the process passes
from block 2674 to block 2680. Block 2680 illustrates com
pression tool 2504 removing each entry in mapping table
1224 of the DDDS 1200 referenced by the current Dial
pointer 1252 whose Dial input value is not found within the
Dial value set. This process continues down the Dial tree,
eliminating mapping table entries that are not utilized to
generate the Dial value set. Thus, mapping tables 1224 of
individual Dials are optimized by the removal of unneeded
entries. Thereafter, the process returns to block 2660.

In response to a determination at block 2660 that all Dial
pointers 1252 within Dial pointer array 1206 have been pro
cessed, compression tool 2504 performs a last compression at
block 2690 by replacing common portions of instance names
within instance name fields 1234 with pointers to a “dictio

10

15

25

30

35

40

45

50

55

60

65

64
nary providing the full instance name portions. This com
pression technique, which is well known to those skilled in
the art, replaces instance names (or portions thereof) with
pointers, which are typically significantly shorter than the
instance name or instance name portions they replace. These
pointers can then be replaced within instance name fields
1234 as a step in the process in which HW configuration
database 1932a is loaded into volatile memory 1928a of
service processor 1920. Following block 2690, compression
tool 2504 terminates processing at block 2692.

After all of the chip HW databases 2108 have been com
pressed by compression tool 2504 in accordance with the
method depicted in FIG. 26A-26C, the compressed chip HW
databases 2108 can then be utilized to construct hardware
configuration database 1932a stored within flash ROM 1924
by simply constructing a chip pointer data structure 2320. It
should be noted that the compression methodology imple
mented by compression tool 2504 is not exclusive. HW con
figuration APIs 1934bpreferably include a suite of APIs that
permit a developer to remove individual DIDSs 1202, remove
an entry in a mapping table 1224, and perform other optimi
zations similar to those illustrated in FIG. 26A-26C.

In the embodiments of the present invention described
above, it has been assumed that each Dial (i.e., LDial or IDial)
that is logically coupled to a simulation configuration latch or
hardware latch can set the value contained in the simulation
configuration latch or hardware latch. In practice, however, it
is often desirable to be able to read such latches without
permitting system firmware or a simulator to set (or alter) the
latch values.

In view of the foregoing, a preferred embodiment of the
present invention supports an additional class of configura
tion entities referred to herein as read-only Dials or RDials.
There is preferably a read-only configuration entity corre
sponding to each type of Dial and Dial group described above,
that is, a read-only LDial, CDial, IDial and Dial group. For
ease of understanding, each read-only configuration entity is
referred to herein by the Dial or Dial group type name (e.g.,
LDial, CDial, IDial and Dial group) preceded by an “R”
designating the configuration entity as read-only (e.g.,
RLDial, RCDial, RIDial and RDial group).

RDials and RDial groups are subject to a number of rule
sets. First, RDials and RDial groups are read-only and, by
definition, cannot be set by a simulator or system firmware.
Consequently, RDials and RDial groups cannot be assigned
default values.

Second, the syntax defining an RDial or RDial group
within a configuration specification statement is preferably
the same as that described above for the corresponding non
read-only configuration entity, except that the keyword defin
ing the configuration entity is preceded by an “R”. For
example, an exemplary configuration specification statement
for an RLDial can be given as follows:

RLDial state machine (state vector(0.1)
) :

{idle =>Ob00;
start =>Ob01;
wait=>Ob10;
end =>Ob11

The exemplary configuration specification statement given
above begins with the keyword “RLDial,” which specifies
that the type of RDial being declared is an RLDial, and the
RDial name, which in this case is “state machine. Next, the

US 7,805,695 B2
65

configuration specification statement enumerates the signal
name(s) whose states are read by the RLDial. Following the
enumeration of the signal identifiers, the configuration speci
fication statement includes a mapping table listing the per
mitted enumerated “input values (or settings) of the RLDial
and the corresponding signal (i.e., "output') values for each
enumerated input value. It should again be noted that the
signal states specified for all enumerated values are unique,
and collectively represent the only legal patterns for the signal
States.

Third, RDials have a different set of rules regarding inter
connection with Dials and RDials and grouping of Dials
and/or RDials to form RDial groups. These rules are set forth
in detail below with reference to FIG. 27, which is a graphical
representation of a portion of an exemplary configuration
database 2700 including Dials and RDials having specified
logical connections to latches 2760-2778 of a simulation
model or hardware system.
As an initial matter, RDials are subject to similar restric

tions on interconnection to other RDials and latches as set
forth above with respect to the corresponding Dials. That is, in
a preferred embodiment, an RIDial or an RLDial, but not an
RCDial, can have its output directly coupled to a latch, and an
RCDial, but not an RIDial or RLDial, can have its output
connected to the input of a lower level RDial. Thus, for
example, RCDial 2740 has an output connected to the input of
RCDial 2742, which in turn has two outputs respectively
connected to the inputs of RLDial 2744 and RIDial 2746.
RLDial 2744 and RIDial 2746 have outputs connected to
latches 2770 and 2772, respectively.

In addition, an RCDial can have its output connected to the
input of any type of Dial, but no Dial is permitted to have its
output connected to the input of any RDial. For example,
RCDial 2740 has an output coupled to the input of CDial
2724. Although not explicitly illustrated in FIG. 27, it should
be noted that an RDial may have outputs connected to the
inputs of RDials and/or Dials at multiple different levels of
the same subtree.

To prevent conflicting settings, the Dials and Dial groups
defined hereinabove permit each latch, Dial, and Dial group
to have at most one Dial or Dial group as a parent hierarchi
cally "above it in an n-way Dial tree. For example, each of
CDial 2722 and CDial 2724 has only one Dial parent (i.e.,
CDial 2720), each of LDial 2726 and IDial 2728 has only one
Dial parent (i.e., CDial 2722), and each of LDial 2730 and
IDial 2732 has only one Dial parent (i.e., CDial 2724). How
ever, because RDials and RDial groups are, by definition,
read-only, any Dial or RDial may have one or more RDial or
RDial group parents without any possibility of conflict
between Dial settings. That is, an RDial may have its output
connected to a latch, Dial or RDial to which the output of
another RDial or Dial is also connected, subject to the other
rules and provided that no closed loop is formed. Stated
another way, each latch and Dial is permitted to have at most
one Dial parent, but each latch, Dial and RDial can have one
or more RDial parents, regardless of whether the latch or Dial
also has a Dial parent. For example, in configuration database
2700 of FIG. 27, an output of each of RCDial 2740 and
RCDial 2750 is connected to the input of RCDial 2742.
Similarly, CDial 2720 and RCDial 274.0 each have an output
connected to the input of CDial 2724. Also, RLDial 2752 and
LDial 2754 each have an output connected to latch 2776.
The final rule regards the construction of RDial groups. As

described above in detail with reference to FIG. 11A, in a
preferred embodiment, a Dial group may only contain top
level Dial(s) and/or other hierarchically nested Dial group(s).
In contrast, an RDial group may contain an RDial or Dial at

10

15

25

30

35

40

45

50

55

60

65

66
any level of hierarchy and/or a Dial group or RDial group.
This additional flexibility is permitted because RDial groups,
like RDials, are never set by a simulator or system firmware.
The implementation of RDials and RDial groups within a

configuration database in combination with the Dials and
Dial groups previously described inaccordance with the rules
set forth above permits construction of three classes of trees.
First, as exemplified by Dial trees 2702 and 2708, a tree may
comprise Dial(s) and latch(es), but no RDials. Second, a
RDial tree, for example, RDial tree 2706, may comprise
RDial(s) and latch(es), but no Dials. Third, a hybrid tree may
be constructed that contains one or more RDials, one or more
Dials, and one or more latches, as illustrated by hybrid tree
2704.

