PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 9/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/61979

2 December 1999 (02.12.99)

(21) International Application Number: PCT/US99/11520

(22) International Filing Date: 26 May 1999 (26.05.99)

(30) Priority Data:

09/085,223 Us

27 May 1998 (27.05.98)

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, MS UPALO1-521, Palo Alto, CA 94303

(US).

(72) Inventor: MITROVIC, Srdjan; 827 Mediterranean Lane, Red-
wood City, CA 94065 (US).

(74) Agents: GARRETT, Arthur, S, Finnegan, Henderson,
Farabow, Garrett & Dunner, L.L.P., 1300 I Street, N.W.,
Washington, DC 20005-3315 (US) et al.

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG,
BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB,
GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG,
KP, KR, KZ,LC, LK, LR, LS, LT, LU, LV, MD, MG, MK,
MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI,
SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW,
ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG,
ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI,
FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE,
SN, TD, TG).

Published
Without international search report and to be republished

upon receipt of that report.

CALLS WITHOUT RECOMPILATION

(57) Abstract

without having to recompile the code.

(54) Title: DYNAMICALLY SWITCHING STATICALLY BOUND FUNCTION CALLS TO DYNAMICALLY BOUND FUNCTION

An improved hybrid dynamic-binding system for switching between static binding and dynamic of function calls is provided. This
system provided static binding for functions calls when the function is unambiguous, and at runtime, when the function becomes ambiguous,
this system switches to dynamic binding, without recompiling the code of the function call, thus improving performance over conventional
systems. The system performs this functionality by inserting a placeholder into a statically bound function call, so that when the statically
bound function call needs to be converted to a dynamically bound function call, the placeholder can be overwritten to perform the conversion

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
CuU
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Tsrael

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
Sb
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
uG
US
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/61979 PCT/US99/11520

DYNAMICALLY SWITCHING STATICALLY BOUND FUNCTION CALLS
TO DYNAMICALLY BOUND FUNCTION CALLS WITHOUT
RECOMPILATION
Technical Field

The present invention relates generally to data processing systems and, more
particularly, to dynamically switching statically bound function calls to dynamically
bound function calls without recompilation.

Background Art

When a programmer develops a computer program, the source code of the
program typically accesses many functions and variables also contained within the
program. These accesses are expressed in the source code as mere references to the
names of the functions or variables. However, sometime before the functions and
variables can be accessed, the name must be bound to the memory location where either
the entry point of the function or the data for the variable resides. This binding can be
performed in two ways: statically or dynamically. The phrase "static binding" refers to
binding the name to the memory location during compilation or linking. In contrast, the

hrase "dynamic binding" refers to binding the name to the memory location at runtime.
p y g ry

The technique of dynamic binding has become quite popular in object-oriented
programming languages. When developing a program in an object-oriented language, a
programmer typicélly creates a number of objects whose interactions perform the
functionality of the program. An "object" contains both data and behavior. The data is
stored as data members of the object, and the behavior is performed by function members
or methods of the object. Dynamic binding has become popular in object-oriented
languages because dynamic binding provides great flexibility to the programmer. For
example, dynamic binding facilitates polymorphism, where a function name may denote
several different function members depending on the runtime context in which it is used.
Itis common in object-oriented programming languages for one function name to be used
by more than one function. In fact, this feature is basic to most object-oriented
programming languages.

One function name may refer to more than one function because each object in
a program is based upon a class definition (i.e., an object is an instance of a class). And

classes are typically linked together to form a class hierarchy, where one class, a derived

WO 99/61979 PCT/US99/11520

2

class, may inherit the data members and function members of another class, a base class.
In such situations, the derived class may either choose to use the implementation of the
function members provided by the base class, or it may choose to override the function
members. When overriding a function member, the derived class defines its own
implementation for that function member, using the same function name. After the
derived class overrides a function member of a base class, when objects of type "derived
class" call the function member, the implementation of the function member provided by
the derived class is invoked. Conversely, when objects of type "base class" call the
function member, the implementation of the function member provided by the base class
is invoked.

