METHODS FOR DEPOSITING FINISH COATINGS ON SUBSTRATES OF ANODISABLE METALS AND THE PRODUCTS THEREOF

New processes are disclosed for depositing metal coatings on substrates of anodisable metals, such as aluminium and its alloys, the coatings being applied directly on to a porous anodised layer that has been produced on the surface of the substrate. Pore-filling metal is first electrolytically deposited in the pores, the metal depositing initially on the bottom walls and the lower parts of the side walls; usually until the pores are from about 3 % to about 30 % filled. Metal deposition is then continued using an electroless process until the pores are filled to the desired extent, usually until a support coating has been applied over the entire anodised layer. Other metal coatings can then be applied over the support layer, either by electrolytic or electroless methods. Electroless coatings of considerable thickness (as much as 75 micrometres) can successfully be applied. The new products of such processes comprise a substrate of anodisable metal, having on a surface an anodised layer of thickness of about 0.5 to about 50 micrometres; the pores of the anodised layer have pore-filling metal electrolytically deposited therein, and pore-filling metal electroless deposited on the electrolytically deposited metal. The electroless metal may constitute the final layer or other layers may be deposited over it to give the final product. The interposed electrolytically deposited metal provides improved adhesion to the anodised material as compared to direct electroless deposited metal.
DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Faso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo			SE	Sweden
CH	Switzerland			SN	Senegal
CM	Cameroon			SU	Soviet Union
DE	Germany			TD	Chad
DK	Denmark			TG	Togo
		LU	Luxembourg	US	United States of America
METHODS FOR DEPOSITING FINISH COATINGS ON SUBSTRATES OF
ANODISABLE METALS AND THE PRODUCTS THEREOF

Field of the Invention

This invention is concerned with improvements in or relating to methods for depositing metal coatings on substrates of anodisable metals, such as aluminum and its anodisable alloys, and to the products of such methods.

Review of the Prior Art

The deposition of metals on a substrate, usually steel or aluminum, is a well-developed art. Plating on less easily oxidized metals such as steel is relatively routine, involving for example the deposition of a layer of copper directly on the steel substrate, followed in succession by a thick "semi-bright" nickel layer, a thinner "bright" nickel layer, and an even thinner finish layer of chromium; the chromium is semi-transparent and the bright appearance is actually provided by the bright nickel layer seen through the finish chromium layer.

Plating on anodisable metals, such as aluminum and its anodisable alloys, is considerably more difficult owing to their relative ease of oxidation, and the consequent inevitable presence of an oxide coating which must be removed if adequate adhesion of the deposited layers to the underlying metal substrate is to be obtained. The art currently is dominated by two methods of preparing the substrate surface, namely zinicate and stannate immersion. In these processes the substrate surface is immersed in a suitable zinicate or stannate solution, usually of the sodium salt, together with other additions that have been found in practice to increase the appearance and adhesion of the coatings. The zinc or tin atoms respectively displace aluminum atoms at the surface, in the process removing the oxide layer, to result in an adherent zinc or tin layer on which other layers, for example copper followed by nickel and chromium can be deposited. Both of these processes are relatively expensive and are therefore mainly used on expensive commodities. The stannate immersion processes are reported to provide better anti-corrosion performance and adhesion of the
resultant coatings, but are the more expensive of the two because of the more expensive components and longer processing times.

It has also been proposed to deposit adherent metal coatings directly on aluminum or aluminium alloy substrates by producing a porous anodized layer at the surface of the substrate onto which the subsequent metal layers are deposited; this anodized layer incorporating the oxide layer that was present on the substrate surface. In an article entitled "Plating on Aluminum, a Review" by D.S. Lashmore, published in the June 1985 issue of "Plating & Surface Finishing" (pp 36-39), summarizing previous publications, it was reported that studies have shown that there must be a minimum pore size in the anodized coating, into which the subsequent metal coatings can mechanically "lock" or "key", and that this limits the process to the use of electrolytes that will produce fairly large pores of the order of 0.07 micrometres (700 Angstroms). The report goes on to state it has been found empirically that only anodising solutions comprising phosphoric acid are successful, sulfuric or oxalic acid sometimes being mixed with the phosphoric acid. The report further states that the adhesion of the subsequent coatings is primarily mechanical, with the cohesive strength of the porous oxide coatings to the metal substrate being the limiting factor, so that improvements in the anodic process should be directed towards increasing this cohesive strength and the strength of the oxide layer itself. Despite developments of these phosphoric acid anodizing/coating processes for over 50 years they have not yet been widely adopted commercially, apparently because of relatively poor adhesion and brightness.