In order to Support RDials and RDial groups, some modi
fications are made to a simulation configuration database and
a HW configuration database. First, the value set of the type
field 1220 within each DDDS 1200 is augmented to include
additional values identifying RDial groups and the additional
types of RDials. For example, the value set may be augmented
with values RL, RC, RI and RG to respectively identify
DDDSs 1200 corresponding to RLDials, RCDials, RIDials
and RDial groups. The addition of these new values ensures
that a set Dial() or set Dial group() API call, which pref
erably test the type field 1220 of the associated DDDS 1200
prior to attempting to set any instance, will not attempt to set
an RDial or RDial group.

In addition, as illustrated in FIG. 28A, each DIDS 1202 is
expanded to include a read-only parent field 2800 including
Zero or more read-only parent pointers 2801. Each non
NULL read-only parent pointer 2801 defines either a connec
tion between the input of the instance represented by the
DIDS 1202 and the output of a higher-level RDial or the
inclusion of the instance represented by the DIDS 1202
within an RDial group. As noted above, in addition to a Dial
or Dial group parent, if any, an instance represented by a
DIDS 1202 can have multiple RDial parents and/or belong to
multiple RDial groups.
As depicted in FIG. 28B, latch data structures within a

configuration database (e.g., latch data structure 2230 of a
HW configuration database or latch data structure 1204 of a
simulation configuration database) are similarly augmented
to include a read-only parent field 2802 including one or more
read-only parent pointers 2803. Each non-NULL read-only
parent pointer 2803 defines a connection between the input of
the latch instance represented by the latch data structure and
the output of a RIDial or RLDial. As noted above, in simula
tion, latch names within latch name field 1244 (FIG. 12) are
preferably specified with reference to the scope of the LDial
or IDial indicated by parent pointer 1242. If parent pointer
1242 is NULL, indicating that the configuration latch corre
sponding to the latch data structure 1204 has no Dial parent,
the latch name contained within latch name field 1244 is
preferably specified with reference to the scope of the RLDial
or RIDial corresponding to the DIDS 1202 identified by the
first read-only parent pointer 2803 within read-only parent
field 2802.

Finally, top-level pointer array 1206 (FIG. 12), although
structurally unchanged, is increased in length to Support
RDials and RDial groups. Specifically, top-level pointer array
1206 includes top-level pointers 1250 to the DIDS 1202 of
each top-level RDial group, each top-level RDial included
within an RDial group (i.e., having a non-NULL read-only
parent field 2800), and each top-level RDial not included
within an RDial group (i.e., having a NULL read-only parent
field 2800).

US 7,805,695 B2
67

The foregoing modifications to the data structures in a
configuration database to Support RDials and RDial groups
necessitates concomitant modifications to the method of
loading and expanding a configuration database from non
Volatile storage into volatile storage that was described above
with reference to FIG. 13. FIG. 29 is a high level logical
flowchart of an exemplary method of loading a configuration
database containing RDial and/or RDial groups from non
Volatile storage into Volatile memory in accordance with a
preferred embodiment of the present invention. As indicated
by the use of like reference numerals, the method illustrated
in FIG.29 is substantially similar to that described above with
reference to FIG. 13, with some additions to ensure that each
data structure is processed only once.
As indicated by prime notation (), a first modification to

the method previously described is made at block 1308. In
the method of FIG. 13, block 1308 represents a determination
of whether or not the DIDS 1202 referenced by the current
top-level pointer 1250 corresponds to a Dial or Dial group
belonging to a Dial group. Block 1308 in FIG.29 adds to this
determination a further determination of whether or not the
DIDS 1202 referenced by the current top-level pointer 1250
corresponds to a Dial, RDial, Dial group or RDial group
belonging to a RDial group. If either determination obtains an
affirmative response, processing of the current top-level
pointer 1250 terminates as indicated by the process returning
to block 1304 because the DIDS 1202 referenced by the
current top-level pointer 1250 will be processed when the
Dial group or RDial group is processed. This determination
ensures that the DIDS 1202 of top-level Dials and RDials are
processed only once.

To ensure that lower-level data structures are also pro
cessed only one time during the process of loading the con
figuration database into Volatile memory, a further determi
nation is made at block 2900 whether the DIDS 1202
referenced by the current top-level pointer 1250 corresponds
to a RDial or RDial group. If not, that is, if the tree rooted at
the DIDS 1202 corresponds to a Dial or Dial group, then none
of the “children' in the tree can be RDials or RDial groups.
Accordingly, the subtree below the current DIDS 1202 can be
processed as before, as indicated by the process passing from
block 2900 to block 1316.

However, in response to a determination at block 2900 that
the DIDS 1202 referenced by the current top-level pointer
1250 corresponds to a RDial or RDial group, the process
passes to block 2902 and following blocks, which represent
processing the subtree of the RDial or RDial group to ensure
that each data structure in the configuration database is pro
cessed only once. To track which data structures have been
processed, the current DIDS 1202 is first marked as processed
at block 2902. Then, as indicated at block 2904, the process
enters a processing loop in which each output pointer 1238
within the output pointer array 1236 of the current top-level
DIDS 1202 is processed. Once all output pointers 1238 have
been processed, the process exits the processing loop and
returns to block 1304, which represents a determination of
whether or not any additional top-level pointers remain to be
processed.

If a determination is made at block 2904 that not all output
pointers 1238 have been processed, the next output pointer
1238 within output pointer array 1236 is selected for process
ing at block 2906. The process then proceeds to blocks 2910
and 2912, which respectively illustrate a determination of
whether or not the selected output pointer 1238 points to a
DIDS 1202 corresponding to a Dial or Dial group, or whether
the DIDS 1202 referenced by the output pointer is a RDial or
RDial group that has been marked as previously processed. If

10

15

25

30

35

40

45

50

55

60

65

68
a positive result is obtained at block 2910, an interface
between an RDial or RDial group and a Dial or Dial group has
been located. Because the subtree headed by the Dial or Dial
group will be processed when another top-level pointer 1250
is selected for processing, processing of this subtree termi
nates, and the process returns to block 2904. Processing of the
Subtree similarly terminates in response to a determination at
block 2912 that the DIDS 1202 referenced by the current
output pointer 1238 (which corresponds to a RDial or RDial
group) is marked as previously processed.

