(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
2 April 2009 (02.04.2009)

(51) International Patent Classification:
C07K 38/17 (2006.01)
C07K 19/00 (2006.01)
C07K 15/86 (2006.01)
C07K 14/715 (2006.01)

(21) International Application Number:
PCT/US2008/01086

(22) International Filing Date:
25 September 2008 (25.09.2008)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
US 5/10 01701 2007.09.25 (US)
US 5/10 01569 2007.09.25 (US)
US 5/10 230 2007.09.25 (US)

(32) Designated State(s):
[Continued on next page]

(54) Title: COMPOSITIONS AND METHODS FOR INHIBITING INTERLEUKIN PATHWAYS

(71) Applicant (for all designated States except US):
GENZYME CORPORATION [US/US]; 500 Kendall Street, Cambridge, Massachusetts 02142 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SCARIA, Abraham [US/US]; 61 Flanagan Drive, Framingham, Massachusetts

(01) Title:

(07) Abstract:
Fusion proteins including an IL-17 receptor with a multimerization domain, or an IL-23 receptor and a multimerization domain, and recombinant viral vectors encoding such fusions, are described. The fusion proteins and vectors encoding such fusions, alone or in combination, can be used in methods for modulating the IL-17 and IL-23 signaling pathways and for treating or preventing diseases mediated by interleukin-17 and interleukin-23, such as immune-related and inflammatory diseases.
Published:
— without international search report and to be republished upon receipt of that report
COMPOSITIONS AND METHODS FOR INHIBITING INTERLEUKIN PATHWAYS

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit under 35 USC § 119(c)(1) of U S Provisional Application No 60/974,892, filed September 25, 2007, which application is incorporated herein by reference in its entirety

TECHNICAL FIELD

The present invention relates generally to compositions and methods for modulating interleukin pathways. In particular, the present invention pertains to compositions and methods for inhibiting IL-17 and IL-23 signaling pathways and for treating or preventing diseases mediated by interleukin-17 and interleukin-23, such as immune-related and inflammatory diseases

BACKGROUND

Immune related and inflammatory diseases are often caused by multiple interconnected biological pathways which in the normal state respond to injury, initiate repair from injury, and mount innate and acquired immune defenses against foreign organisms. Disease or pathology occurs when these normal physiological pathways cause additional injury either directly related to the intensity of the response, as a consequence of abnormal regulation or excessive stimulation, as a reaction to self, or a combination of these factors.

Although the genesis of these diseases often involves multistep pathways and multiple biological systems and pathways, intervention at critical points in one or more of these pathways can have an ameliorative or therapeutic effect. Therapeutic intervention can occur by either antagonizing a detrimental process or pathway, or by stimulating a beneficial process or pathway.

Many immune related diseases are known and have been extensively studied. Such diseases include immune-mediated inflammatory diseases, such as rheumatoid arthritis, osteoarthritis, uveitis, multiple sclerosis, type 1 diabetes, immune mediated renal disease, hepatobiliary diseases, inflammatory bowel disease (IBD), psoriasis, and asthma, non-immune-mediated inflammatory diseases, infectious diseases,
immunodeficiency diseases, neoplasm, induction of transplantation tolerance and the like.

Members of the interleukin family have been shown to be related to immune-mediated and inflammatory diseases. For example, interleukin-23 (IL-23) has been shown to be a pathogenic T-cell population that induces autoimmune inflammation. The IL-23 pathway has been implicated as a driving factor in a variety of immune-mediated diseases, including inflammatory bowel disease, rheumatoid arthritis, experimental autoimmune encephalomyelitis, cancer, and type 1 diabetes.

IL-23 uses many of the same signal-transduction components as IL-12, including IL-12RB1, Janus kinase 2, Tyk2, signal transducer and activator of transcription (Stat)1, Stat3, Stat4, and Stat5. IL-23 promotes cellular immunity by inducing interferon-γ production and proliferative responses in target cells. Additionally, IL-23 promotes the T helper cell type 1 costimulatory function of antigen-presenting cells. IL-23 preferentially acts on memory CD4+ T cells.

IL-23 exists as a heterodimer that includes the IL-12 p40 and IL-23-specific p19 subunits. IL-23 binds the IL-23 receptor complex, composed of IL-23r and IL-12rb1 (Parham et al., *J Immunol* (2002) 168 5699-5708). Upon engaging IL-23, IL-12rb1 and IL-23r associate, marking the beginning of the IL-23 signal-transduction cascade.

The human IL-23 receptor is a 629 amino acid type I transmembrane protein, with sequence homology with IL-12rb2 and gpl30. A functional murine IL-23 receptor has also been discovered, based on its homology with the human IL-23r gene sequence. The murine counterpart of the human IL-23 receptor is 644 amino acids in length and has 84% sequence homology with the protein-coding regions of the human IL-23 receptor gene (Parham et al., *J Immunol* (2002) 168 5699-5708).
Structurally, the human IL-23 receptor includes a signal sequence, an immunoglobulin-like domain, and two cytokine receptor domains. The sequence motif, WQPWS, is present in the membrane-transmembrane proximal cytokine receptor domain, likely corresponding to the WSXWS signature motif characteristic of cytokine receptors. The cytoplasmic portion of the human IL-23 receptor has 252 amino acids, including seven tyrosine residues. Protein sequence analysis of this cytoplasmic portion shows three potential Src homology 2 domain-binding sites and two potential Stat-binding sites. These sites display 100% amino acid identity to the mouse and human IL-23 receptor proteins within these motifs (Parham et al., J Immunol (2002) 168:5699-5708).

Interleukin-17 (IL-17) is a homodimeric proinflammatory cytokine of about 32 kDa which is synthesized and secreted by CD4+ activated memory T-lymphocytes. IL-17 acts to induce proinflammatory responses in a wide variety of peripheral tissues. It is a potent inducer of the maturation of CD34+ hematopoietic precursors into neutrophils. IL-17 plays a pathogenic role in many inflammatory and autoimmune diseases such as rheumatoid arthritis, osteoarthritis, asthma, uveitis, type 1 diabetes, and multiple sclerosis.

IL-17 has been found to stimulate the production of several cytokines. For example, it induces the secretion of IL-6, IL-8, prostaglandin E2, MCP-1, and G-CSF by adherent cells such as fibroblasts, keratinocytes, epithelial and endothelial cells. IL-17 also has the ability to induce ICAM-1 surface expression, proliferation of T-cells, and growth and differentiation of CD34+ human progenitors into neutrophils. IL-17 has also been implicated in bone metabolism, and may play an important role in pathological conditions characterized by the presence of activated T-cells and TNF-α production such as rheumatoid arthritis and loosening of bone implants (Van Bezoijen et al., J Bone Miner Res (1999) 14:1513-1521). Activated T-cells of synovial tissue derived from rheumatoid arthritis patients have been found to secrete higher amounts of IL-17 than those derived from normal individuals or osteoarthritis patients (Chabaud et al., Arthritis Rheum (1999) 42:963-970). IL-17 may actively contribute to synovial inflammation in rheumatoid arthritis.

IL-17 appears to contribute to the pathology of rheumatoid arthritis and osteoarthritis by a mechanism in addition to its proinflammatory role. For example, IL-17 has been shown to induce the expression of osteoclast differentiation factor (ODF) mRNA in osteoblasts (Kotake et al., J Clin Invest (1999) 103:1345-1352).
ODF stimulates differentiation of progenitor cells into osteoclasts which are involved in bone resorption. Since the level of IL-17 is significantly increased in synovial fluid of rheumatoid arthritis patients, it appears that IL-17-induced osteoclast formation plays a crucial role in bone resorption in rheumatoid arthritis. IL-17 is also believed to play a key role in certain other autoimmune disorders such as multiple sclerosis (Matusevicius et al., Mult Scler (1999) 5:101-104).

IL-17 also shares sequence similarity with mammalian cytokine-like factor 7 that is involved in bone and cartilage growth. Other proteins with which IL-17 polypeptides share sequence similarity are human embryo-derived interleukin-related factor (EDIRF) and interleukin-20.

Consistent with the wide-range of activities demonstrated by IL-17, the cell surface receptor for IL-17 is widely expressed in many tissues and cell types (Yao et al., Cytokine (1997) 9:794). The human IL-17 receptor is 866 amino acids in length and includes a single transmembrane domain and a long, 525 amino acid, intracellular domain. The receptor sequence is unique and is not similar to that of any of the receptors from the cytokine/growth factor receptor family.

It has been demonstrated that IL-17 activity is mediated through binding to its unique cell surface receptor. Studies have shown that contacting T-cells with a soluble form of the IL-17 receptor polypeptide inhibits T-cell proliferation and IL-2 production induced by PHA, concanavalin A and anti-TCR monoclonal antibody (Yao et al., J. Immunol (1995) 155:5483-5486).

SUMMARY OF THE INVENTION

The present invention is based on the surprising discovery that interleukin pathways can be successfully modulated by delivering interleukin receptor constructs. Multimeric constructs including interleukin receptors and an immunoglobulin constant region multimerization domain and/or proteins expressed from such multimeric constructs, successfully bind to and neutralize their corresponding ligands.

This novel therapy approach for the delivery of IL-17 and IL-23 receptor constructs or proteins expressed from such constructs provides a highly desirable method for modulating the activity of the IL-17 and IL-23 signaling pathways, and for treating and preventing diseases related thereto.

Thus in one embodiment, the invention is directed to a recombinant virus comprising a polynucleotide encoding a fusion protein, wherein the fusion protein
comp ses (a) an interleukin receptor selected from the group consisting of an IL-17 receptor and an IL-23 receptor wherein the IL-23 receptor lacks an IL-12 receptor component, and (b) an immunoglobulin constant region multimerization domain, wherein when the fusion protein is expressed, a multimer of the fusion protein is produced. In certain embodiments, the multimer is a homodimer. In additional embodiments, the interleukin receptor is a soluble interleukin receptor.

In further embodiments, the multimerization domain comprises the CH3 domain of an IgG, or an active fragment thereof and the multimerization domain is from an IgGl, an IgG2, an IgG3 or an IgG4, such as from the constant region of an IgGl heavy chain.

In additional embodiments, the fusion protein comprises the amino acid sequence of Figure 5B (SEQ ID NO 6), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 5B (SEQ ID NO 6), or the fusion protein comprises the amino acid sequence of Figure 6B (SEQ ID NO 8), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 6B (SEQ ID NO 8).

In additional embodiments, the recombinant virus is a recombinant adenovirus or a recombinant adeno-associated virus.

In further embodiments, the invention is directed to a kit comprising the recombinant viruses described above, and instructions for transducing a host cell with the recombinant virus.

In additional embodiments, the invention is directed to a method of inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway. The method comprises administering a recombinant virus as described above to a cell to transduce the cell. In certain embodiments, the recombinant virus is administered to cells in vitro. The transduced cells can further be administered to a subject in need thereof. In other embodiments, the recombinant virus is administered to cells in vivo in a subject in need thereof.

In further embodiments, the invention is directed to a fusion protein selected from the group consisting of a protein comprising the sequence of amino acids of Figure 5B (SEQ ID NO 6), or a sequence of amino acids with at least 90% sequence identity thereto, and a protein comprising the sequence of amino acids of Figure 6B (SEQ ID NO 8), or a sequence of amino acids with at least 90% sequence identity thereto.
In additional embodiments, the invention is directed to a polynucleotide encoding the fusion proteins above, as well as recombinant vectors comprising (a) the polynucleotide and (b) at least one control element operably linked to said polynucleotide, whereby said coding sequence can be transcribed and translated in a host cell. In further embodiments, the invention is directed to a host cell comprising the recombinant vector, as well as methods for producing a fusion protein, comprising culturing a population of the host cells under conditions for producing the protein.

In yet additional embodiments, the invention is directed to a method of inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway, the method comprising administering a fusion protein, or a polynucleotide encoding the fusion protein, as described above, to a subject in need thereof.

In certain embodiments, a polynucleotide as described above is administered to a cell to transduce the cell. The polynucleotide can be administered to cells in vitro and the transduced cells can be further administered to a subject in need thereof. Alternatively, the polynucleotide is administered to cells in vivo in a subject in need thereof.

In further embodiments, the subject is administered both a polynucleotide encoding the fusion protein and the fusion protein. The fusion protein can be administered prior to, subsequent to, or concurrently with the polynucleotide.

These and other embodiments of the subject invention will readily occur to those of skill in the art in view of the disclosure herein.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1A-IB (SEQ ID NOS: 1 and 2) show the full-length nucleotide sequence (Figure 1A) and corresponding amino acid sequence (Figure 1B) of a representative human IL-17r.

Figures 2A-2B (SEQ ID NOS:3 and 4) show the full-length nucleotide sequence (Figure 2A) and corresponding amino acid sequence (Figure 2B) of a representative human IL-23r.

