发明名称
微光刻曝光装置中照明掩模的照明系统

摘要
一种在微光刻曝光装置（10）中照明掩模的照明系统，其具有光轴（60；460）以及光瞳表面（70；470）。该系统包括诸如镜（M1）的反射或透明光束偏转元件的光束偏转阵列（46；446）。其中每一偏转元件（M1）适配成将打入元件以响应于控制信号可变的偏转角偏转。光束偏转元件（M1）布置在第一平面（40；440）中。该系统还包括具有多个微透镜/或衍射结构的光学光栅元件（34；434）。布置在第一平面（40；440）中的光学光栅元件（M1）和布置在第二平面（34；434）中的光学光栅元件（34；434）共同产生二维远场强度分布（0）。光学成像系统（40；41；440；441）光学上其轴第一平面（40；440）到第二平面（34；434）。
1. 一种微光刻曝光装置中照明掩模（16）的照明系统，包括：
 a) 光轴（60；460），
 b) 光瞳表面（70；470），
 c) 反射或透明光束偏转元件（M_{ij}）的光束偏转阵列（46；446），其中
 - 每一个偏转元件（M_{ij}）适配，以将打入光线偏转一偏转角，所述偏转角是响应于控制
 信号而可变的，并且其中
 - 偏转元件（M_{ij}）至少大体上布置于第一平面（40；440）中，
 d) 光学光栅元件（34；434），其
 - 包括多个微透镜和/或衍射结构，并且
 - 被布置在第二平面（34；434）中，
 其中，光束偏转阵列（46；446）以及光学光栅元件（34；434）共同产生两维远场强度分
 布（C），其特征在于
 使得第一平面（40；440）与第二平面（34；434）光学共轭的光学成像系统（40，41；440，
 441）。

2. 如权利要求1所述的照明系统，其特征在于，两维远场强度分布（C）是光束偏转阵列
 （46；446）所产生的远场强度分布（D^{ij}_{ij}）和光学光栅元件（34；434）所产生的远场强度分布（D_{ij}）的卷积。

3. 如权利要求1或2所述的照明系统，其特征在于，光学光栅元件（34；434）包括多个域
 （Z_{ij}），其中每一个域通过光学成像系统（40，41；440，441）产生光学共轭与光束偏转阵列
 （46；446）中的至少一个光束偏转元件（M_{ij}）相关联，并且其中至少两个域（Z_{ij}）产生不同
 的远场强度分布（D_{ij}）。

4. 如权利要求2所述的照明系统，其特征在于，每一光束偏转元件（M_{ij}）配置为处于“开
 启”状态或“关断”状态，其中确定“开启”状态以便经偏转的光束通过光瞳表面（470）
 ，并且其中确定“关断”状态以便经偏转的光束不通过光瞳表面（470）。

5. 如权利要求3所述的照明系统，其特征在于，确定由多个域（Z_{ij}）产生的远场强度分布
 以便如果全部光束偏转元件（M_{ij}）处于“开启”状态则至少照明光瞳表面（470）的可用区域
 的70%。

6. 如权利要求3所述的照明系统，其特征在于，至少两个域（Z_{ij}）中的每一个产生至少
 大体上成具有n个角的多边形形状的远场强度分布（D_{ij}），n \neq 4。

7. 如权利要求6所述的照明系统，其特征在于，所述多边形具有不同的角取向。

8. 如权利要求6所述的照明系统，其特征在于，由多个第一域（Z_{ij}至Z_{ij}）产生的远场
 强度分布（图13中D_{ij}至D_{ij}）是第一正六边形，以及由多个第二域（Z_{ij}至Z_{ij}）产生的远场
 强度分布（D_{ij}至D_{ij}）是通过旋转第一正六边形30°所获得的第二正六边形。

9. 如权利要求1所述的照明系统，其特征在于，第一平面（40；440）是光学成像系统
 （40，41；440，441）的物平面，以及第二平面（34；434）是所述光学成像系统的像平面。

10. 如权利要求1所述的照明系统，其特征在于，第二平面（34；434）是所述光学成像系
 统的物平面，以及第一平面（40；440）是所述光学成像系统（40，41；440，441）的像平面。

11. 如权利要求1所述的照明系统，其特征在于，至少大体上平的折叠镜（41；442）布
 置在所述光学成像系统（40，41；440，441）中。
12. 如权利要求 1 所述的照明系统，其特征在于，光瞳形成聚光器（58；458）建立第一平面（40；440）与光瞳表面（70；470）之间的傅立叶关系。
13. 如权利要求 12 所述的照明系统，其特征在于，光瞳形成聚光器包括具有可变焦距的变焦光学系统（58；458）。
14. 如权利要求 12 或 13 所述的照明系统，其特征在于，光瞳形成聚光器（58；458）包括轴锥系统（64；464），该轴锥系统（64；464）穿过轴锥系统（64；464）传播的光锥向重新分布。
15. 如权利要求 14 所述的照明系统，其特征在于，所述轴锥系统包括一对轴锥元件（66；68；466；468）构成的轴锥（64；464），每一个具有锥形的光学表面以及调整沿光轴（60；460）轴锥元件之间的距离的机构。
16. 如权利要求 1 所述的照明系统，其特征在于，瞳眼光学积分器（72；472）位于或靠近光瞳表面（70；470）。
17. 如权利要求 1 所述的照明系统，其特征在于，场成聚光器（78；478），其建立照明系统（12；412）的光瞳表面（70；470）和场平面（80；480）之间的傅立叶关系。
18. 如权利要求 17 所述的照明系统，其特征在于，场光阑（82；482），其位于照明系统的场平面（80；480）中。
19. 如权利要求 18 所述的照明系统，其特征在于，场光阑物镜（84；484），其将场平面（80；480）成像到掩模平面（86；486）上。
20. 如权利要求 1 所述的照明系统，其特征在于，第一平面（40；440）关于光轴（60；460）倾斜布置。
21. 如权利要求 1 所述的照明系统，其特征在于，光束偏转元件（Mₙ）是镜子。
22. 如权利要求 21 所述的照明系统，其特征在于，镜子（Mₙ）能够以在其之间形成角度的两个倾斜轴倾斜。
23. 如权利要求 22 所述的照明系统，其特征在于，所述角度是 90°。
24. 如权利要求 21 至 23 中任一权利要求所述的照明系统，其特征在于，所述光束偏转阵列（46；446）包括少于 100 个的单个反射镜（Mₙ）。
25. 如权利要求 24 所述的照明系统，其特征在于，所述光束偏转阵列（46；446）包括少于 50 个的单个反射镜（Mₙ）。
26. 如权利要求 1 所述的照明系统，其特征在于，所述光束偏转元件是电光或声光元件。
27. 如权利要求 1 所述的照明系统，包括可替换地容纳所述光学光栅元件（34；434）的替换支架（35）。
28. 一种在微光刻曝光装置（10）中照明掩模（16）的照明系统（512），包括：
反射或透明天光偏转元件（Mₙ）的光束偏转阵列（546），其中
- 适配每一光束偏转元件，用以将打入光线偏转一偏转角，所述偏转角是响应于控制信号而可变的，
- 至少一个第一光束偏转元件（Mₙ），支持第一衍射结构（Sₙ），并且其中，
- 至少一个第二光束偏转元件（Mₙ），支持第二衍射结构（Sₙ），
其特征在于
第一衍射结构（$S_{3\theta}$）和第二衍射结构（$S_{7\eta}$）产生不同的远场强度分布。

29. 如权利要求28所述的照明系统，其特征在于，由第一衍射结构（$S_{3\theta}$）和第二衍射结构（$S_{7\eta}$）产生的远场强度分布（图22中的D_{ij}）至少基本上具有多边形的形状。