If, on the other hand, the determinations illustrated at
blocks 2910 and 2912 yield negative results, the DIDS 1202
or latch data structure 1204 referenced by the current output
pointer 1238 is marked and processed at block 2914. The
processing performed at block 2914 is the same as that illus
trated at block 1310, 1312, 1314 and 1316 and described
above. As further indicated at block 2914, each lower level
data structure in the Subtree up to and including the latch(es)
terminating the Subtree is similarly marked and processed,
subject to the two conditions depicted at block 2912 and
2914. That is, processing of any subtree is discontinued if an
interface with a Dial or Dial group is detected or if a data
structure (e.g., a latch data structure 1204 or DIDS 1202
corresponding to a RDial or RDial group) that has been
marked is detected. Following block 2914, the process returns
to block 2904, which has been described.
The implementation of RDials and RDial groups also

entails some adjustments in the manner in which Dials, Dial
groups, RDials, and RDial groups are read for both simula
tion and hardware implementations of the digital design. In
particular, as the trees are traversed to create the latch set of
interest ultimately targeted by a read Dial() or read Dial
group() API call, for example, at blocks 1620 (FIG.16A) and
1660 (FIG. 16B), the “branches” (i.e., DIDS 1202 corre
sponding to Dials or RDials) traversed to create the latch set
are preferably recorded or marked. In this manner, when the
latch values of the latches in the latch set are propagated “up'
the trees to obtain Dial and RDial settings, for example, as
illustrated at block 1624 (FIG.16A) and 1664 (FIG.16B), the
correct branches are upwardly traversed from the latch data
structures 1204 to obtain the Dial or RDial settings of interest.
In other words, becausea Dial or RDial may have one or more
RDial parents in addition to a single Dial parent, if any, the
parent pointers of the branches traversed downwardly to
obtain the latch values must be recorded or marked to ensure
that the same branches are traversed upwardly to obtain the
desired Dial or RDial setting.

Another adjustment is preferably made to the compression
routine illustrated in FIGS. 26A-26C. In the described
embodiment, block 2632 of FIG. 26B depicts removing the
entire Dial tree of a top-level DIDS 1202 that Dial usage
information 2500 (and therefore the DIPF) indicates was not
set or read. With the implementation of RDials and RDial
groups, which as shown in FIG. 27 permits the upward
branching of trees, it is preferable if this step is modified to
preserve any lower level DIDSs 1202 also belonging to the
subtree of a RDial instance that was read. In this modification,
after the top-level DIDS 1202 is removed, the DIPF of each
lower level DIDS 1202 in the Subtree of the deleted DIDS
1202 is tested to determine if it has the value TRUE, which
indicates that the lower level DIDS 1202 also belongs to a tree
that was read. If not, the lower level DIDS 1202 can also be
removed, and the removal process continues down the Sub
tree. However, if a lower level DIDS 1202 having a DIPF set
to TRUE is located, that lower level DIDS 1202 and its
subtree are not removed. However, its parent pointer 1233 is

US 7,805,695 B2
69

set to NULL to reflect the removal of the parent DIDS 1202
referenced by parent pointer 1233.
When debugging and testing a hardware digital design in a

laboratory environment or responding to a failure of a
deployed hardware system, analysis of failures to determine
their causes is a crucial task. Conventionally, to facilitate the
determination of the causes of a failure, a scan dump of all of
the test Scan chains within the hardware digital system is
obtained. The scan chain images are then analyzed to deter
mine the cause of the failure. Frequently, particular scan chain
bits are hand-selected and input into a simulation model of the
digital system in an attempt to reproduce the failure in simu
lation. Simulation of hardware failures enables the improved
signal visibility and stepping capability of a simulator to be
leveraged to assist in the determination of the causes of the
failures.

This conventional failure analysis is tedious and error
prone in that a user must first attempt to determine which bits
in the “sea of bits’ provided by the scan dump are important
to port to the simulation system in order to recreate the error
condition. The user must then scan through the scan dump by
handby reference to possibly erroneous paper documentation
in order to determine the values of the bits of interest. Finally,
the user must program a RTX or other software program to
load the latches of the simulation model with the appropriate
bit values.

The present invention improves upon Such prior art analy
sis techniques by leveraging the features of the configuration
specification language and the hardware and simulation con
figuration databases described above. With reference now to
FIG. 30, there is depicted a high level logical flowchart of an
exemplary process for utilizing a simulation model to analyze
a selected State of a hardware system, and in particular, a
failure state of a hardware system. As shown, the process
begins with the operation of a chip analyzer tool 3004, which
preferably comprises software executing on a computer sys
tem, Such as data processing system 6 of FIG. 1. Chip ana
lyzer tool 3004 receives as inputs test scan chain images 3000,
which collectively represent the system failure state and
which each contain the latch values of all of the latches of a
respective integrated circuit chip within a hardware digital
design (e.g., a server computer system under test). In addi
tion, chip analyzer tool 3004 receives the per-chip-type chip
HW database 2108 for each type of integrated circuit chip
within the hardware digital design. Finally, chip analyzer tool
3004 is provided a selected Dial list 3002, which identifies
which Dials within each chip HW database 2108 are deemed
relevant to approximate the hardware failure state in simula
tion.

Chip analyzer tool 3004 processes the scan chain images
3000 and the selected Dial list3002 by reference to chip HW
databases 2108 to generate a respective chip configuration
report 3006 and simulation setup file 3008 for each integrated
circuit chip in the hardware digital design. Each chip configu
ration report 3006 comprises a human-readable and printable
listing of all of the Dial instances associated with a particular
integrated circuit in the hardware digital design, together with
the setting (if a legal value is available) of each Dial instance
at the point of failure. For Dial instances for which legal
values are not available, the underlying latch values are
reported. Each simulation setup file 3008 is a machine-read
able file specifying the setting (if a legal value is available) of
each Dial identified in selected Dial list 3002 that is associ
ated with the corresponding integrated circuit chip. As
explained below, an RTX 1420 (FIG. 14) utilizes simulation
setup files 3008 to configure a simulation model 1400 of the

10

15

25

30

35

40

45

50

55

60

65

70
hardware digital system to a state approximating the failure
state of the hardware digital design.

Referring now to FIG. 31, there is illustrated a high level
logical flowchart of an illustrative method by which chip
analyzer tool 3004 of FIG. 30 generates the chip configura
tion reports 3006 and simulation setup files 3008 utilized to
analyze hardware failures in accordance with the present
invention. As illustrated, the process begins at block 3100 and
then proceeds to block 3102, which depicts chip analyzer tool
3004 determining whether the scan chain images 3000 of
each integrated circuit chip within the hardware digital design
have been processed. If the scan chain images 3000 of all
integrated circuit chips have been processed, the process ter
minates at block 3130. If, however, fewer than all of the scan
chain images 3000 have been processed, the scan chain
images 3000 and chip HW database 2108 of the next inte
grated circuit chip to be processed are selected at block 3104.
The process shown in FIG.31 then enters a processing loop

at blocks 3106-3110 in which each latch value of interest
scanned from the current integrated circuit chip is processed
by reference to the latch pointers 1254 in the latch pointer
array 1210 of chip HW database 2108. Specifically, chip
analyzer tool 3004 determines at block 3106 whether or not
all latch pointers 1254 have been processed. If so, the process
passes from block 3106 to block 3120, which is described
below. If, however, all latch pointers 1254 have not yet been
processed, the next latch pointer 1254 within latch pointer
array 1210 is selected for processing at block 3108. Next, at
block 3110, chip analyzer tool 3004 utilizes the test scan ring
identifier and offset value pair contained in the method name
field 2234a (FIG. 23B) of the latch data structure 2230 refer
enced by the current latch pointer 1254 to locate within scan
ring images 3000 the latch value of the hardware latch corre
sponding to the latch data structure 2230. This latch value is
then stored within the appropriate entry of latch value field
2324, which is determined by reference to the position of the
chipID of the current integrated circuit chip within chip map
ping table 2325. Thereafter, the process returns to block 3106.