Definition of the Invention

It is therefore the principal object of the present invention to provide new methods for plating metal layers on substrates of aluminum and its alloys, and to provide substrates of aluminum and its alloys having metal layers plated thereon by the new methods.

In accordance with the present invention there is
provided a new method of depositing metal on a surface of a substrate of an anodisable metal, the method including the steps of:

a) anodising the substrate at the said surface to produce a porous anodised layer of thickness from about 0.5 to about 50 micrometres;

b) electrolytically depositing pore-filling metal into the pores to adhere to the walls thereof; and

c) continuing the deposition of pore-filling metal by electroless deposition to fill the pores to the required extent.

Preferably the electroless deposition is continued until a coating of metal of thickness in the range about 0.5 to 3 micrometres is deposited on the surface of the anodised layer.

Also in accordance with the invention there are provided new products comprising anodisable metal substrates of which a surface consists of a porous anodized layer of thickness of about 0.5 to about 50 micrometres, the porous layer having electrolytically deposited in the pores thereof pore-filling metal which adheres to the walls thereof, and having electroless deposited pore-filling metal deposited in the pores on the electrolytically deposited metal.

Description of the Drawings

Methods of depositing various layers of metals on a surface of an anodisable substrate, and the products of such methods, constituting particular preferred embodiments of the invention, will now be described by way of example with reference to the accompanying drawings, wherein:

Figure 1 is a cross-section through the surface and adjacent portion of an aluminum substrate, through the porous anodised layer formed thereon by sulfuric acid anodising, and through the various layers of metal that have been deposited on the anodised layer;

Figure 2 is a cross-section to a much enlarged scale of the small portion 2 of Figure 1, showing the anodised layer and the immediately adjacent metal layers; and

Figure 3 is the same cross-section as that of Figure 2, through a substrate in which the anodised layer is formed by
Description of the Preferred Embodiments

As indicated above, Figure 1 is a cross-section through an aluminum substrate 10 at the upper surface of which there has been formed by acid anodising a layer 12 of aluminum oxide, a portion of which, together with the immediately adjacent portions of the substrate and deposited metal layers, are shown to a larger scale in Figure 2. This particular anodising employs sulfuric acid which produces elongated narrow pores 14 (not seen in Figure 1), and in accordance with this invention at least the bottom portions of the pore walls have had applied thereto by electrolytic deposition a layer of adherent pore-filling metal 16 (also not seen in Figure 1). The electrolytically deposited metal is found initially to deposit principally at the bottoms of the pores and the immediately adjacent parts of the side walls, and the resultant coatings or layers then grown progressively in thickness upwards in the pores as more metal is deposited. It is also found initially that discontinuous patches 17 of the metal are deposited on the side walls in what appears at present to be a random manner. After sufficient metal has been electrolytically deposited the filling of the pores is continued using electroless deposited metal 18 until, in this embodiment, they are completely filled and a continuous support layer has been formed over the entire surface of the anodised layer 12. In this embodiment cobalt is used as the initial electrolytically deposited metal 16 and 17, while electroless nickel is employed for the metal 18. The deposition of metal layers is continued to provide a semi-bright nickel layer 20, a bright nickel layer 22 and a tri-chrome finish layer 24.

The invention thus employs the electrolytic deposition of pore filling metal to apply an initial "seed" coating to the bottom wall portion of each pore and to at least the lower portion of the side wall of each pore. It is found that such an electrolytically deposited metal coating adheres very well to the anodised material, and the subsequently electroless deposited metal adheres very well to the electrolytically
deposited metal, whereas metals deposited by electroless processes directly on aluminum oxide do not adhere well and result in lower strength metal coatings. Electroless coating processes have the advantage that they are more efficient than electrolytic processes in filling the pores and result in more dense or compact coatings, and the processes of the invention enable advantage to be taken of this property while overcoming the potential problem of insufficient adherence of the electroless deposited metal to the anodised layer.