Figure 3 is a diagrammatic representation of a fusion construct including a soluble IL-23r linked to the CH3 domain of the Fc region of a human IgGl immunoglobulin via a linker of nine Gly residues (sIL23R-9gly-CH3).
Figure 4 is a diagrammatic representation of a fusion construct including a soluble IL-17rA linked to the CH3 domain of the Fc region of a human IgGl immunoglobulin via a linker of nine Gly residues (sIL1 7R-9gly-CH3)

Figures 5A and 5B (SEQ ID NOS 5 and 6) show the nucleotide sequence and corresponding amino acid sequence of the sIL23R-9gly-CH3 construct depicted in Figure 3

Figures 6A and 6B (SEQ ID NOS 7 and 8) show the nucleotide sequence and corresponding amino acid sequence of the sIL17RA-9gly-CH3 construct depicted in Figure 4

Figure 7 is a diagram of plasmid pCBA2-int-BGH sIL1 7R-9G-CH3

Figure 8 is a diagram of plasmid pCBA2-int-BGH sIL23R-9G-CH3

Figures 9A and 9B show soluble IL-23r and soluble IL-17r binding to immobilized IL-23 (Figure 9A) and IL-17 (Figure 9B), respectively

Figure 10 shows the results of a competition ELISA for soluble IL-17r binding to free IL-17 in solution

Figure 11 shows AAVl/IL-17R/9gly/CH3 injection leads to an increase in IL-9 levels relative to AAVl/null and AAVl/IL-23R/9gly/CH3. By comparison, an average non-diabetic NOD mouse had higher IL-9 levels than an average diabetic NOD mouse

Figure 12 shows AAVl/IL-17R/9gly/CH3 injection leads to an increase in IL-2 levels relative to AAVl/null and AAVl/IL-23R/9gly/CH3. By comparison, non-diabetic NOD mice in this study had higher IL-2 levels than the diabetic NOD mice

Figure 13 shows AAVl/IL-17R/9gly/CH3 injection and AAVl/IL-23R/9gly/CH3 injection lead to an increase in IL-13 levels relative to AAVl/null. By comparison, non-diabetic NOD mice in this study had higher IL-13 levels than diabetic NOD mice

Figure 14 shows AAVl/IL-17R/9gly/CH3 injection leads to a decrease in IL-12(p70) levels relative to AAVl/null and AAVl/IL-23R/79gly/CH3. By comparison, non-diabetic NOD mice in this study had lower IL-12(p70) levels than the diabetic NOD mice

Figure 15 shows AAVl/IL-17R/9gly/CH3 injection and AAVl/IL-23R/9gly/CH3 injection lead to an increase in IL-10 levels relative to AAVl/null. By comparison, non-diabetic NOD mice in this study had higher IL-10 levels than the diabetic NOD mice
Figure 16 shows blood glucose levels in three groups of NOD mice treated with one of three AAV vector AAV1-null, AAV1/IL-17R/9gly/CH3 or AAV1/IL-23R/9gly/CH3

5 DETAILED DESCRIPTION OF THE INVENTION

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

1. DEFINITIONS

In describing the present invention, the following terms will be employed, and are intended to be defined as indicated below.

It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "an interleukin receptor" includes a mixture of two or more such receptors, and the like.

The terms "interleukin-17 receptor" (IL-17r) and "interleukin-23 receptor" (IL-23r) or a nucleotide sequence encoding the same, refer to a protein or nucleotide sequence, respectively, that is derived from any IL-17 receptor and IL-23 receptor, respectively, regardless of source. The terms, as used herein, refer to molecules capable of binding to and modulating activity of the corresponding ligand, as measured in any of the known IL-17 and IL-23 activity tests, including those described further herein, such as by reducing or inhibiting the production of IL-17 and IL-23, respectively. The full-length nucleotide sequence and corresponding amino
acid sequence of a representative human IL-17r is shown in Figures 1A-1B (SEQ ID NOS: 1 and 2) and the full-length nucleotide sequence and corresponding amino acid sequence of a representative human IL-23r is shown in Figures 2A-2B (SEQ ID NOS: 3 and 4). However, an interleukin receptor as defined herein is not limited to the depicted sequences as several such receptors are known and variations in these receptors will occur between species.

The full-length proteins, with or without the signal sequence, and fragments thereof, as well as proteins with modifications, such as deletions, additions and substitutions (either conservative or non-conservative in nature), to the native sequence, are intended for use herein, so long as the protein maintains the desired activity. These modifications may be deliberate, as through site-directed mutagenesis, or may be accidental, such as through mutations of hosts which produce the proteins or errors due to PCR amplification. Accordingly, active proteins substantially homologous to the parent sequence, e.g., proteins with 70...80...85...90...95...98...99% etc. identity that retain the ability to modulate activity of the corresponding ligand, are contemplated for use herein.

A "native" polypeptide, such as an interleukin receptor sequence, refers to a polypeptide having the same amino acid sequence as the corresponding molecule derived from nature. Such native sequences can be isolated from nature or can be produced by recombinant or synthetic means. The term "native" sequence specifically encompasses naturally-occurring truncated or secreted forms of the specific molecule (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native molecules disclosed herein are mature or full-length native sequences comprising the full-length amino acids sequences shown in the accompanying figures. However, while some of the molecules disclosed in the accompanying figures begin with methionine residues designated as amino acid position 1 in the figures, other methionine residues located either upstream or downstream from amino acid position 1 in the figures may be employed as the starting amino acid residue for the particular molecule. Alternatively, depending on the expression system used, the molecules described herein may lack an N-terminal methionine.

By "extracellular domain" is meant a form of the receptor polypeptide which includes all or a fragment of the extracellular domain and lacks all or a portion of the
transmembrane domain and may also be devoid of the cytoplasmic domain

Typically, when used in the present invention, the extracellular domain is essentially free of both the transmembrane and cytoplasmic domains. Ordinarily, an extracellular domain includes less than 10% of such transmembrane and/or cytoplasmic domains, preferably less than 5% of these domains, preferably, less than 1%, and even more preferably, less than 0.5% of such domains. Transmembrane domains for the receptors described herein can be identified pursuant to a Kyte-Doolittle technique, Kyte et al., J Mol Biol (1982) 157 105-132.

As explained above, the interleukin receptors for use with the present invention may or may not include the native signal sequence. The approximate location of the signal peptides of the interleukin receptors described herein are described in the specification and in the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, typically by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as described herein. The C-terminal boundary of the signal peptide may be identified pursuant to a Kyte-Doolittle technique, such as described in Nielsen et al., Prot Eng (1997) 10 1-6 and von Heinje et al., Nucl Acids Res (1986) 14 4683-4690.

Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

By "variant" is meant an active polypeptide as defined herein having at least about 80% amino acid sequence identity with the corresponding full-length native sequence, a polypeptide lacking the signal peptide, an extracellular domain of a polypeptide, with or without a signal peptide, or any other fragment of a full-length polypeptide sequence as disclosed herein. Such polypeptide variants include, for instance, polypeptides wherein one or more amino acid residues are added, or deleted, at the N- and/or C-terminus of the full-length native amino acid sequence. Ordinarily, a variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino
acid sequence identity, alternatively at least about 83% amino acid sequence identity,
alternatively at least about 84% amino acid sequence identity, alternatively at least about
85% amino acid sequence identity, alternatively at least about 86% amino acid
sequence identity, alternatively at least about 87% amino acid sequence identity,
alternatively at least about 88% amino acid sequence identity, alternatively at least
about 89% amino acid sequence identity, alternatively at least about 90% amino acid
sequence identity, alternatively at least about 91% amino acid sequence identity,
alternatively at least about 92% amino acid sequence identity, alternatively at least
about 93% amino acid sequence identity, alternatively at least about 94% amino acid
sequence identity, alternatively at least about 95% amino acid sequence identity,
alternatively at least about 96% amino acid sequence identity, alternatively at least
about 97% amino acid sequence identity, alternatively at least about 98% amino acid
sequence identity and alternatively at least about 99% amino acid sequence identity to
the corresponding full-length natural sequence. Ordinarily, variant polypeptides are at
least about 10 amino acids in length, such as at least about 20 amino acids in length,
e.g., at least about 30 amino acids in length, alternatively at least about 40 amino
acids in length, alternatively at least about 50 amino acids in length, alternatively at
least about 60 amino acids in length, alternatively at least about 70 amino acids in
length, alternatively at least about 80 amino acids in length, alternatively at least
about 90 amino acids in length, alternatively at least about 100 amino acids in length,
alternatively at least about 150 amino acids in length, alternatively at least about 200
amino acids in length, alternatively at least about 300 amino acids in length, or more

Particularly preferred variants include substitutions that are conservative in
nature, i.e., those substitutions that take place within a family of amino acids that are
related in their side chains. Specifically, amino acids are generally divided into four
families: (1) acidic— aspartate and glutamate, (2) basic—lysine, arginine, histidine,
(3) non-polar—alanine, valine, leucine, isoleucine, proline, phenylalanine,
methionine, tryptophan, and (4) uncharged polar—glycine, asparagine, glutamine,
cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are
sometimes classified as aromatic amino acids. For example, it is reasonably
predictable that an isolated replacement of leucine with isoleucine or valine, an
aspartate with a glutamate, a threonine with a serine, or a similar conservative
replacement of an amino acid with a structurally related amino acid, will not have a
major effect on the biological activity. For example, the polypeptide of interest may
include up to about 5-10 conservative or non-conservative amino acid substitutions, or even up to about 15-25 or 50 conservative or non-conservative amino acid substitutions, or any number between 5-50, so long as the desired function of the molecule remains intact.

"Homology" refers to the percent identity between two polynucleotide or two polypeptide moieties. Two DNA, or two polypeptide sequences are "substantially homologous" to each other when the sequences exhibit at least about 50%, preferably at least about 75%, more preferably at least about 80%-85%, preferably at least about 90%, and most preferably at least about 95%-98% sequence identity over a defined length of the molecules. As used herein, substantially homologous also refers to sequences showing complete identity to the specified DNA or polypeptide sequence.

In general, "identity" refers to an exact nucleotide-to-nucleotide or amino acid-to-amino acid correspondence of two polynucleotides or polypeptide sequences, respectively. Percent identity can be determined by a direct comparison of the sequence information between two molecules by aligning the sequences, counting the exact number of matches between the two aligned sequences, dividing by the length of the shorter sequence, and multiplying the result by 100. Readily available computer programs can be used to aid in the analysis, such as ALIGN, Dayhoff, M.O. in Atlas of Protein Sequence and Structure M.O. Dayhoff ed., 5 Suppl 3, 353-358, National Biomedical Research Foundation, Washington, DC, which adapts the local homology algorithm of Smith and Waterman Advances in Appl Math 2, 482-489, 1981 for peptide analysis. Programs for determining nucleotide sequence identity are available in the Wisconsin Sequence Analysis Package, Version 8 (available from Genetics Computer Group, Madison, WI) for example, the BESTFIT, FASTA and GAP programs, which also rely on the Smith and Waterman algorithm. These programs are readily utilized with the default parameters recommended by the manufacturer and described in the Wisconsin Sequence Analysis Package referred to above. For example, percent identity of a particular nucleotide sequence to a reference sequence can be determined using the homology algorithm of Smith and Waterman with a default scoring table and a gap penalty of six nucleotide positions.

Another method of establishing percent identity in the context of the present invention is to use the MPSRCH package of programs copyrighted by the University of Edinburgh, developed by John F Collins and Shane S Sturrok, and distributed by IntelliGenetics, Inc (Mountain View, CA). From this suite of packages the
Smith-Waterman algorithm can be employed where default parameters are used for the scoring table (for example, gap open penalty of 12, gap extension penalty of one, and a gap of six) From the data generated the "Match" value reflects "sequence identity." Other suitable programs for calculating the percent identity or similarity between sequences are generally known in the art, for example, another alignment program is BLAST, used with default parameters. For example, BLASTN and BLASTP can be used using the following default parameters genetic code = standard, filter = none, strand = both, cutoff = 60, expect = 10, Matrix = BLOSUM62, Descriptions = 50 sequences, sort by = HIGH SCORE, Databases = non-redundant, GenBank + EMBL + DDBJ + PDB + GenBank CDS translations + Swiss protein + Spupdate + PIR Details of these programs are well known in the art. Alternatively, homology can be determined by hybridization of polynucleotides under conditions which form stable duplexes between homologous regions, followed by digestion with single-stranded-specific nuclease(s), and size determination of the digested fragments. DNA sequences that are substantially homologous can be identified in a Southern hybridization experiment under, for example, stringent conditions, as defined for that particular system. Defining appropriate hybridization conditions is within the skill of the art. See, e.g., Sambrook et al., supra, DNA Cloning, supra, Nucleic Acid Hybridization, supra. By the term "degenerate variant" is intended a polynucleotide containing changes in the nucleic acid sequence thereof, that encodes a polypeptide having the same amino acid sequence as the polypeptide encoded by the polynucleotide from which the degenerate variant is derived. A "coding sequence" or a sequence which "encodes" a selected polypeptide, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vivo when placed under the control of appropriate regulatory sequences. The boundaries of the coding sequence are determined by a start codon at the 5' (amino) terminus and a translation stop codon at the 3' (carboxy) terminus. A transcription termination sequence may be located 3' to the coding sequence. By "vector" is meant any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which can transfer gene
sequences to cells. Thus, the term includes cloning and expression vehicles, as well as viral vectors.

By "recombinant vector" is meant a vector that includes a heterologous nucleic acid sequence which is capable of expression in vivo. By "recombinant virus" is meant a virus that has been genetically altered, e.g., by the addition or insertion of a heterologous nucleic acid construct into the particle.

The term "transfection" is used to refer to the uptake of foreign DNA by a cell, and a cell has been "transfected" when exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are generally known in the art. See, e.g., Graham et al (1973) Virology, 52: 456, Sambrook et al (1989) Molecular Cloning, a laboratory manual, Cold Spring Harbor Laboratories, New York, Davis et al (1986) Basic Methods in Molecular Biology, Elsevier, and Chu et al (1981) Gene 1:3 197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.

