发明名称
一种展览场地人员流量检测方法及系统

摘要
本发明提供了一种展览场地人员流量的检测方法及检测系统，采用ID识别装置安装在展览场地的进出口，统计停留在展览场地的人数。在展览场地的子区域的进出口安装摄像机，实施采集各子区域进出口的画面。在虚线中单位时间内穿过或穿出人进行统计，计算此时停留在各子区域的人数，判定各子区域的人数密度与预设的子区域人员密度阈值的比较结果，通过数据处理模块及以太网交换模块终端计算机可判断整个展览场地人员流动情况。若此时监控子区域停留的人数密度大于预设子区域人员密度阈值，终端计算机就会控制对应子区域人员密度报警灯报警，指示工作人员到现场维持秩序。
1. 一种展览场地人员流量检测方法，所述展览场地的进出口装有 ID 识别装置；所述展览场地包括若干子区域，其特征在于，所述展览场地人员流量的检测方法包括以下步骤：
步骤 1：存储所述展览场地各子区域的面积，设定各子区域的人员密度阈值；
步骤 2：所述人员持 ID 识别装置的 ID 卡从所述展览场地的进出口进出；
步骤 3：对当前进出所述展览场地人员进行统计得出当前停留在所述展览场地的人数总数；
步骤 4：在所述展览场地的子区域的进出口安装监控摄像机，统计进入各子区域的人数和各子区域的出去的人数；
步骤 5：依据步骤 4 统计的各子区域人数和步骤 1 中各子区域面积得出当前各子区域人员密度值；
步骤 6：将所述步骤 5 得出的区域人员密度值与步骤 1 设定的子区域的人员密度阈值进行比较，若大于或等于阈值人员密度停止该子区域人员的进入，若小于阈值人员密度维持该子区域人员的进入。
2. 如权利要求 1 所述展览场地人员流量检测方法，其特征在于，所述子区域进出口只有一个，进入所述子区域的人员从所述进出口的一侧进入，所述子区域里人员从所述进出口另一侧出去。
3. 如权利要求 2 所述展览场地人员流量检测方法，其特征在于，所述子区域进出口包括进口和出口，进入所述子区域的人员从所述进口进入，所述子区域里人员从所述出口出去。
4. 如权利要求 1 所述展览场地人员流量检测方法，其特征在于，所述步骤 4 统计进入各子区域的人数和各子区域的出去的人数是通过在摄像机拍摄的进出口画面中设置虚拟边界，计数单位时间穿入所述虚拟边界或穿出所述虚拟边界的人数。
5. 如权利要求 4 所述展览场地人员流量检测方法，其特征在于，所述计数单位时间穿入所述虚拟边界或穿出所述虚拟边界人员是采用运动目标跟踪算法对进出人员统计。
6. 一种基于权利要求 1 所述检测方法的展览场地人员流量检测的系统，其特征在于，它包括：记忆模块，用于存储所述展览场地子区域面积和对应设定的子区域人员密度阈值；动态存储模块，用于存储当前进出展览场地的人员以及各个子区域中进出人数数；摄像机采集模块，采集当前进入每个子区域的进出口画面；数据处理模块，用于分析摄像机采集的进出口画面，将统计的进入人数和出去人员数存储于动态存储模块；以太网交换模块和终端计算机监控模块，所述以太网交换模块用于将所述数据处理模块处理后数据传送给终端计算机监控模块；所述记忆模块与所述处理模块连接，所述记忆模块数据传送至数据处理模块；所述摄像机模块与所述数据处理模块连接；所述动态存储模块与所述数据处理模块连接进行相互的数据传输；所述数据处理模块输出数据通过以太网交换模块与所述终端计算机监控模块连接。

7. 如权利要求 6 所述的展览场地人员流量检测的系统，其特征在于，所述数据处理模块包括视频采集卡，所述摄像机模块通过视频采集卡与所述数据处理模块连接。

8. 如权利要求 6 所述的展览场地人员流量检测的系统，其特征在于，所述终端监控计算机连接有所述子区域人员密度报警灯。
一种展览场地人员流量检测方法及系统

技术领域

本发明涉及视频监控领域，尤其涉及一种展览场地人员拥挤度检测方法及系统。

背景技术

随着经济的发展，各国之前的文化经济交流越来越频繁。通常以展览形式
促进各国之间特定文化经济领域的交流较为常见，例如世博会这样大型的展览
会。为维持展览场地的秩序对展览场地人员流量的检测就显得尤为重要，当展
览场地出现部分区域的拥挤时可及时进行疏导，同时依据展览场地各区域的流
量判定展览期间最受人们关注的领域及文化。传统人员流量检测仅能实现较小
范围内人数统计功能，其基本原理是实时目标检测，包括对目标的特征提取、
目标的形状和颜色分布。由于人体是非刚性的，外在的障碍物和自身的噪声会
给建立的唯一模型带来影响。为减小外界干扰带来的影响，需要限制性地将摄
像头观察点放置在监测地点的正上方，以实现检测人员的不重叠，尽量减小人
员所占图像的面积。这样就无法实现对大区域中的人员流动进行整体监控进行
分析和统计。