30. 如权利要求29所述的照明系统，其特征在于，所述多边形具有n个角，其中n≠4。

31. 如权利要求29或30所述的照明系统，其特征在于，由第一衍射结构（$S_{3\theta}$）和第二衍射结构（$S_{7\eta}$）产生的远场强度分布关于它们的角取向不同。

32. 如权利要求28至30中任一权利要求所述的照明系统，其特征在于，安装至少一个光束偏转元件（图23中的M_{ij}），以便其具有三个旋转自由度。

33. 如权利要求28至30中任一权利要求所述的照明系统，其特征在于，至少一个光束偏转元件（图21中的M_{ij}）耦接到操纵器（Λ_{ij}），该操纵器配置为使所述至少一个光束偏转元件变形。

34. 一种在微光刻曝光装置（10）中照明掩模（16）的照明系统（512），包括：
 反射或透明光束偏转元件（M_{ij}）的光束偏转阵列（646），其中
 - 适配每一光束偏转元件（M_{ij}），以将输入光偏转一偏转角，所述偏转角是响应于控制信号而可变的，并且其中
 - 至少一个光束偏转元件（图23中的M_{ij}）以非旋转对称的方式弯曲和/或支持产生非旋转对称远场强度分布（图24a、24b中的D_{ij}）的衍射结构（S_{ij}），
 其特征在于
 安装所述至少一个光束偏转元件，以便使其具有三个旋转自由度。

35. 如权利要求34所述的照明系统，其特征在于，两个旋转自由度与平行于平面的倾斜轴（656、658）相关联，且第三旋转自由度与同平面交叉的旋转轴（659）相关联。

36. 如权利要求35所述的照明系统，其特征在于，所述旋转轴与所述平面形成50°到90°之间的交角。

37. 如权利要求36所述的照明系统，其特征在于，所述旋转轴与所述平面形成90°的交角。

38. 一种微光刻曝光装置，包括前述权利要求中任一权利要求所述的照明系统（12；412；512）及其将掩模（16）成像到光敏层（22）上的投射物镜（20）。

微光刻曝光装置中照明掩模的照明系统

【0001】相关申请的交叉引用
【0002】本申请要求均于 2007 年 4 月 25 日提交的美国临时申请 No. 60/913,962 和 60/913,956 在 35 U.S.C 119 下的权益。

技术领域
【0003】本发明总体涉及微光刻曝光装置中照明掩模的照明系统。更具体而言，本发明涉及包括反射元件阵列的这样的照明系统，其可以被实现为微机电系统 (microelectro-mechanical system MEMS)，具体地为数字微镜装置 (digital micromirror device DMD)。

背景技术
【0004】微光刻（也称作光学光刻或仅称作光刻）是用于制作集成电路、液晶显示器和其他的微结构装置的技术。更具体地，与蚀刻工艺相结合的微光刻的工艺用于构图形成于基底（例如，硅晶片）上的薄膜层叠中的特征。当制作每一层时，首先将晶片涂覆上对诸如深紫外 (DUV) 光的辐射敏感的光致抗蚀剂材料，之后，在上部具有光致抗蚀剂材料的晶片被投射曝光装置中的投射光曝光。该装置将具有图案的掩模投射到光致抗蚀剂材料上从而后者仅在由掩模图案确定的特定位置处曝光。此后，在光致抗蚀剂材料曝光之后对其进行显影，用于产生与掩模图案对应的图像。蚀刻工艺接着将图案传递到晶片上的薄膜层叠体。最后，去除光致抗蚀剂材料。使用不同的掩模重复该工艺产生经多层化的微结构部件。
【0005】投射曝光装置典型地包括照明掩模的照明系统，对准掩模的掩模台、投射物镜以及对准涂覆有光致抗蚀剂材料的晶片的晶片对准台。照明系统照明掩模上例如可以具有延长的矩形狭缝形状的区域。
【0006】现有的投射曝光装置中，可以在两种不同类型的装置之间做出区别。在一种类型中，通过一次就将整个掩模图案曝光到目标部分上；这样的装置通常称为晶片步进曝光器。在常被称为进退－扫描设备或扫描器的另一种类型的装置中，通过给定的基准方向在投射光束下逐渐地扫描掩模图案而同步地平行于或反平行于该方向扫描晶片台来辐照每一目标部分。晶片和掩模的速度比等于投射物镜的放大率，其通常小于 1，例如 1:4。
随着制造微结构装置的技术的发展，对照明系统的需求也在不断地增加。理想上，照明系统使用具有良好限定的幅照和角度分布的投射光照明掩模上被照明区域的每一个点。术语“角度分布”描述了向掩模平面中特定点会聚的光束的总体光能量如何在沿构成光束的光线传播的各种方向中分布。

打到掩模上的投射光的角度分布通常适于要投射到光致抗蚀剂材料上的图案的类型。例如，相对大尺寸的设计可能需要不同于小尺寸特征的角度分布。最常用的投射光的角度分布被称为传统的环状、偶极或四极照明设置。这些术语指称照明系统的光瞳表面中的幅照分布。例如，环状照明设置而言，仅光瞳表面中的环状区域被照明。因此，在投射光的角度分布中仅存在小范围的角度，且所有光线从而以相似的角度倾斜地打到掩模上。

已知本领域中不同的手段来改变掩模平面中的投射光的角度分布，从而获得期望的照明设置。在最简单的情形中，包括一个或多个开口的光阑（光圈）放置于照明系统的光瞳表面。由于光瞳表面的位置转换成诸如掩模平面的傅立叶相关隐函数的平面中的角度，所以光瞳表面中的开口的尺寸、形状和位置确定掩模平面上的角度分布。然而，照明设置的任何改变需要替换光阑。这使得难以最终调整照明设置，因为这可能需要具有略微不同的尺寸、形状和位置的装置的非常大量的光阑。

因此，许多常用的照明系统包括至少在某一程度上可能实现该可调整元件以连续地改变光瞳表面的照明。常规地，包括变焦物镜和一对轴锥体元件的变焦轴锥体系统被用于此目的。轴锥体元件是在其一侧面具有圆锥面而相反一侧面是平面的折射透镜。通过提供一对这样的元件：一个具有凸圆锥面而另一个具有互补的凹圆锥面，可以径向地移动光能量的移动取决于轴锥元件之间的距离。变焦物镜使得可以改变光瞳表面上被照明区域的尺寸。

然而，利用这样的变焦轴锥体系统，仅能够产生常规的和环状的照明设置。由于例如偶极或四极照明设置的其它的照明设置，需要额外的光阑或光学光栅元件。光学光栅元件对于其表面的每一个点产生在远场中对应于特定被照明区域的角度分布。这样的光学光栅元件常常实现为衍射光学元件，且更具体地为计算机生成全息图（CGH）。通过将这样的元件布置在光瞳表面且在其之间布置聚光透镜，可以在光瞳表面中产生几乎任何任何的强度分布。额外的变焦轴锥体系统使得可以以有限的程度改变由光学光栅元件产生的照明分布。

然而，变焦轴锥体系统仅提供照明设置的有限的调整度。例如，其可以使得仅四极照明设置的四个极中的一个极沿任意方向错位。为此，必须使用另一光学光栅元件，其特别设计用于光瞳表面中的该特定强度分布。这样的光学光栅元件的设计、生产和运输是消耗时间和昂贵的过程，且因此具有较少的灵活性来使得光瞳表面中的光强度分布适于投射曝光装置的操者的需要。

为了增加在掩模平面中产生不同角度分布的灵活性，已经建议利用照明光瞳表面的镜阵列。

在EP 1 262 836 A1中，镜阵列实现为包括多于1000个的微反射镜的微机电系统（MEMS）。每一镜可以在彼此垂直的两个不同的平面中倾斜。因此，在这样的镜装置上的入射幅照能够（基本上）反射成任一期望的半球方向。布置在镜阵列和光瞳表面之间的聚光透镜将由镜产生的反射角转换成光瞳表面中的位置。该已知的照明系统使得可以用多个圆
点照明光瞳表面，其中每一点与一个特定微反射镜相关并且通过倾斜该镜可自由地移动横越光瞳表面。