The term "heterologous" as it relates to nucleic acid sequences such as coding sequences and control sequences, denotes sequences that are not normally joined together, and/or are not normally associated with a particular cell. Thus, a "heterologous" region of a nucleic acid construct or a vector is a segment of nucleic acid within or attached to another nucleic acid molecule that is not found in association with the other molecule in nature. For example, a heterologous region of a nucleic acid construct could include a coding sequence flanked by sequences not found in association with the coding sequence in nature. Another example of a heterologous coding sequence is a construct where the coding sequence itself is not found in nature (e.g., synthetic sequences having codons different from the native gene).

Similarly, a cell transformed with a construct which is not normally present in the cell would be considered heterologous for purposes of this invention. Allelic variation or naturally occurring mutational events do not give rise to heterologous DNA, as used herein.

A "nucleic acid" sequence refers to a DNA or RNA sequence. The term captures sequences that include any of the known base analogues of DNA and RNA such as, but not limited to 4-acetycytosine, 8-hydroxy-N6-methyladenosine, azidinocytosine, pseudocytosine, 5-(carboxyhydroxyl-methyl) uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl-aminomethyluracil, dihydouracil, inosine, N6-isopentenyladenine, 1-
methyladenine, 1-methylpseudo-uracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methyl-cytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxy-amino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine.

The term DNA "control sequences" refers collectively to promoter sequences, polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites ("IRES"), enhancers, and the like, which collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell.

The term "promoter" is used herein in its ordinary sense to refer to a nucleotide region comprising a DNA regulatory sequence, wherein the regulatory sequence is derived from a gene which is capable of binding RNA polymerase and initiating transcription of a downstream (3'-direction) coding sequence. Transcription promoters can include "inducible promoters" (where expression of a polynucleotide sequence operably linked to the promoter is induced by an analyte, cofactor, regulatory protein, etc.), "repressible promoters" (where expression of a polynucleotide sequence operably linked to the promoter is induced by an analyte, cofactor, regulatory protein, etc.), and "constitutive promoters".

"Operably linked" refers to an arrangement of elements wherein the components so described are configured so as to perform their usual function. Thus, control sequences operably linked to a coding sequence are capable of effecting the expression of the coding sequence. The control sequences need not be contiguous with the coding sequence, so long as they function to direct the expression thereof. Thus, for example, intervening untranslated yet transcribed sequences can be present between a promoter sequence and the coding sequence and the promoter sequence can still be considered "operably linked" to the coding sequence.
The term "multime πzation domain" as used in the context of the present invention, is meant to refer to the portion of the molecule to which the interleukin receptor is joined, either directly or through a "linker domain." The multime πzation domain is preferably a polypeptide domain which facilitates the interaction of two or more multime πzation domains and/or interleukin receptor domains. Homodimers result from the pairing or crosslinking of two monomers comprising an interleukin receptor and a multime πzation domain.

For example, a multime πzation domain may be an immunoglobulin sequence, such as an immunoglobulin constant region, a leucine zipper, a hydrophobic region, a hydrophilic region, a polypeptide comprising a free thiol which forms an intermolecular disulfide bond between two or more multime πzation domains or, for example a "protuberance-into-cavity" domain described in, for example, U.S. Patent 5,731,168, incorporated herein by reference in its entirety. Protuberances are constructed by, e.g., replacing small amino acid side chains from the interface of a first polypeptide with a larger side chain (for example a tyrosine or tryptophan). Compensatory cavities of identical or similar size to the protuberances are optionally created on the interface of a second polypeptide by replacing large amino acid side chains with smaller ones (for example alanine or threonine).

Therefore, in a preferred aspect, the multime πzation domain provides that portion of the molecule which promotes or allows the formation of dimers, trimers, and the like from monomeric domains. Preferably, multime πzation domains are immunoglobulin constant region domains.

"Immunoglobulins" (Igs) are proteins, generally glycoproteins, that are antibodies or antibody-like molecules which lack antigen specificity.

Immunoglobulins are usually heterotetrameric glycoproteins of about 150,000 Daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has an amino (N)-terminal variable domain (VH) followed by carboxy (C) terminal constant domains. Each light chain has a variable N-terminal domain (VL) and a C-terminal constant domain, the constant domain of the light chain (CL) is aligned with the first constant domain (CHI) of the heavy chain, and the light chain variable domain is aligned with the
variable domain of the heavy chain. According to the domain definition of immunoglobulin polypeptide chains, light (L) chains have two conformational similar domains VL and CL, and heavy chains have four domains (VH, CH1, CH2, and CH3) each of which has one intrachain disulfide bridge.

Depending on the amino acid sequence of the constant (C) domain of the heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM. The immunoglobulin class can be further divided into subclasses (isotypes), e.g., IgGl, IgG2, IgG3, IgG4, IgG5, IgAl, and IgA2. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. The light chains of antibodies from any vertebrate species can be assigned to one of two distinct types called kappa (K) or lambda (λ), based upon the amino acid sequence of their constant domains.

The term "Fc region" refers to the C-terminal (constant) region of an immunoglobulin heavy chain. The Fc region may be a native sequence Fc region or a variant Fc region. Although the boundaries of the Fc region of an immunoglobulin heavy chain may vary, the human IgG heavy chain Fc region typically stretches from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus of a full-length human IgGl. The Fc region of an immunoglobulin generally comprises two constant domains, CH2 and CH3. The last residue, lysine, in the heavy chain of IgGl can but need not be present as the terminal residue in the Fc in the mature protein. One human IgG L heavy chain Fc region is defined in NCBI accession number P01 857.

The "CH2 domain" of a human IgGl Fc region (also referred to as "Cy2") domain usually extends from about amino acid 231 to about amino acid 340 of a full-length IgG, but from Pro11 to Lys223 of the human IgG heavy chain Fc region.

The "CH3 domain" comprises the residues C-terminal to a CH2 domain in a human IgGl Fc region (i.e., from about amino acid residue 341 to about amino acid residue 447 of a full-length IgG, but from Gly224 to Lys330 of a human IgG heavy chain Fc region). The "hinge region" is generally defined as stretching from Glu216 to Pro230 of a full-length human IgGl (Burton, Molec Immunol (1985) 22 161-206), but from Glu99 to Pro10 of a human IgG heavy chain Fc region. Hinge regions of other IgG isotypes may be aligned with the IgGl sequence by placing the first and last cysteine...
residues forming inter-heavy chain S-S bonds in the same positions.

The "lower hinge region" of an Fc region is normally defined as the stretch of residues immediately C-terminal to the hinge region, i.e. residues 233 to 239 of a full-length human IgG1.

A "native Fc region sequence" comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. Native human Fc region sequences include but are not limited to the human IgGl Fc region (non-A and A allotypes); the human IgG2 Fc region; the human IgG3 Fc region; and the human IgG4 Fc region as well as naturally occurring variants thereof. Native Fc regions from other species, such as murine Fc regions, are also well known.

A "functional Fc region" possesses an "effector function" of a native Fc region. Exemplary "effector functions" include Clq binding; complement-dependent cytotoxicity; Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors (e.g., B cell receptor; BCR), etc. Such effector functions typically require the Fc region to be combined with a binding domain (i.e., an interleukin ligand herein) and can be assessed using various assays known in the art. Preferably, the Fc region is a human Fc region, e.g. a native sequence human Fc region such as a human IgGl (A and non-A allotypes), IgG2, IgG3 or IgG4 Fc region. Such sequences are known. See, e.g., PCT Publication NO. WO01/02440, incorporated herein by reference in its entirety.

The term "modulate" means to affect (e.g., either upregulate, downregulate or otherwise control) the level of a signaling pathway. Cellular processes under the control of signal transduction include, but are not limited to, transcription of specific genes, normal cellular functions, such as metabolism, proliferation, differentiation, adhesion, apoptosis and survival, as well as abnormal processes, such as transformation, blocking of differentiation and metastasis.

"Active" or "activity" for purposes of the present invention refers to forms of an interleukin receptor polypeptide which retain a biological activity (either inhibitory or stimulatory) of the corresponding native or naturally occurring polypeptide. The activity may be greater than, equal to, or less than that observed with the corresponding native or naturally occurring polypeptide. A preferred activity includes modulating the level of the IL-17 and/or IL-23 signaling pathway in a subject suffering from an immune related disease.
By "immune-related disease" is meant a disease in which a component of the
immune system of a mammal causes, mediates or otherwise contributes to a morbidity
in the mammal. Also included are diseases in which stimulation or intervention of the
immune response has an ameliorative effect on progression of the disease. Included
within this term are immune-mediated inflammatory diseases, non-immune-mediated
inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia,
and the like. Further examples of immune related diseases are presented below.

By "isolated" when referring to a nucleotide sequence, is meant that the
indicated molecule is present in the substantial absence of other biological
macromolecules of the same type. Thus, an "isolated nucleic acid molecule which
encodes a particular polypeptide" refers to a nucleic acid molecule which is
substantially free of other nucleic acid molecules that do not encode the subject
polypeptide; however, the molecule may include some additional bases or moieties
which do not deleteriously affect the basic characteristics of the composition.

For the purpose of describing the relative position of nucleotide sequences in a
particular nucleic acid molecule throughout the instant application, such as when a
particular nucleotide sequence is described as being situated "upstream," "downstream," "3-prime (3')" or "5-prime (5')" relative to another sequence, it is to
be understood that it is the position of the sequences in the "sense" or "coding" strand
of a DNA molecule that is being referred to as is conventional in the art.

The terms "subject", "individual" or "patient" are used interchangeably herein
and refer to a vertebrate, preferably a mammal. Mammals include, but are not limited
to, murines, rodents, simians, humans, farm animals, sport animals and pets.

The terms "effective amount" or "therapeutically effective amount" of a
composition or agent, as provided herein, refer to a nontoxic but sufficient amount of
the composition or agent to provide the desired response, such as modulating an
interleukin receptor ligand, e.g., reducing or inhibiting the production of IL-17 and
IL-23 and/or treating or preventing disease related thereto. The exact amount required
will vary from subject to subject, depending on the species, age, and general condition
of the subject, the severity of the condition being treated, and the particular
macromolecule of interest, mode of administration, and the like. An appropriate
"effective" amount in any individual case may be determined by one of ordinary skill
in the art using routine experimentation.

The term "about", particularly in reference to a given quantity, is meant to
encompass deviations of plus or minus five percent

"Treatment" or "treating" a particular disease includes (1) preventing the disease, i.e., preventing the development of the disease or causing the disease to occur with less intensity in a subject that may be exposed to or predisposed to the disease but does not yet experience or display symptoms of the disease, (2) inhibiting the disease, i.e., arresting the development or reversing the disease state, or (3) relieving symptoms of the disease, i.e., decreasing the number of symptoms experienced by the subject.

2. MODES OF CARRYING OUT THE INVENTION

Before describing the present invention in detail, it is to be understood that this invention is not limited to particular formulations or process parameters as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting.

Although a number of methods and materials similar or equivalent to those described herein can be used in the practice of the present invention, the preferred materials and methods are described herein.

Central to the present invention is the discovery that protein or gene therapy using constructs encoding interleukin receptors, and in particular the IL-17 and IL-23 receptors, serves to modulate the corresponding signaling pathways, and therefore provides a useful technique for treating and preventing immune-related disorders, such as autoimmune diseases and inflammatory conditions including joint and bone diseases. Protein and gene therapy techniques can be used alone or in combination, or in conjunction with traditional drugs.

The constructs of the present invention also provide a means for transducing cells in vitro to study the IL-17 and IL-23 signaling pathways, e.g., in order to screen for agonists and antagonists thereto.

The constructs used in the present methods encode fusion proteins that include an interleukin receptor, or an active portion thereof, linked to an immunoglobulin constant region multimerization domain, either directly or via a linker. Preferably, a soluble form, i.e., a transmembrane domain-deleted or inactivated form, of the receptor is used. The receptor can be present either upstream or downstream from the
immunoglobulin region Purified fusion protein may be prepared *in vitro* from the constructs Typically, the fusion protein is produced in multimeric form when expressed *in vivo* The multimer can be a dimer, trimer, etc Generally, the interleukin receptor is present in a homodimer πc form Thus, monomers of IL-1 7r and IL-23r will form homodimers upon expression Although the IL-23r normally exists as a heterodimer that includes the IL-12 p40 and IL-23-specific p19 subunits, the present invention provides for an IL-23r that lacks an IL-12 subunit Surprisingly, this IL-23r homodimer is still able to bind its respective ligand and modulate the IL-23 pathway

In order to further understand the invention, a more detailed discussion is provided below regarding the receptor-immunoglobulin fusions, as well as various gene delivery methods for use with the present invention

Interleukin Receptor-Immunoglobulin Fusions

As explained above, the present invention makes use of interleukin receptor-immunoglobulin fusions and/or constructs that encode such fusions to modulate the signal pathways mediated by the interleukin receptors The interleukin receptor component of the fusions is either an IL-17 receptor (IL-17r) or an IL-23 receptor (IL-23r) The native molecules, as well as active fragments and analogs thereof, which retain the ability to bind to the corresponding ligand and modulate ligand activity, as measured in any of the various assays and animal models including those described further herein, are intended for use with the present invention

The nucleotide and corresponding amino acid sequence for a representative full-length human IL-17r receptor is shown in Figures 1A and 1B, respectively (SEQ ID NOS 1 and 2, NCBI Accession No NM_014339 and NP_0551 54, respectively) The full-length molecule includes 866 amino acids Amino acids 1-31 represent a signal peptide The signal peptide is followed by a mature peptide consisting of a 289 amino acid extracellular domain, a 21 amino acid transmembrane domain, and a 525 amino acid cytoplasmic tail The amino acid sequence of the human IL-17r is 69% identical to the mouse IL-17r

As explained above, the use of a soluble IL-17r is particularly preferred A soluble IL-17r typically includes the extracellular domain or an active portion thereof but lacks the transmembrane domain and, optionally, the cytoplasmic tail and may or may not include the native or a heterologous signal sequence One example of a
soluble IL-17r comprises the signal peptide and the extracellular domain of the molecule, such as represented by residues 1 to 320 of SEQ ID NO 2, or an active fragment thereof.