发明内容

本发明的目的在于提供一种展览场地人员流量检测方法及系统，以解决传
统人员流动检测方法存在的检测区域小和检测结果易受外界干扰的问题。

为达到上述目的，本发明的一种展览场地人员流量检测方法，展览场地的
进出口装有ID卡识别装置。展览场地包括若干子区域，展览场地人员流量的检
测方法包括以下步骤：步骤1：存储该展览场地各子区域的面积，设定各子区域
的人员密度阈值；步骤2：人员持ID卡装置能识别的ID卡从该展览场地的进
出口进出；步骤3：对当前进出展览场地人员进行统计得出当前停留在展览场地
的人员总数；步骤 4：在所述展览场地的子区域的进出口安装监控摄像机，统计
进入各子区域的人数和各子区域的出数的人数；步骤 5：依据步骤 4 统计的各子
区域人数和步骤 1 中各子区域面积得出当前各子区域人员密度值；步骤 6：将步
骤 5 得出的区域人员密度值与步骤 1 设定的子区域的人员密度阈值进行比较，
若大于或等于阈值人员密度停止该子区域人员的进入，若小于阈值人员密度维
持该子区域人员的进入。若子区域进出口只有一个，则进入该子区域的人员从
进出口的一侧进入，该子区域里人员从此进出口另一侧出去。若子区域进出口
包括进口和出口，进入该子区域的人员从进口进入，该子区域里人员从出口出
去。其中，步骤 4 统计进入各子区域的人数和各子区域的出数的人数是通过在
摄像机拍摄的进出口画面中设置虚拟边界，计数单位时间穿入所述虚拟边界
或穿出所述虚拟边界的人数。计数单位时间穿入所述虚拟边界或穿出所述虚拟
边界的人数是采用运动目标跟踪算法对进出人员统计。

基于以上检测方法的展览场地人员流量检测的系统，它包括：记忆模块，
用于存储所述展览场地子区域面积和对应设定的子区域人员密度阈值；动态存
储模块，用于存储当前进入该展览场地的人员数以及各个子区域中进出人员数；
摄像机采集模块，采集当前进入每个子区域的进出口画面；数据处理模块，用
于分析摄像机采集的进出口画面，将统计的进入人员数和出去人员数存储于动
态存储模块；以太网交换模块和终端计算机监控模块，该以太网交换模块用于
将所述数据处理模块处理后数据传送给终端计算机监控模块。该记忆模块与处
理模块连接，将记忆模块数据传送至数据处理模块；摄像机模块与数据处理模
块连接，动态存储模块与此数据处理模块连接进行相互的数据传输；数据处理
模块输出数据通过以太网交换模块与终端计算机监控模块连接。其中，数据处
理模块包括视频采集卡，摄像机模块通过视频采集卡与所述数据处理模块连接。
终端监控计算机连接有所述子区域人员密度报警灯。

与传统人员流量检测方法相比，本发明的展览场地人员流量的检测方法及
检测系统结合 ID 识别装置规范展览场地的进出，同时对进出展览场地的人进行
统计，对每个展览场地的子区域的进出口采用摄像机监控，这样可以宏观监控
整个展览场地各个子区域的人员密度。对子区域进出口人员进出数的统计采用
统计采集画面中虚拟边界人员穿入和穿出数统计，统计结果不受外界干扰。因
此，本发明的展览场地的人员流量的检测方法及检测系统可有效解决传统检测存在的检测结果与外界干扰以及监控范围受限的问题。