[0017] WO 2005/026843 A2 公开了一种照明系统，其中衍射光学元件布置在镜阵列与照明系统的光瞳表面之间的光束路径中。该衍射光学元件产生叠加在由镜阵列的多个镜产生的角度分布上的额外的角度分布。光瞳表面中的强度分布则可以描述为镜阵列产生的强度分布与该衍射光学元件产生的强度分布的卷积。

[0018] 设计衍射光学元件产生的角度分布，以便其符合后续的形成为眼界透视的光学积分器的通道的几何形状。这避免了镜阵列仅部分地照明通道。衍射光学元件从而产生相同的角度分布，而与光束通过该元件的位置无关。

[0019] 在 WO 2005/026843 A2 中描述的另一实施例中，镜阵列的多个镜支持衍射光学结构或具有相应效应的结构。可以设计镜，以使得它们产生例如能够由一个或不必要共轭的光点组成的基本分布。通过倾斜单个反射镜，光点的布置能够在光瞳表面上移动。在另一实施例中，镜表面被弯曲，但不支持衍射结构。单个镜的曲率影响在光瞳表面上由每一单个镜产生的光点的大小。

[0020] 已知的包括反射阵列的照明系统需要非常多的反射元件用于获得期望的照明设置可变性。如果反射元件的数量太少，则光瞳表面中仅非常粗糙的照明区域的图案是可能的。例如，如果反射元件在光瞳表面中产生圆形斑点，则照明光瞳表面中较大的连续区域是不可能的。如果镜元件与如从前述 WO2005/026843 A2 中已知的衍射光学元件相组合，则照明的区域可以是连续的，但却难以接近照明区域的例如圆形的曲线周边。利用非常大量的镜元件，例如超过 10000 个，光线足以小到照明光瞳表面中具有任意周边的连续的较大区域。然而，这样的阵列的生产和可靠性还未能符合要求，并且即使可以克服其余的技术问题，这样的阵列明显是极其昂贵的。

发明内容

[0021] 因此，一个目的在于提供改进的照明系统，以在微光刻投影曝光装置中照明掩模。照明系统将包括反射元件阵列（或具有相似效应的装置），其还具有进一步改进的可变性而不需要增加反射元件的数量。

[0022] 依照本发明的第一方面，该目的通过包括光轴、光瞳表面和反射或光束偏转元件的光束偏转阵列的照明系统来实现。光束偏转阵列中的每一偏转元件适于将进入光束偏转响应于控制信号可变的偏转角。偏转元件布置在第一平面中。照明系统还包括光学光栅元件，其包括多个微透镜和/或衍射结构且布置在第二平面中。光束偏转阵列和光学光栅元件在光瞳表面中共同产生二维强度分布。依照本发明，照明系统还包括使第一平面与第二平面光学共轭的光学成像系统。

[0023] 作为第一平面与第二平面之的共轭结果，光瞳表面中的二维强度分布是光束偏转阵列产生的远场强度分布与光学光栅元件产生的远场强度分布的卷积。然而，与从 WO2005/026843 A2 中已知的现有技术的照明系统不同，依照本发明的该方面的照明系统确保光束偏转阵列上位置与光学光栅元件上的位置之间毫无疑义的对应的关系。
例如，如果假设第二平面是物平面以及第一平面是光学成像系统的像平面，这意味着打到光学光栅元件的特定位置上的全部光线也将打到光束偏转阵列的特定偏转元件的相同位置上。这使得可能设置光学光栅元件的对应于特定偏转元件的位置，以便其理想地适配于该特定偏转元件。这样的适配可能涉及允许到达特定偏转元件的光量或如果光学光栅元件具有偏振效应的话则可能涉及其偏振态。

然而，该光学系统可能的最有利的效应在于光学光栅元件可以包括多个域（zone），其中通过由光学成像系统产生的光学共轭，每一域与光束偏转阵列的至少一个偏转元件相关联。至少两个域可以产生不同的远场强度分布。如果又假设光束偏转阵列布置在光学光栅元件和光瞳表面之间，这意味着不同的偏转元件产生由相关联的域所确定的不同远场强度分布。通过意义于控制信号而改变偏转元件的偏转角，就可以在光瞳表面移动该远场强度分布。

由光学光栅元件产生的不同的远场强度分布可以接着与光瞳表面中的不同配置相结合，从而可以产生各种不同配置。通过适当地选择由光学光栅元件的域产生的不同的远场强度分布，利用少量的例如小于 100 个或甚至小于 50 个的偏转元件，可以在光瞳表面中产生各种不同远场强度分布。

作为必然的结果，如果光学光栅元件布置在光束偏转阵列与光瞳表面之间，则也是如此。在这种情况下，第一平面是物平面而第二平面是光学成像系统的像平面。光学光栅元件的域仅由布置在与域的区域光学共轭的域中的该或那些偏转元件组成。通过改变特定偏转元件的反射角，可以改变打到相关联的域上的光线的方向。由特定域和相关的（多个）偏转元件的结合所产生的总角度分布能够也描述为域产生的远场强度分布与偏转元件产生的远场强度分布的卷积。

如果多个偏转元件照明产生指定的角度分布的单个域，则简单地通过改变所考虑的偏转元件的偏转角，多个相同的远场强度分布可以自由地布置在光瞳表面中。

每一个或某些偏转元件可以适配成“开启”状态或“关断”状态。“开启”状态特征在于偏转的光束在预定位置处通过光瞳表面。“关断”状态特征在于偏转的光束不通过光瞳表面。这样的数字反射阵列通常具有较简单的机械结构。

如果多于一个的偏转元件与产生特定远场强度分布的单个域相关联，则这样的数字光束偏转阵列还使得可以改变该分布的总体强度。在由域产生的远场中的总体强度可以接着通过简单地切换与各域相关联的期望数量的偏转元件开启或关断来改变。

光束偏转元件可以配置为能够以在其中形成角度的两个倾斜轴来倾斜的多个镜。在另一实施例中，光束偏转元件是透射的电光或声光元件。

依照另一方面，提供在照明微光刻曝光装置中用于照明掩模的照明系统，其包括反射或透明光束偏转元件的光束偏转阵列。每一光束偏转元件配置为将打入光线以响应于控制信号可变的偏转角偏转。至少一个偏转元件以非旋转对称方式弯曲且/或支持产生非旋转对称远场强度分布的衍射结构。依照本发明的该方面，安装至少一个光束偏转元件，以便其具有三个旋转自由度。

除了两个通常正交倾斜轴，也可以通过优选地至少大体上垂直于光束偏转元件的光学表面延伸的旋转轴来旋转光束偏转元件（例如镜表面，如果光束偏转元件是镜）。如果光束偏转元件是电光或声光元件或其的透射元件，则额外的旋转轴可以至少大体上垂直
于该光出射表面。