As explained above, fusions between an IL-23r and an immunoglobulin molecule will also find use herein. Structurally, the IL-23 receptor includes in N-terminal to C-terminal order, a signal sequence, an immunoglobulin-like domain, two cytokine receptor domains, a transmembrane domain and a cytoplasmic tail. The sequence motif, WQPWS, is present in the membrane-transmembrane proximal cytokine receptor domain, and corresponds to the WSXWS signature motif characteristic of cytokine receptors. See, Figure 3. The cytoplasmic portion of the human IL-23r comprises 252 amino acids, including seven tyrosine residues. Protein sequence analysis of this cytoplasmic portion reveals three potential Src homology 2 domain-binding sites and two potential Stat-binding sites. These sites display 100% amino acid identity to the mouse and hIL-23R proteins within these motifs. Parham et al., J Immunol (2002) 168 5699-5708

The nucleotide and corresponding amino acid sequence for a representative full-length human IL-23r receptor is shown in Figures 2A and 2B, respectively (SEQ ID NOS 3 and 4, NCBI Accession No NM_144701 and NP_055154, respectively). The full-length molecule includes 629 amino acids. Amino acids 1-23 represent a signal peptide. The signal peptide is followed by a 330 amino acid extracellular domain, a 23 amino acid transmembrane domain, and a 253 amino acid cytoplasmic tail. The murine counterpart of hIL-23R is 644 amino acids in length and has 84% sequence homology with the protein-coding regions of the hIL-23R gene. Parham et al., J Immunol (2002) 168 5699-5708

As with the IL-17r, the use of a soluble IL-23r is particularly preferred. A soluble IL-23r typically includes the extracellular domain or an active portion thereof but lacks the transmembrane domain and, optionally, the cytoplasmic tail and may or may not include the native or a heterologous signal sequence. One example of a soluble IL-23r comprises the signal peptide and the extracellular domain of the molecule, such as represented by residues 1 to 353 of SEQ ID NO 4, or an active fragment thereof.

Various other IL-17r and IL-23r sequences and variants from humans and other species are known and can also be used herein. If a soluble form of the receptor is desired, the corresponding domains to those described above can be used and are
readily identifiable by one of skill in the art, such as by using standard hydropathy plots, such as those calculated using the Kyte-Doolittle technique, Kyte et al., *J Mol Biol* (1982) 157 105-132

Additional IL-1 7r sequences and variants thereof for use with the present invention are described in e.g., U.S. Patent No. 7,256,264, incorporated herein by reference in its entirety, as well as NCBI accession numbers NMJ)1 4339, NM_O32732, NMJ 53461, NM_1 53460, EF676034, NM_018725, AF212365, AF458069, AF458067, EF676033, EF676032, AF458065, U58917 (all human sequences), NM_008359, AK050139, AX720728, AF458066, NMJ44701 59, AF458068, AF208108, U31993 (all mouse sequences), XM_603383 (bovine), XMJ)0 1489654 (horse), NMJ)1 107883 (rat), XR_024768 (chimp), XM_533791 (dog)

Non-limiting examples of IL-23r sequences for use with the present invention include the sequences described in NCBI accession numbers Q5VWK.S, NMJ44701, AP461422 (all human sequences), Q8K4B4, NP653131, NMJ44548, AP461423 (all mouse sequences), EU616678 (bovine)

Polynucleotides encoding the desired interleukin receptor for use with the present invention can be made using standard techniques of molecular biology. For example, polynucleotide sequences coding for the above-described molecules can be obtained using recombinant methods, such as by screening cDNA and genomic libraries from cells expressing the gene, or by deriving the gene from a vector known to include the same. The gene of interest can also be produced synthetically, rather than cloned, based on the known sequences. The molecules can be designed with appropriate codons for the particular sequence. The complete sequence is then assembled from overlapping oligonucleotides prepared by standard methods and assembled into a complete coding sequence. See, e.g., Edge, *Nature* (1981) 292 756, Nambair et al., *Science* (1984) 223 1299, and Jay et al., *J Biol Chem* (1984) 259 6311

Thus, particular nucleotide sequences can be obtained from vectors harboring the desired sequences or synthesized completely or in part using various oligonucleotide synthesis techniques known in the art, such as site-directed mutagenesis and polymerase chain reaction (PCR) techniques where appropriate. See, e.g., Sambrook, *supra*. One method of obtaining nucleotide sequences encoding the desired sequences is by annealing complementary sets of overlapping synthetic

Once obtained, the polynucleotide encoding the interleukin receptor is linked to a multimerization domain either directly or via a linker moiety. A multimerization domain may be an immunoglobulin sequence, such as an immunoglobulin constant region, a leucine zipper, a hydrophobic region, a hydrophilic region, a polypeptide comprising a free thiol which forms an intermolecular disulfide bond between two or more multimerization domains or, for example a "protuberance-into-cavity" domain described in, for example, U.S. Patent 5,731,168, incorporated herein by reference in its entirety. The multimerization domain provides that portion of the molecule which promotes or allows the formation of dimers, trimers, and the like from monomeric oligonucleotides.

Multimerization domains will cause at least 5%, 10%, 20%, 30%, 40%, 50%, 60%, 75%, 80%, 85%, 90%, or 95% of the monomeric oligonucleotide fusion proteins to migrate on a non-denaturing polyacrylamide gel at a rate appropriate for a multimer. Glycosylation can affect the migration of a protein in a gel. Although particular sequences are shown here, variants such as allelic variants can be used as well. Typically, such variants will have at least 85%, 90%, 95%, 97%, 98%, or 99% identity with the disclosed sequence.

Multimerization can be assayed, for example, using reducing and non-reducing gels. Multimerization can also be assayed by detection of increased binding affinity of a protein for its ligand/receptor. BiaCore™ surface plasmon resonance assays can be used in this regard. These assays detect changes in mass by measuring changes in refractive index in an aqueous layer close to a sensor chip surface. Any method known in the art can be used to detect multimerization.
Preferably, multimerization domains are derived from immunoglobulin molecules, such as from immunoglobulin constant region domains. Sequences of the Fc portion of IgG1 or IgG2 lambda heavy chain can be used, for example, CH3 alone or portions of CH3, such as amino acids Gly224-Lys330, numbered relative to the human IgG1 Fc portion or both of CH2 and CH3 domains or portions thereof, such as amino acids Prol 11-Lys330, numbered relative to the human IgG1 Fc portion.

The Fc portion of an immunoglobulin molecule is obtained by cleavage of whole antibody molecules with the enzyme papain. Other means can be used to obtain these portions. For the IgGl lambda heavy chain protein sequence, see Genbank accession no Y14737. Other Fc regions can be used for example from other IgG types and from IgA, IgM, IgD, or IgE antibodies.

As explained above, the interleukin receptor can be linked to a multimerization domain via a linker. Linkers are typically polypeptide chains. Linker moieties can include, for example, 3-100 amino acid residues, such as 5-75 amino acid residues, 5-50 amino acid residues, 5-25 amino acid residues, 5-20 amino acid residues, 5-15 amino acid residues, 5-10 amino acid residues, 5-9 amino acid residues, or any number of amino acid residues within these ranges. Examples of useful linkers include: Gly9 (SEQ ID NO: 9), Glu9 (SEQ ID NO: 10), Ser9 (SEQ ID NO: 11), Gly5-Cys-Pro2-Cys (SEQ ID NO: 12), (Gly4-Ser)3 (SEQ ID NO: 13), Ser-Cys-Val-Pro-Leu-Met-Arg-Cys-Gly-Cys-Cys-Asn (SEQ ID NO: 14), Pro-Ser-Cys-Val-Pro-Leu-Met-Arg-Cys-Gly-Cys-Cys-Asn (SEQ ID NO: 15), Gly-Asp-Leu-Ile-Tyr-Arg-Asn-Gln-Lys (SEQ ID NO: 16), and Gly9-Pro-Ser-Cys-Val-Pro-Leu-Met-Arg-Cys-Gly-Gly-Cys-Cys-Asn (SEQ ID NO: 17). Other polypeptide linkers which can be used include a polyglycine of different lengths, including for example, 5, 7, or 30 residues. Additionally, portions of FLt-I can be used as a linker, for example domain 3 of FLt-I.

Linker moieties can also be made from other polymers, such as polyethylene glycol. Such linkers can have from 10-1000, 10-500, 10-250, 10-100, or 10-50 ethylene glycol monomer units, or any number of monomer units within these ranges.

Suitable polymers should be of a size similar to the size occupied by the appropriate range of amino acid residues. A typical sized polymer provides a spacing of from about 10-25 angstroms.

The sequences for the multimerization domain and the linker moiety can be obtained as described above with respect to the interleukin receptor.
Particularly preferred fusions include those depicted diagrammatically in Figures 3 and 4, the sequences of which are presented in Figures 5A-5B (SEQ ID NOS 5 and 6) and Figures 6A-6B (SEQ ID NOS 7 and 8), respectively. As shown in Figure 3, the construct encodes a soluble human IL-23r, linked by a sequence of nine glycines to the CH3 domain of the human IgGl Fc domain. As shown in Figure 4, the construct encodes a soluble human IL-17r linked by a sequence of nine glycines to the CH3 domain of the human IgGl Fc domain.

Once produced, the constructs are delivered using recombinant viral vectors as described further below.

Gene Delivery Techniques

The constructs described above are delivered to the subject in question using any of several gene-delivery techniques. Several methods for gene delivery are known in the art. As described further below, genes can be delivered either directly to the subject or, alternatively, delivered *ex vivo* to cells derived from the subject and the cells reimplanted in the subject.

A number of viral based systems have been developed for gene transfer into mammalian cells. For example, retroviruses provide a convenient platform for gene delivery systems. A selected gene can be inserted into a vector and packaged into retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to cells of the subject either *in vivo* or *ex vivo*. A number of retroviral systems have been described. See, e.g., U.S. Patent No. 5,219,740, Miller and Rosman, *BioTechniques* (1989) 7:980-990, Miller, A D, *Human Gene Therapy* (1990) 1:5-14, Scarpa et al, *Virology* (1991) 180:849-852, Burns et al, *Proc Natl Acad Sci USA* (1993) 90:8033-8037, and Bois-Law and Temin, *Curr Opin Genet Develop* (1993) 3:102-109. Replication-defective Mu[−]retroviral vectors are widely utilized gene transfer vectors. Mu[−]retroviruses include a single strand RNA complexed with a nuclear core protein and polymerase (pol) enzymes encased by a protein core (gag) and surrounded by a glycoprotein envelope (env) that determines host range. The genomic structure of retroviruses include gag, pol, and env genes enclosed at the 5' and 3' long terminal repeats (LTRs). Retroviral vector systems exploit the fact that a minimal vector containing the 5' and 3' LTRs and the packaging signal are sufficient to allow vector packaging and infection and integration into target cells provided that the viral structural proteins are supplied in
trans in the packaging cell line. Fundamental advantages of retroviral vectors for
gene transfer include efficient infection and gene expression in most cell types,
precise single copy vector integration into target cell chromosomal DNA and ease of
manipulation of the retroviral genome.

A number of adenovirus vectors have also been described. Unlike retroviruses
which integrate into the host genome, adenoviruses persist extrachromosomally thus
minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and
68 933-940, Barr et al., *Gene Therapy* (1994) 1 51-58, Berkner, K L *BioTechniques*
Adenovirus vectors for use in the subject methods are described in more detail below.

Additionally, various adeno-associated virus (AAV) vector systems have been
developed for gene delivery. AAV vectors can be readily constructed using

techniques well known in the art. See, e.g., U.S. Patent Nos. 5,173,414 and 5,139,941,
8 3988-3996, Vincent et al., *Vaccines 90* (Cold Spring Harbor Laboratory Press),
Carter, B J *Current Opinion in Biotechnology* (1992) 3 533-539, Muzyczka,
N *Current Topics in Microbiol. and Immunol.* (1992) 158 97-129, Kotin, R M

are also described in further detail below.

Additional viral vectors which will find use for delivering the nucleic acid

molecules of interest include those derived from the pox family of viruses, including
vaccinia virus and avian poxvirus. By way of example, vaccinia virus recombinants
expressing the genes can be constructed as follows. The DNA encoding the particular
polypeptide is first inserted into an appropriate vector so that it is adjacent to a
vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence

encoding thymidine kinase (TK). This vector is then used to transfect cells which are
simultaneously infected with vaccinia. Homologous recombination serves to insert
the vaccinia promoter plus the gene encoding the protein into the viral genome. The
resulting TK-recombinant can be selected by culturing the cells in the presence of
5-bromodeoxyuridine and picking viral plaques resistant thereto.
Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses, can also be used to deliver the genes. Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species. The use of an avipox vector is particularly desirable in human and other mammalian species since members of the avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells. Methods for producing recombinant avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, e.g., WO 91/12882, WO 89/03429, and WO 92/03545.

Molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al., J. Biol. Chem. (1993) 268: 6866-6869 and Wagner et al., Proc. Natl. Acad. Sci. USA (1992) 89: 6099-6103, can also be used for gene delivery. Members of the Alphavirus genus, such as but not limited to vectors derived from the Sindbis and Semliki Forest viruses, will also find use as viral vectors for delivering the polynucleotide encoding the fusion. For a description of Sinbus-virus derived vectors useful for the practice of the instant methods, see, Dubensky et al., J. Virol. (1996) 70: 508-519, and International Publication Nos. WO 95/07995 and WO 96/17072.

Alternatively, the interleukin receptor fusions can be delivered without the use of viral vectors, such as by using plasmid-based nucleic acid delivery systems as described in U.S. Patent Nos. 6,413,942, 6,214,804, 5,580,859, 5,589,466, 5,763,270, and 5,693,622, all incorporated herein by reference in their entireties. Plasmids will include the gene of interest operably linked to control elements that direct the expression of the protein product in vivo. Such control elements are well known in the art.

Adenovirus Gene Delivery Systems

In one embodiment of the subject invention, a nucleotide sequence encoding the fusions is inserted into an adenovirus-based expression vector. The adenovirus genome is a linear double-stranded DNA molecule of approximately 36,000 base pairs with the 55-kDa terminal protein covalently bound to the 5′ terminus of each strand. Adenoviral ("Ad") DNA contains identical Inverted Terminal Repeats ("ITRs") of about 100 base pairs with the exact length depending on
the serotype. The viral origins of replication are located within the ITRs exactly at the genome ends. DNA synthesis occurs in two stages. First, replication proceeds by strand displacement, generating a daughter duplex molecule and a parental displaced strand. The displaced strand is single-stranded and can form a "panhandle" intermediate, which allows replication initiation and generation of a daughter duplex molecule. Alternatively, replication can proceed from both ends of the genome simultaneously, obviating the requirement to form the panhandle structure.

During the productive infection cycle, the viral genes are expressed in two phases: the early phase, which is the period up to viral DNA replication, and the late phase, which coincides with the initiation of viral DNA replication. During the early phase only the early gene products, encoded by regions E1, E2, E3 and E4, are expressed, which carry out a number of functions that prepare the cell for synthesis of viral structural proteins. During the late phase, late viral gene products are expressed in addition to the early gene products and host cell DNA and protein synthesis are shut off. Consequently, the cell becomes dedicated to the production of viral DNA and of viral structural proteins.

The E1 region of adenovirus is the first region expressed after infection of the target cell. This region consists of two transcriptional units, the E1A and E1B genes. The main functions of the E1A gene products are to induce quiescent cells to enter the cell cycle and resume cellular DNA synthesis, and to transcriptionally activate the E1B gene and the other early regions (E2, E3, E4). Transfection of primary cells with the E1A gene alone can induce unlimited proliferation (immortalization), but does not result in complete transformation. However, expression of E1A in most cases results in induction of programmed cell death (apoptosis), and only occasionally immortalization. Coexpression of the E1B gene is required to prevent induction of apoptosis and for complete morphological transformation to occur. In established immortal cell lines, high level expression of E1A can cause complete transformation in the absence of E1B.

The E1B-encoded proteins assist E1A in redirecting the cellular functions to allow viral replication. The E1B 55 kD and E4 33 kD proteins, which form a complex that is essentially localized in the nucleus, function in inhibiting the synthesis of host proteins and in facilitating the expression of viral genes. Their main influence is to establish selective transport of viral mRNAs from the nucleus to the cytoplasm, concomittantly with the onset of the late phase of infection. The E1B 21
kD protein is important for correct temporal control of the productive infection cycle, thereby preventing premature death of the host cell before the virus life cycle has been completed.

Adenoviral-based vectors express gene product peptides at high levels.

Adenoviral vectors have high efficiencies of infectivity, even with low titers of virus. Additionally, the virus is fully infective as a cell-free virion so injection of producer cell lines are not necessary. Adenoviral vectors achieve long-term expression of heterologous genes in vivo. Adenovirus is not associated with severe human pathology, the virus can infect a wide variety of cells and has a broad host-range, the virus can be produced in large quantities with relative ease, and the virus can be rendered replication defective by deletions in the early-region 1 ("E1") of the viral genome. Thus, vectors derived from human adenoviruses, in which at least the E1 region has been deleted and replaced by a gene of interest, have been used extensively for gene therapy experiments in the pre-clinical and clinical phase.

Adenoviral vectors for use with the present invention are derived from any of the various adenoviral serotypes, including, without limitation, any of the over 40 serotype strains of adenovirus, such as serotypes 2, 5, 12, 40, and 41. The adenoviral vectors used herein are replication-deficient and contain the gene of interest under the control of a suitable promoter, such as any of the promoters discussed below with reference to adenoviral virus. For example, U.S. Patent No. 6,048,551, incorporated herein by reference in its entirety, describes replication-deficient adenoviral vectors that include the human gene for the anti-inflammatory cytokine IL-10, as well as vectors that include the gene for the anti-inflammatory cytokine IL-1Ra, under the control of the Rous Sarcoma Virus (RSV) promoter, termed Ad RSVIL-10 and Ad RSVIL-1Ra, respectively.

Other recombinant adenoviruses, derived from any of the adenoviral serotypes, and with different promoter systems, can be used by those skilled in the art. For example, U.S. Patent No. 6,306,652, incorporated herein by reference in its entirety, describes adenovirus vectors with E2A sequences, containing the hr mutation and the tsl25 mutation, termed ts400, to prevent cell death by E2A overexpression, as well as vectors with E2A sequences, containing only the hr mutation, under the control of an inducible promoter, and vectors with E2A sequences, containing the hr mutation and the tsl25 mutation (ts400), under the control of an inducible promoter.
Moreover, "minimal" adenovirus vectors as described in US Patent No 6,306,652 will find use with the present invention. Such vectors retain at least a portion of the viral genome that is required for encapsidation of the genome into virus particles (the encapsidation signal), as well as at least one copy of at least a functional part or a derivative of the ITR. Packaging of the minimal adenovirus vector can be achieved by co-infection with a helper virus or, alternatively, with a packaging-deficient replicating helper system as described in US Patent No 6,306,652.

Other useful adenovirus-based vectors for delivery of the gene of interest include the "gutless" (helper-dependent) adenovirus in which the vast majority of the viral genome has been removed (Wu et al., Anesthes (2001) 94 1119-1 132). Such "gutless" adenoviral vectors essentially create no viral proteins, thus allowing virally driven gene therapy to successfully ensue for over a year after a single administration (Parks, R J., Cln Genet (2000) 58 1-1 1, Tsai et al., Curr Opin Mol Ther (2000) 2 515-523) and eliminates interference by the immune system. In addition, removal of the viral genome creates space for insertion of control sequences that provide expression regulation by systemically administered drugs (Burcin et al., Proc Natl Acad Sa USA (1999) % 355-360), adding both safety and control of virally driven protein expression. These and other recombinant adenoviruses will find use with the present methods.

Adeno-Associated Virus Gene Delivery Systems

Adeno-associated virus (AAV) has been used with success to deliver genes for gene therapy. The AAV genome is a linear, single-stranded DNA molecule containing about 4681 nucleotides. The AAV genome generally comprises an internal, nonrepeating genome flanked on each end by inverted terminal repeats (ITRs). The ITRs are approximately 145 base pairs (bp) in length. The ITRs have multiple functions, including providing origins of DNA replication, and packaging signals for the viral genome. The internal nonrepeated portion of the genome includes two large open reading frames, known as the AAV replication (rep) and capsid (cap) genes. The rep and cap genes code for viral proteins that allow the virus to replicate and package into a virus. In particular, a family of at least four viral proteins are expressed from the AAV rep region, Rep 78, Rep 68, Rep 52, and Rep 40, named according to their apparent molecular weight. The AAV cap region encodes at least three proteins, VP1, VP2, and VP3.
AAV has been engineered to deliver genes of interest by deleting the internal nonrepeating portion of the AAV genome (i.e., the rep and cap genes) and inserting a heterologous gene (in this case, the gene encoding the interleukin receptor fusion) between the ITRs. The heterologous gene is typically functionally linked to a heterologous promoter (constitutive, cell-specific, or inducible) capable of driving gene expression in the patient's target cells under appropriate conditions. Termination signals, such as polyadenylation sites, can also be included.

AAV is a helper-dependent virus; that is, it requires coinfection with a helper virus (e.g., adenovirus, herpesvirus or vaccinia), in order to form AAV virions. In the absence of coinfection with a helper virus, AAV establishes a latent state in which the viral genome inserts into a host cell chromosome, but infectious virions are not produced. Subsequent infection by a helper virus "rescues" the integrated genome, allowing it to replicate and package its genome into an infectious AAV virion. While AAV can infect cells from different species, the helper virus must be of the same species as the host cell. Thus, for example, human AAV will replicate in canine cells coinfect ed with a canine adenovirus.

Recombinant AAV virions comprising the gene of interest may be produced using a variety of art-recognized techniques described more fully below. Wild-type AAV and helper viruses may be used to provide the necessary replicative functions for producing rAAV virions (see, e.g., U.S. Patent No. 5,139,941, incorporated herein by reference in its entirety). Alternatively, a plasmid, containing helper function genes, in combination with infection by one of the well-known helper viruses can be used as the source of replicative functions (see e.g., U.S. Patent No. 5,622,856 and U.S. Patent No. 5,139,941, both incorporated herein by reference in their entireties).

Similarly, a plasmid, containing accessory function genes can be used in combination with infection by wild-type AAV, to provide the necessary replicative functions. These three approaches, when used in combination with a rAAV vector, are each sufficient to produce rAAV virions. Other approaches, well known in the art, can also be employed by the skilled artisan to produce rAAV virions.

In one embodiment of the present invention, a triple transfection method (described in detail in U.S. Patent No. 6,001,650, incorporated by reference herein in its entirety) is used to produce rAAV virions because this method does not require the use of an infectious helper virus, enabling rAAV virions to be produced without any detectable helper virus present. This is accomplished by use of three vectors for
rAAV virion production: an AAV helper function vector, an accessory function vector, and a rAAV expression vector. One of skill in the art will appreciate, however, that the nucleic acid sequences encoded by these vectors can be provided on two or more vectors in various combinations.

As explained herein, the AAV helper function vector encodes the "AAV helper function" sequences (i.e., rep and cap), which function in trans for productive AAV replication and encapsidation. Preferably, the AAV helper function vector supports efficient AAV vector production without generating any detectable wt AAV virions (i.e., AAV virions containing functional rep and cap genes). An example of such a vector, pHLP19, is described in U.S. Patent No. 6,001,650, incorporated herein by reference in its entirety. The rep and cap genes of the AAV helper function vector can be derived from any of the known AAV serotypes, as explained above. For example, the AAV helper function vector may have a rep gene derived from AAV-2 and a cap gene derived from AAV-6; one of skill in the art will recognize that other rep and cap gene combinations are possible, the defining feature being the ability to support rAAV virion production.

The accessory function vector encodes nucleotide sequences for non-AAV - derived viral and/or cellular functions upon which AAV is dependent for replication (i.e., "accessory functions"). The accessory functions include those functions required for AAV replication, including, without limitation, those moieties involved in activation of AAV gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of cap expression products, and AAV capsid assembly. Viral-based accessory functions can be derived from any of the well-known helper viruses such as adenovirus, herpesvirus (other than herpes simplex virus type-1), and vaccinia virus. In a preferred embodiment, the accessory function plasmid pLadeno5 is used (details regarding pLadeno5 are described in U.S. Patent No. 6,004,797, incorporated herein by reference in its entirety). This plasmid provides a complete set of adenovirus accessory functions for AAV vector production, but lacks the components necessary to form replication-competent adenovirus.

In order to further an understanding of AAV, a more detailed discussion is provided below regarding recombinant AAV expression vectors and AAV helper and accessory functions.
Recombinant AAV Expression Vectors

Recombinant AAV (rAAV) expression vectors are constructed using known techniques to at least provide as operatively linked components in the direction of transcription, control elements including a transcriptional initiation region, the polynucleotide of interest and a transcriptional termination region. The control elements are selected to be functional in the cell of interest, such as in a mammalian cell. The resulting construct which contains the operatively linked components is bounded (5' and 3') with functional AAV ITR sequences.

The nucleotide sequences of AAV ITR regions are known. See, e.g., Kotin, R M (1994) Human Gene Therapy 5 793-801, Berns, K I "Parvoviridae and their Replication" in Fundamental Virology, 2nd Edition, (B N Fields and D M Knipe, eds) for the AAV-2 sequence. AAV ITRs used in the vectors of the invention need not have a wild-type nucleotide sequence, and may be altered, e.g., by the insertion, deletion or substitution of nucleotides. Additionally, AAV ITRs may be derived from any of several AAV serotypes, including without limitation, AAV-1, AAV-2, AAV-3, AAV-4, AAV-5, AAV-6, AAV-7 and AAV-8, etc. Furthermore, 5' and 3' ITRs which flank a selected nucleotide sequence in an AAV expression vector need not necessarily be identical or derived from the same AAV serotype or isolate, so long as they function as intended, i.e., to allow for excision and rescue of the sequence of interest from a host cell genome or vector, and to allow integration of the DNA molecule into the recipient cell genome when AAV Rep gene products are present in the cell.