Although it provides flexibility when programming, dynamic binding can greatly
impact runtime performance if not performed efficiently, for the overhead associated with
dynamic binding is incurred each time a function member is invoked. Therefore, if the
dynamic binding scheme employed is inefficient, performance of the overall program
may degrade substantially.

One conventional scheme for performing dynamic binding, known as in-line
caching, is fairly efficient. In the in-line caching scheme, each function member has two
entry points: a verified entry point and an unverified entry point. The verified entry point
provides access to the actual code of the function member, the code developed by the
programmer. The unverified entry point, on the other hand, provides access to system-
provided verification code used to verify that the caller actually intended to invoke this
function member as opposed to a different, similarly named function member having a
different implementation. In the in-line caching scheme, a function call (e.g. "foo") by
a caller object comprises two instructions as shown below in Intel 80486 pseudo-code:

Code Table 1
move eax, class
call unverified_entry point class.foo

In the above code table, "class" is an identifier of the class of the last object to
have invoked the foo function member via this code. That is, objects of different types
may have used this code to invoke the function member, and the "class" identifies the

class of the most recent object to have done so. The move instruction moves the "class"

WO 99/61979 PCT/US99/11520

3

identifier into the eax register of the computer, and the call instruction accesses the
unverified entry point of the foo function member for the identified class. This call
instruction is made in the hope that the class of the caller object is the same as the class
contained in the eax register to save processing time, which will be further described
below.

To more completely explain the in-line caching technique, consider Fig. 1,
depicting a flowchart of the steps performed by a conventional in-line caching technique.
This flowchart depicts the steps performed by a caller object when executing a function
call to invoke a function member, a server function. When executing the function call,
the caller object executes instructions like the ones contained in Code Table # 1. The first
step performed by the caller object is, the caller object executes a move instruction to
move the class of the last object that used the function call to invoke this server function
into the eax register (step 102). This instruction has been described above. Next, the
caller object calls the unverified entry point of the server function (step 104). This
instruction has also been described above. When this instruction is executed, the
unverified entry point of the server function is accessed and the verification code located
at the unverified entry point is executed as reflected by steps 106,110, 112, 114, and 116.
This verification code determines if the server function is the correct function member
to be invoked by the caller object, and if not, it determines the correct function member,
modifies the code of the function call (contained in Code Table #1) so that the correct
function member is invoked for subsequent invocations of the function call, and then
invokes the correct function member.

The first step performed by the verification code of the server function is to
determine if the appropriate class is in the eax register (step 106). The class in the eax
register is the class of the last object to have used the function call to invoke this function
member. As such, it can be ensured that the server function is the appropriate function
to be invoked for all objects of the class contained in the eax register. In determining if
the class in the eax register is the appropriate class, the verification code of the server
function compares this class with the class of the caller object. The class of the caller
object is passed into the server function as a hidden parameter, and in this step, the server

function uses this parameter for the comparison. If the appropriate class is contained in

WO 99/61979 PCT/US99/11520

4

the eax register, then the server function has determined that it is the correct function to
be invoked and the instructions contained within it are then executed (step 108). These
instructions are located at the verified entry point of the server function. The instructions
executed in this step are the actual code developed by the programmer for the server
function.

Otherwise, if the appropriate class is not in the eax register, the verification code
of the server function accesses the hidden parameter, indicating the class of the caller
object, and utilizes a look-up function to locate the appropriate function for objects of this
class (step 110). The look-up function is a system-provided function. After locating the
appropriate function, the verification code then changes the code of the function call
reflected by step 102 to refer to the class of the caller object so that this class will be
moved into the eax register the next time the function call is invoked, and the verification
code also changes the code of the function call reflected by step 104 so that it will invoke
the unverified entry point of the appropriate server function the next time it is invoked
(step 112). The verification code of the server function then stores the appropriate class
in the eax register (step 114) and invokes the verified entry point of the appropriate server
function (step 116). The verified entry point, at which is located the main code of the
function member, may be invoked because it has been determined that this function
member is the appropriate one for the caller object. After executing the appropriate
function member, processing returns.