The acid most widely used for anodising is sulfuric acid because of its ready availability and lower cost, although phosphoric, oxalic and chromic acids, and mixtures of these and other acids, can also be used. The anodised layer is inherently porous in structure because of the manner of its formation, and a typical structure of a layer 12 obtained by sulfuric acid anodising of the aluminum substrate 10 is illustrated by Figure 2, while that obtained by anodising with phosphoric acid is illustrated by Figure 3. For convenience in drawing the horizontal surfaces of the layers are shown as flat, but in practice they will be seen to be highly irregular even at quite low magnification.

Figure 1 illustrates an embodiment in which an anodised layer 12 of aluminum oxide (Al_2O_3) has been produced of about 5 micrometres (50,000 Angstroms) thickness, typically by use of sulfuric acid at about 20°C and of about 165g/litre or 15% by weight concentration, employing an anodising voltage of about 15–20 volts for 10 minutes. The porous structure obtained is relatively uniform, although highly idealised as shown in Figure 1 for convenience in drawing, and typically the pores 14 will be found to average 0.015 micrometre (150 Angstroms) in transverse dimension, spaced on average about 0.024 micrometre (240 Angstroms) from one another. The bottoms of the pores do not end at the surface of the aluminum substrate, but instead they are on average spaced about 0.015 micrometre (150 Angstroms) from that surface to form a continuous non-porous barrier layer 26 of the relatively non-conductive aluminum oxide, the thickness of this layer depending principally directly on the value of the anodising voltage. Usually with
sulfuric acid anodising this thickness averages about 0.0010 to 0.0014 micrometre (10 to 14 Angstroms) per volt. It may be noted that references herein and in the literature to pore sizes, etc. are usually made in Angstroms, while references to thicknesses are made in micrometres, merely to avoid the need to refer to large numbers or small fractions, 1 micrometre being equal to 10,000 Angstroms.

It has been found possible in previous commercial practice to deposit pore filling metal layers that are sufficiently strong and stable of up to about 5 micrometres thickness, but beyond this value the hydrogen that is generated in the long, narrow pores (i.e. length to width ratio in the sample illustrated of about 330:1) by the electrolytic deposition process tends to cause spalling of the anodised coating, destroying its strength to the extent that it is unsuitable to receive and retain the pore filling metal. Another problem is that it is difficult to deposit a sufficiently adherent coating of a pore-filling metal into the long narrow pores employing conventional D.C. plating methods. Thus, there is too great a tendency for the plating step to cause physical disruption of the anodised layer, so that the plated metal layer is poorly adherent.

Metal deposition processes may use either alternating current or direct current, or a combination thereof. A.C. deposition is usually much slower than the equivalent D.C. current and D.C. is therefore preferred if speed is important. However, D.C. has a greater tendency to cause disruption of the coating especially with the narrow pores characteristic of sulfuric acid anodising. It is therefore also known to use modified A.C., preferably one in which a predetermined negative-going D.C. has been superimposed on the A.C. Such a system avoids the disruption that would be produced by a pure D.C. current. A.C. produces metal deposition owing to the rectification characteristic of the aluminum oxide, but as the thicknesses of the coatings increase such unmodified A.C. deposition gives poorer pore penetration and slower deposition rates. The D.C. component is therefore increased to the maximum level that does not cause disruption. This method of deposition
is disclosed for example in U.S. Patent No. 4,226,680, assigned to Alcan Research and Development Limited, the disclosure of which is incorporated by this reference; these processes have now become known as the Alcan "ANOLOCK" (Trade Mark) processes. Other modified A.C. systems are also possible; for example, another system offsets the A.C. waveform in a manner that will produce an effective negative bias, while a further way is to increase the amplitude of the negative portion of the waveform relative to that of the positive portion, which again has the same effect.