In response to a determination at block 3106 that all latch
pointers 1254 within the latch pointer array 1210 of the cur
rent chip HW database 2108 have been processed, the process
proceeds to block 3.120. Block 3120 depicts chip analyzer
tool 3004 propagating the set of latch values contained in each
latch valuefield 2324 up all branches of the DIDS trees within
the chip HW database 2108 by reference to mapping tables
1224 in order to obtain the setting (i.e., input value) of each
Dial and RDial, if possible. Given the fact that the latch values
within latch value fields 2324 correspond to a hardware fail
ure state, it is frequently the case that an attempt to propagate
at least Some latch values up a tree will result in at least one
"output value that is not among the legal output values
specified within the mapping table 1224 for a Dial or RDial
instance. In such cases, the Dial or RDial instance (and any
RDial or Dial above it in the same tree) is flagged as having an
illegal value. Such illegal values frequently suggest the cause
of the hardware failure.

It should be noted that the ability to derive Dial and RDial
values from latch values depends upon the invertibility of the
configuration specification language introduced by the
present invention. That is, without a one-to-one mapping
between Dial (and RDial) inputs and outputs, Dial (and
RDial) settings cannot be definitely determined from latch
values, as shown at block 3120.

Following block 3120, the process proceeds to block 3122.
which depicts chip analyzer tool 3004 creating a chip con
figuration report 3006 for the current integrated circuit chip.
As noted above, chip configuration report 3006 is a human

US 7,805,695 B2
71

readable file containing a listing of all Dial and RDial
instances within the current chip HW database 2108 and their
corresponding settings, if any, determined at block3120. Dial
and RDial instances having illegal values are flagged in chip
configuration report 3006, and the latch values of the under
lying latches are listed to facilitate analysis. As shown at
block 3124, chip analysis tool 3004 also creates an RTX
compatible simulation setup file 3008 for the current inte
grated circuit. Simulation setup file 3008 preferably includes
the Dial settings of only the Dial instances specified within
selected Dial list 3002, and if a Dial instance specified in
selected Dial list 3002 has an illegal value, the latch values of
the underlying latches in the latch set controlled by the Dial.
These Dial instance settings and latch values can then be
applied automatically to a simulation model 1400 by an RTX
1420 running in a simulation environment, as explained
below.

It should be appreciated that because the number of latches
controlled by Dials is typically only a small percentage of the
overall number of latches in an integrated circuit, the designer
of the digital system, through the use of the configuration
specification language of the present invention to associate
Dials with particular configuration latches, has already
greatly reduced the number of latch values to be considered in
recreating the system failure State and has identified those
latches most likely to be necessary to reproduce the hardware
failure State. Selected Dial list 3002 further reduces the
amount of hardware state information to be ported back into
a simulation model 1400 by designating particular user-se
lected Dial instances (not RDial instances) of interest.

Following block 3124, the process depicted in FIG. 31
returns to block 3102 for the processing of the next integrated
circuit chip in the hardware digital design, if any. After all
integrated circuit chips within the hardware digital design are
processed, the process terminates at block 3130.

Referring again to FIG. 30, following the creation of a
respective simulation setup file 3008 for each integrated cir
cuit chip within the hardware digital design in accordance
with the process of FIG. 31, the hardware failure state is
approximated within a simulation model 1400 of the digital
design through the execution of RTX 1420. As an aside, it
should be noted that it is generally undesirable to reproduce
the exact hardware failure state in simulation because the
digital design, by definition, will not operate correctly from
the failure state.

In order to approximate the hardware failure state in simu
lation, RTX 1420 first makes standard API calls to the APIs
provided by simulator 1410 in order to perform the normal
initialization procedures utilized to initialize simulation
model 1400 for simulation. Next, RTX 1420 may optionally
make individual user-specified customizations to the configu
ration of simulation model 1400 based upon the contents of a
user-provided custom initialization modifications file 3010.
These custom modifications may be made, for example, to
adjust a parameter to expose a particular failure mode or to
improve the visibility of certain types of failures. Finally,
RTX 1420 applies the Dial instance settings and latch values
contained in simulation setup files 3008. As described in
detail above with reference to FIGS. 14 and 17A, RTX 1420
sets Dial instances through set Dial() API calls to a configu
ration API 1406, which, after reflecting the Dial instance
settings in simulation configuration database 1404, calls
PUTFAC() API 1414 to set corresponding latch values in
simulation model 1400. RTX 1420 similarly utilizes API calls
to set the configuration latches of simulation model 1400 and
latch value fields 1246 (FIG. 12) of configuration database
1404 with the latch values contained within simulation setup

10

15

25

30

35

40

45

50

55

60

65

72
files 3008 that correspond to illegal Dial values. With simu
lation model 1400 thus configured, RTX 1420 directs execu
tion of one or more test cases against simulation model 1400
by simulator 1410 in order to attempt reproduction of the
hardware failure state in simulation.

As described above, the use of configuration entities such
as Dials, Dial groups and Registers, and in particular, RDials
and RDial groups, facilitates the interpretation and analysis of
a "dump' of the state of a digital system (e.g., a simulation
model or hardware system) because information regarding
the state of the system, Such as Dial and Register names and
values, is presented in human readable format rather than as a
“sea of bits”. However, when a “dump' of the entire state of
a large digital system is requested, the amount of data
returned can still be overwhelming, even with the interpretive
guidance provided by the Dial, Dial group and Register
names and values. It would therefore be desirable to be able to
selectively control the conditions under which particular
Dials, Dial groups and Registers are presented in response to
a request for a partial or full dump of the state of a simulated
or hardware system.

In order to permit the selective presentation of Dial, Dial
groups and Registers in this manner, the configuration speci
fication language of the present invention is extended to per
mit a “controlling value set for a configuration entity (e.g.,
Dial, Dial group or Register) to be specified in the definition
of the Dial, Dial group or Register in order to control the
conditions under which the setting of the Dial, Dial group or
Register will be presented. In one of a number of possible
embodiments, the controlling value set for a Dial, Dial group
or Register is specified in a parenthetical field appearing
immediately prior to the terminating semicolon of the Dial,
Dial group or Register definition (i.e., following Dial default
values and phase IDs, if any), and the controlling value set
specifies Dial or Register settings for which the Dial, Dial
group or Register are not to be presented. In other embodi
ments, of course, the controlling value set can be expressed
with different syntax, and the controlling value set specifies
Dial or Register settings for which the Dial, Dial group or
Register are to be presented.
To illustrate exemplary syntax defining a controlling value

set, consider again the exemplary RLDial state machine
defined above. Assuming a default interpretation of the con
trolling value set expression in which the RLDial will not be
displayed for the specified set of controlling values, the
RLDial state machine will not be presented in a system dump
if it has either of the settings "idle' or “end” and will be
presented in a system dump if it has the setting “start” or
“wait' if the following syntax is employed:

RLDial state machine (state vector(0.1)
) :

{idle =>Ob00;
start =>Ob01;
wait=>Ob10;
end =>Ob11
(idle,end);

Using conventional notation for negation, the same outcome
can be achieved by alternatively specifying the RLDial state
machine as follows:

US 7,805,695 B2
73

RLDial state machine (state vector(0.1)
) :

{idle =>Ob00; 5
start =>Ob01;
wait=>Ob10;
end =>Ob11
((start, wait));

10
In the above examples, the controlling values are specified

as enumerated values among the set of legal settings for the
RLDial. For other Dial and Register types, of course, the
controlling values are tailored to the type of Dial or Register.
For example, for IDials, the controlling values are integers 15
and can be specified in decimal, hexadecimal or octal format.