Although changing the code to refer to the appropriate function member is a
necessary part of the in-line caching scheme, it takes a significant amount of processing
time, because the instruction cache of the CPU has to be flushed. In some CPU
architectures, like the Intel Pentium™ architecture, the CPU maintains an instruction
cache where a number of instructions are prefetched from main memory to reduce the
number of main memory accesses. When an instruction changes, the cache is no longer
valid, so it has to be flushed and main memory must be accessed to fill the cache again.
Both flushing and filling the instruction cache are expensive operations in terms of
processing time.

Although in-line caching is a fairly efficient way of performing dynamic binding,

it performs a significant amount of unnecessary processing. For example, the verification

WO 99/61979 PCT/US99/11520

5

code of a function member needs to be invoked only when the function name of that
function member is ambiguous, referring to more than one function member within the
class hierarchy. In situations where there is only one function member of a given name
in the class hierarchy, all references to this function member name can only refer to that
one function member -- no ambiguity exists. In this situation, invoking the verification
code is wasteful processing. Inresponse to this observation, one conventional system has
implemented a hybrid approach to dynamic binding that uses both static and dynamic
binding. Using this approach, static binding is utilized for function members that are
unambiguous, and at runtime when a statically bound function member becomes
ambiguous because it has been overridden, this system switches to dynamic binding. As
a result, this system reduces the unnecessary invocation of the verification code when a
function is unambiguous.

This hybrid system is implemented in two parts. The first part of the system is
implemented in the compiler, and the second part of the system is performed by the
program at runtime. In the compiler, as shown in Fig. 2A, when compiling a function
call, the compiler first determines if this is an unambiguous function call (step 200). The
compiler makes this determination by examining the class hierarchy to determine if there
are any function members with the same name. If the function call is unambiguous, the
compiler compiles the code using static binding (step 202). In this situation, the compiler
compiles the source code of the function call into a call into the verified entry point of the
function member. If, on the other hand, the function member is ambiguous, the compiler
compiles the function call so as to use the in-line caching scheme described above (step
204).

After the program has been compiled, the program may be executed, and during
execution, as shown in Fig. 2B, the system determines when a system-provided function
has been invoked to load a class (step 210). The phrase "loading a class" refers to an
object being instantiated based upon a class definition. Such a creation of an object may
override a function member in the class hierarchy, thus making the function member
ambiguous. If the system determines that a class is being loaded, the system determines
if a statically bound function member becomes ambiguous (step 212). The system makes

this determination by determining if a function member of the loaded class overrides an

WO 99/61979 PCT/US99/11520

6

existing function member in the class hierarchy that was compiled in step 202 of Fig. 2A
to use static binding. If this condition is true, the system recompiles the code for the
function call to switch to in-line caching (step 214). In this step, the function call code
has to be recompiled to add the instructions shown above in code table #1.

Although this hybrid system saves the needless invocation of verification code,
it introduces a heavy burden on the system: the recompilation of code to switch between
static binding and dynamic binding. Having to recompile the code causes the instruction
cache to be flushed, main memory to be accessed, and the code to be parsed and
generated. It is therefore desirable to improve hybrid dynamic-binding systems.

Summary of the Invention

Animproved hybrid dynamic-binding system for switching between static binding
and dynamic binding of function calls is provided. This system provides static binding
for function calls when the corresponding function is unambiguous, and at runtime, when
the function becomes ambiguous, this system switches to dynamic binding, without
recompiling the code of the function call, thus improving performance over conventional
systems. The system performs this functionality by inserting a placeholder into a
statically bound function call, so that when the statically bound function call needs to be
converted to a dynamically bound function call, the placeholder can be overwritten to
perform the conversion without having to recompile the code.

In accordance with a first aspect of the present invention, a method is provided
in a computer system for compiling a computer program into object code. The computer
program has functions containing code and function calls of the functions. This method
determines when a function call is unambiguous, and when it is determined that the
function call is unambiguous, the method compiles the function call to generate object
code that performs static binding. Additionally, the method inserts a placeholder into the
generated object code so that an instruction can be inserted into the placeholder at
runtime of the generated object code to switch to dynamic binding when the function call
becomes ambiguous.