The processes of the invention are applicable generally to anodisable metals, their alloys and composites; whether rolled, pressed, cast or wrought. Cast metals are generally less dense and more porous in structure than the corresponding rolled, pressed or wrought product. Attempts to use only electroless deposition, or only electrolytic deposition, directly on the anodised surface of a cast material have not been as successful as the processes of the invention because of this higher porosity and because of the usual higher silicon content (e.g. 7-12%) of such metals. Thus, the more porous metal structure results in anodised layers of lower strength and quality, and electrolytic deposits are more adversely affected by the anodic layer quality than are electroless layers, it is believed because of entrapment of some of the silicon in the barrier layer which interferes with the normal flow of electrons in the deposition current. On the other hand, as explained above, layers applied by direct electroless deposition are generally poorly adherent to the already lower strength anodised layer.

Suitable substrate metals, in addition to aluminum and its anodisable alloys, are magnesium and its anodisable alloys. Metals suitable for the electrolytic deposition of the initial "seed" layer are cobalt, nickel, zinc, copper, tin and palladium. When the substrate is aluminum or an alloy thereof cobalt has been found to be particularly suitable for electrolytic deposition and nickel for electroless deposition.

It is found that as the thickness of the electrolytic layers within the pores increases a point may be reached at
which the adhesion to the aluminum begins to decrease, and this then sets an upper limit at which the electrolytic deposition should be stopped and replaced by the electroless deposition. Of course the electrolytic deposition can be discontinued earlier depending upon the other parameters of the particular process. It is found that the thickness of the initial seed coatings, as measured from the bottom of the pores, correlates well with the apparent colour of the substrate surface as seen by an observer, and the table below shows a specific correlation that is obtained when the anodised layer has been produced by sulfuric acid anodising is 5 micrometres thick, and the electrodeposited metal being cobalt. The thickness of the electrolytically deposited metal is most expeditiously expressed in the units milligrams (mg) of metal per square metre (m²) of anodic surface. It is found with this combination that the cut-off for good adhesion is between about 550 and about 850 mg/m².

<table>
<thead>
<tr>
<th>Colour</th>
<th>TABLE</th>
<th>% Fill</th>
<th>Adhesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champagne</td>
<td>70</td>
<td>3.5</td>
<td>good</td>
</tr>
<tr>
<td>Very Light</td>
<td>180</td>
<td>9.0</td>
<td>good</td>
</tr>
<tr>
<td>Bronze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Bronze</td>
<td>340</td>
<td>17.0</td>
<td>good</td>
</tr>
<tr>
<td>Medium Bronze</td>
<td>550</td>
<td>27.5</td>
<td>good</td>
</tr>
<tr>
<td>Dark Bronze</td>
<td>850</td>
<td>42.5</td>
<td>poor</td>
</tr>
<tr>
<td>Black</td>
<td>2000</td>
<td>100.0</td>
<td>poor</td>
</tr>
</tbody>
</table>

It will be seen that as little as about 3% will give good adhesion and this is the minimum value for satisfactory results, while at the upper thickness limit of medium bronze for pores of 5 micrometres depth it is estimated that each pore is about 30% filled in volume with the electrolytically deposited metal, leaving the remaining 70% to be filled with the electroless deposited metal. Nickel is found to produce approximately the same colour correlation as cobalt. Copper produces a range of different colours extending from pink through light maroon and dark maroon to black. Tin requires a thicker anodised coating of about 10 micrometres before black
is obtained. As mentioned above the table refers to sulfuric acid anodising; the same principle applies with phosphoric acid anodising but the colours obtained are slightly different.

The amount of electroless applied metal that is deposited in the pores will of course depend upon the required properties and intended use of the resultant product, and for some applications the pores may not need to be completely filled: from about 6% to about 60% of complete filling may be all that is required. Thus, while a useful range for the electrolytic deposition is about 3% to about 30%, a useful range for the electroless deposition is also from about 3% to the remainder required to fill the pores to the required extent. Once the initial electrolytic seed deposit and the subsequent electroless deposit have been applied the subsequent processing steps will also depend upon the commercial application of the resultant product and the characteristics and appearance that are required. For example, the electroless deposition can simply be continued until a final layer (over the anodised layer) of adequate thickness is obtained, the usual range for such an application being from about 50 micrometres to about 75 micrometres. More usually the electroless deposition is continued until it forms a support layer of adequate thickness over the entire surface of the anodised layer, as illustrated by Figures 1 and 2, the usual values being from about 0.5 micrometres to about 3 micrometres, more preferably in the range 1-2 micrometres. Thereafter, a finish layer (for example chromium) may be applied over the support layer, with or without the provision of one or more intermediate layers between the support and finish layers.