In a preferred embodiment, the controlling value field fur
ther Supports one or more keywords that govern the manner in
which or conditions, if any, under which the configuration
entity will be presented. For example, the keyword".<no dis- 20
playo” may be employed to specify that the configuration
entity and its settings are never to be presented in a system
dump. Angle brackets (i.e., “K” and “d') or some other special
characters are preferably utilized to delimit keywords appear
ing within the controlling value field to prevent confusion 25
when parsing similar enumerated Dial settings.

For Dial groups, selective presentation of the member
Dials is accomplished by specifying one or more controlling
Dials hierarchically contained within the Dial group and a set
of one or more controlling values for each controlling Dial. 30
For example, consider exemplary Dial group F of FIG. 11B,
which is defined by the following statement:

GDial F(C, Z.B, Y.A);
Dial C can be selected as the controlling Dial of Dial group F
by adding a controlling value field as follows:

GDial F(C, Z.B, Y.A)(C-idle);

35

This configuration specification Statement will cause the set
tings of the Dials within the Dial group F to not be presented
if Dial Chas the setting “idle.” Alternatively, if it is desirable 40
to present the settings of the Dials comprising Dial group F if
Dial C is in the "idle' setting, then the configuration statement
can be expressed as follows:

GDial F(C, Z.B, Y.A)(C-idle);
As will be appreciated by those skilled in the art, more

complex controlling value expressions can also be employed
for Dials, Dial groups, and Registers. For example, logical
expressions dependent upon the settings of more than one
Dial or Register can be utilized to control the presentation of
Dials, Dial groups and Registers. For example, considering 50
again Dial group F, the controlling value set for the presenta
tion of Dial group F can be specified as dependent on the
setting of both Dials Cand B as follows:

GDial F(C, Z.B, Y.A)(C-idle AND Bidle);

45

55
Similar logical expressions employing the logical operators
AND, OR, and NOT can be utilized to define the controlling
value set for Dials and Registers.

It will also be appreciated that the controlling value expres
sion may also be expressed utilizing compact, bracketed Syn- 60
tax. In Such cases, the settings of the Dial, Dial group or
Register will not be subject to presentation unless all Dials,
Dial groups and/or Registers indicated by the controlling
value expression have the specified controlling value.

With reference now to FIG. 32, there is depicted an exem- 65
plary embodiment of a configuration database 814, 1404,
1932 or 2108 that supports the selective presentation of Dials,

74
Dial groups, and Registers in accordance with the present
invention. That is, configuration database 814 (and any simu
lation configuration database 1404 or hardware configuration
database 1932, 2108 derived therefrom) records the control
ling value sets of Dial, Dial groups and Registers that were
specified in the HDL files defining the design. Those skilled
in the art will appreciate from the following description that
the illustrated database structure is only one of a large number
of possible data structures for storing the controlling value
information of configuration entities.
As can seen by comparison of FIG. 32 with FIG. 12A,

configuration database 814 of FIG. 32 is identical to that
described above with respect to FIG. 12A except that Dial
instance data structure (DIDS) 1202' is augmented with addi
tional fields to support the selective presentation of Dials,
Dial groups, and Registers. In particular, DIDS 1202 is
expanded to include a controlling value set table 3200 that
stores the controlling value set for the configuration entity
instance (e.g., Dial, Dial group or Register instance) corre
sponding to DIDS 1202. In addition, DIDS 1202' is expanded
to include controlling Dial field 3204, which for DIDSs cor
responding to Dial groups contains a respective pointer to
each of the one or more controlling Dials of the Dial group.
For the DIDSs of other configuration entity instances, con
trolling Dial field 3204 is NULL.

Utilizing the controlling value information recorded within
database 814 (or any loaded simulation configuration data
base 1404 or hardware configuration database 1932, 2108
derived therefrom), a large variety of algorithms can then be
implemented to selectively present Dial, Dial group and Reg
ister settings of a simulated or hardware system in response to
the controlling value information within the corresponding
configuration database. In one preferred embodiment, Such
algorithms are implemented as APIs that may be called by
simulation software (e.g., RTX 1420 of FIG. 14) or firmware
(e.g., system firmware 1930 of FIG. 19). An exemplary
embodiment of a process that may be implemented by an API
to selective present configuration entity instances (e.g., Dials,
Dial groups and Registers) in a dump of the state of a simu
lated or hardware system is illustrated in FIG. 33 and
described below.

Referring now to FIG. 33, there is illustrated a high level
logical flowchart of an exemplary process for selectively pre
senting the state of a hardware or simulated system in accor
dance with the present invention. The illustrated process
selectively presents, in textual and/or graphical form, the
settings of Dials, Dial groups and Registers by reference to a
configuration database associated with the simulated or hard
ware system of interest. Thus, for large hardware systems
comprising multiple integrated circuit chips, each of which
has an associated configuration database, the illustrated pro
cess is preferably performed for each such database within
the parameters specified by the API call invoking the depicted
process. Those skilled in the art will appreciate that, as a
logical flowchart, many of the indicated steps may be per
formed concurrently or in a different order than illustrated.
As shown in FIG.33, the process begins at block 3300 and

thereafter proceeds to block 3302, which represents the itera
tion over each top-level pointer 1250 within top-level pointer
array 1206 of the configuration database 814, 1404, 1932 or
2108 to process each Dial group instance within the configu
ration database. If all top-level pointers 1250 within top-level
pointer array 1206 have been accessed, the process passes to
block 3350, which is described below. If, however, not all
top-level pointers 1250 within top-level pointer array 1206
have been accessed, the process passes from block 3302 to

US 7,805,695 B2
75

block 3304, which illustrates accessing the next top-level
pointer 1250 within top-level pointer array 1206.
A determination is next made at block 3306 regarding

whether or not the current top-level pointer 1250 points to a
Dial group instance. This determination can be made, for
example, by determining whether or not type field 1220 of the
DDDS 1200 pointed to by the parent pointer 1233 of the
DIDS 1202 pointed to by the current top-level pointer 1250
indicates that the DIDS 1202 defines a Dial group instance. If
the DIDS 1202 pointed to by the current top-level pointer
1250 does not define a Dial group instance, the process
returns to block 3302, which has been described.

If, however, the current DIDS 1202 under consideration
does define a Dial group instance, the process proceeds to
block3310. Block 3310 depicts a determination of whether or
not the API call that invoked the process of FIG.33 included
a “region' parameter specifying a region of interest within the
system to which the presentation is to be limited, and if so,
whether instance name field 1234 indicates that the present
Dial group instance is within the region of interest. For
example, the region parameter may be expressed utilizing
regular expressions or other known techniques for specifying
design entities in order to narrow the scope of the system that
is subject to presentation. If the Dial group instance defined
by the DIDS 1202 pointed to by the current top-level pointer
1250 falls outside the scope of the region parameter specified
in the API call, the process returns to block 3302, which has
been described. If, on the other hand, the Dial group instance
defined by the DIDS 1202 pointed to by the current top-level
pointer 1250 falls within the scope of the region parameter, if
any, specified in the API call, the process proceeds to block
3312.