In accordance with a second aspect of the present invention, a method is provided
in a computer system having a computer program with statically bound function calls and

dynamically bound function calls. The statically bound function calls invoke

WO 99/61979 PCT/US99/11520

7

unambiguous functions and the dynamically bound function calls invoke ambiguous
functions. This method determines whether at least one of the statically bound function
calls becomes ambiguous. When it is determined that at least one of the statically bound
function calls becomes ambiguous, the method converts the at least one statically bound
function call into a dynamically bound function call by backpatching the statically bound
function call such that the conversion occurs without recompilation of the computer
program. .

In accordance with a third aspect of the present invention, a data processing
system is provided. The data processing system has a memory and a processor. The
memory contains a compiler for determining when a function call is ambiguous and for
compiling the function call using static binding when the compiler determines that the
function call is unambiguous. The program has a runtime library that determines at
runtime when a statically bound function call becomes ambiguous and that converts the
statically bound function call to a dynamically bound function call when it determines
that the statically bound function call becomes ambiguous. The processor runs both the
compiler and the program.

Brief Description of the Drawings

Fig. 1 depicts a flowchart of the steps performed by a conventional in-line caching
technique.

Fig. 2A depicts a flowchart of the steps performed by a compiler when compiling
a function call using a conventional hybrid static-binding and dynamic-binding function
call system.

Fig. 2B depicts a flowchart of the steps performed by the computer program
output by the compiler of Fig. 2A when switching between a statically bound function
call to a dynamically bound function call.

Fig. 3 depicts a data processing system suitable for practicing an exemplary
embodiment of the present invention.

Fig. 4A depicts a flowchart of the steps performed by the compiler depicted in

Fig. 3 when compiling a function call.

WO 99/61979 PCT/US99/11520

8

Fig. 4B depicts a flowchart of the steps performed by the runtime library of Fig.
3 when switching from a statically bound function call to a dynamically bound function
call. Detailed Description of the Invention

An exemplary embodiment of the present invention is an improved hybrid
dynamic-binding system. The exemplary embodiment performs static binding for
function calls when the function member is unambiguous and switches to dynamic
binding when the function member becomes ambiguous. This switching is performed
without recompiling the code of the function call, and as such, the exemplary
embodiment significantly improves performance over conventional systems.

In the exemplary embodiment, when the compiler determines that a function call
is unambiguous and may be optimized into a statically bound function call, the compiler
inserts the instruction necessary to perform static binding. This instruction represents a
call into the verified entry point of the function member. Additionally, the compiler
inserts a placeholder into the code of the function call, reserving sufficient space for an
instruction to be added later in the event that the statically bound function call has to be
switched to a dynamic-binding call using in-line caching. This placeholder reserves
space for a single instruction so that at runtime when the exemplary embodiment
determines that a statically bound function call needs to be converted to in-line caching,
the exemplary embodiment can backpatch an instruction over the placeholder and modify
the existing instruction to switch to the in-line caching scheme. Accordingly, this switch
occurs without recompiling the code, thus saving significant processing time over some
conventional systéms.

Fig. 3 depicts a data processing system 300 suitable for practicing an exemplary
embodiment of the present invention. The data processing system 300 comprises a
computer system 301 connected to the Internet 302. Computer system 301 contains a
main memory 303, a secondary storage device 304, a central processing unit (CPU) 306,
an input device 308, and a video display 310. The main memory 303 contains a Java™
Virtual Machine 312 that interprets program 314 and in some circumstances uses a
compiler 313 to compile part of the program and improve runtime performance. The
Java™ Virtual Machine 312 also includes a runtime library 315 containing various

functions utilized by programs during execution. The Java™ Virtual Machine is

WO 99/61979 PCT/US99/11520

9

described in greater detail in Lindholm and Yellin, The Java Virtual Machine
Specification, Addison-Wesley, 1997, and the runtime library 315 is described in greater
detail in Jaworski, Java 1.1 Developer's Guide, Sams.net, 1997, at pp- 218-457. Various
aspects of the exemplary embodiment of the present invention are found in both the
compiler 312 and the runtime library 315. Specifically, the compiler 312 inserts the
placeholder into the object code of a statically bound function call when compiling the
program 314, and at runtime, the runtime library 315 performs the switch between static
binding and dynamic binding without recompiling the function call.

