
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0275612 A1

US 20130275612A1

VOSS et al. (43) Pub. Date: Oct. 17, 2013

(54) SYSTEMS AND METHODS FORSCALABLE Publication Classification
STRUCTURED DATA DISTRIBUTION

(51) Int. Cl.
(71) Applicant: GOLDMAN, SACHS & CO., New H04L 29/06 (2006.01)

York, NY (US) (52) U.S. Cl.
CPC H04L 65/60 (2013.01)

(72) Inventors: Matthew Voss, New Providence, NJ USPC .. 709/231
(US); Vishnu Mavuram, Plainsboro,
R (us. Scott Cohen, Montebello, NY (57) ABSTRACT
US

Systems and methods for efficiently absorbing, archiving,
(73) Assignee: Goldman, Sachs & Co., New York, NY and distributing any size data sets are provided. Some

(US) embodiments provide flexible, policy-based distribution of
high Volume data through real time streaming as well as past

(21) Appl. No.: 13/863,248 data replay. In addition, Some embodiments provide for a
foundation of solid and unambiguous consistency across any

(22) Filed: Apr. 15, 2013 Vendor system through advanced version features. This con
Related U.S. Application Data sistency is particularly valuable to the financial industry, but

also extremely useful to any company that manages multiple
(60) Provisional application No. 61/623,877, filed on Apr. data distribution points for improved and reliable data avail

13, 2012. ability.

2OO
-

Compress Distribute

Patent Application Publication Oct. 17, 2013 Sheet 1 of 8 US 2013/0275612 A1

100

DATA DATA DATA
PRODUCERS PRODUCERS PRODUCERS

110A 11 OB 11ON

DATA DISTRIBUTION
NETWORK

120

ARCHIVE
SERVICE

140

DATA DATA DATA
CONSUMERS CONSUMERS CONSUMERS

130A 130B 130N

FIG. 1

Patent Application Publication Oct. 17, 2013 Sheet 2 of 8 US 2013/0275612 A1

S

s

Patent Application Publication Oct. 17, 2013 Sheet 3 of 8

RECEIVE STREAMING DATA
FROM ONE ORMORE DATA

PRODUCERS

DETERMINE BUSINESS
ALIGNED SERIES OF DATA
PACKAGES ACCORDING TO
BUNDLING PARAMETERS

STORE BUNDLED DATA
PACKAGES IN AN ARCHIVE

PUBLISH METADATAONA
CONTROL CHANNEL

INCLUDING BUNDLEIDS

PUBLISH METADATA TO A
SEPARATE STREAMONTO

THE BUS

FIG. 3

310

320

330

340

350

US 2013/0275612 A1

300

Patent Application Publication Oct. 17, 2013 Sheet 4 of 8 US 2013/0275612 A1

400

RECEIVE STREAMING DATA 410
FROM ONE ORMORE DATA

PRODUCERS

BUNDLE THE 420
STREAMING DATA INTO
PACKAGES OF DATA

ASSIGNANORDER TO THE 430
PACKAGES OF DATA

DELIVER THE PACKAGES OF 440
DATA TO ONE ORMORE
DATA CONSUMERS

FIG. 4

US 2013/0275612 A1 Oct. 17, 2013 Sheet 5 of 8 Patent Application Publication

019

pSS

pSS Îae

00G

Patent Application Publication Oct. 17, 2013 Sheet 6 of 8 US 2013/0275612 A1

1? 600
RECEIVE STREAMING 610
DATA FROM DATA
PRODUCERS

BUNDLE THE DATA INTO 620 RECEIVE REQUEST TO 660
DATAPACKAGES REPLAY DATA

ARCHIVING THE DATA 630 ACCESS REQUESTED 670
PACKAGES DATA FROMARCHIVE

640

TRANSFORM THE DATA
PACKAGES INTO A
LOADABLE FORMAT

DELIVER DATAPACKAGES IN 650
THE LOADABLE FORMAT TO

ONE ORMORE DATA
CONSUMERS

FIG. 6

/ “SO|-

US 2013/0275612 A1 Oct. 17, 2013 Sheet 7 of 8

| | | | 68

00/

Patent Application Publication

US 2013/0275612 A1 Oct. 17, 2013 Sheet 8 of 8 Patent Application Publication

079

098

US 2013/0275612 A1

SYSTEMIS AND METHODS FORSCALABLE
STRUCTURED DATA DISTRIBUTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Application Ser. No. 61/623,877 filed Apr. 13, 2012, which is
incorporated herein in its entirety by reference for all pur
poses.

TECHNICAL FIELD

0002 Various embodiments of the technology of the
present application generally relate to data delivery. More
specifically, Some embodiments of the technology of the
present application relate to systems and methods for Scalable
structured data distribution.

BACKGROUND

0003. There is growing regulatory and competitive pres
Sure on various industries to improve the quality, consistency,
and availability of reported data. Storage and processing
demands are increasing along multiple dimensions such as
granularity, online history, redundancy, and collections for
joining together new combinations of data. In addition, intra
day versioning is becoming necessary for managing discrep
ancies between departments with different timing needs as
data is increasingly shared across departments within a com
pany. Departments also are starting to look for the road that
will take them from batch processing to incremental real-time
and stream data management.
0004. While demand for efficient and consistent data man
agement is growing, many large companies are replacing
failing ACID (Atomicity, Consistency, Isolation, and Dura
bility) architecture with scalable BASE architecture. Solu
tions to view and analyze large to huge datasets are becoming
commonplace as these companies release aspects of their
cloud-scaling systems to open source. While hyper-scale
analysis engines are becoming commonplace, tools to man
age movement of data sets have not kept pace. Large compa
nies are scrambling to protect themselves from growing like
lihood of outages because they lack means to manage the
availability of large data streams.
0005. Many other companies face the same inability to
replicate growing data sets. ACID architectures are costly,
complex, and wrong for ensuring that data is consistent and
available across space and time (e.g., department data sharing
and forensics). A higher bar for availability, consistency, and
governance of these growing data sets is consistently being
Set.