The invention is particularly applicable to substrates anodised with sulfuric acid and the like in that the compact deposition characteristic of the subsequent electroless deposition works well with the narrow pores obtained with this and similar systems, whereas the less dense deposition of the electrolytic methods works better with wider pores such as are obtained with phosphoric acid and similar systems. Nevertheless, the dual deposition processes of the invention can be applied to such large pore systems and Figure 3 shows an
anodised layer 12 of aluminum oxide (Al₂O₃) of about 2 micrometres (20,000 Angstroms) thickness that typically will be produced on substrate 10 using phosphoric acid at about 20°C and of about 109g/litre or 10% by weight concentration, employing an anodising voltage of about 50-60 volts for 10 minutes. The pores 14 themselves are of much larger transverse dimension to give a much lower length/width ratio (20:1 in this example), and they are much more widely spaced apart at an average value of about 0.07 micrometres (700 Angstroms). The barrier layer is thicker because of the higher voltage used; e.g. 60 volts gives a layer of about 700 Angstroms thickness.

The use of a phosphoric acid anodised layer is found to be particularly advantageous with cast materials, and it has been found for example that for cast aluminum such as is used for automotive wheels the adhesion of the final coating/s was increased by at least 50% upon use of phosphoric acid in place of sulfuric acid for the anodising. A suitable test for adhesion is to cut the finished part through the substrate and coatings and then to attempt to lift or peel the coating away from the substrate by use of a sharp knife edge; it was found possible with this test to peel the coatings from sulfuric acid anodised substrates with various degrees of difficulty depending on the processing conditions, but not possible to peel it from phosphoric acid anodised substrates.

The use of an anodised layer before plating introduces the possibility, if desired, of a reduction in the thickness of the subsequent plated layers with consequent cost savings. The anodising processes described employing acid baths in the temperature range 20-35°C are usually characterised as "conventional" anodising, but "hard" anodising processes can also be employed for the invention, the usual bath temperature being in the range 3-7°C; such hard anodised layers are usually thicker than the conventional anodised layers. Further reductions in the subsequent layers therefore are possible by using a thicker and/or stronger anodic film such as that produced using these lower temperature anodising processes, particularly low temperature sulfuric acid anodising. Such hard layers also constitute an excellent basis for the pore-filling
metal deposition characteristic of the invention, the electroless layer being the support layer for further deposits, which can be thinner than those normally previously used. It will be understood that this industry is particularly cost conscious, especially with regard to the relatively expensive corrosion-resistant metals that are employed in the intermediate and finish coatings, so that any saving that can be achieved in their thickness for an equivalent performance in protection and/or appearance is commercially important.

In the processes of the invention the anodised layer 10 can be of thickness in the range 0.5 - 50 micrometres, usually in the range 1-10 micrometres, preferably in the range 2-6 micrometres, and more preferably 3-5 micrometres, with a thickness of 5 micrometres being usually commercially suitable. The electroless-deposited pore-filling material need not form a support coating of more than about 2 micrometres thickness and excellent results can be obtained with the application of a single thin finish coating of chromium over the support layer. The preferred electroless deposited metal is nickel. Metals other than nickel, such as cobalt, tin or copper, can also be used. Because of the thin coatings that are employed it is preferred in some processes to pre-treat the surface of the anodisable metal to obtain a very smooth surface; this can be a "macro" treatment by buffing and/or a "micro" treatment of chemical or electro-brightening. The finished chromium layer if provided preferably is of thickness in the range of 0.2-0.3 micrometres.

The invention is further illustrated by the following specific examples:

Example 1

The process is employed to provide a bright finishing procedure for articles such as cast aluminum automotive wheels, giving a simulation of the appearance of bright chrome or stainless steel, and includes the following steps.