One skilled in the art will appreciate that although the exemplary embodiment is
described as being practiced in a Java™ environment, the present invention may also be
practiced in a non-Java environment. Also, although aspects of the exemplary
embodiment are depicted as being stored in memory 303, one skilled in the art will
appreciate that the exemplary embodiment may be stored on other computer-readable
media, such as secondary storage like hard disks, floppy disks, and CD-ROM; a carrier
wave received from the Internet 302; or other forms of ROM or RAM. Finally, although
specific components of data processing system 300 have been described, one skilled in
the art will appreciate that a data processing system suitable for use with the exemplary
embodiment may contain additional or different components.

Fig. 4A depicts a flowchart of the steps performed by the compiler 313 of the
exemplary embodiment of the present invention when compiling a function call. When
compiling a function call, the compiler first performs class hierarchy analysis (step 402).
In this step, the compiler analyzes the class hierarchy to determine whether this function
member is ambiguous, being named more than once. The compiler then examines the
results of the class hierarchy analysis and determines whether the function call is
unambiguous (step 404). If the function call is ambiguous, the compiler compiles the
function call by creating object code containing the appropriate in-line caching statements
described previously (step 406). Otherwise, the compiler inserts a placeholder into the
object code (step 408). In this step, the compiler inserts the following instruction:

move eax, null
This instruction has the effect of moving "null" into the eax register, which is a harmless

operation. Then, the compiler inserts the appropriate instruction into the object code to

WO 99/61979 PCT/US99/11520

10

perform static binding (step 410). In this step, the compiler inserts the following static
binding statement to invoke the verified entry point of the function:

call verified_entry_point

After either using in-line caching or using static binding, the function call has been
compiled and processing finishes.

Fig. 4B depicts a flowchart of the steps performed by the runtime library 315 to
switch from static binding to dynamic binding. At runtime, the runtime library, running
with the computer program, receives a request to load a class from the program (step
420). In the Java™ environment, the program issues such a request by invoking the
"Load Class" function of the Java™ Runtime Library. When a class is being loaded, the
runtime library determines whether a function member is being added to the class
hierarchy that would render ambiguous an already-existing function member previously
compiled to use static binding (step 422). If so, the runtime library backpatches an
instruction over the place holder and modifies the existing instruction to perform in-line
caching for each function call of this function in the program (step 424). In this
disclosure, the term backpatching refers to modifying the code to change the functionality
of the code without recompilation. For example, where "foo" is the function member, the
compiler 313 generated the object code for a statically bound function call using the two
instructions shown below in Code Table # 2:

Code Table # 2

move eax, null

call verified_entry point foo

After switching to in-line caching, the place holder, the move instruction, is backpatched,
and the call instruction is modified so that the function call appears as shown below in
Code Table #3:

Code Table # 3

move eax, class

call unverified _entry point class.foo

WO 99/61979 PCT/US99/11520

11

In this example, "class" is the class containing the foo function member before it became
ambiguous. In this manner, the code is backpatched to perform dynamic binding using
in-line caching without having to recompile the code.

The exemplary embodiment of the present invention is an improvement over
conventional systems for switching between static binding and dynamic binding.
Specifically, the exemplary embodiment inserts a place holder into a statically bound
function call when compiled. And at runtime, when the function referred to by the
function call becomes ambiguous, the exemplary embodiment switches the function call
to use in-line caching by merely backpatching the code, thus avoiding recompilation.

While the present invention has been described with reference to a preferred
embodiment thereof, those skilled in the art will know of various changes in form and
detail which may be made without departing from the spirit and scope of the present

invention as defined in the appended claims.