Block 3312 depicts a determination of whether or not the
controlling value set table 3200 of the current DIDS 1202
specifies a controlling value set for the Dial group instance. If
so, the process passes to block 3330, which illustrates a deter
mination of whether or not controlling value set specified
within controlling value set table 3200 indicates that the Dial
group instance should be presented. This determination may
be made, for example, by determining if the current setting of
the controlling Dial(s) identified by controlling Dial field
3204 (which Dial setting(s) may be obtained in accordance
with the process of FIG.16A, for example) indicates that the
Dial group instance should be presented. If the determination
shown at block 3330 has a negative result, the process returns
to block 3302. If the determination has a positive result, the
process proceeds to block 3334, which is described below.

Returning to block 3312, if the current DIDS 12021" does
not specify a controlling value set within its controlling value
set table 3200, another determination is made at block 3320
regarding whether the API call itself or one of its parameters
indicates a default policy regarding the inclusion or exclusion
of Dial groups having no controlling value sets. If a determi
nation is made at block 3320 that the default policy indicated
by the API call or its parameters is to exclude from presenta
tion Dial group instances having no controlling value set, then
the process returns to block 3302 If, however, a determination
is made at bock 3320 that the default policy is to include in the
presentation those Dial group instances having no controlling
value set, the process proceeds to block 3334.

Blocks 3334-3336 represent building an output file for
presentation that contains settings of top-level Dials within
the Dial group instance defined by the current DIDS 1202.
Although in alternative embodiments of the invention the
settings of all Dial instances belonging to the Dial group
instance may be included in a presentation once a determina
tion is made to include the Dial group instance in the presen

10

15

25

30

35

40

45

50

55

60

65

76
tation, in the present embodiment Dial and Dial group
instances belonging to the top-level Dial group instance under
consideration may still be excluded from the presentation
based upon their controlling value sets, if any. In order to
build the presentation output file, the process first “walks” the
output pointer array 1236 of the top-level Dial group instance
under consideration, as shown at block 3334. As indicated at
block 3334, any Dial group instance within the top-level Dial
group instance that has a controlling value settable 3200 in its
respective DIDS 1202 indicating that the lower level Dial
group instance should not be presented is omitted from the
presentation output file, along with any Dial or Dial group
instances within its subtree. In addition, as further indicated at
block 3334, top-level Dial instances are omitted from the
presentation output file if field 3200 in their respective DIDS
1202 indicate that the Dial instances should be omitted, given
the current Dial settings (as determined in accordance with
FIG. 16A). Any top-level Dial instances within the top-level
Dial group under consideration and not excluded from the
presentation output file by the additional “pruning of the
Dial tree of the top-level Dial group instance depicted at block
3334, are included within the presentation output file at block
3336. For example, the presentation output file may indicate
the instance name and current setting of each Such top-level
Dial instance.

It should be appreciated from the description of blocks
3334-3336 that the inclusion within the presentation output
file of only top-level Dial instances is a design choice and that,
in alternative embodiments, non-top-level Dial instance
names and settings may also be included within the presen
tation output file. Moreover, it should be understood that the
default policy of inclusion or exclusion of Dial and Dial group
instances having no associated controlling value sets can be
applied not only to top-level Dial group instances (as at block
3320), but also to lower level Dial and Dial group instances
(e.g., at block 3334). Following block 3336, the process
returns to block 3302, which has been described.

Referring again to block 3302, in response to a determina
tion at block 3302 that all top-level pointers 1250 within
top-level pointer array 1206 have been accessed, the process
proceeds to block 3350, which illustrates returning to the top
entry of top-level pointer array 1206. The process then enters
a second iteration through top-level pointer array 1206, rep
resented by block 3352, in which top-level Dial instances not
belonging to any Dial group instance are processed. Accord
ingly, at block 3352, a determination is made regarding
whether or not all top-level pointers 1250 within the top-level
pointer array 1206 have been accessed. If so, the process
proceeds to block 3378, which is described below. If, how
ever, a determination is made at block 3352 that fewer than all
top-level pointers 1250 within top-level pointer array 1206
have been accessed, the process passes from block 3352 to
block 3360, which illustrates accessing the next top-level
pointer 1250 within top-level pointer array 1206.

Next, at block 3362, a determination is made by reference
to the type field 1220 of the DDDS 1200 identified by the
parent pointer 1233 of the DIDS 1202 pointed to by the
current top-level pointer 1250 whether or not the DIDS 1202
defines a Dial group instance. If so, no further processing is
performed on the Dial group instance (having already been
accomplished in the first processing loop represented by
block 3302), and the process returns to block 3352. If, how
ever, the DIDS 1202 pointed to by the current top-level
pointer 1250 defines a Dial or Register instance, a determi
nation is made at block 3364 regarding whether instance
name field 1234 indicates that the entity instance in question
falls within the region of interest specified by the region

US 7,805,695 B2
77

parameter of the API call, if any. This determination is analo
gous to that performed at block 3310. If the Dial or Register
instance in question does not fall within the Scope of interest
specified by the region parameter of the API call, then the
process returns to block 3352, which has been described. If,
however, no region parameter is specified in the API call or if
the entity instance satisfies the region parameter, the process
proceeds to block 3366.

Block 3366 depicts a determination regarding whether or
not to include information regarding the instance in the pre
sentation output file. In particular, if the entity instance has a
controlling value set specified in the controlling value table
3200 of its DIDS 1202 a determination is made whether or
not the current instance entity should be excluded or included
from the presentation based upon the setting of the entity
instance (determined in accordance with the method of FIG.
16A). If the instance entity does not have a controlling value
set specified within controlling value set table 3200 of its
DIDS 1202', then the determination depicted at block 3366 is
made by reference to the default inclusion or exclusion policy
of the API call or one of its parameters. If a determination is
made at block 3366 that information regarding the entity
instance should not be included within the presentation out
put file, then the process simply returns to block 3352 without
including information regarding the entity instance in the
presentation output file. If, however, a determination is made
at block 3366 to include information regarding the entity
instance within the presentation output file, the process passes
to block 3370, which depicts including the instance name of
the entity instance (from instance name field 1234 of DIDS
1202') and the setting of the entity instance within the pre
sentation output file. Thereafter, the process returns to block
3352, which has been described.

In response to a determination at block 3352 that all top
level pointers 1250 within top-level pointer array 1206 have
been accessed, the process proceeds from block 3352 to block
3378. Block 3378 depicts the presentation of the presentation
output file to the user, for example, via printing a hardcopy
report or a graphical display of the Dial group, Dial and
Register instance names and associated settings. In one par
ticularly preferred embodiment, the presentation output file is
presented to users in a graphical user interface that permits the
user to graphically and intuitively navigate the simulated or
hardware system and to examine particular settings of inter
est. Following block 3378, the process depicted in FIG. 33
terminates at block 3380.