1. The aluminum substrate consisting for example of cast alloys A356 or A413, or forge grade material, is pre-treated by cleaning with appropriate alkaline and/or acid solutions, or is pretreated by mechanical buffing.
2. The pretreated substrate is then subjected to a conventional sulfuric acid anodising treatment using acid of 15% concentration by weight at 21°C for 10 minutes and at 15 V.D.C.
3. The anodised substrate has the initial "seed" electrolytic coating of cobalt applied using a cobalt-based "ANOLOK" (trade mark) electrolyte as disclosed in U.S. Patent No. 3,616,309 at 21°C and 12.5 V.A.C., with or without up to 4 V.D.C. bias. The electrolytic deposition proceeds for a period of about 30 seconds to about 10 minutes, preferably for about 30-60 seconds, depending upon the colour to be obtained.
4. A pore-filling coating of nickel is then applied by immersion in an electroless nickel solution (Harshaw "Alpha 103B" - trade mark) for about 10-20 minutes at pH 4.7 and temperature 93°C, thus completely filling the pores and forming a support coating of about 0.5 to about 3.0 micrometres thickness.
5. The support layer is coated with an electrolytically-deposited semi-bright layer of nickel of about 10 micrometres thickness using Harshaw "PERFLOW" (trade mark) semi-bright solution at pH 4.3; temperature 57°C; current density 5 amperes per square decimetre (A/dm²); and for a period of ten minutes.
6. The semi-bright layer is coated with a bright layer of nickel of about 10 micrometres thickness using Harshaw "SUPREME" (trade mark) bright solution at pH 4.0; temperature 66°C; current density 4A/dm² and period 10 minutes.
7. The example is completed by electrolytically depositing a trichrome finish layer using Harshaw "TRI-CRIME PLUS" (trade mark) solution at pH 2.7; temperature 30°C; current density 10 A/dm² for 5 minutes.

During the process the substrate will be rinsed in known manner which need not be detailed here. It may be noted that in this and the other examples described a cyanide or hexavalent chromium bath is not used, which is environmentally desirable.

Example 2
In the process of Example 1 the cobalt-based electrolyte employed to deposit the initial layer is replaced
with a copper-based electrolyte comprising for example 35g/l of CuSO\(_4\).5H\(_2\)O; 20g/l MgSO\(_4\).7H\(_2\)O and 5g/l H\(_2\)SO\(_4\) at pH 1.3 and 21°C.

Example 3

In the process of Example 1 the cobalt-based electrolyte employed to deposit the initial layer is replaced with a tin-based electrolyte comprising for example 10g/l of SnSO\(_4\) and 20g/l of H\(_2\)SO\(_4\) at pH 1.3 and 21°C.

Example 4

In the process of Example 1 the cobalt-based electrolyte employed to deposit the initial layer is replaced with a conventional Watt's nickel-based electrolyte comprising for example 240g/l of NiSO\(_4\).6H\(_2\)O; 60g/l of NiCl\(_2\).6H\(_2\)O and 45g/l of H\(_3\)BO\(_3\) at pH 4.5 and 21°C.

Example 5

In the process of Example 1 the cobalt-based electrolyte employed to deposit the initial layer is replaced with a palladium-based electrolyte comprising for example a 10 ml/litre "PALLAMERSE" (trade mark) aqueous solution of Technic Inc. This process is particularly suited for articles with a simulated stainless look for exterior application and preferably employs alloy AA-7029 as the substrate.

Example 6

To obtain a bright black finish, especially for cast aluminum automobile wheels, the process of any one of examples 1 through 5 is followed by the deposition of a black-chrome finish layer using Harshaw "CHROMONIX" (trade mark) solution at temperature 21°C, current density 10-40 A/dm\(^2\) and period of 5 minutes.

Example 7

To obtain articles with a simulated appearance of stainless steel and for interior applications a substrate of cast alloy AA-5657 or AA-6463, for example, is subjected to the processes of any one of examples 1 through 5 with the omission of the deposition of the semi-bright nickel layer.

Example 8

To obtain machine parts and articles suitable for other engineering applications the anodising and electrolytic
deposition steps of any one of examples 1 through 5 are followed by a nickel electrole
deposition step in which the deposition period is about 30 minutes to about 120 minutes, as required, to give layers of about 10.0 micrometres to about 40.0 micrometres thickness.

