(54) 发明名称
一种磁电混合连续驱动方法及动力装置

(57) 摘要
本发明公开了磁电混合连续驱动方法，包括以下步骤：(1) 制备连杆、活塞及曲轴；(2) 制备气缸、变极线圈、驱动线圈；(3) 制备控制系统；(4) 初始状态，变极线圈断电；(5) 变极线圈通电，活塞带动连杆运动；(6) 第一驱动线圈通电，活塞运动；第一驱动线圈电流反向流动，活塞运动；(7) 第二驱动线圈通电，活塞运动，第一驱动线圈断电，重复步骤(6) 动作，第三驱动线圈、第 n 驱动线圈依次通电断电；(8) 控制系统控制变极线圈的电流方向流动，重复步骤(6)、(7) 动作；(9) 重复步骤(5)、(6)、(7)、(8) 动作，实现磁电混合连续驱动，带动输出动力的驱动方法。本发明还公开了一种磁电混合连续驱动的动力装置。
1. 一种磁电混合连续驱动方法，其特征在于，其包括以下步骤：
 (1) 制备连杆、活塞及曲轴，于活塞顶部固定设置活塞永磁体，所述连杆一端与活塞固定连接，所述连杆另一端与曲轴活动连接；
 (2) 制备缸体，该缸体设有至少一个缸筒，于缸筒顶部固定设置缸体永磁体，所述活塞插设在所述缸筒内，所述缸体永磁体产生的磁场力与所述活塞永磁体产生的磁场力相排斥；于缸体永磁体底部固定设置变极线圈，于所述缸筒外壁上等间距设置多组驱动线圈，第一驱动线圈、第二驱动线圈……第n驱动线圈；缸筒高度为驱动线圈高度的5-30倍；
 (3) 制备控制系统，该控制系统连接所述驱动线圈及变极线圈，控制其通电状况、电流大小及电流方向；
 (4) 初始状态，变极线圈断电，活塞在活塞永磁体与缸体永磁体的磁场作用力下处于相距离最远的远止点位置；
 (5) 变极线圈通电，产生与活塞永磁体相互吸引的磁场力，活塞在变极线圈与活塞永磁体产生的吸引力下作靠近变极线圈的直线运动，活塞带动连杆作直线运动；
 (6) 运动的活塞靠近所述第一驱动线圈，第一驱动线圈通电，产生与所述活塞永磁体相吸引的磁场力，活塞在该磁场力的作用下，向靠近第一驱动线圈的方向运动，直至活塞与该第一驱动线圈在同一直线上；所述控制系统控制该第一驱动线圈的电流反向流动，该第一驱动线圈产生与活塞永磁体相排斥的磁场力，活塞在该磁场力的作用下，向远离该第一驱动线圈的方向运动；
 (7) 当活塞运动到靠近第二驱动线圈时，所述控制系统控制所述第二驱动线圈通电，该第二驱动线圈产生于活塞永磁体相吸引的磁场力，活塞在所述第二驱动线圈及第一驱动线圈产生的磁场力下，向靠近所述第二驱动线圈的方向运动；所述控制系统控制第一驱动线圈断电，第二驱动线圈反转电流方向，活塞向远离第二驱动线圈及靠近第三驱动线圈的方向运动，第三驱动线圈及第n驱动线圈重复步骤(6)的动作，第三驱动线圈、第n驱动线圈依次断电通电，直至活塞运动到达最靠近变极线圈的上止点位置；
 (8) 所述控制系统控制变极线圈的电流方向流动，该变极线圈产生与活塞永磁体相排斥的磁场力，活塞在该排斥磁场力的作用力下向下运动，重复步骤(6)、(7)的动作，直至活塞运动到下止点位置；
 (9) 重复步骤(5)、(6)、(7)、(8)的动作，活塞作上下直线往复运动；带动连杆作上下直线往复运动，连杆带动曲轴作左周圆周运动，实现磁电混合连续驱动，驱动输出动力的驱动方法。

2. 根据权利要求1所述的磁电混合连续驱动方法，其特征在于，所述驱动线圈通电时产生的磁场大于活塞永磁体的体积。

3. 根据权利要求1或2所述的磁电混合连续驱动方法，其特征在于，所述连杆为对称结构的双头连杆，所述缸体包括两个相对设置的缸筒，所述双头连杆插设在两个缸体内并连接活塞，所述双头连杆中部活动连接所述曲轴。