附图说明
[0034] 本发明的各种特征及优势可以通过下面结合附图的具体描述而更容易来理解，其中：
[0035] 图1是依照本发明的投影曝光设备的透射且经相当简化的图；
[0036] 图2是通过包含在图1所示的投影曝光设备中的照明系统的子午面；
[0037] 图3是包含在图2的照明系统中的镜阵列的透视图；
[0038] 图4是通过图3的镜阵列的横截面；
[0039] 图5a至5e是示出由光学光栅元件的域和镜元件产生的远场强度分布的示意图；
[0040] 图6至图10是示出由光学光栅元件和镜阵列的不同配置产生的不同的远场强度分布的卷积的示意图；
[0041] 图11和图12是与图6相类似的但针对不同光学光栅元件的示意图；
[0042] 图13是与图6相类似的但针对另一光学光栅元件的示意图；
[0043] 图14至16示出利用图13所示的光学光栅元件但利用不同的镜阵列配置所获得的总远场强度分布；
[0044] 图17是通过依照本发明的另一实施例的照明系统的子午面；
[0045] 图18是包含在图17的照明系统中的光学光栅元件上的俯视图，以及光瞳表面的示意图示；
[0046] 图19是可以包含在图17的照明系统中的不同的光学光栅元件的俯视图；
[0047] 图20是通过依照本发明的另一方面的照明系统的子午面；
[0048] 图21是用于图20的照明系统中的镜阵列的透视图，该镜阵列包括支持衍射结构的多个镜；
[0049] 图22示出由图21所示的镜阵列支持的衍射结构所产生的远场强度分布；
[0050] 图23是用于图20所示的照明系统中的镜阵列的透视图，该镜阵列包括支持衍射结构且具有三个旋转自由度的镜；
[0051] 图24a和24b是图23所示的阵列中的在两个不同旋转位置上的单个镜元件的透视图；
[0052] 图25示出由图23所示的镜阵列支持的衍射结构所产生的远场强度分布，其中镜布置在第一旋转位置处；
[0053] 图26示出利用布置在图25所示的第一旋转位置处的镜所获得的总远场强度分布（偶极设置）；
[0054] 图27是与图25相似的图示，其中镜布置在第二旋转位置处；以及
[0055] 图28示出利用布置在图27所示的第二旋转位置处的镜所获得的总远场强度分布（环形设置）。

具体实施方式
[0056] 1.投影曝光设备的总体结构
[0057] 图 1 是在集成电路及其他微结构部件的制造中所使用的投影曝光设备的透视及高度简化图。该投影曝光设备包括照明系统，该照明系统包含产生投影光的光源的 12 及将该投影光转换成具有具体定义的特性的投射光束的照明光学部件。投射光束照明包含最小结构 18 的掩模 16 上的区域 14，照明区域 14 具有近似环带形状。然而，也可以考虑例如矩形的照明区域 14 的其它形状。

[0058] 投射物镜 20 将照明区域 14 中的结构 18 成像到施加到基底 24 的光敏层 22 上，例如光致抗蚀剂材料。可以由硅晶片形成的基底 24 布置在晶片台（未示出）上，从而光敏层 22 的上表面精确位于投射物镜 20 的像平面中。掩模 16 通过掩模台（未示出）定位在投射物镜 20 的物平面中。由于投射物镜 20 具有例如 1 : 4 的小于 1 的放大率，所以在光敏层 22 上形成照明区域 14 中的结构 18 的缩小像 14’。

[0059] 2、照明系统的总体结构

[0060] 图 2 是通过图 1 所示的照明系统 12 的第一实施例的更具体的子午截面。为了简洁起见，图 2 的图示是相当简化的且未按比例。这特定地意味不同的光学单元仅由非常少的光学元件来表示。实际上，这些单元可以包括显著更多的透镜和其它的光学元件。

[0061] 照明系统 12 包括壳体 28 和光源（即，在所示本实施例中实现为受激准分子激光器 30）。受激准分子激光器 30 发射波长为 193nm 的投射光。也可以考虑其它类型的光源和例如 248nm 或 157nm 的其它波长。

[0062] 在所示的实施例中，受激准分子激光器 30 发射的投射光进入扩展单元 32，在扩展单元中，扩展光束而不改变其几何光通量。如果图 2 所示的扩展单元 32 可以包括数个透镜或可以实现为镜阵列。在通过扩展单元 32 之后，投射光打到光学光栅单元 34 上，其可替换地容纳在替换支架 35 中。

[0063] 如下参考图 6 将进一步更具体描述的，光学光栅单元 34 包括多个相邻域 Z_{ij}，在所示的实施例中，该多个相邻域 Z_{ij} 在光学光栅元件 34 所延展的平面中形成矩形格栅状阵列。每一域 Z_{ij} 包含在远场中产生详细设计的强度分布的衍射光学元件。在远场中，观察到由衍射光学元件产生的强度分布的距离与包含在该元件中的衍射结构的典型宽度相比大。在该情况下，远场强度分布是由描述衍射结构的几何形状的幅度函数的傅立叶变换给出的。由于该原因，借助于适当的衍射光学元件，几乎可以设计任意期望的远场强度分布。该衍射光学元件具有由期望的远场强度分布的傅立叶变换所给出的幅度函数。该类型的衍射光学元件常被称作 “计算机生成全息图” (CGH) 并且已经可从各种各样的光学技术提供者得到。

[0064] 可替换地，光学光栅单元 34 的域 Z_{ij} 可以包括例如球形、非球形、柱形或棱镜微透镜的多种微透镜。球形和柱形微透镜例如产生分别具有圆盘或矩形的几何形状的远场强度分布。

[0065] 光学光栅元件 34 延展的平面是光学成像系统 38 的物平面 36，在图 2 的简化图中，该光学成像系统由两个正透镜 39 和 41 来表示。光学成像系统 38 将物平面 36 成像到像平面 40，从而获得物平面 36 和像平面 40 之间的光学共轭。因此，从物平面 36 中特定物点发散的每一光束会聚到像平面 40 中相关联的像点。在图 2 中，这由代表从物面 36 的轴上点出射的光束的边缘光束的点线 MR 来指示。

[0066] 在该具体实施例中，光学成像系统 38 包含减少照明系统 12 的总长的平面折叠镜
42. 扎叠镜 42 布置在光瞳平面 44 中，从而在扎叠镜 42 上形成由光学光栅元件 34 的底 Z_{11} 产生的远场分布。然而，可以完全舍弃扎叠镜 42 或者也也可以布置在光学成像系统 38 的光瞳平面外。

[0067] 在光学成像系统 38 的像平面 40 中，布置镜阵列 46。如下面将更具体描述的，镜阵列 46 包括多个能够以两个优选彼此垂直对准的倾斜轴彼此独立地倾斜的小的单独镜单元 M_{ij}。镜单元 M_{ij} 的总数优选小于 100 个且更优选为小于 50 个。镜单元 M_{ij} 的反射面是平面，以及如果期望额外的反射能力也可以沿至少一个方向弯曲。例如，如果曲率被限制在仅一个方向上，则镜单元 M_{ij} 可以配置为凸的或凹的柱面镜。如果沿两个方向弯曲镜单元 M_{ij}，则曲率可以是旋转对称或非旋转对称的。在后一种情况下，镜单元 M_{ij} 可以具有变形的反射能力。如果镜单元 M_{ij} 的曲率能够利用适当的操纵器来改变，则是特别有利的。

[0068] 单个镜单元 M_{ij} 的倾斜运动可以由连接到照明系统 12 的总体系统控制 52 的镜控制单元 50 来控制。用于设置期望的镜单元 M_{ij} 的倾斜角的操纵器从镜控制单元 50 接收控制信号，从而每一单个的镜单元 M_{ij} 能够将入射的光束以一响应于该控制信号的可变的反射角反射。在所示的实施例中，存在倾斜角的连续范围，以及因此存在可以设置镜单元 M_{ij} 处的反射角的连续范围。在另一实施例中，配置操纵器，从而仅可设置有限数量的离散的倾斜角。下面进一步描述仅具有两个不同倾斜角的实施例。

[0069] 图 3 示出包括 8×8 = 64 个的镜单元 M_{ij} 的镜阵列 46 的透视图。打到镜阵列 46 的平行光束 54a 根据镜单元 M_{ij} 的倾斜角被反射到不同的方向。在该示意图中，假设特定镜单元 M_{ij} 关于两个倾斜轴 56, 58 相对于另一镜单元 M_{ij} 倾斜，从而分别由镜单元 M_{ij}, M_{ij} 反射的光束 54a, 54b 被反射到不同的方向。