Example 9
To obtain black material particularly suitable for the fabrication of solar panels a substrate of an alloy such as AA-5005 is subjected to the anodising, initial electrolytic plating and electrole
deposition steps of any one of examples 1 through 5, followed by the deposition of semi-bright nickel for a reduced period of about 10 to about 20 minutes, and the deposition of black chrome by the step of example 6.

Example 10
Bright aluminum plated composite articles are prepared from a substrate of composite material AA-6061 (incorporating 10% by weight of aluminum oxide) using the plating procedure of any one of examples 1 through 5.

Example 11
A substrate of aluminum cast alloy A413 (including about 12% by weight silicon) is subjected to phosphoric acid anodising using acid of 109 g/L concentration (10%) at 21°C; the anodising is begun at 60 VDC for 30 minutes and is then ramped down to approximately 18 VDC for about 0.5 minutes. The electrolytically deposited metal is cobalt using the composition of example 1 at 12.5 VAC for one minute. This is followed by electrole
deposition for 20 minutes, semi-bright nickel deposition for 30 minutes; bright nickel deposition for 10 minutes, and tri-chrome deposition for 5 minutes, again employing the materials, etc. of example 1. The resultant bright finished product exhibited excellent adhesion to the castings.
WE CLAIM:

1. A method of depositing metal on a surface of a substrate of an anodisable metal, the method being characterised by the steps of:
 a) anodising the substrate at the said surface to produce a porous anodised layer of thickness from about 0.5 to about 50 micrometres;
 b) electrolytically depositing pore-filling metal into the pores to adhere to the walls thereof; and
 c) continuing the deposition of pore-filling metal by electroless deposition to fill the pores to the required extent.

2. A method as claimed in claim 1, characterised in that the electrolytic deposition is continued to a cut-off value at which adhesion of the metal begins to decrease.

3. A method as claimed in claim 2, characterised in that the electrolytically deposited pore-filling metal is deposited to a thickness of up to 550 milligrams per square metre.

4. A method as claimed in claim 1, characterised in that the electrolytic deposition is such as to fill each pore from about 3% to about 30% of its volume.

5. A method as claimed in any one of claims 1 to 4, characterised in that the electroless deposition is such as to fill each pore from about 3% of its volume to the required extent.

6. A method as claimed in any one of claims 1 to 4, characterised in that the electroless deposition is continued until a coating of the metal of thickness in the range about 0.5 to 3 micrometres is deposited on the surface of the anodised layer.

7. A method as claimed in claim 6, characterised in that
the electroless deposited metal is deposited to form a support layer on the surface of the substrate of a thickness in the range of about 0.5 to 3 micrometres, and characterised in that one or more subsequent layers are deposited on the support layer.

8. A method as claimed in any one of claims 1 to 4, characterised in that the electroless deposited metal is deposited to a thickness of about 10-25 micrometres on the surface of the substrate.

9. A method as claimed in any one of claims 1 to 8, characterised in that the electrolytically deposited pore-filling metal is selected from nickel, cobalt, zinc, copper, tin, palladium and mixtures thereof.

10. A method as claimed in any one of claims 1 to 9, characterised in that the electroless pore-filling metal is selected from nickel, cobalt, copper, tin and mixtures thereof.

11. A method as claimed in any one of claims 1 to 10, characterised in that the anodisable substrate metal is selected from aluminum and magnesium and anodisable alloys thereof.

12. A method as claimed in any one of claims 1 to 11, characterised in that the substrate is anodised using sulfuric acid, or chromic acid or oxalic acid, or mixtures thereof.

13. A method as claimed in claim 12, characterised in that the substrate is anodised to produce relatively small pores of transverse dimension from about 0.01 to 0.02 micrometre.

14. A method as claimed in any one of claims 1 to 11, characterised in that the substrate is anodised using phosphoric acid.