4. 根据权利要求3所述的磁电混合连续驱动方法，其特征在于，所述缸筒数量为双数。

5. 一种实施权利要求1～4之一所述磁电混合连续驱动方法的动力装置，其特征在于，其包括控制电路、缸体、连杆、活塞、活塞永磁体、缸筒永磁体、变极线圈、驱动线圈，所述缸体包括至少一个缸筒，所述连杆固定连接所述活塞，所述活塞永磁体固定设置在所述活塞
上，所述缸筒永磁体固定设置在所述缸筒底部，所述变极线圈固定设置在所述缸体永磁体下方，所述活塞活动设置在所述缸筒内，多组所述驱动线圈等间距设置在所述缸筒外壁上，控制电路电连接所述变极线圈及驱动线圈。

6. 根据权利要求5所述的动力装置，其特征在于，其还包括行星圆周运转机构，该行星圆周运转机构包括一小圆形滑轮及一大圆形滑道，所述曲轴设有曲轴颈，所述小圆形滑轮连接所述曲轴，运动时，小圆形滑轮以曲轴颈的轴线为中心作自转运动，及绕大圆形滑道作行星旋转运动。

7. 根据权利要求5或6所述的动力装置，其特征在于，所述连杆为对称结构的双头连杆，所述缸体包括两个相对设置的缸筒，所述双头连杆插设在两个缸体内并连接活塞，所述双头连杆中部活动连接所述曲轴。

8. 根据权利要求5所述的动力装置，其特征在于，所述缸筒数量为双数。
一种磁电混合连续驱动方法及动力装置

技术领域
[0001] 本发明涉及磁铁、磁电混合技术及动力装置的技术领域，具体涉及一种磁电混合连续驱动方法及动力装置。

背景技术
[0002] 目前，现有各种原动力发动机如汽油机、柴油机、燃油蒸气机等已经广泛应用于工业、农业、交通、国防领域等诸多领域，这些机械的使用给人们带来方便的同时，也给社会埋藏了隐患，设备投入投资巨大，有的耗费燃料费用大，且废物排放、噪音等对环境污染严重，而且上述发动机采用的能源是以油、焊等不可再生的资源，由于资源有限，能源消耗越来越被人们所重视，而且其能量转化过程复杂、成本高、效率低，且对环境污染严重。
[0003] 目前，市场上还没有一种动力机构能够使用电能及磁性能，或者仅用较少的电能，即可持续不断输出能量，并能够实现常 électro-motor or engine's output power.

发明内容
[0004] 为了解决上述问题，本发明公开的磁电混合连续驱动方法，该方法能够借助电能转化为磁性能，从而推动带有永磁体的活塞作连续的上下直线往复运动，活塞带动连杆动作，连杆带动曲轴运动，从而实现动力的输出，本发明还公开了一种磁电混合连续驱动的动力装置。
[0005] 本发明为实现上述目的所采用的技术方案是：
[0006] 一种磁电混合连续驱动方法，其特征在于，其包括以下步骤：
[0007] （1）制备连杆、活塞及曲轴，于活塞顶部固定设置活塞永磁体，所述连杆一端与活塞固定连接，连杆与活塞不发生角度的改变，所述连杆另一端与曲轴活动连接；
[0008] （2）制备匚体，该缸体设有至少一个缸体，于缸体顶部固定设置缸体永磁体，所述活塞插设在所述缸体内部，所述缸体永磁体产生的磁力与所述活塞永磁体产生的磁力相排斥；于缸体永磁体底部固定设置极线圈，于所述缸体外壁等间距设置多组驱动线圈，第一驱动线圈、第二驱动线圈，第 n 驱动线圈；
[0009] （3）制备控制系统，该控制系统连接所述驱动线圈及极线圈，控制其通电状况、电流大小及电流方向；
[0010] （4）初始状态，极线圈通电，活塞在活塞永磁体与缸体永磁体的磁场作用力下处于相距最远的远止点位置；
[0011] （5）极线圈通电，产生与活塞永磁体相互吸引的磁场力，活塞在极线圈与活塞永磁体产生的吸引力下作靠近极线圈的直线运动，活塞带动连杆作直线运动；
[0012] （6）运动的活塞靠近所述第一驱动线圈，第一驱动线圈通电，产生与所述活塞永磁体相吸引的磁场力，活塞在该磁场力的作用下，向靠近第一驱动线圈的方向运动，直至活塞与该第一驱动线圈在同一直线上，所述控制系统控制该第一驱动线圈的电流反向流动，该第一驱动线圈产生与活塞永磁体相排斥的磁场力，活塞在该磁场力的作用下，向远离该第
一驱动线圈的方向运动；