With reference now to FIG. 34A, there is depicted an
exemplary graphical user interface (GUI)3400 for presenting
graphical representations of simulated and hardware systems
and portions thereof inaccordance with the present invention.
As is well known in the art, GUI 3400 is typically presented
by software (e.g., an API implementing the process of FIG.33
or a separate program) within the display device of a data
presentation system, Such as data processing system 6 of FIG.
1 or workstation computer 1904 of FIG. 19. Any software
capable of causing a data presentation system to present GUI
3400 based upon the contents of an underlying configuration
database (e.g., simulation configuration database 1404 or
hardware configuration database 1932) and optionally one or
more other data sources (e.g., a simulation model 1400 or
simulation executable model 816) is herein referred to as
“graphical interface software.”
As shown, GUI 3400 includes conventional GUI compo

nents, such as window 3402, control buttons 3404, pull down
menus 3406, and a cursor 3408 controlled by a user input
device, such as a mouse. Although not illustrated, GUI 3400
may, of course, include other additional conventional or non

10

15

25

30

35

40

45

50

55

60

65

78
conventional GUI features, such as toolbars, scroll bars, etc.
to facilitate user interaction with and manipulation of GUI
3400.
Window 3402 contains a frame 3410 within which a

graphical representation of a simulation system (or portion
thereof) is presented. In the depicted example, the system that
is graphically presented within frame 3410 is nearly identical
to that illustrated in FIG. 11B and described above and
accordingly employs like reference numerals to identify like
features. That is, as specified by the above-described or alter
native data structures within a configuration database, the
system includes a top-level design entity instance (named
TOP:TOP) 1122 hierarchically containing design entity
instances FBC:FBC 1124 and L2:L2 1126. Design entity
instance 1124, in turn, contains instances 1136a, 1136b of
design entity X (which each contains two instances 1138 of
design entity Y) and design entity Z 1132. Further, design
entity instance 1126 contains instances 1152a. 1152b of
design entity L. As described in detail above, the design entity
instances, whether belonging to a simulated or hardware sys
tem, are initially defined by one or more HDL files. As will be
appreciated by those skilled in the art, in at least one embodi
ment, the graphical interface Software generates representa
tions of design entities within a simulation system by refer
ence to an m-way tree describing the design entity hierarchy.
As noted above with respect to FIG. 8, this data structure may
be included within the simulation database.
The configuration database further associates various con

figuration entity instances (e.g., Dials, Dial groups, and/or
Registers) with various ones of the HDL-defined design enti
ties. In the present example, the configuration database asso
ciates RGDial (i.e., read-only Dial group) instance 1164,
which has the name “H”, with design entity instance 1122.
associates GDial instance 1160 with design entity instance
1124, associates GDial instance 1162 with design entity
instance 1126, and so on. In one preferred embodiment, the
association between a configuration entity instance and its
associated design entity instance is graphically represented
within GUI 3400 by the display of a graphical element (e.g.,
rectangle) representing the configuration entity instance
within the boundary of the graphical element representing the
design entity instance but outside the boundary of the graphi
cal element(s) representing any lower level design entity
instance(s) contained by the associated design entity
instance. Of course, in other embodiments, other techniques
can be employed to represent the association between design
entity instances and configuration entity instances.
GUI 3400 preferably provides a number of tools and/or

options that permita user to enhance their visualization of the
system. For example, in at least one mode, GUI 3400 prefer
ably presents the settings of selected or all configuration
entity instances in association with the graphical representa
tions of those configuration entity instances. For example, in
the example shown in FIG. 34A, the user has selected a
presentation mode in which only the settings of IDial
instances, such as IDial instances 1132 and 1150, are pre
sented. Such presentation can also be conditioned upon a user
graphically selecting a configuration entity instance of inter
est with cursor 3408.

In at least one preferred embodiment, GUI 3400 further
includes depth control to permit the user to cause the data
presentation system to present only selected levels of a sys
tem's design hierarchy. The depth control may be accessed
and adjusted, for example, via one or more pull down menus
3406. In one preferred embodiment, the depth control permits
the user to specify a desired number of levels of design
hierarchy presented at one time. Permitted values include

US 7,805,695 B2
79

integer values greater or equal to 2 and "All which will cause
all levels of the design hierarchy to be concurrently presented.
For example, FIG. 34A depicts an exemplary presentation
scenario in which the depth control has a value of All,” while
FIG. 34B illustrates an exemplary presentation scenario for
the same system in which the depth control has a value of 2.
It should be noted that in the exemplary embodiment shown in
FIG.34B, the configuration entity instance(s) associated with
all but the lowest displayed level of design hierarchy are
presented, which in this case is the single configuration entity
instance 1164. The user canthus control the amount of infor
mation concurrently presented, greatly facilitating the com
prehension of the structure and settings of complex systems,
having multiple chips and/or multiple levels of design hier
archy.
GUI 3400 preferably permits the user to graphically and

intuitively change the presentation level of the design hierar
chy in order to logically ascendand descend within the design
hierarchy. For example, in one embodiment, GUI 3400 will
present the design hierarchy of the system from the perspec
tive of a lower level of design hierarchy in response to user
selection utilizing cursor 3408 of a location within a lower
level design entity within a current view. Thus, FIG. 34C
depicts the view that is presented in response to user selection
utilizing cursor 3408 of a location within design entity
instance 1124 of FIG. 34.B. Note again by comparison with
FIG. 34A that the view shown in FIG.34C presents only two
levels of the design hierarchy, together with the configuration
entity instances (i.e., GDial 1160 and LDial 1130) associated
with all but the lowest displayed level of design hierarchy.
The user can similarly ascend (if possible) in the presented
view of the design hierarchy by selection, utilizing cursor
3408, of a location within frame 3410 outside of the highest
currently displayed level of design entity. Thus, the view
given in FIG. 34B will again be displayed in response to the
user selection in the view of FIG. 34C of a location within
frame 3410 outside of the boundary of design entity instance
1124.

In at least one embodiment, GUI 3400 also permits a user
to selectively expose additional levels of configuration entity
hierarchy. For example, referring again to FIG. 34C, in one
preferred embodiment user selection of an output 3420 of a
parent configuration entity instance (e.g., GDial 1160) will
cause all child configuration entity instances at the next lower
level of configuration entity hierarchy to be presented. Thus,
user selection utilizing cursor 3408 of Dial output 3420 of
GDial 1160 in the view presented in FIG.34C will cause GUI
3400 to reveal all child configuration entity instances of
GDial 1160 at the next lowest level of configuration entity
hierarchy, as shown in FIG. 34D. It should be noted that,
because parent-child relationships of configuration entity
instances can extend across multiple levels of design hierar
chy, the presentation of the next lowest level of the configu
ration entity hierarchy may entail the display of multiple
additional levels of design hierarchy, as also illustrated in
FIG. 34D. The ability to selectively expose additional levels
of configuration entity hierarchy is particularly useful when
the user is attempting to debug a CDial or RCDial set to an
erroneous value and therefore desires to view the settings of
its child Dials.
As noted briefly above in the description of FIG. 33, in

some preferred embodiments of the present invention, GUI
3400 further supports a relevance control to cause the data
presentation system to condition the manner of presentation
of configuration entity instances upon their relevance, as
determined by their controlling value set (if any) and current
settings. In one preferred embodiment, the relevance control

10

15

25

30

35

40

45

50

55

60

65

80
has at least three settings corresponding to three presentation
modes—Full view, Selective view and Mixed view. These
three presentation modes, which are independent of, but can
be employed in conjunction with the previous modes of pre
sentation, are respectively illustrated in FIGS. 34A, 34E and
34F.