[0070] 图 4 的剖面图示出在 YZ 平面中，如何通过多个相邻的镜单元 M_{ij} 将平行光反射到不同的方向。在 YZ 平面中多个相邻的镜单元 M_{ij} 以多个倾斜角倾斜。

[0071] 再来参照图 2，照明系统 12 还包括具有可变焦距的变焦透镜系统 58。在图 2 中，由单个透镜表示的变焦透镜系统 58 沿照明系统 12 的光轴移动，如双箭头 62 所示。

[0072] 在变焦透镜系统 58 的后面，布置有具有一对相对正锥形表面的轴锥元件 66, 68 的轴锥对 64。如果两个轴锥元件 66, 68 直接接触，则轴锥对 64 仅具有平面平行板的效率。如果两个轴锥元件 66, 68 如图 2 双箭头 69 所示分离移动，则轴锥元件 66, 68 之间的间距导致光能径向向外移动。由于轴锥元件在现有技术中是已知的，所以这里将不具体地对其进行描述。

[0073] 参考标记 70 表示照明系统 12 的光瞳平面。该光瞳平面基本上限定了打到掩膜 14 上的光的角度分布。光瞳表面 70 通常是平的或略微弯曲的并且布置在产生多个次光源的光学积分器 72 中或紧邻处。在所示实施例中，光学积分器 72 实现为包括两个基底 74, 76 的锥眼透镜，该两个基底 74, 76 中的每一个包括两个正交的平行柱面微透镜阵列。光学积分器 72 增加光轴和照明系统 12 的光轴 0A 之间形成的角度的范围。由于光瞳表面 70 中的角度分布直接强度成后续的场平面中的强度分布，所以光学积分器 72 基本上确定了掩膜 16 上的照明场 14 的几何形状。由于光学积分器 72 在 X 方向中增加的角度的范围远比 Y 方向中大得多，所以相比 Y 方向（即，扫描方向），照明场 14 沿 X 方向具有较大的尺寸。

[0074] 由光学积分器 72 产生的次光源出射的投射光进入到聚光器 78，在图 2 中为简约起见，仅由单个透镜表示该聚光器 78。聚光器 62 确保光瞳表面 70 和其中布置有场光阑
82 的接续的中间场平面 80 之间的傅立叶关系。聚光器 78 在中间场平面 80 中叠加由次光源产生的光束，从而获得非常均匀的中间场平面 80 的照明。场光阑 82 可以包括多个可移动的叶片 (blade) 并且确保遮膜 16 上的照明场 14 的锐利边缘。

【0075】场光阑物镜 84 提供中间场平面 80 和其中布置有遮膜 16 的遮膜平面 86 之间的光学共轭。场光阑 82 因此通过场光阑物镜 84 锐利地形成到遮膜 16 上。

【0076】3、照明系统的功能

【0077】下面将参照图 5a 至 5c 以及 6 至 11 解释照明系统 12 的总体功能。

【0078】在图 6 的上部示出布置在光学光栅元件 34 上的域 Z_{ij} 的示意性前视图，从而它们形成格栅状阵列。指数 i 表示沿 X 方向延伸的特定行，以及指数 j 表示沿 Y 方向延伸的阵列的特定列。在该特定示例中，假设光学光栅元件 34 包括总共 24 个域 Z_{ij}。进一步假设在镜阵列 46 中存在有镜元 M_{ij} 的相同数量以及对应布置，从而每一域 Z_{ij} 与镜阵列 46 中的仅一个镜元 M_{ij} 相关联。选择域 Z_{ij} 的尺寸和几何形状，从而利用光学成像系统 38，每一域 Z_{ij} 完整地或者至少大体地成像到镜阵列 46 中与其相关联的镜元 M_{ij} 上。这意味着，通过特定域 Z_{ij} 传播的全部光 (仅) 打到镜阵列 46 中的对应的镜元 M_{ij} 上。

【0079】在图 6 的上部中示出光学光栅元件 34 中，每一域 Z_{ij} 包括将示出由各个域 Z_{ij} 产生的远场强度分布 D_{ij} 的等腰三角形。如图 6 所见，所有的域 Z_{ij} 都产生具有等腰三角形的基本几何形状但具有不同角点向的远场强度分布 D_{ij}。在该实施例中，存在有 24 个不同的角点向，其中角 360° / 24 = 15° 的固定角划分。设计包含在每一域 Z_{ij} 中的衍射结构，从而它们产生在远场中转换成强度分布 D_{ij} 的角度分布。

【0080】作为由光学成像系统 38 导致的光学共轭的结果，这些角度分布被“成像”到镜阵列 46 的镜元 M_{ij} 上，因此，每镜元 M_{ij} 基本上产生角度分布，因此产生光学光栅元件 34 的相关联域 Z_{ij} 产生的远场强度分布 D_{ij}。该域由能够倾斜镜元 M_{ij} 根据特定镜元 M_{ij} 的倾斜角的额外的偏移角与该角度分布相叠加。在远场中，该由镜元 M_{ij} 的倾斜所产生额外的偏移角转化成由相关联的域 Z_{ij} 产生的各远场强度分布 D_{ij} 的额外的偏移位移。换句话说，通过适当地倾斜相关联的镜元 M_{ij}，可以空间移动远场强度分布 D_{ij}。

【0081】数学上，由光学光栅元件 34 的域 Z_{ij} 和相关联的镜阵列 46 的镜元 M_{ij} 的组合所产生远场强度分布可以被描述为卷积。图 5a 的左部示出域 Z_{ij} 的远场强度分布 D_{ij} 中部示出由相关联的镜阵列 46 的镜元 M_{ij} 产生的远场强度分布 D_{ij}‘。十字表示照明系统 12 的光轴 60。如果镜反射平行光束，则可以得到远场强度分布 D_{ij}‘。

【0082】由卷积符号 88 所表示的远场强度分布 D_{ij} 和 D_{ij}‘ 两者的卷积导致远场强度分布 D_{ij} 的位移，从而强度分布 D_{ij} 运在关于镜阵列 46 的镜元 M_{ij} 所产生的远场强度分布 D_{ij}‘ 为中心。在该配置中，选择镜元 M_{ij} 的倾斜角从而形成经卷积的远场强度分布 C_{ij} 的三角形的顶点位于光轴 60 上。

【0083】图 5b 显示域 Z_{ij} 所产生的远场强度分布 D_{ij} 和由相关联的镜元 M_{ij} 所产生的远场强度分布 D_{ij}‘ 的卷积。除了其角取向旋转了 180°，外，远场强度分布 D_{ij} 等于远场强度分布 D_{ij}‘ 倾斜与域 Z_{ij} 相关联的镜元 M_{ij}，从而远场强度分布 D_{ij}‘ 与远场强度分布 D_{ij}‘ 相比位于光轴 60 的相反一侧。如从图 5b 的右手侧可以，这导致远场强度分布 D_{ij} 沿 -Y 方向移动，从而形成经卷积的远场强度分布 C_{ij} 的三角形的顶点再次位于光轴 60 上。

【0084】由如图 5a 所示域 Z_{ij} 和镜 M_{ij} 的组合所产生的光学远场强度分布 C_{ij} 在图 5b 中以
点线所表示。这示出了如何借助于相关联的镜元件 M_{ij}，通过移动和结合由域 Z_{ij} 所产生的各个远场强度分布 D_{ij} 来组合更复杂的远场强度分布。

[0085] 图5c示出由域 Z_{ij} 产生远场强度分布 D_{ij} 与由通过与域 Z_{ij} 光学共轭而相关联的镜元件 M_{ij} 产生的远场强度分布 D_{ij}‘的卷积的相似图示。

[0086] 如果该附加经卷积的远场强度分布 C_{ij} 的过程对于所有的镜元件 M_{ij} 重复，则获得总远场强度分布 C_{ij}。其为经卷积的远场强度分布 C_{ij} 的叠加。该原理与将不同的智力拼图块组合起来的原理相似。如所言，智力拼图块（即，远场强度分布 D_{ij}）通过倾斜相关联的镜元件 M_{ij} 在平面中移动。