[0013]（7）当活塞运动到靠近第二驱动线圈时，所述控制系统控制所述第二驱动线圈通电，该第二驱动线圈产生于活塞永磁体相吸的磁场力，活塞在所述第二驱动线圈及第一驱动线圈产生的磁场力下，向靠近所述第二驱动线圈的方向运动；所述控制系统控制第一驱动线圈断电，第二驱动线圈反转电流方向，活塞向远离第二驱动线圈及靠近第三驱动线圈方向运动，第三驱动线圈及第n驱动线圈重复步骤（6）的动作，第三驱动线圈、第n驱动线圈依次断电通电，直至活塞运动到最靠近变极线圈的上止点位置；

[0014]（8）所述控制系统控制变极线圈的电流方向流动，该变极线圈产生与活塞永磁体相排斥的磁场力，活塞在该排斥磁场力的作用力下向下运动，重复步骤（6）、（7）的动作，直至活塞运动到下止点的位置；

[0015]（9）重复步骤（5）、（6）、（7）、（8）的动作，活塞作上下直线往复运动；带动连杆也作上下直线往复运动，连杆带动曲轴左圆周运动，实现电磁混合连续驱动，驱动输出动力的驱动方法。

[0016]作为本发明的进一步改进，步骤（2）具体还包括以下内容，驱动线圈的高度为缸筒高度的1/30～1/5倍。

[0017]作为本发明的进一步改进，所述驱动线圈通电时产生的磁场大于活塞永磁体的体积。

[0018]一种实施上述电磁混合连续驱动方法的动力装置，其特征在于，其包括控制电路、缸体、连杆、活塞、活塞永磁体、缸筒永磁体、变极线圈、驱动线圈，所述缸体包括至少一个缸筒，所述连杆固定连接所述活塞，所述活塞永磁体固定设置在所述活塞上，所述缸筒永磁体固定设置在所述缸筒的端部，所述变极线圈固定设置在所述缸体的端部，所述活塞活动设置在所述缸筒内，多组所述驱动线圈等间距设置在所述缸筒外壁上，所述电路电连接所述变极线圈及驱动线圈。

[0019]作为本发明的进一步改进，所述驱动装置还包括行星圆周运转机构，所述行星圆周运转机构包括一小圆形滑轮及一大圆形滑道，所述曲轴设有曲轴颈，所述小圆形滑轮连接所述曲轴，运动时，小圆形滑轮以曲轴颈的轴线为中心作自转运动，及绕大圆形滑道作行星旋转运动。

[0020]作为本发明的进一步改进，所述连杆为一端结构的双头连杆，所述缸体包括两个相对设置的缸筒，所述双头连杆插设在两个缸体内并连接活塞，所述双头连杆中部活动连接所述曲轴。

[0021]作为本发明的进一步改进，所述缸筒数量为双数。

[0022]本发明的有益效果为：通过设置作直线运动的连杆、变极线圈、驱动线圈、活塞永磁体及缸体永磁体，通过控制系统控制变极线圈及驱动线圈的导通及电流大小、电流方向，变极线圈及驱动线圈产生磁场力，驱动活塞运动，从而实现动力的输出。

[0023]连杆作上下直线往复运动，通过行星圆周运转机构将连杆的直线运动转换为旋转运动，从而实现曲轴的动力输出；连杆作上下直线运动，使活塞横向受力很少，进而有效减少活塞与缸筒间的摩擦，提高能源转化率。

[0024]下面结合附图与具体实施方式，对本发明进一步说明。
附图说明
[0025] 图1为本发明实施例的结构示意图；
[0026] 图中：
[0027] 1. 缸体 12. 缸体永磁体 13. 驱动线圈
[0028] 14. 变极线圈 2. 活塞永磁体 3. 连杆
[0029] 4. 曲轴 5. 小圆形滑轮 6. 大圆形滑道。

