发明名称

一种乳液制备的水相导电银胶

摘要

本发明公布了一种乳液制备的水相导电银胶，其组成包括：片状银粉，50-60%；环氧树脂乳液，10-30%；固化剂，2-5%；固化促进剂，0.5-1%；水，0-35.3%；季丙基甲基纤维素，1-3%；对苯二甲酸，0.5-1%；纳米二氧化硅，0.5-1%；水溶性消泡剂，0.1-0.5%；ICAM8401 或 8402，0.1-0.5%。该导电银胶使用水作为溶剂，无污染；在中常温下即可快速固化，方便使用。
1. 一种乳液制备的水相导电银胶，其特征在于，其配方包括：
片状银粉，50-60%；
环氧树脂乳液，10-30%；
固化剂，2-5%；
固化促进剂，0.5-1%；
水，0-35.3%；
羟丙基甲基纤维素，1-3%；
对苯二甲酸，0.5-1%；
纳米二氧化硅，0.5-1%；
水溶性消泡剂，0.1-0.5%；
ICAM8401 或 8402，0.1-0.5%。

2. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明所用银粉为 10 μm 片状银粉。

3. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明所用水性环氧树脂乳液来自沈阳百辰和巴陵石化两家公司的产品，由自乳化的环氧树脂和水构成。

4. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明所用固化剂为 T31 固化剂、2-乙基-4-甲基咪唑，2,2,4-三甲基-1,6-己二胺、间苯二甲胺、亚甲基二苯胺、间苯二胺、N-(氨乙基) 对二氯乙环、三甲基氢甲基酚、三(二甲基氢甲基) 酚等水相固化剂中的一种或几种的混合。

5. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明所用固化促进剂为
2,4,6-三-(二甲胺基甲基)-苯酚、苯甲醇改性咪唑类固化促进剂、异丁醇改性咪唑类固化促进剂等固化剂中的一种或几种的混合。

6. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明所用水性消泡剂为高级醇、脂肪酸、脂肪酸酯、酰胺类、磷酸酯类、有机硅类、聚醚类等消泡剂中的一种或几种的混合。

7. 根据权利要求 1 所述的水相导电银胶，其特征在于：水为溶剂，羟丙基甲基纤维素为粘结剂、增塑剂，对苯二甲酸为导电促进剂，纳米二氧化硅为触变剂，ICAM8401 或 8402 为稳定剂。

8. 根据权利要求 1 所述的水相导电银胶，其特征在于：本发明导电银胶配制过程为：先配制一定浓度的羟丙基甲基纤维素水溶液；然后计算所有物质加入的量：将银粉加入到环氧树脂乳液中，搅拌均匀；然后加入其它助剂，在真空抽气的情况下搅拌脱泡到各种物质混合均匀即得成品导电银胶。
一种乳液制备的水相导电银胶

技术领域
[0001] 本发明属于导电胶领域，具体涉及一种乳液制备的水相导电银胶。

背景技术
[0002] 很长一段时间内，人们主要使用浸锡焊在两个物体之间构建导电通路。但这种焊接方式会产生污染环境的重金属。同时，其较高的焊接温度也导致其不适合在目前越来越精密的电子领域使用。并且，随着国家环保政策的加强，其污染性也导致其逐渐被其他方式取代。在这些方式中，用导电银胶构建高性能导电通路是目前常使用的手段。而导电银胶的性能决定了导电通路的性能。因此，人们加大了在导电银胶领域的研发力度。
[0003] 专利CN104388009A、CN104559880A、CN103666322A等分别使用不同的助剂配制了性能不一的导电银胶并在很多方面取得了应用。但这些导电银胶均使用有机溶剂作为稀释剂或溶剂。而有机溶剂会污染环境，是我们应尽量避免使用的溶剂。要实现环保要求，我们应不使用溶剂或使用水作为溶剂。但可惜的是，目前还没有导电银胶专利使用水作为溶剂。因而这些胶水多多少少均存在一定的污染性。
[0004] 因此，如何配制优异的水性导电银胶是导电银胶领域亟需解决的问题。