WO 99/61979 PCT/US99/11520

12

Claims
1. A method in a data processing system for performing dynamic binding,
the data processing system having a computer program with source code, a compiler for
compiling the computer program into object code, and a class loader for loading a class,
the computer program having a plurality of functions with main code and having a
plurality of function calls of the functions, each function having a verified entry point into
the main code of the function, the method comprising the steps of:
the compiler compiling at least one of the function calls of the computer program
to generate object code for the at least one function call, the compiling step comprising
the substeps of:
performing class hierarchy analysis to determine whether the at least one
function call is unambiguous and refers to one function; and
when the compiler determines that the at least one function call is
unambiguous,
. inserting a placeholder into the object code for the unambiguous
function call; and
inserting into the object code for the unambiguous function call an
instruction that accesses the verified entry point of the one function;
the object code starting execution after the compiling step and invoking the class
loader to load the class;
the class loader determining whether the unambiguous function call of the
computer program becomes ambiguous responsive to the class being loaded; and
when the class loader determines that the unambiguous function call becomesi
ambiguous,
backpatching the unambiguous function call in the object code to perform
dynamic binding.
2. The method of claim 1, wherein the functions have a verified entry point
into verification code and wherein the compiling step further includes the steps of:
when the compiler determines that the function call is ambiguous and

refers to a plurality of the functions,

WO 99/61979 PCT/US99/11520

13

inserting into the object code for the unambiguous function call in-
line caching instructions that access the unverified entry point of one of the plurality of
functions.

3. The method of claim 1, wherein the backpatching step includes
backpatching the object code of the unambiguous function call to perform in-line
caching.

4, The method of claim 3, wherein the backpatching step includes storing an
indication of the class into a register of the data processing system.

5. The method of claim 3, wherein the backpatching step further includes
backpatching the object code of the unambiguous function call to access the unverified
entry point of the function called by the unambiguous function call.

6. A method in a computer system for compiling a computer program into
object code, the computer program having functions containing code and function calls
of the functions, the method comprising the steps of:

determining when a function call is unambiguous; and
when it is determined that the function call is unambiguous,
compiling the function call to generate object code that performs
static binding; and
inserting a placeholder into the generated object code so that an
instruction can be inserted into the placeholder at a later time to switch to dynamic
binding when the function call becomes ambiguous.

7. The method of claim 6, wherein the step of determining includes
performing class hierarchy analysis.

8. A method ina computer system having a computer program with statically
bound function calls and dynamically bound function calls, the statically bound function
calls for invoking unambiguous functions, the dynamically bound function calls for
invoking ambiguous functions, the method comprising the steps of:

determining whether at least one of the statically bound function calls
becomes ambiguous at runtime of the computer program; and
when it is determined that at least one of the statically bound function calls

becomes ambiguous,

WO 99/61979 PCT/US99/11520

14

converting the at least one statically bound function call into a
dynamically bound function call by backpatching the statically bound function call such
that the conversion occurs without recompilation of the computer program.

9. The method of claim 8, wherein the step of converting includes converting
the statically bound function call into in-line caching.

10. The method of claim 8, wherein the method further includes determining
when a class is being loaded and wherein the step of determining whether at least one of
the statically bound function calls becomes ambiguous includes determining whether at
least one of the statically bound function calls becomes ambiguous when it is determined
that the class is being loaded. |

11. The method of claim 10, wherein the class has class functions with names,
wherein the statically bound function calls have names, and wherein the step of
determining whether at least one of the statically bound function calls becomes
ambiguous further includes determining whether the name of one of the class functions
is similar to the name of one of the statically bound function calls.

12. A data processing system comprising:

a memory containing:

a compiler for compiling a function call by determining when the
function call is unambiguous and for compiling the function call
using static binding when the compiler determines that the
function call is unambiguous; and

a program with the statically bound function call, the program having a
runtime library that determines at runtime when the statically
bound function call becomes ambiguous and that converts the
statically bound function call to a dynamically bound function call
when it determines that the statically bound function call becomes
ambiguous; and

a processor for running the compiler and the program.

13. The data processing system of claim 12, wherein the compiler is part of

a Virtual Machine.