15. A method as claimed in claim 14, characterised in that the substrate is anodised to produce relatively large pores of transverse dimension from about 0.03 to 0.10 micrometre.
16. A metal plated product characterised by:
 a) an anodisable metal substrate of which a surface
 consists of a porous anodised layer of thickness of about 0.5 to
 about 50 micrometres;
 b) the porous layer having pore-filling metal
 electrolytically deposited in the pores thereof; and
 c) the porous layer having electroless deposited
 pore-filling metal deposited in the pores on the
 electrolytically deposited metal.

17. A product as claimed in claim 16, characterised in that
 the electrolytically deposited pore-filling metal is deposited
 to a thickness of up to 550 milligrams per square metre.

18. A product as claimed in claim 16, characterised in that
 the electrolytic deposition is such as to fill each pore from
 about 3% to about 30% of its volume.

19. A product as claimed in any one of claims 16 to 18,
 characterised in that the electroless deposition is such as to
 fill each pore from about 3% of its volume to the required
 extent.

20. A product as claimed in any one of claims 16 to 19
 characterised in that the electroless metal is sufficiently
 thick to form a coating deposited on the surface of the anodised
 layer.

21. A product as claimed in claim 20, characterised in that
 the electroless deposited metal is deposited to a thickness of
 about 10-25 micrometres on the surface of the substrate.

22. A product as claimed in any one of claims 16 to 20,
 characterised in that the electroless deposited metal is
 deposited to form a support layer on the surface of the
 substrate of a thickness in the range of about 0.5 to 3
 micrometres, and characterised in that one or more subsequent
layers are deposited on the support layer.

23. A product as claimed in any one of claims 16 to 22, characterised in that the electrolytically deposited pore-filling metal is selected from nickel, cobalt, zinc, copper, tin, palladium and mixtures thereof.

24. A product as claimed in any one of claims 16 to 23, characterised in that the electroless pore-filling metal is selected from nickel, cobalt, copper, tin and mixtures thereof.

25. A product as claimed in any one of claims 16 to 24, characterised in that the anodisable substrate metal is selected from aluminum and magnesium and anodisable alloys thereof.

26. A product as claimed in any one of claims 16 to 25, characterised in that the substrate has been anodised using sulfuric acid, or chromic acid or oxalic acid, or mixtures thereof.

27. A product as claimed in claim 26, characterised in that the substrate has been anodised to produce relatively small pores of transverse dimension from about 0.01 to 0.02 micrometre.

28. A product as claimed in any one of claims 16 to 25, characterised in that the substrate has been anodised using phosphoric acid.

29. A product as claimed in claim 28, characterised in that the substrate has been anodised to produce relatively large pores of transverse dimension from about 0.03 to 0.10 micrometre.
FIG. 3
INTERNATIONAL SEARCH REPORT
International Application No. PCT/CA 90/00287

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC5: C 25 D 5/44, C 25 D 11/18, C 23 C 18/18

II. FIELDS SEARCHED

Minimum Documentation Searched *

Classification System	Classification Symbols
IPC5	C 25 D 11/18, C 25 D 11/20, C 25 D 5/44, C 23 C 18/18

Documentation Searched other than Minimum Documentation to the extent that such Documents are Included in the Fields Searched *

III. DOCUMENTS CONSIDERED TO BE RELEVANT *

Category * Citation of Document, with indication, where appropriate, of the relevant passages ** Relevant to Claim No. ***

GB, A, 2123616 (ROGERS CORP.) 1 February 1984 see claims; page 2, lines 57-130 1-7, 9-11, 14, 16, 20, 23-25, 28

A EP, A, 0215950 (FUJITSU LTD) 1 April 1987

IV. CERTIFICATION

Date of the Actual Completion of the International Search 11th January 1991

Date of Mailing of this International Search Report 30 JAN 1991

International Searching Authority EUROPEAN PATENT OFFICE

Signature of Authorized Official

Form PCT/ISA/210 (second sheet) (January 1985)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 31/01/91. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A- 1204518</td>
<td>13-05-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3325133</td>
<td>12-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR-A,B 2530083</td>
<td>13-01-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A- 59027592</td>
<td>14-02-84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4633035</td>
<td>30-12-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 5399686</td>
<td>26-08-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A- 8604618</td>
<td>14-08-86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4968389</td>
<td>06-11-90</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82