发明内容
[0005] 本发明在于提供一种乳液制备的水相导电银胶，以解决目前导电银胶的有机溶剂污染问题。本发明制备的导电银胶环保无污染，能在较低温度下快速固化，储存时间长，能广泛应用于诸多领域。该导电银胶的配方为：
片状银粉，50-60%；
环氧树脂乳液，10-30%；
固化剂，2-5%；
固化促进剂，0.5-1%；
水，0-35.3%；
羟基苯甲基纤维素，1-3%；
对苯二甲酸，0.5-1%；
纳米二氧化硅，0.5-1%；
水溶性消泡剂，0.1-0.5%；
ICAM-801或8402，0.1-0.5%；
本发明所用银粉为10μm片状银粉；
本发明所用水性环氧树脂乳液来自沈阳百辰和巴陵石化两家公司的产品，由自乳化的环氧树脂和水构成；
本发明所用固化剂为T31固化剂，2-乙基-4-甲基咪唑，2,2,4-三甲基-1,6-己二胺、间苯二甲胺、亚甲基二苯胺、间苯二胺、N-(氨乙基)-对二氯乙环、三甲基氯甲基酸、三(二甲基氨甲基)酚等固化剂中的一种或几种的混合；
说明书写

本发明所用固化促进剂为 2,4,6-三-(二甲胺基甲基)-苯酚、苯甲醇改性咪唑类固化促进剂、异丁醇改性咪唑类固化促进剂等促进剂中的一种或几种的混合；

本发明所用水性消泡剂为高级醇、脂肪酸、脂肪酸酯、酰胺类、磷酸酯类、有机硅类、聚酯类等消泡剂中的一种或几种的混合；

水为溶剂，氢丙基甲基纤维素为粘结剂、增塑剂，对苯二甲酸为导电促进剂，纳米二氧化硅为触变剂，ICAM8401 或 8402 为稳定剂；

本发明导电银胶配制过程为：先配制一定浓度的氢丙基甲基纤维素水溶液。然后计算所有物质应加。将银粉加入到环氧树脂乳液中，搅拌均匀。然后加入其它助剂，在真空抽气的情况下搅拌脱泡到各种物质混合均匀即得成品导电银胶；

本发明导电银胶的优点在于：(1) 水作为溶剂避免了有机溶剂的污染，因而产品非常环保；(2) 能在 80℃下 15 分钟内即可完全固化，大大扩展了其应用范围；(3) 产品在 0—5℃下能稳定存储很长时间；(4) 产品涂覆性能好，后处理方便。

具体实施例

选用 10µm 银粉作为导电填料，汕头百丽 K051 为环氧树脂乳液，2-乙基-4-甲基咪唑为固化剂，2,4,6-三-(二甲胺基甲基)-苯酚为固化促进剂，氢丙基甲基纤维素为粘结剂和增塑剂，水为溶剂，对苯二甲酸为导电促进剂，纳米二氧化硅为触变剂，三酸酯酯为消泡剂，ICAM8401 为稳定剂。浆料的具体配方为：

片状银粉，60%；

汕头百丽环氧树脂乳液 K051，20%；

2-乙基-4-甲基咪唑，5%；

2,4,6-三-(二甲胺基甲基)-苯酚，0.5%；

氢丙基甲基纤维素，2%；

水，10%；

对苯二甲酸，1%；

纳米二氧化硅，0.8%；

三酸酯酯，0.2%；

ICAM8401，0.5%；

取 20g 氢丙基甲基纤维素加入到 100g 水中，加热 80℃下搅拌，直至溶液澄清。冷却至室温后，过滤除去胶体，得到氢丙基甲基纤维素水溶液；

取 600g10µm 银粉加入到含有 200g 环氧树脂乳液的搅拌釜中，搅拌 1 小时。然后将 50g2-乙基-4-甲基咪唑，5g 2,4,6-三-(二甲胺基甲基)-苯酚，120g 氢丙基甲基纤维素水溶液，10g 对苯二甲酸，8g 纳米二氧化硅，2g 三酸酯酯，5g ICAM8401 加入到釜中。搅拌 1 小时后得到最终的导电银胶；

该导电银胶在 80℃下固化 15 分钟完成固化，测其体积电阻率为 0.8×10⁻⁶Ω·cm，导热率 30W/(m·k)。

[0007] 以上详细描述了本发明的较佳实施例。应当理解，本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。凡本技术领域中技术人员依本发
明确的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的实验与技术方案，皆应在由权利要求书所确定的保护范围内。