Suitable polynucleotide molecules for use in AAV vectors will be less than about 5 kilobases (kb) in size. The selected polynucleotide sequence is operably linked to control elements that direct the transcription or expression thereof in the subject. Such control elements can comprise control sequences normally associated with the selected gene. Alternatively, heterologous control sequences can be employed. Useful heterologous control sequences generally include those demed from sequences encoding mammalian or viral genes. Examples include, but are not limited to, neuron-specific enolase promoter, a GFAP promoter, the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), a herpes simplex virus (HSV) promoter, a cytomegalovirus (CMV) promoter such as the CMV immediate early promoter region (CMVIE), a rous sarcoma virus (RSV) promoter, synthetic promoters, hybrid promoters, and the like.
In addition, sequences derived from nonviral genes, such as the metallothionein gene, will also find use herein. Such promoter sequences are commercially available from, e.g., Stratagene (San Diego, CA).

The AAV expression vector which harbors the polynucleotide molecule of interest bounded by AAV ITRs, can be constructed by directly inserting the selected sequence(s) into an AAV genome which has had the major AAV open reading frames ("ORFs") excised therefrom. Other portions of the AAV genome can also be deleted, so long as a sufficient portion of the ITRs remain to allow for replication and packaging functions. Such constructs can be designed using techniques well known in the art. See, e.g., U.S. Patent Nos. 5,173,414 and 5,139,941, International Publication Nos. vvo 92/01070 (published 23 January 1992) and vvo 93/03769 (published 4 March 1993), Lebkovski et al. (1988) Molec Cell Biol. 8 3988-3996, Vincent et al. (1990) Vaccines 90 (Cold Spring Harbor Laboratory Press), Carter (1992) Current Opinion in Biotechnology 3 533-539, Muzyczka (1992) Current Topics in Microbiol. and Immunol 158 97-129, Kotin (1994) Human Gene Ther. 5 793-801, Shelling and Smith (1994) Gene Therapy I 165-169, and Zhou et al. (1994) J Exp Med 179 1867-1875.

Alternatively, AAV ITRs can be excised from the viral genome or from an AAV vector containing the same and fused 5’ and 3’ of a selected nucleic acid construct that is present in another vector using standard ligation techniques, such as those described in Sambrook et al., supra. For example, ligations can be accomplished in 20 mM Tris-Cl pH 7.5, 10 mM MgCl2, 10 mM DTT, 33 µg/ml BSA, 10 mM-50 mM NaCl, and either 40 µM ATP, 0 01-0 02 (Weiss) units T4 DNA ligase at 0°C (for "sticky end" ligation) or 1 mM ATP, 0 3-0 6 (Weiss) units T4 DNA ligase at 14°C (for "blunt end" ligation). Intermolecular "sticky end" ligations are usually performed at 30-100 µg/ml total DNA concentrations (5-100 nM total end concentration). AAV vectors which contain ITRs have been described in, e.g., U.S. Patent No. 5,139,941. In particular, several AAV vectors are described herein which are available from the American Type Culture Collection ("ATCC") under Accession Numbers 53222, 53223, 53224, 53225 and 53226.

For the purposes of the invention, suitable host cells for producing rAAV vectors from the AAV expression vectors include microorganisms, yeast cells, insect cells, and mammalian cells, that can be, or have been, used as recipients of a heterologous DNA molecule and that are capable of growth in, for example,
suspension culture, a bioreactor, or the like. The term includes the progeny of the original cell which has been transfected. Thus, a "host cell" as used herein generally refers to a cell which has been transfected with an exogenous DNA sequence. Cells from the stable human cell line, 293 (readily available through, e.g., the American Type Culture Collection under Accession Number ATCC CRL1 573) are preferred in the practice of the present invention. Particularly, the human cell line 293 is a human embryonic kidney cell line that has been transformed with adenovirus type-5 DNA fragments (Graham et al. (1977) J Gen Virol 36 59), and expresses the adenoviral E1a and E1b genes (Aiello et al. (1979) Virology 94 460) The 293 cell line is readily transfected, and provides a particularly convenient platform in which to produce rAAV virions.

AAV Helper Functions

Host cells containing the above-described AAV expression vectors must be rendered capable of providing AAV helper functions in order to replicate and encapsidate the nucleotide sequences flanked by the AAV ITRs to produce rAAV virions. AAV helper functions are generally AAV-derived coding sequences which can be expressed to provide AAV gene products that, in turn, function in trans for productive AAV replication. AAV helper functions are used herein to complement necessary AAV functions that are missing from the AAV expression vectors. Thus, AAV helper functions include one, or both of the major AAV ORFs, namely the rep and cap coding regions, or functional homologues thereof.

By "AAV rep coding region" is meant the art-recognized region of the AAV genome which encodes the replication proteins Rep 78, Rep 68, Rep 52 and Rep 40.

These Rep expression products have been shown to possess many functions, including recognition, binding and nicking of the AAV origin of DNA replication, DNA helicase activity and modulation of transcription from AAV (or other heterologous) promoters. The Rep expression products are collectively required for replicating the AAV genome. For a description of the AAV rep coding region, see, e.g., Muzyczka, N (1992) Current Topics in Microbiol and Immunol 158 97-129, and Kotin, R M (1994) Human Gene Therapy 5 793-801. Suitable homologues of the AAV rep coding region include the human herpesvirus 6 (HHV-6) rep gene which is also known to mediate AAV-2 DNA replication (Thomson et al. (1994) Virology 204 304-311).

-36-
By "AAV cap coding region" is meant the art-recognized region of the AAV genome which encodes the capsid proteins VPl, VP2, and VP3, or functional homologues thereof. These Cap expression products supply the packaging functions which are collectively required for packaging the viral genome. For a description of the AAV cap coding region, see, e.g., Muzychka, N and Kotin, R M (supra).

AAV helper functions are introduced into the host cell by transfecting the host cell with an AAV helper construct either prior to, or concurrently with, the transfection of the AAV expression vector. AAV helper constructs are thus used to provide at least transient expression of AAV rep and/or cap genes to complement missing AAV functions that are necessary for productive AAV infection. AAV helper constructs lack AAV ITRs and can neither replicate nor package themselves. These constructs can be in the form of a plasmid, phage, transposon, cosmid, virus, or virion. A number of AAV helper constructs have been described, such as the commonly used plasmids pAAV/Ad and pIM29+45 which encode both Rep and Cap expression products. See, e.g., Samulski et al (1989) J Virol 63 3822-3828, and McCarty et al (1991) J Virol 65 2936-2945. A number of other vectors have been described which encode Rep and/or Cap expression products. See, e.g., U.S. Patent No. 5,139,941.

AAV Accessory Functions

The host cell (or packaging cell) must also be rendered capable of providing non-AAV-derived functions, or "accessory functions," in order to produce rAAV virions. Accessory functions are non-AAV-derived viral and/or cellular functions upon which AAV is dependent for its replication. Thus, accessory functions include at least those non-AAV proteins and RNAs that are required in AAV replication, including those involved in activation of AAV gene transcription, stage specific AAV mRNA splicing, AAV DNA replication, synthesis of Cap expression products and AAV capsid assembly. Viral-based accessory functions can be derived from any of the known helper viruses.

In particular, accessory functions can be introduced into and then expressed in host cells using methods known to those of skill in the art. Typically, accessory functions are provided by infection of the host cells with an unrelated helper virus. A number of suitable helper viruses are known, including adenoviruses, herpesviruses such as herpes simplex virus types 1 and 2, and vaccinia viruses. Nonviral accessory
functions will also find use herein, such as those provided by cell synchronization using any of various known agents. See, e.g., Buller et al. (1981) J Virol 40, 241-247, McPherson et al. (1985) Virology 147, 217-222, Schlehofer et al. (1986) Virology 152, 110-117.

preferred accessory function vectors comprise an adenovirus VA RNA coding region, an adenovirus E4 ORF6 coding region, an adenovirus E2A 72 kD coding region, an adenovirus ElA coding region, and an adenovirus ElB region lacking an intact ElB55k coding region. Such vectors are described in International Publication No. 01/83797.

As a consequence of the infection of the host cell with a helper virus, or transfection of the host cell with an accessory function vector, accessory functions are expressed which transactivate the AAV helper construct to produce AAV Rep and/or Cap proteins. The Rep expression products excise the recombinant DNA (including the DNA of interest) from the AAV expression vector. The Rep proteins also serve to duplicate the AAV genome. The expressed Cap proteins assemble into capsids, and the recombinant AAV genome is packaged into the capsids. Thus, productive AAV replication ensues, and the DNA is packaged into rAAV virions. A "recombinant AAV virion," or "rAAV virion" is defined herein as an infectious, replication-defective virus including an AAV protein shell, encapsidating a heterologous nucleotide sequence of interest which is flanked on both sides by AAV ITRs.

Following recombinant AAV replication, rAAV virions can be purified from the host cell using a variety of conventional purification methods, such as column chromatography, CsCl gradients, and the like. For example, a plurality of column purification steps can be used, such as purification over an anion exchange column, an affinity column and/or a cation exchange column. See, for example, International Publication No. WO 02/12455. Further, if infection is employed to express the accessory functions, residual helper virus can be inactivated, using known methods.

For example, adenovirus can be inactivated by heating to temperatures of approximately 60°C for, e.g., 20 minutes or more. This treatment effectively inactivates only the helper virus since AAV is extremely heat stable while the helper adenovirus is heat labile.

The resulting rAAV virions containing the nucleotide sequence of interest can then be used for gene delivery using the techniques described below.
Compositions and Delivery

A. Compositions

Once produced, the vectors (or virions) encoding the fusions, will be formulated into compositions suitable for delivery. Compositions will comprise sufficient genetic material to produce a therapeutically effective amount of the interleukin receptor of interest, i.e., an amount sufficient to bind to and mediate the effects of the corresponding signal pathway. The compositions will also contain a pharmaceutically acceptable excipient. Such excipients include any pharmaceutical agent that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity.

Pharmaceutically acceptable excipients include, but are not limited to, sorbitol, any of the various TWEEN compounds, and liquids such as water, saline, glycerol and ethanol. Pharmaceutically acceptable salts can be included therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. A thorough discussion of pharmaceutically acceptable excipients is available in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991).

One particularly useful formulation comprises the vector or virion of interest in combination with one or more dihydric or polyhydric alcohols, and, optionally, a detergent, such as a sorbitan ester. See, for example, U.S. Patent No. 6,764,845, incorporated herein by reference in its entirety.

As is apparent to those skilled in the art in view of the teachings of this specification, an effective amount can be empirically determined. Representative doses are detailed below. Administration can be effected in one dose, continuously or intermittently throughout the course of treatment. Methods of determining the most effective means and dosages of administration are well known to those of skill in the art and will vary with the vector, the composition of the therapy, the target cells, and the subject being treated. Single and multiple administrations can be carried out with the dose level and pattern being selected by the treating physician.

If multiple doses are administered, the first formulation administered can be the same or different than the subsequent formulations. Thus, for example, the first
administration can be in the form of an adenovirus vector and the second administration in the form of an adenovirus vector, plasmid DNA, an AAV virus, a subunit vaccine composition, or the like. Moreover, subsequent delivery can also be the same or different than the second mode of delivery.

It should be understood that more than one transgene can be expressed by the delivered recombinant vector. Alternatively, separate vectors, each expressing one or more different transgenes, can also be delivered to the subject as described herein. Thus, multiple transgenes can be delivered concurrently or sequentially. Furthermore, it is also intended that the vectors delivered by the methods of the present invention be combined with other suitable compositions and therapies. For instance, other immune modulators can be present.

Fusion proteins according to the invention can be made by any means known in the art. While such proteins can be made synthetically, or by linking portions which are made, recombinant production can also be used. A fused gene sequence can be produced using the standard tools of recombinant DNA. The fused gene sequence can be inserted into a vector, for example a viral or plasmid vector, for replicating the fused gene sequence. A promoter sequence which is functional in the ultimate recipient cell can be introduced upstream of the fused gene sequence. Promoters used can be constitutive, inducible or repressible. Examples of each type are well-known in the art. The vector can be introduced into a host cell or mammal by any means known in the art. Suitable vectors which can be used include adenovirus, adeno-associated virus, retrovirus, lentivirus, and plasmids. If the vector is in a viral vector and the vector has been packaged, then the virions can be used to infect cells. If naked DNA is used, then transfection or transformation procedures as are appropriate for the particular host cells can be used. Formulations of naked DNA utilizing polymers, liposomes, or nanospheres can be used for fusion gene delivery.

Cells which can be transformed or transfected with recombinant constructs according to the invention may be any which are convenient to the artisan. Exemplary cell types which may be used include bacteria, yeast, insects, and mammalian cells. Among mammalian cells, cells of many tissue types may be chosen, as is convenient. Exemplary cells which may be used are fibroblasts, hepatocytes, endothelial cells, stem cells, hematopoietic cells, epithelial cells, myocytes, neuronal cells, and keratinocytes. These cells can be used to produce protein in vitro, or can be delivered to mammals including humans to produce the
encoded proteins in vivo. This means of delivery is an alternative to delivering nucleic acid to a mammal, delivering viral vector to a mammal, and delivering fusion protein to a mammal.