附图说明

以下结合附图和具体实施例对本发明的展览场地人员流量检测方法及系统作进一步详细具体地说明。

图 1 是本发明的展览场地例示意图。

图 2 是本发明展览场地人员检测系统结构示意图。

具体实施方式

以图 1 所示展览场地为例，展览场地的进出口：进口 10 和出口 20 装有 ID 卡识别装置。展览场地包括若干子区域，子区域 5、子区域 6、子区域 7 和子区域 8。展览场地人员流量的检测方法包括以下步骤：步骤 1：存储该展览场地各子区域的面积，设定各子区域的人员密度阈值。根据各子区域的面积所存放的展览设施可确定不同的的子区域人员密度阈值，若某些子区域陈列的展览设施较多可将该子区域人员密度阈值设置得较小，若某些子区域陈列的展览设施较少可将该子区域人员密度阈值设置得较大。步骤 2：人员持该 ID 卡装置能识别的 ID 卡从该展览场地的进出口进出。所有进入展览场地的人员需佩戴经 ID 卡装置认证过的 ID 卡才能进入。进入图 1 所示展览场地，从装有 ID 卡识别装置的进口 10 进入，由装有 ID 卡识别装置的出口 20 离开。步骤 3：对当前进出展览场地人员进行统计得出当前停留在展览场地的人员总数。根据进口 10 可识别的登陆 ID 和出口 20 可识 别注销 ID 可统计此时停留在展览场地的人员数。步骤 4：在所述展览场地的子区域的进出口安装监控摄像机，统计进入各子区域的人数和各子区域的人数。为便于监控各子区域的人员密度，在每个子区域的进出口安装摄像机，例如子区域 5 的进口 10 和出口 21，子区域 6 的进出口 11，子区域 7 的进出口 12 和子区域的进口 13 和出口 20 均需安装摄像机。若子区域进出口只有一个，例如子区域 6 和子区域 7，则进入该子区域的人员从进出口的一侧进入，该子区域里人员从此进出口另一侧出去。若子区域进出口包括进口和出口，例如子区域 5 和子区域 8，进入该子区域的人员从进口进入，该子区域里人员从出口出去。步骤 4 统计进入各子区域的人数和各子区域的出去的人数是通过在摄
像机拍摄的进出口画面上设置虚拟边界，计算单位时间出入所述虚拟边界或
穿出所述虚拟边界的人数。计算单位时间出入所述虚拟边界或穿出所述虚拟边
界人员是采用运动目标跟踪算法对进出人员统计。步骤 5：依据步骤 4 统计的
子区域人数和步骤 1 中各子区域面积得出当前各子区域人员密度值。步骤 6：将
步骤 5 得出的区域人员密度值与步骤 1 设定的子区域的人员密度阈值进行比较，
若大于或等于阈值人员密度停止该子区域人员的进入，若小于阈值人员密度维
持该子区域人员的进入。

基于以上检测方法的展览场地人员流量检测的系统，请参阅图 2，它包括：
记忆模块，用于存储所述展览场地子区域面积和对应设定的子区域人员密度阈
值；动态存储模块，用于存储当前进出该展览场地的人数数，即登陆 ID 数和注
销 ID 数，以及各个子区域中进出人员数；摄像机采集模块 1，采集当前进入每
个子区域的进出口画面；数据处理模块，用于分析摄像机采集的进出口画面，
将统计的进入人员数和出去人员数存储于动态存储模块；以太网交换模块和终
端计算机监控模块 3，该以太网交换模块用于将所述数据处理模块处理后数据传
送给终端计算机监控模块。该记忆模块与处理模块连接，将记忆模块数据传送
至数据处理模块；摄像机模块与数据处理模块连接，动态存储模块与此数据处
理模块连接进行相互的数据传输；数据处理模块输出数据通过以太网交换模块
与终端计算机监控模块连接。其中，数据处理模块包括视频采集卡，摄像机模
块通过视频采集卡与所述数据处理模块连接。终端监控计算机通过数据处理模
块及以太网交换模块可实时监控整个展览场地的人员的流量情况，且连接有对
应于子区域人员密度报警器。若当检测到图 1 所示子区域 6 的人员密度超过子
区域 6 设定人员密度阈值时，终端监控计算机会控制 6 号人员密度报警灯报警，
指示工作人员到报警子区域维持现场秩序。

本发明的展览场地人员流量的检测方法及检测系统结合 ID 识别装置规范展
览场地的进出，对进出展览场地的人进行统计，对每个展览场地的子区域的进
出口采用摄像机监控，这样可以宏观监控整个展览场地各个子区域的人员密度。
对子区域进出口人员进出数的统计采用统计采集画面中虚拟边界人员穿入和穿
出数统计，统计结果不受外界干扰。因此，本发明的展览场地人员流量的检测
方法及检测系统可有效解决传统检测存在的检测结果易受外界干扰以及监控范
围受限的问题。