WO 99/61979 PCT/US99/11520

15

14. The data processing system of claim 12, wherein the runtime library
converts the statically bound function call to a function call using in-line caching.

15. The data processing system of claim 12, wherein the compiler determines
that the function call is unambiguous by performing class hierarchy analysis.

16. The data processing system of claim 12, wherein the program is object-
oriented.

17. The data processing system of claim 12, wherein the runtime library
determines when the statically bound function call becomes ambiguous when a class is
being loaded.

18. A computer-readable medium containing instructions for controlling a
computer system to perform a method for compiling a computer program into object
code, the computer program having functions containing code and function calls of the
functions, the method comprising the steps of:

determining when a function call is unambiguous; and
when it is determined that the function call is unambiguous,
compiling the function call to generate object code that performs
static binding; and
inserting a placeholder into the generated object code so that an
instruction can be inserted into the placeholder at a later time to switch to dynamic
binding when the function call becomes ambiguous.

19. The computer-readable medium method of claim 18, wherein the step of
determining includes performing class hierarchy analysis.

20. A computer-readable medium containing instructions for controlling a
computer system to perform a method, the computer system having a computer program
with statically bound function calls and dynamically bound function calls, the statically
bound function calls for invoking unambiguous functions, the dynamically bound
function calls for invoking ambiguous functions, the method comprising the steps of:

determining whether at least one of the statically bound function calls
becomes ambiguous at runtime of the computer program; and
when it is determined that at least one of the statically bound function calls

becomes ambiguous,

WO 99/61979 PCT/US99/11520

16

converting the at least one statically bound function call into a
dynamically bound function call by backpatching the statically bound function call such
that the conversion occurs without recompilation of the computer program.

21. The computer-readable medium of claim 20, wherein the step of
converting includes converting the statically bound function call into in-line caching.

22. The computer-readable medium of claim 20, wherein the method further
includes determining when a class is being loaded and wherein the step of determining
whether at least one of the statically bound function calls becomes ambiguous includes
determining whether at least one of the statically bound function calls becomes
ambiguous when it is determined that the class is being loaded.

23. The computer-readable medium of claim 22, wherein the class has class
functions with names and wherein the step of determining whether at least one of the
statically bound function calls becomes ambiguous further includes determining whether

one of the class functions has a name similar to one of the statically bound function calls.

WO 99/61979

(Caller Object)

Move Last Class into
eax Register

~102

A 4

Call Unverified
Entry Point

End

FIG. 1
(Prior Art)

< Server Function >

Appropriate Class
in eax?

PCT/US99/11520

Find Appropriate
function

L ~10

A 4

Change Client Code to
Refer to Appropriate
Function Member

112

A

Store Class in eax
Register

L ~114

y

\ Execute Appropriate

\ Function Member

™16

»i
[«

Execute Code (108

\ 4

{ Return)

WO 99/61979

2 / 5 PCT/US99/11520

Compiler

No Unambiguous 200

204

Use In-line
Caching

Method Call?

Use Static

Binding ~202

FIG. 2A
(Prior Art)

End

During Execution

No

21 Loading a Class?

Statically
Bound Method
Ambiguous?

212

Recompile Code to
214~ Switch to In-line
Caching

: FIG. 2B
End (Prior Art)

WO 99/61979 3 / 5 PCT/US99/11520

300

301
(e

Main Memory | _~303

JRE
31 §315 Secondary

Storage 304

312 w Routine | |Compilert~/~313

Program | ~314

306 308

Processor Input Device

310

Video Display

302

FIG. 3

WO 99/61979 4 /| 5

{ Compiler)

A 4

Perform Class
Hierarchy Analysis

402

406

No Unambiguous 04
Function Call?
4
Use In-line Insert Placeholder
Caching into Code /408
y
Use Static Binding ~410
End

FIG. 4A

PCT/US99/11520

WO 99/61979 5 / 5§

(During Execution)

A 4

Receive a Request to
420~ Load a Class

Static Binding
422

No

PCT/US99/11520

Back Patch Code to
424 Perform In-line
Caching

End

FIG. 4B

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