具体实施方式
[0030] 实施例，参见图1，本发明提供的磁电混合连续驱动方法，其包括以下步骤：
[0031] （1）制备连杆3、活塞及曲轴4，于活塞顶部固定设置活塞永磁体2，所述连杆3一端
与活塞固定连接，连杆3与活塞不发生角度的改变，所述连杆3另一端与曲轴4活动连接；
[0032] （2）制备缸体1，该缸体1设有至少一个缸筒，于缸筒顶部固定设置缸体永磁体12，
所述活塞插设在所述缸筒内，所述缸体永磁体12产生的磁场力与所述活塞永磁体2产生的
磁场力相排斥；于缸体永磁体12底部固定设置变极线圈14；于所述缸筒外壁上等间距设置
多组驱动线圈13，第一驱动线圈13、第二驱动线圈13，第n驱动线圈13，驱动线圈13的
高度为缸筒高度的1/30-1/5倍，所述驱动线圈13通电时产生的磁场大于活塞永磁体2的
体积；
[0033] （3）制备控制系统，该控制系统连接所述驱动线圈13及变极线圈14，控制其通电
状态、电流大小及电流方向；
[0034] （4）初始状态，变极线圈14断电，活塞在活塞永磁体2与缸体永磁体12的磁场作
用力下处于相距距离最近的远止点位置；
[0035] （5）变极线圈14通电，产生与活塞永磁体2相互吸引的磁场力，活塞在变极线圈
14与活塞永磁体2产生的吸引力下作靠近变极线圈14的直线运动，活塞带动连杆3作直线
运动；
[0036] （6）运动的活塞靠近所述第一驱动线圈13，第一驱动线圈13通电，产生与所述活
塞永磁体2相吸引的磁场力，活塞在该磁场力的作用下，向靠近第一驱动线圈13的方向运
动，直至活塞与所述第一驱动线圈13同一直线上；所述控制系统控制所述第一驱动线圈13的
电流反向流动，驱动线圈13与活塞永磁体2产生的排斥力下作远离第一驱动线圈14的直线运动
活塞带动连杆3作直线运动；
[0037] （7）当活塞运动到靠近第二驱动线圈13时，所述控制系统控制所述第二驱动线圈
13通电，该第二驱动线圈13产生与活塞永磁体2相排斥的磁场力；活塞在所述第二驱动线
圈13及第一驱动线圈13产生的磁场力下，向靠近所述第二驱动线圈13的方向运动；所述
控制系统控制第一驱动线圈13断电，第二驱动线圈13反转电流方向，活塞向远离第二驱动
线圈13及靠近第三驱动线圈13方向运动；第三驱动线圈13及第n驱动线圈13重复步骤
（6）的动作，第三驱动线圈13、第n驱动线圈13依次断电通电，直至活塞运动到达最靠近变
极线圈14的上止点位置；
[0038] （8）所述控制系统控制变极线圈14的电流方向流动，该变极线圈14产生与活塞永
磁体2相排斥的磁场力，活塞在该排斥磁场力的作用力下向下运动，重复步骤（6）、（7）的动
作，直至活塞运动到下止点的位置；
(9)重复步骤(5)、(6)、(7)、(8)的动作，活塞作上下直线往复运动；带动连杆3也作上下直线往复运动，连杆3带动曲轴4左圆周运动，实现磁电混合连续驱动，驱动输出动力的驱动方法。

所述连杆3为对称结构的双头连杆3，所述缸体包括两个相对设置的缸筒，所述双头连杆3插设在两个缸体内并连接活塞，所述双头连杆3中部活动连接所述曲轴4。当需要设置多个缸筒时，缸筒数量为双数，以使活塞运动时，缸体达到动态平衡。

一种实施上述磁电混合连续驱动方法的动力装置，其包括控制电路、缸体1、连杆3、活塞、活塞永磁体2、缸筒永磁体、变极线圈14、驱动线圈13，所述缸体1包括至少一个缸筒，所述连杆3固定连接所述活塞，所述活塞永磁体2固定设置在所述活塞上，所述缸筒永磁体固定设置在所述缸筒底部，所述变极线圈14固定设置在所述缸体永磁体12下方，所述活塞活动设置在所述缸筒内，多组所述驱动线圈13等间距设置在所述缸筒外壁上，控制电路电连接所述变极线圈14及驱动线圈13。

所述动力装置还包括行星圆周运转机构，该行星圆周运转机构包括一小圆形滑轮5及一大圆形滑道6，所述曲轴4设有曲轴4颈，所述小圆形滑轮5连接所述曲轴4，运动时，小圆形滑轮5以曲轴4颈的轴线为中心作自转运动，及绕大圆形滑道6作行星旋转运动。

所述连杆3为对称结构的双头连杆3，所述缸体包括两个相对设置的缸筒，所述双头连杆3插设在两个缸体内并连接活塞，所述双头连杆3中部活动连接所述曲轴4。当需要设置多个缸筒时，缸筒数量为双数，以使活塞运动时，缸体达到动态平衡。

图1为单缸的动力装置，根据本发明用于单缸动力装置的实施例，本领域技术人员可以不需花费创造性劳动就可以得出两个或以上的动力装置。

本发明并不限于上述实施方式，采用与本发明上述实施例相同或近似装置，而得到的其他用于磁电混合连续驱动方法及实施该方法的动力装置，均在本发明的保护范围内。
图 1