[0087] 如果镜元件 M_{ij} 沿至少一个方向弯曲，则必须考虑镜元件 M_{ij} 的折射能力。镜元件 M_{ij} 的远场强度分布 D_{ij} 通常将不再简单地成为一点，而是将改变其形状，并例如可能是椭圆。与域 Z_{ij} 产生的远场强度分布 D_{ij} 的卷积则将不再简单地为该远场强度分布 D_{ij} 的移动，而是将涉及远场强度分布 D_{ij} 的变形。通过对镜元件进行变形，经卷积的远场强度分布 C_{ij} 至少可能在特定的限度内被改变。

[0088] 再来参照图6，其示出如何组合远场强度分布 D_{ij} 从而使得二维远场强度分布 C_{ij} 近似具有圆盘的几何形状。由于域的远场强度分布 D_{ij} 具有三角几何形状，所以该圆盘的周边不呈理想的圆弧，而是可以由具有 $z = 24$ 个角的正多边形来描述，其中 z 是域 Z_{ij} 的总数。为了获得这样的远场强度分布，镜单元 M_{ij} 必须被倾斜从而通过镜单元 M_{ij} 所产生的远场强度分布能够布置在绕光轴 60 的圆上，如图6的中部所示。

[0089] 如从进一步的描述中将清楚的，通过适当地倾斜镜单元 M_{ij}，从而在光瞳表面 70 内移动由域 Z_{ij} 产生的单个远场强度分布 D_{ij}，可以产生各种不同总的远场强度分布。在图2所示的实例如中，变焦透镜系统 58 和轴锥单元 66.68 的轴锥对 64 提供了额外的自由度。这是因为这些光学元件附加地改变最终确定到打上像 16 上的投影光的角分布的光瞳表面 70 中的强度分布。例如，光瞳表面 54 中被照明的区域大小可以通过改变变焦透镜系统 58 的焦距来变化。在图6所示的配置中，这意味着能够选择光瞳表面 70 中（近似）成圆盘形的照明区域的直径，从而获得具有最佳相干度 0 的常规照明设置。如果轴锥元件 66.68 分离开，则在光瞳表面 70 中将照明环形区域，其中通过改变变焦透镜系统 58 的焦距还可以改变特定的几何参数。

[0090] 但是，通过利用将在下一部分中所解释的镜阵列 48，在光瞳表面 70 上几乎自由地移动由域 Z_{ij} 产生远场强度分布 D_{ij}，提供了有关光瞳表面 70 的照明的增加的灵活性。

[0091] 4. 利用镜阵列的照明设置的变化

[0092] 图7至图10是与图6相似的示意图，其示出由光学光栅元件 34 的域 Z_{ij} 所产生的远场强度分布 D_{ij} 如何能够以不同的配置组合，从而获得各种照明设置。

[0093] 在图7的底部所示的配置是利用经倾斜的镜单元 M_{ij} 获得的，从而由单个的镜单元 M_{ij} 所产生的远场强度分布 D_{ij}‘位于绕光轴 60 的圆上，相比图6所示配置，该圆具有较小的直径。结果，远场强度分布 D_{ij} 便向向外移动，如图7的下部所见。远场强度分布 D_{ij} 现彼此分开时，但产生的总的远场强度分布 C_{ij} 具有接近乎环形强度分布。

[0094] 如图上述部分 3 中所解释的，镜单元 M_{ij} 是可变形的，则通过变焦镜单元 M_{ij} 所产生的远场强度分布 D_{ij} 加宽到这样的程度，即，远场强度分布 D_{ij} 之间的间隙的尺寸缩小或完全消失。在图7的左侧下部示意性地示出该情况，其中示出了如何将远场强度分布 D_{ij} 加宽到变
形的分布 D_{ij} 来导致间隙的填充并从而产生更近似的环状强度分布。

[0095] 在图 8 所示的配置中，由镜单元 M_{ij} 所产生的远场强度分布 D_{ij} 进一步地向外径向移动，产生总远场强度分布 C_i。结果，由卷积符号 88 所指示的卷积产生近似环形照明设置，其中被照明的环仍具有同样的宽度，但内径和外径增加。

[0096] 在图 9 的下部所示的配置是通过将镜单元 M_{ij} 所产生的远场强度分布 D_{ij} 布置在绕光轴 60 为中心的椭圆上来获得的。将该远场强度分布 D_{ij} 与光学光栅元件 34 所产生的远场强度分布 D_{ij} 进行卷积产生大体上具有椭圆的环形的总远场强度分布 C_i，如在图 9 的下部所示的。该实施例使得清楚的是，多个单独可控的镜单元 M_{ij} 使得可以产生照明设置的非对称变化，而该非对称变化不能利用诸如透镜或轴锥元件的旋转对称光学元件获得。

[0097] 通过以图 8 所示的配置开始并且另外略微调整至少某些单个镜单元 M_{ij} 的倾斜角，获得图 10 的下部中所示的配置，从而相邻远场强度分布 D_{ij} 之间的距离随 Y 坐标的增加而减少。如在图 10 的下部中所示，关于镜单元 M_{ij} 的该特定配置所获得的总远场强度分布 C_i 仍与环形照明设置近似。因此，仅存在光线倾斜落在掩膜 16 上的入射角的有限范围。

[0098] 然而，在比较了分别在图 8 和图 10 的下部所示的总远场强度分布 C_i 和 C_i 之后，清楚的是，能量分布略有不同。更具体而言，与相反的 Y 和 $-Y$ 方向打到掩膜平面 86 中的点光能量多于相反的 $-X$ 和 $+X$ 方向。在掩膜平面 86 中产生的不同环形段内的能量分布（其有时也被称作为光瞳椭圆性）因而可以被改变或更多的镜单元 M_{ij} 的倾斜角来改变。该效应可以用于产生光瞳照明的非对称性（即，光瞳椭圆性 $E \neq 1$），其许多投射特定类型的掩膜 16 是有利的。然而，这样的非对称性通常是不期望的。因此，在一般情况下，借助于镜阵列 48 调整光瞳椭圆度的能力将更用于补偿照明系统 12 的其他部件所产生的光瞳椭圆性不良影响，从而获得（几乎）理想的对称光瞳照明（即，光瞳椭圆性 $E = 1$）。

[0099] 利用在照明系统 12 的光束路径中所引入的不同的光学光栅元件 234 获得图 11 的下部中所示的配置。为此，提供使得可以将不同光学光栅元件插入进光学光束路径的替换支架。这样的替换支架也可以实现为含有多个不同光学光栅元件的转架。通过旋转该转架可以单独的将多个不同的光学光栅元件引入到光学光束路径中。

[0100] 目前插入到光学光束路径中的光学光栅元件 234 包括与相同数目的域 Z_{ij}，但这些域 Z_{ij} 不产生如上所讨论的光学光栅元件 34 的域相同的远场强度分布 D_{ij}。更具体而言，远场强度分布 D_{ij} 仍具有等腰三角形的形状，而三角形的角取向仅在两个小角度范围内变化。就在光学光栅元件 234 的上半部分中所示的一部分的远场强度分布 D_{ij} 而言，三角形指向 $-X$ 方向。就在光学光栅元件 234 的下半部分中所示的另一部分的远场强度分布 D_{ij} 而言，三角形指向 $+X$ 方向。总是存在三个相等的远场强度分布，其也具有相同的角取向。通过借助于镜阵列 46 适当地布置这些远场强度分布 D_{ij}，获得其中沿 X 方向形成两个相对的极的总远场强度分布 C_{ij}，从而获得偶极照明设置。在这种情况下，镜元件 M_{ij} 产生的远场强度分布 D_{ij} 布置在关于光轴 60 对称布置的两条曲线上。