Compositions of protein or nucleic acids can be in earners, such as buffers, aqueous or lipophilic earners, sterile or non-sterile, pyrogenic or non-pyrogenic vehicles. Non-pyrogenic vehicles are useful for injectible formulations. Formulations can be liquid or solid, for example, lyophilized. Formulations can also be administered as aerosols. Compositions may contain one or more fusion proteins or one or more nucleic acids, or both fusion proteins and nucleic acids. The fusion proteins and or nucleic acids in a composition may be homogeneous, in which case homomultimer proteins will form, or they may be heterogeneous in the composition, in which case heteromultimer proteins will form.

B. Delivery

Generally, the recombinant vectors are introduced into the subject using either in vivo or in vitro transduction techniques. If transduced in vitro, the desired recipient cell will be removed from the subject, transduced with the recombinant vector and reintroduced into the subject. Alternatively, syngeneic or xenogeneic cells can be used where those cells will not generate an inappropriate immune response in the subject.

Suitable methods for the delivery and introduction of transduced cells into a subject have been described. For example, cells can be transduced in vitro by combining recombinant vectors with the subject's cells e.g., in appropriate media, and screening for those cells harboring the DNA of interest using conventional techniques such as Southern blots and/or PCR, or by using selectable markers.

The recombinant vectors or transduced cells can be formulated into pharmaceutical compositions, described above, and the composition introduced into the subject by various techniques, such as but not limited to topical, dermal, transdermal, transmucosal, epidermal, parenteral, gastrointestinal, and nasopharyngeal and pulmonary, including transbronchial and transalveolar administration. Parenteral administration includes intramuscular, intravenous, intraartenal, subcutaneous and intraperitoneal injection, or by injection directly into smooth and cardiac muscle, using e.g., a catheter. Delivery can also be directly into a target organ or desired target tissue.
Pharmaceutical compositions will comprise sufficient genetic material to produce a therapeutically effective amount of the protein of interest, i.e., an amount sufficient to bind to and/or modulate the IL-23 or IL-17 pathways, or to reduce or ameliorate symptoms of the disease state in question, or an amount sufficient to confer the desired benefit. Appropriate doses will also depend on the mammal being treated (e.g., human or nonhuman primate or other mammal), age and general condition of the subject to be treated, the seventy of the condition being treated, the mode of administration, among other factors. An appropriate effective amount can be readily determined by one of skill in the art.

Fusion proteins can be provided to a cell or mammalian host by any means known in the art. Protein can be delivered to the cell or host. Nucleic acid can be administered to the cell of host. Transformed or transfected cells can be administered to the cell or host. In the latter case, cells of the same genetic background are desired to reduce transplantation rejection.

Suitable cells for delivery to mammalian host animals include any mammalian cell type from any organ, tumor, or cell line. For example, human, murine, goat, ovine, bovine, dog, cat, and porcine cells can be used. Suitable cell types for use include without limitation, fibroblasts, hepatocytes, endothelial cells, keratinocytes, hematopoietic cells, epithelial cells, myocytes, neuronal cells, and stem cells.

Means of delivery of fusion proteins or nucleic acids encoding fusion proteins include delivery of cells expressing the fusion proteins, delivery of the fusion proteins, and delivery of nucleic acids encoding the fusion proteins. Fusion proteins, cells, or nucleic acids can be delivered directly to the desired organ or tumor, for example by injection, catheterization, or endoscopy. They can also be delivered intravenously, intrabronchially, intra-tumorally, intrathecally, intramuscularly, intraocularly, topically, subcutaneously, transdermally or per os.

Combinations of protein and nucleic acid treatments can be used. For example, a fusion protein according to the invention can be administered to a patient. If a favorable response is observed, then a nucleic acid molecule encoding the fusion protein can be administered for a long term effect. Alternatively, the protein and nucleic acid can be administered simultaneously or approximately simultaneously.

Thus, a "therapeutically effective amount" will fall in a relatively broad range that can be determined through clinical trials. For example, for in vivo injection of rAAV virions, a therapeutically effective dose will be on the order of from about 10^6.
to 10^{15} of the recombinant virus, more preferably 10^8 to 10^{14} recombinant virus. For adenovirus-delivered fusions, a therapeutically effective dose will include about 1×10^6 plaque forming units (PFU) to 1×10^{12} PFU, preferably about 1×10^7 PFU to about 1×10^{10} PFU, or any dose within these ranges which is sufficient to provide the desired affect.

For *in vitro* transduction, an effective amount of rAAV virions to be delivered to cells will be on the order of 10^8 to 10^{13} of the recombinant virus. The amount of transduced cells in the pharmaceutical compositions will be from about 10^4 to 10^{10} cells, more preferably 10^5 to 10^8 cells. Other effective dosages can be readily established by one of ordinary skill in the art through routine trials establishing dose response curves.

Generally, from 1 μl to 1 ml of composition will be delivered, such as from 0.01 to about .5 ml, for example about 0.05 to about 0.3 ml, such as 0.08, 0.09, 0.1, 0.2, etc. and any number within these ranges, of composition will be delivered.

For protein administration, dosage amounts may vary from about 10 ng/kg to up to 100 mg/kg of body weight or more per day, preferably about 1 μg/kg/day to 10 mg/kg/day, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature; see, for example, U.S. Pat. Nos. 4,657,760; 5,206,344; or 5,225,212.

Dosage treatment may be a single dose schedule or a multiple dose schedule. Moreover, the subject may be administered as many doses as appropriate. One of skill in the art can readily determine an appropriate number of doses.

Immune-Related and Inflammatory Disorders

As explained above, the fusions of the invention can be used to bind to and mediate the IL-17 and IL-23 signal pathways, and are therefore useful in the treatment of a wide variety of immune-related disorders and inflammatory diseases. Examples of such disorders, some of which are immune or T-cell mediated, include systemic lupus erythematos, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthopathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjogren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's
disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic
thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis,
tubulointerstitial nephritis), demyelinating diseases of the central and peripheral
nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy
or Guillain-Barre syndrome, and chronic inflammatory demyelinating
polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C,
D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis,
primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis,
inflammatory bowel disease (ulcerative colitis: Crohn's disease), gluten-sensitive
enteropathy, and Whipple's disease, autoimmune or immune-mediated skin diseases
including bullous skin diseases, erythema multiforme and contact dermatitis,
psoriasis, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food
hypersensitivity and urticaria, immunologic diseases of the lung such as eosinophilic
pneumonias, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis,
transplantation associated-diseases including graft rejection and graft-versus-host-
disease, infectious diseases including viral diseases such as AIDS (HFV infection),
hepatitis A, B, C, D, and E, herpes, etc., bacterial infections, fungal infections,
protozoal infections and parasitic infections, and cancer.

In certain embodiments, an individual at risk of developing an immune-related
disorder or inflammatory disease is administered an amount effective to delay or
prevent the disease. Individuals at risk of developing an immune-related disease, such
as an autoimmune disease include, for example, those with a genetic or other
predisposition toward developing such disease. In humans, susceptibility to particular
autoimmune diseases is associated with HLA type with some being linked most
strongly with particular MHC class II alleles and others with particular MHC class I
alleles. For example, ankylosing spondylitis, acute anterior uveitis, and juvenile
rheumatoid arthritis are associated with HLA-B27, Goodpasture's syndrome and MS
are associated with HLA-DR2, Grave's disease, myasthenia gravis and SLE are
associated with HLA-DR3, rheumatoid arthritis and pemphigus vulgaris are
associated with HLA-DR4 and Hashimoto's thyroiditis is associated with HLA-DR5.
Other genetic predispositions to autoimmune diseases are known in the art and an
individual can be examined for existence of such predispositions by assays and
methods well known in the art. Accordingly, in some instances, an individual at risk
of developing an immune-related disorder can be identified.
Animal models for the study of immune-related diseases are known in the art. For example, animal models which appear most similar to human disease include animal strains which spontaneously develop a high incidence of the particular disease. Examples of such models include, but are not limited to, the nonobese diabetic (NOD) mouse, which develops a disease similar to type 1 diabetes, and lupus-like disease prone animals, such as New Zealand hybrid, MRL-Fas^{lpr} and BXSB mice. Animal models in which an autoimmune disease has been induced include, but are not limited to, experimental autoimmune encephalomyelitis (EAE), which is a model for multiple sclerosis, collagen-induced arthritis (CIA), which is a model for rheumatoid arthritis, and experimental autoimmune uveitis (EAU), which is a model for uveitis. Animal models for autoimmune disease have also been created by genetic manipulation and include, for example, IL-2/IL-10 knockout mice for inflammatory bowel disease, Fas or Fas ligand knockout for SLE, and IL-1 receptor antagonist knockout for rheumatoid arthritis.

Accordingly, animal models standard in the art are available for the screening and/or assessment for activity and/or effectiveness of the methods and compositions of the invention for the treatment of immune-related disorders.

Kits of the invention

The invention also provides kits. In certain embodiments, the kits of the invention comprise one or more containers comprising purified an interleukin receptor-immunoglobulin fusion and/or recombinant vectors encoding such a fusion. The kits may further comprise a suitable set of instructions, generally written instructions, relating to the use of the proteins and vectors for any of the methods described herein, such as modulating IL-17 or IL-23 activity, ameliorating one or more symptoms of an immune-related disease, ameliorating a symptom of chronic inflammatory disease, decreasing an immune response to a virus, and the like.

The kits may comprise the components in any convenient, appropriate packaging. For example, if the fusion proteins or recombinant vectors are provided as a dry formulation (e.g., freeze dried or a dry powder), a vial with a resilient stopper is normally used, so that the vectors may be easily resuspended by injecting fluid through the resilient stopper. Ampules with non-resilient, removable closures (e.g., sealed glass) or resilient stoppers are most conveniently used for liquid formulations. Also contemplated are packages for use in combination with a specific device, such as
an inhaler, nasal administration device (e.g., an atomizer), a syringe or an infusion device such as a minipump.

The instructions relating to the use or the recombinant vectors generally include information as to dosage, dosing schedule, and route of administration for the intended method of use. The containers may be unit doses, bulk packages (e.g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits of the invention are typically written instructions on a label or package insert (e.g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions earned on a magnetic or optical storage disk) are also acceptable.

2. EXPERIMENTAL

Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.

Example 1

Construction of Soluble IL-17 and IL-23 Receptors.

Soluble receptors containing the extracellular domains of the human IL-17 and IL-23 receptors were cloned in-frame to a 9-Gly linker followed by the CH3 region of human IgGl driven using the chicken β-actin promoter and CMV enhancer. Plasmid pCBA2-int-BGH sIL17R-9G-CH3 is depicted in Figure 7, and plasmid pCBA2-int-BGH sIL23R-9G-CH3 is depicted in Figure 8.

The final IL-23r and IL-17r fusions are shown in Figures 3 and 4, respectively, and the sequences are presented in Figures 5A-5B (SEQ ID NOS 5 and 6) and Figures 6A-6B (SEQ ID NOS 7 and 8), respectively. As shown in Figure 3, the IL-23r construct encodes a soluble IL-23r, including amino acids 1 to 347 of human IL-23r, linked by a sequence of nine glycines to the CH3 domain, amino acids 225 to 330 of the human IgGl C region. As shown in Figure 4, the IL-17r construct encodes a soluble IL-17r, including amino acids 1 to 317 of human IL-17r, linked by a sequence of nine glycines to the CH3 domain, amino acids 225 to 330 of the human IgGl C.
The constructs were incorporated into adenovirus and rAAV virions as follows:

The hIL-17R-9gly-CH3 chimera was constructed from a PCR fragment consisting of the signal peptide and extracellular domain (EC) (aa 1-317) of human IL-17RA. The EC domain fragment was linked in-frame to a 9-gly amino acid linker, followed by the human IgGl CH3 region.

The hIL-23R-9gly-CH3 chimera was similarly constructed from a PCR fragment consisting of the EC (aa 1-347) of the hIL-23r subunit plus 9-gly and human IgGl CH3 region. Note that this chimera is a homodimer of the hIL-23r subunit and the hIL-12rβ1 subunit.

Expression for both chimers was driven from the chicken β-actin (CBA) promoter.

Recombinant AAV virions were produced essentially as described in Pechan et al., "Novel anti-VEGF Chimeric Molecules Delivered by AAV vectors for Inhibition of Retinal Neovascularization" Gene Ther July, 17, 2008 (Epub). For all viral constructs, the CBA expression cassettes were inserted into AAV pre-viral plasmids containing stuffer DNA flanked by AAV-2 inverted terminal repeats. Viruses were produced by triple-transfection of previral plasmid, helper plasmid, and AAV rep/cap plasmid in 293 cells. Resulting AAV particles were purified by iodixanol gradient and Q column. DNase-resistant particle concentration was determined by quantitative PCR.

For recombinant adenovirus vectors, expression cassettes from pCBA2/IL-17R/9gly/CH3 and pCBA2/IL-23R/9gly/CH3 were cloned into pre-adenovirus plasmids and adenovirus lysates were generated in 293 cells as described by Souza and Armentano, Biotechniques (1999) 26 502-508. All vectors were propagated in 293 cells and purified by CsCl centrifugation as previously described by Rich et al., Hum Gene Ther (1993) 4:461-476.

Protein expression was verified by Western analysis and ELISA.
Example 2

Ligand Binding Capabilities of Soluble IL-17 and IL-23 Receptors

Ligand Binding Assays Conditioned media containing soluble ligands were generated in transfected or virally-infected 293 cells. Receptor concentrations in collected media were determined by ELISA and Western blot. Ligand binding assays were performed on immunoassay plates coated with target ligand rhIL-17 or rhIL-23. Typically, conditioned media containing serial dilutions of soluble receptor were incubated with immobilized ligand 1-2 hours at room temperature. Unbound ligand was washed away and bound protein was detected and quantified with receptor-specific detection antibodies, as is performed in an ELISA.