Referring again to FIG. 34A, the view of the system pre
sented by GUI 3400 depicts configuration entity instances
regardless of their values or the controlling values within the
configuration database of the system. Thus, with respect to
the presentation of configuration entity instances, FIG. 34A
illustrates a Full view.

Turning now to FIG. 34E, it should be noted that configu
ration entity instances 1134, 1140a0, 1140b1,3414,3416 and
1154b are selectively omitted from presentation by GUI3400
in accordance with the process depicted in FIG. 33 based
upon the associated controlling values specified in the con
figuration database and their current settings. Thus, FIG. 34E
depicts a Selective view in which configuration entity
instances that are not likely to be relevant to the user based
upon their current settings are filtered out of the presentation
in order to permit the user to focus on those configuration
entity instances most likely to be relevant to an understanding
of the state of the system.

With reference finally to FIG. 34F, a Mixed view of the
system is illustrated in which the configuration entity
instances having lower relevance to the user are presented in
a graphically distinct manner from other configuration
instance entities. In the particular embodiment shown in FIG.
34F, the graphical distinction between configuration entity
instances of higher relevance and lower relevance is made by
displaying configuration instance entities of lower relevance
utilizing a different line weight (e.g., dashed line illustration).
Of course, in other embodiments, the distinction between
graphical elements representing configuration entity
instances could alternatively or additionally be made by uti
lizing different colors, brightness, sizes, shapes and/or other
graphical characteristic, such as the amount of information
presented. For example, the settings of configuration entity
instances of higher relevance may be presented, while the
settings of configuration entity instances of lower relevance
may be omitted from the presentation. The Mixed view thus
presents to the user all configuration entity instances that
would be displayed given the selected depth control setting,
but presents configuration entity instances having lower rel
evance in agraphically distinct manner so that the user will be
able to visually distinguish them from configuration entity
instances of higher relevance to an understanding of the sys
ten State.

While the invention has been particularly shown as
described with reference to a preferred embodiment, it will be
understood by those skilled in the art that various changes in
form and detail may be made therein without departing from
the spirit and scope of the invention. For example, it will be
appreciated that the concepts disclosed herein may be
extended or modified to apply to other types of configuration
entities than those disclosed herein. In addition, those skilled
in the understand upon reference to the foregoing that any of
a wide variety of rules may be applied to determine which
configuration entities are presented, meaning that the particu
lar syntax and presentation rules described herein are merely
exemplary and not exhaustive. Furthermore, although aspects
of the present invention have been described with respect to a
computer system executing software that directs the functions
of the present invention, it should be understood that present
invention may alternatively be implemented as a program
product for use with a data processing system. Programs

US 7,805,695 B2
81

defining the functions of the present invention can be deliv
ered to a data processing system via a variety of signal
bearing media, which include, without limitation, non-rewrit
able storage media (e.g., CD-ROM), rewritable storage media
(e.g., a floppy diskette or hard disk drive), and communica
tion media, Such as digital and analog networks. It should be
understood, therefore, that such signal-bearing media, when
carrying or encoding computer readable instructions that
direct the functions of the present invention, represent alter
native embodiments of the present invention.
What is claimed is:
1. A computer-implemented method of presenting a

designed system, said method comprising:
a computer displaying, with a display device, a respective

one of a plurality of design graphical representations for
each of a plurality of hierarchically arranged design
entity instances within the designed system, said plural
ity of design entity instances including a particular
design entity instance containing a latch, wherein said
particular design entity instance is represented by a par
ticular design graphical representation and wherein the
plurality of design graphical representations is dis
played in hierarchical arrangement with at least one of
the plurality of design graphical representations con
tained within another of the plurality of design graphical
representations;

the computer identifying, within a configuration database
associated with the designed system, a configuration
entity instance associated with said particular design
entity, wherein said configuration entity instance has a
plurality of different settings that each differs from but
reflects a respective one of multiple values of the latch;

with the display device, the computer presenting, in asso
ciation with the particular design graphical representa
tion corresponding to the particular design entity
instance, a configuration graphical representation of
said configuration entity instance; and

with the display device, the computer presenting a current
setting of said configuration entity instance concurrently
with the configuration graphical representation.

2. The method of claim 1, and further comprising:
storing within the configuration database at least one data

structure defining said configuration entity instance and
said association between said configuration entity
instance and said particular design entity instance;

storing in said at least one data structure a controlling value
set for said configuration entity instance, wherein said
controlling value set indicates settings affecting presen
tation of information regarding said configuration entity
instance; and

in response to a request to present at least a partial state of
the designed system, presenting a state of at least one
other configuration entity instance based upon said con
figuration database and excluding from presentation a
current setting of the configuration entity instance by
reference to said at least one data structure in said con
figuration database.

3. The method of claim 2, wherein said excluding from
presentation comprises always excluding from presentation
said current setting of said configuration entity instance based
upon a keyword in said configuration database.

4. The method of claim 1, wherein said step of displaying
a respective one of a plurality of design graphical represen
tations for each of a plurality of hierarchically arranged
design entity instances comprises presenting design graphi
cal representations for only selected design entity instances

10

15

25

30

35

40

45

50

55

60

65

82
and excluding from presentation a design graphical represen
tation for at least one other design entity instance in response
to a region parameter.

5. The method of claim 1, wherein said design entity
instances are hierarchically arranged in at least three levels,
wherein said displaying comprises concurrently displaying
fewer than all of said levels.

6. The method of claim 5, and further comprising:
displaying a user-controllable graphical pointer within said

display device; and
modifying which of said levels are displayed within said

display device in response to selection of a design
graphical representation utilizing a graphical pointer.

7. The method of claim 1, and further comprising:
displaying a user-controllable graphical pointer within said

display device; and
modifying a presentation of said designed system within

said display device in response to user selection of a
configuration graphical representation utilizing the
graphical pointer.

8. A data processing system for presenting a graphical
representation of a designed system, said data processing
system comprising:

a display device;
processing resources; and
data storage coupled to the processing resources and

including at least one database representing said simu
lated system and a presentation program executable by
the processing resources to presentagraphical represen
tation of said designed system within said display
device, wherein said presentation program causes the
processing resources to:
display within the display device a respective one of a

plurality of design graphical representations for each
of a plurality of hierarchically arranged design entity
instances within the designed system, said plurality of
design entity instances including a particular design
entity instance containing a latch, wherein said par
ticular design entity instance is represented by a par
ticular design graphical representation and wherein
the plurality of design graphical representations is
displayed in hierarchical arrangement with at least
one of the plurality of design graphical representa
tions contained within another of the plurality of
design graphical representations;

identify, within said at least one database, a configura
tion entity instance associated with said particular
design entity, wherein said configuration entity
instance has a plurality of different settings that each
differs from but reflects a respective one of multiple
values of the latch;

present, within the display device, a configuration
graphical representation of said configuration entity
instance in association with the particular design
graphical representation corresponding to the particu
lar design entity instance; and

present, within the display device, a current setting of
said configuration entity instance concurrently with
the configuration graphical representation.

9. The data processing system of claim 8, wherein:
said at least one database includes a configuration database

storing at least one data structure defining said configu
ration entity instance and said association between said
configuration entity instance and said particular design
entity instance, said at least one data structure indicating
a controlling value set for said configuration entity
instance, wherein said controlling value set indicates