[0101] 通过略微地重新布置远场强度分布 D_{ij} 每个图 12 的底部所示的配置。更具体地，如果调整镜元件 M_{ij} 以便镜元件 M_{ij} 所产生的远场强度分布 D_{ij} 更靠近在一起，则产生的总远场强度分布 C_{ij} 的两个极具有沿 Y 方向减少的宽度。

[0102] 图 13 以与图 6 相似的图示示出另一光学光栅元件 334 产生的远场强度分布与由镜元件 M_{ij} 产生的远场强度分布的卷积。光学光栅元件 334 代替图 2 所示的光学光栅元件。
光学光栅元件 334 与上述光学光栅元件 34 和 234 的不同之处在于：仅存在由域 Z₁ 中产生的两个不同的远场强度分布。然而，在该特定实施例中，仍然由正六边形定义远场强度分布的基本形状。通过旋转远场强度分布 D₁ 至 D₆₆ 大约 30° 或者总体绕六边形的中心将其旋转 30° +k×60° (k = 0, 1, 2, 3, …) 获得远场强度分布 D₁ 至 D₆₆。由于远场强度分布 D₁ 至 D₆₆ 一者与远场强度分布 D₁ 至 D₆₆ 另一者不相区别，光学光栅元件 334 也可以考虑仅包括两个不同域 Z₁ 和 Z₂。其中域 Z₁ 和 Z₂ 分别产生不同角取向的六边形的远场强度分布 D₁ 和 D₂。6×6 的镜阵列的镜元件 M₁₁ 至 M₆₆ 则共同与域 Z₁ 相关联，并且其余的镜元件 M₁₁ 至 M₆₆ 与域 Z₂ 相关联。

在图 13 中，倾斜镜元件 M₁₁ 从而产生的总远场强度分布 C₉ 包括与四极照明设置相对应的 4 个极。布置在一个方向中的六边形（即，远场强度分布 D₁ 至 D₆₆）构成沿 X 方向的两个极，并且旋转 30° 的六边形（即，远场强度分布 D₁ 至 D₆₆）构成沿 Y 方向的另外一极。作为不同极取向的结果，沿 X 方向扩展的两个极与沿 Y 方向扩展的两个极在形状和摆放在完全对称。通常，远场强度分布 D₁ 的六边形几何形状具有这样的优点：可以将六边形组合成更大的区域而在相邻的远场强度分布 D₁ 之间不留下任何间隙。然而，与矩形不同，可以产生具有近似曲线的轮廓的连续的强度分布。

图 14 出示借助于镜元件 M₆₆，通过重新布置远场强度分布 D₁ 中的某些面从图 13 所示的布置中获得的用 C₉ 表示的重新调整的总远场强度分布。四极照明设置的极性具有比图 13 所示的远场强度分布 C₉ 更三角的形状。

图 15 出示用 C₉ 表示的另一远场强度分布。这里，两个具有不同角取向的一对六边形远场强度分布 D₁ 和 D₂ 叠加，如从 90 所表示的截图中可以清楚地看到。在光瞳表面 70 中的特定位置处叠加的两个远场强度分布 D₁ 和 D₂ 产生具有 12 角正多边形形状的组合远场强度分布，中心部分由强度加倍的十二角形形成。由 C₉ 表示的且可以认为是从多个这些组合的远场强度分布组合的总远场强度分布也包括沿 Y 方向布置的两个极点，其对应于偶极照明设置。

图 16 出示对于不同的光学光栅元件 324，由 C₉ 表示的相似的总远场强度分布。通过以与参照图 13 和 14 上面所解释的相似方式，倾斜镜元件 M₁₁ 中的一些获得该总远场强度分布 C₉。

5、替代实施例

应当较好理解的是，现可以预期的各种替代实施例仍落入本发明的范围。

例如，镜阵列 46 可以由任何其它反射结构来替代，该反射结构使得可以将打到该结构上的光束反射成多个方向，其中，在施以适当的控制信号之后，所述方向可以关于结构的不同部分来单独的改变。这样的替代结构例如可以包括电光或声光元件。在这样的元件中，折射系数可以通过将适当的材料暴露于超声波或电磁场来分别地改变。可以采用这些效应来产生将入射光指引到不同方向的反射光栅。

当然，变焦透镜系统 58 和 / 或折射元件 66,68 的对 64 可以完全被省掉。蝇眼透镜 72 可以由增加几何光通量的任何其它的光学元件（例如衍射光学元件）来替代。也可以考虑使用混光棒来替代蝇眼透镜。另外，如果不需要照明场 14 沿至少一个方向具有锐利边缘，则掩膜 16 可以直接地布置在场平面 80 中。
从前述中，还应当被清楚的是，光学光栅元件 34 和镜阵列 46 的顺序可以等价地翻转。图 17 中示出具有这样的配置的照明系统 412。图 17 为类似于图 2 的示意图。在图 17 中，对应于图 2 中所示的部件由增加了 400 的相同的参考标示表示，而这些部件中的大部分将不再解释。

通过光学光栅，镜阵列 446 的每一镜元件 M_ij 仍与布置在光学成像系统 418 之一透镜系 458 之光学光栅元件 434 上的特定域相关联。光束打到光学光栅元件 434 上的特定域 Z_ij 的方向取决于相关联的镜元件 M_ij 的倾斜角。

图 18 以与图 6 的上部分相似的图示出光学光栅元件 434 的截图。这里，域 Z_ij 产生具有相同的圆形点状的基本形状，但布置在远场中不同位置处的不同的远场强度分布 D_ij。这与上述实施例不同，这是因为由单个的域 Z_ij 产生的远场强度分布仅形状不同，而如此分布被居中。

在图 18 所示的实施例中，确定点状的远场强度分布 D_ij 的位置，从而光瞳表面 470 几乎完全被这些分数 D_ij 填满，如在图 18 的底部所示的。

这样的光学光栅元件 434 的配置使得可以使用镜阵列，其中镜元件 M_ij 适于在“开启”状态或“关断”状态。在“开启”状态，经反射的光束通过光瞳表面 470，其中在“关断”状态，不允许经反射的光通过光瞳表面 470。

这样的数字镜阵列 446 可以具有更简单的构造，因为其不必控制倾斜角的连续范围，如在上述实施例中情况。因此，通过切换开启和关断各个镜元件 M_ij，可以用小的圆形照明点的任意图案填充光瞳表面 470。

由于光学光栅元件 434 的域 Z_ij 产生不同位置处产生经照明的点，镜元件 M_ij 的倾斜角对于全部“开启”状态可以是相同的。这再次简化了镜阵列 46 的结构及控制。如果产生的全部域 Z_ij 产生完全相同的远场强度分布，则镜元件 M_ij 的“开启”状态可以对应于不同的倾斜角。

如果由域 Z_ij 产生的远场强度分布如图 18 中所示的圆形点，则如果全部镜单元都处于“开启”状态，则光瞳表面 70 的总填充率是 $\pi / 4 = 78.5\%$。对于其它的远场强度分布，例如图 13 所示的六边形几何形状，可以获得光瞳表面 470 的较高的填充率或甚至完全的填充。

如果要可以改变光瞳表面 70 上的每一位置处的强度，则必须能够叠加由不同域 Z_ij 产生的至少两个远场强度分布。通常，如果其应为 N+1 个等距强度值，则必须由 N 个镜元件 M_ij，其叠加光瞳表面中特定位置处的远场强度分布。

这在图 19 中就光学光栅元件 434’示出，其中产生完全相同远场强度分布的一对域与单个镜元件 M_ij 相关联。例如，如果通过开启相关联的镜元件 M_ij 和 M_j，则光瞳表面 470 中的各个位置被两倍的若仅镜 M_ij 和 M_j 之一处于“开启”状态所获得的强度来照明。