In order to test the ability of the soluble IL-17 and IL-23 receptor fusions to bind to their respective ligands, the following experiments were conducted. In one experiment, the ability of the soluble receptors to bind immobilized ligands was explored. Conditioned media for each receptor was generated from Ad-infected A459 cells and quantified by ELISA as described. Binding was measured on ELISA plates pre-coated with IL-23 or IL-17 ligand. Relative binding was compared to purchased receptor/Fc chimeras (R&D Systems, Minneapolis, MN). The control IL-17R/Fc from R&D contains human IL-17R(Met1-Trp320) fused to IEGRMD and human IgGl(Pro100-Lys330). The control IL-23R/Fc from R&D contains human CD33 signal peptide(Met1-Ala6)-humanIL-23R(Gly24-Asp323) fused to IEGRMD and human IgGl(Pro100-Lys330).

Results are shown in Figures 9A and 9B. As can be seen, both receptors bound their respective ligands.

Next, the soluble IL-17r construct described above was tested for its ability to bind to free IL-17 in solution using a competition ELISA. IL-17 at 1 ng/ml was preincubated with serial dilutions of the IL-17r/9gly/CH3 construct, or IL-23r/Fc. Free IL-17 was measured by ELISA after incubation for one hour at room temperature.

Results are shown in Figure 10. Binding is shown relative to the sIL-17r/Fc chimera (R&D Systems, Minneapolis, MN). As can be seen, the IL-17r/9gly/CH3 construct bound strongly to IL-17 in the competition ELISA.
Example 3

Description of NOD mouse study

The \textit{vivo} study consisted of three groups of 20 female non-obese diabetic (NOD) mice. Mice in each group were injected at 10 weeks of age intravenously with 10^7 DNase-resistant AAV particles (DRP). Test particles were AAV1/null, AAV1/IL-17R/9gly/CH3, and AAV1/IL-23R/9gly/CH3.

Blood Glucose Measurements Blood from each mouse was taken by tail nick twice weekly beginning two days post-injection for blood glucose measurements. Figure 16 graphs onset of hyperglycemia (defined as blood glucose $>$ 300mg/dl) for each group. Diabetes onset was delayed in the groups receiving AAV expressing soluble cytokine receptors relative to the null group.

Cytokine Quantification: For cytokine ELISAs, serum was taken from each mouse four weeks and eight weeks post-injection, respectively. Figures 11 to 15 show results from a typical assay. In this case, sera from all time points were pooled by treatment group. Cytokine levels were measured using the Milipore Beadlyte Mouse 21-plex Cytokine Detection System. Samples were read on a Luminex 2000 instrument. Additionally, average cytokine levels were calculated for all non-diabetic mice (blood glucose $<$ 300mg/dL) or diabetic mice, and plotted for comparison purposes.

Thus, compositions comprising IL-23R-immunoglobulin fusions, IL-17R-immunoglobulin fusions, as well as methods for delivering these receptors in order to modulate the effects of IL-23 and IL-17, such as by inhibiting the IL-23 and IL-17 pathways, are described. Although preferred embodiments of the subject invention have been described in some detail, it is understood that obvious variations can be made without departing from the spirit and the scope of the invention as defined herein.
Claims

1 A recombinant virus comprising a polynucleotide encoding a fusion protein, wherein the fusion protein comprises

5 (a) an interleukin receptor selected from the group consisting of an IL-17 receptor and an IL-23 receptor wherein the IL-23 receptor lacks an IL-12 receptor component, and

(b) an immunoglobulin constant region multimerization domain,

wherein when the fusion protein is expressed, a multimer of the fusion protein is produced

2 The recombinant virus of claim 1, wherein the multimer is a homodimer

3 The recombinant virus of either one of claims 1 or 2, wherein the multimerization domain comprises the CH3 domain of an IgG, or an active fragment thereof

4 The recombinant virus of any one of claims 1-3, wherein the multimerization domain is from an IgG1, an IgG2, an IgG3 or an IgG4

5 The recombinant virus of claim 4, wherein the multimerization domain is from the constant region of an IgG1 heavy chain

6 The recombinant virus of any one of claims 1-5, wherein the interleukin receptor is a soluble interleukin receptor

7 The recombinant virus of claim 1, wherein the fusion protein comprises the amino acid sequence of Figure 5B (SEQ ID NO 6), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 5B (SEQ ID NO 6)

8 The recombinant virus of claim 1, wherein the fusion protein comprises the amino acid sequence of Figure 6B (SEQ ID NO 8), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 6B (SEQ ID NO 8)
9 The recombinant virus of any one of claims 1-8, wherein the virus is a recombinant adenovirus

10 The recombinant virus of any one of claims 1-8, wherein the virus is a recombinant adeno-associated virus virion

11 A recombinant adenovirus comprising a polynucleotide encoding a fusion protein selected from the group consisting of a fusion protein comprising the amino acid sequence of Figure 5B (SEQ ID NO 6), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 5B (SEQ ID NO 6), and a fusion protein comprising the amino acid sequence of Figure 6B (SEQ ID NO 8), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 6B (SEQ ID NO 8)

12 The recombinant adenovirus of claim 11, wherein the fusion protein comprises the amino acid sequence of Figure 5B (SEQ ID NO 6)

13 The recombinant adenovirus of claim 11, wherein the fusion protein comprises the amino acid sequence of Figure 6B (SEQ ID NO 8)

14 A recombinant adeno-associated virus virion comprising a polynucleotide encoding a fusion protein selected from the group consisting of a fusion protein comprising the amino acid sequence of Figure 5B (SEQ ID NO 6), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 5B (SEQ ID NO 6), and a fusion protein comprising the amino acid sequence of Figure 6B (SEQ ID NO 8), or an active variant thereof having at least 90% sequence identity to the sequence of Figure 6B (SEQ ID NO 8)

15 The recombinant adeno-associated virus virion of claim 14, wherein the fusion protein comprises the amino acid sequence of Figure 5B (SEQ ID NO 6)

16 The recombinant adeno-associated virus virion of claim 14, wherein the fusion protein comprises the amino acid sequence of Figure 6B (SEQ ID NO 8)
17 A kit comprising the recombinant virus of any one of claims 1-16, and instructions for transducing a host cell with the recombinant virus

18 A method of inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway, said method comprising administering the recombinant virus of any one of claims 1-16 to a cell to transduce the cell

19 The method of claim 18, wherein the recombinant virus is administered to cells \textit{in vitro}

20 The method of claim 19, wherein the transduced cells are administered to a subject in need thereof

21 The method of claim 18, wherein the recombinant virus is administered to cells \textit{in vivo} in a subject in need thereof

22 A fusion protein selected from the group consisting of a protein comprising the sequence of amino acids of Figure 5B (SEQ ID NO 6), or a sequence of amino acids with at least 90% sequence identity thereto, and a protein comprising the sequence of amino acids of Figure 6B (SEQ ID NO 8), or a sequence of amino acids with at least 90% sequence identity thereto

23 The fusion protein of claim 22, wherein the protein comprises the sequence of amino acids of Figure 5B (SEQ ID NO 6), or a sequence of amino acids with at least 90% sequence identity thereto

24 The fusion protein of claim 22, wherein the protein comprises the sequence of amino acids of Figure 6B (SEQ ID NO 8), or a sequence of amino acids with at least 90% sequence identity thereto

25 The fusion protein of claim 22, wherein the protein comprises the sequence of amino acids of Figure 5B (SEQ ID NO 6)
26 The fusion protein of claim 22, wherein the protein comprises the sequence of amino acids of Figure 6B (SEQ ED NO 8)

27 A polynucleotide encoding the fusion protein of any one of claims 22-26

28 A recombinant vector comprising
(a) a polynucleotide according to claim 27, and
(b) at least one control element operably linked to said polynucleotide, whereby said coding sequence can be transcribed and translated in a host cell

29 A host cell composing the recombinant vector of claim 28

30 A method for producing a fusion protein, said method comprising culturing a population of host cells according to claim 29 under conditions for producing said protein

31 A method of inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway, said method comprising administering the fusion protein of any one of claims 22-26 to a subject in need thereof

32 A method of inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway, said method comprising administering the polynucleotide of claim 27, to a cell to transduce the cell

33 The method of claim 32, wherein the polynucleotide is administered to cells in vitro

34 The method of claim 33, wherein the transduced cells are administered to a subject in need thereof

35 The method of claim 32, wherein the polynucleotide is administered to cells in vivo in a subject in need thereof
The method of any one of claims 20, 21, 34 and 35, wherein the subject is further administered the fusion protein of any one of claims 22-26

Use of the recombinant virus of any one of claims 1-16 in the manufacture of a medicament for inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway

Use of the fusion protein of any one of claims 22-26 in the manufacture of a medicament for inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway

Use of the polynucleotide of claim 27 in the manufacture of a medicament for inhibiting an interleukin pathway selected from the group consisting of an IL-23 pathway and an IL-17 pathway
Fig. 1A
MGaaRSPPSAVPGLGLLLGLGVLAAGPASLRLLDHMLHALVCSQFGLNC
1
TVKNSCDELDDWJHRPLTFSSHAPKDLQIQHFAHTQGDLFPVAHIEWTL
51
QTDASILYLEGASLVLQNTNERLCVRFEFLSKLRHHRWRFTSHFV
101
VDPDQYEYETVHHLKPIPDGDPHNQSKNFLVPDCEHMAKTVTTMCCSG
151
SLWDPNIVETLEAHLRVSFLWNESTHLYQIIILTSFPHMENHSCFEHMH
201
HIPAPREPFEFQRSNVTLRTLNLKGCQCRQVQIQPFSSCGLNDCRHSAT
251
VSCPEMPDTPPEPDPYMPNLWYFTGISILTVGSPHLVILIVMTWRAGP
301
GSEKYSDDKTYTDGLPAADLPKPRKVIYISADHLVYDVLKFAQ
351
FLLTACGTEVALLIDLEEQASEAGVMTWVGRQKQEMVNESSKIIVLCSRG
401
TRAKWQALLGRGAPVRRLCDHGKVPVQLOFTAAMNLPSDFKRPAFCFGTV
451
VCYFSEVSCDGVDPHGAAPRYPLMDREEFVFYFRIQDLFQMIEQPMHRV
501
GELSDGNYRSPGPRQLRAALDRFRDQVRCPDWFECENLYSAADQDAPS
551
LDEEFPSSLPPPTGTGKVRPLVREPGSQAACLIDPVGEAGAIAKJ
601
EPHQPRQCPAPQLHVTLLVAAEGLAVAAVPEGPLADGAAVRLALAGEG
651
EACPLLSGPGARNVSLFIPVDPEDPSLGSSTPASPDLLPEDVRELEG
701
LMLSLFEQSLSCQAGGCSRPAMVLTDHPYTVEEEQQQSVQSDGQYISRS
751
SPQPPEGLTEMEEEEEEEQDPGKALPLSPEDLSELRSLQRLFQLQK
801
NSGWDTMGSESEGSAPA
851

Fig. 1B
Fig. 2A
Fig. 2B
Fig. 5A

Fig. 5B
Fig. 6A

```
1  ATGGGGCCGCACGCAGCCGCGCGCTCGGTCTCCGGGGCCCTGCTGGGGCTGCTCCGTG
61  CTGCTCTGCGCGCTGGCCGCTGGGCTGCTCCTGCTGGACTCTCCGACTGCGACGCG
121  GGTGGGCTGGTTCATCCCTACGCGTCTGATCAGCGTGAGCTGGGCTGCTGGG
181  AGCTGCTGCGGCGGCGCAGAGTCTGACCTGAAAACTGACGGTCAAGAATAGTACCTGCT
241  GCTGACGGTCCTCGCTGACGCGGCTGCGTGATCCTGGAGCTGAGCTGACGCGG
301  GACGAGACGAGAGGGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGGCTGAGG
361  TTTTATGAGGAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
421  CTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
481  GCTGGTGGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG
541  CTTGGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGG
601  CTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
661  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
721  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
781  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
841  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
901  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
961  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
1021  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
1081  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
1141  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
1201  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
1261  GCTGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
```

Fig. 6B

```
1  MGAARSPPFSAVPFGPLLGLLLLLLGLVAPGASLRLLDHRALVCQPGNLNC
51  TVKNSCTLDDSWSHPRNLPTPSPKDLQIQILHFAHTOQGDLPVHPHWEWLT
101  QTDASILYELGELVQLNTERLCLVRFEFLSKLRHRRRKRWFSTFSFV
151  VDPDQYEYVNLTIKPKIPTQGPNQQSNFLFVDPCEHAKMRKVTPCMSGS
201  SLWDPNITVTELEAHQLRVFSTLWNETHLYQILLTSFPFMENHSCFEHMH
251  HIPAPIPEEFHQRSNVLTLRNLKGCRCRHQVQIQQFFSSCNLDCRLHSA
301  VSCPEMPDTTEPIPDYMTGGGGGGGQQREQQYLPFSLPDELTKNQV
351  LTCLVKGFYFSPSIAWEWESNGQPENNYKTTFPVLODSGSFLYLSKLTVDK
401  SRWQGNVFSVCSVMHEALHNHYTQKSLPSK
```
IL-17R/9gly/CH3 vs IL-17R/Fc Binding to Human IL-17

Fig. 9B
IL-9 Averages by Group

Fig. 11
IL-12(p70) Averages by Group

Fig. 14