图 20 显示依照本发明的另一方面照明系统 512 的实施例。在图 20 中，对应于图 2 的那些部件的部件由增加了 500 的相同参考数字来表示，而不必再解释这些部件的大部分。

在照明系统 512 中，光学光栅元件 534 和镜阵列 546 没有布置在通过光学成像系统光学共轭的平面中，而是布置在同一平面中。为此，镜元件 M_ij 支持衍射结构 S_ij，其中，衍
射结构 S_{ij} 中的至少两个产生不同的远场强度分布。这在图 21 中示出，图 21 示出镜矩阵列 546 的透视图。在该示例性示出中，假设镜元件 M_{ij} 产生近镜元件 M_{ij} 的角度分布。由此如果光学光栅元件的不同隅成像到镜元件上，则仍获得基本相同效果，反之亦然。

[0124] 这使得清楚的是，衍射结构 S_{ij} 可以至少理论上产生与上述实施例中的域 Z_{ij} 相同的远场强度分布。图 22 示出可以由镜元件 M_{ij} 所支持的衍射结构 S_{ij} 获得的远场强度分布 D_{ij} 的示例。这些远场强度分布 D_{ij} 与上参照图 12 对于成像到镜矩阵列 46 的光学光栅元件 34 所描述的远场强度分布相同。然而，可以理解的是，通过由镜元件 M_{ij} 所支持的衍射结构 S_{ij}，不仅可以产生如上所述的远场强度分布，还可以产生几乎任何远场强度分布。

[0125] 使得镜元件 M_{ij} 支持衍射结构的构想还可以应用到图 2 所示的实施例中。接下来，由额外的衍射结构产生的远场强度分布 D_{ij} “添加”到由镜矩阵列 46 和光学光栅元件 34 产生的总远场强度分布。更具体地，在该情况下，光瞳表面 70 中的总远场强度分布是通过由镜矩阵列 46 的镜元件 M_{ij}，光学光栅元件的对应的域 Z_{ij} 以及各个镜元件 M_{ij} 上的额外的衍射结构所产生的远场强度分布进行卷积获得的。除卷积的远场强度分布的叠加。

[0126] 如果一些或全部的镜元件 M_{ij} 配置以便它们能够不仅倾斜还能够借助于与各个镜元件 M_{ij} 相关联的操纵器来变形，则获得额外的自由度。图 21 示例地对于由操纵器系统 A_{ij} 变形的镜元件 M_{ij} 示出该情形。如上参照图 7 所提及的，镜变形的效应是由各个镜元件 M_{ij} 产生的远场强度分布的变化。由此镜变形能够用于进一步改变总远场强度分布，例如为了减少在光瞳表面 570 中获得的总远场强度分布中单个远场强度分布之间的间隙的目的。

[0127] 诸如电光或声光元件的透明光束偏转元件也可以支持衍射结构。透明光束偏转元件也可能被元件所耦接的操纵器产生的变形的影响。

[0128] 如图 23 所示的照明系统 512 中所使用的镜矩阵列 646 的透视图。镜矩阵列 646 包含镜元件 M_{ij}，其也支持衍射光学结构 S_{ij}，镜元件 M_{ij} 不仅可关于一个正交倾斜轴 656、658 旋转也关于第三旋转轴 659 旋转。在图 23 中用双箭头 DA 指示该额外的旋转自由度。

[0129] 在所示的实施例中，与三个自由度中的两个相关联的倾斜轴 656、658 平行于平面延展，并且与附加的第三旋转自由度相关联的旋转轴 659 与该平面相交。优选地，交角在 60° 到 90° 之间。在所示的实施例中，镜元件 M_{ij} 的反射面是平面的并且平行于倾斜轴 656、658，以及另外的旋转轴 659 垂直于每一个镜元件 M_{ij} 的平面反射表面排列。其它的旋转轴取向的具体示例为 (1) 垂直于镜矩阵列 646 的基板或者 (2) 垂直于光瞳表面 570。也可以考虑其它的取向。

[0130] 图 24a 和 24b 是图 23 所示的镜矩阵列 646 的镜元件 M_{ij} 的在两个不同旋转位置中的经放大的透视图。在这些图中，用虚线指示的三角形示出镜元件 M_{ij} 所支持的衍射结构 S_{ij} 在照明系统 512 的光瞳表面 570 中产生的远场强度分布 D_{ij}。如果镜元件 M_{ij} 沿图 24a 中的箭头的方向旋转，则远场强度分布 D_{ij} 将在光瞳表面 570 中旋转相同的角度。

[0131] 为了有助于绕第三旋转轴旋转镜元件 M_{ij}，镜元件 M_{ij} 具有圆形几何形状。该圆形几何形状意味着相邻的镜元件 M_{ij} 之间的间隙从而镜矩阵列 646 的非反射的总面积显著增加。在图 20 所示的照明系统中，这将导致显著的光损失，该光损失可能减少投射曝光设备的生产能力。这样的光损失还可能导致与间隙中的光吸收所产生的热有关的问题。该热必须通过冷却系统有效地移除，这增加系统的复杂度。
[0132] 如果在光束扩展单元 532 和镜阵列 646 之间布置微透镜，则可以避免这样的问题。每一微透镜将入射的光聚焦到一个单独的镜元件 M_{ij} 上，从而在间隙中没有光损失。

[0133] 如利用图 21 所示的镜阵列 546 的情况，额外的旋转自由度使得可以产生各种不同的照明设置。利用图 21 所示的镜阵列 546，可以产生如在图 11 和 12 中所示的不同的偶极照明设置。如图 6 至图 10 中所示的传统的或环形照明设置不能够利用镜阵列 546 而仅能利用镜阵列 646 使适当地产生。

[0134] 这在图 25 至 28 中指出。图 25 是与图 22 相似的图。这里，假设镜阵列 646 的镜元件 M_{ij} 被旋转从而三角形的远场强度分布 D_{ij} 具有仅略微变化的取向。通过适当的倾斜镜元件 M_{ij}，可以获得如图 26 中所示的偶极照明设置。

[0135] 如果如图 28 所示产生环形照明设置，则单个的镜元件 M_{ij} 被旋转从而三角形的全部可能的取向被表示，如图 27 所示。这些不同取向的三角形接着通过适当的倾斜镜元件 M_{ij} 来组合，以便获得如图 28 中所示的总远场强度分布 C_i。

[0136] 额外的旋转自由度需要对倾斜和旋转镜元件 M_{ij} 所需的轴承和操纵器的一些机械改变。由于镜阵列 646 不需要非常大量的镜元件，精密机械方案通常是足够的。用于这样的轴承和操纵器的特定的机械配置描述在题目为“Mirror matrix for micro lithographic projection exposure apparatus”的同样未决的国际申请中，该申请于本申请同日由本申请人提交并且要求于 2007 年 4 月 25 日提交的美国临时申请 60/913,956 的优先权。

[0137] 如果镜元件 M_{ij} 不支持衍射结构 S_{ij}，但具有作为至少沿一个方向上的非旋转对称曲率的结果的反射能力，则仍可以获得相似的效果。在图 23 中对于上面的镜元件 M_{ij} 显示出该情形。如果曲率是非旋转对称的，则远场强度分布也将是非旋转对称的。因此，这样的镜的旋转将产生不同的远场强度分布。尽管不可能例如利用弯曲的镜元件产生如图 25 或 27 中所示的锐利的多边形的远场强度分布，但无论如何有利的是能够旋转椭圆的远场强度分布，其利用弯曲的镜容易地产生。

[0138] 已经过通过示例的方式给出了优选实施例的上述描述。从所给的公开中，本领域的技术人员将不仅理解本发明及其所附优点，也将获得所公开的结构和方法的明显的各种变化和更改。因此，申请人寻求覆盖落入由所附权利要求及其等同物所界定的本发明的精神和范围内的全部这样的变化和更改。
图 11
图12
图 28