SUMMARY

0006 Systems and methods are described for scalable
structured data distribution. In some embodiments, a method
can include receiving streaming raw data from a data pro
ducer. The data can be bundled into packages of data (i.e.,
bundles) based on an archiving strategy. In some cases, any
metadata associated with the streaming data is leveraged for
efficient policy driven routing. The metadata can be pub
lished, possibly recursively, on one or more channels (e.g., a
control channel). Each of the packages of data may be ordered
using a series of consecutive integers produced by a master
clock. The packages of data can then be archived and deliv
ered (e.g., in parallel) to consumers, which have subscribed to

Oct. 17, 2013

the data producer. The packages of data can be replayed based
on the ordering identified by the consecutive integers upon a
request from a data consumer.
0007 Embodiments of the technology of the present
application also include computer-readable storage media
containing sets of instructions to cause one or more proces
sors to perform the methods, variations of the methods, and
other operations described herein.
0008. Some embodiments include a system comprising a
bundler, a transformer, a stream clock, and an archiving Ser
vice. The bundler can be configured to receive streaming raw
data from a data producer and bundle the data into a series of
data packages by associating each of the data packages with
a unique identifier having a monotonically increasing order.
The transformer can receive the data packages (e.g., from an
archive) and generate loadable data structures for a reporting
store associated with a data subscriber. The loader can receive
and store the loadable data structures into a storage device
associated with the data subscriber based on the logical order
ing.
0009. Some embodiments can include a master clock con
figured to generate a logical series of integers, each of which
is associated with a single data package in the business
aligned, policy driven (declarative) series of data packages. In
various embodiments, the system can include a data channel
allowing data from a data producer to be continuously
streamed to the data Subscriber. In addition, a messaging
channel can be used to provide a current status of the data
being continuously streamed from the data producer to the
data Subscriber through the data distribution system. A con
trol channel separate from the data channel to allow the data
Subscriber to request replay of the data may also be used in
Some embodiments.
0010 While multiple embodiments are disclosed, still
other embodiments of the technology of the present applica
tion will become apparent to those skilled in the art from the
following detailed description, which shows and describes
illustrative embodiments of the technology. As will be real
ized, the technology is capable of modifications in various
aspects, all without departing from the scope of the present
technology. Accordingly, the drawings and detailed descrip
tion are to be regarded as illustrative in nature and not restric
tive.

BRIEF DESCRIPTION OF THE DRAWINGS

0011 Embodiments of the present technology will be
described and explained through the use of the accompanying
drawings in which:
0012 FIG. 1 illustrates an example of an environment in
which some embodiments of the present technology may be
utilized;
0013 FIG. 2 illustrates phases of operation of a data dis
tribution system in accordance with one or more embodi
ments of the present technology;
0014 FIG. 3 is a flowchart illustrating a set of operations
for bundling data in accordance with various embodiments of
the present technology;
0015 FIG. 4 is a flowchart illustrating a set of operations
for processing data streams in accordance with some embodi
ments of the present technology;
0016 FIG. 5 illustrates a set of components of a data
distribution system in accordance with one or more embodi
ments of the present technology;

US 2013/0275612 A1

0017 FIG. 6 is a flowchart illustrating a set of operations
for delivering data in accordance with various embodiments
of the present technology;
0018 FIG. 7 illustrates an overview of a data distribution
system architecture which can be used in one or more
embodiments of the present technology; and
0019 FIG. 8 illustrates an example of a computer system
with which some embodiments of the present technology
may be used.
0020. The drawings have not necessarily been drawn to
scale. For example, some components and/or operations may
be separated into different blocks or combined into a single
block for the purposes of discussion of some of the embodi
ments of the technology of the present application. Moreover,
while the technology is amenable to various modifications
and alternative forms, specific embodiments have been
shown by way of example in the drawings and are described
in detail below. The intention, however, is not to limit the
Scope of the application to the particular embodiments
described. On the contrary, the application is intended to
cover all modifications, equivalents, and alternatives falling
within the scope of the technology as defined by the appended
claims.

DETAILED DESCRIPTION

0021 Various embodiments of the technology of the
present application generally relate to data management (e.g.,
the storage and movement of big data). More specifically,
some embodiments relate to systems and methods for scal
able structured data distribution. Some embodiments provide
for a data bus suitable for reliably distributing large volumes
of data to multiple clients in parallel. In addition, some
embodiments include an integrated system for efficiently
absorbing, archiving, and distributing any size data sets as
well as providing flexible, policy-based distribution of high
Volume data through real time streaming as well as past data
replay.
0022 Data consumers often desire data to be consistent,
available, and partitioned (“CAP). Achieving all of these
attributes instantaneously is often difficult. Delayed consis
tency is the favorable compromise to make in many institu
tions where consistency and availability is crucial, but some
timing delay can be acceptable. As such, some embodiments
of the data distribution system disclosed herein hold consis
tency, availability, and partitioning sacred, while giving
ground only on the timing of consistency. Through a unique
clocking scheme used to tag data, various embodiments of the
data distribution system achieve the required CAP, eventu
ally.
0023. In order to address scale-out requirements stem
ming from regulatory and competitive pressures, various
embodiments provide for a data flow solution leveraging the
BASE architecture. Various embodiments provide for an inte
grated system for efficiently absorbing, archiving, and dis
tributing any size data sets. The integrated system can provide
for Scalable distribution (i.e., efficient, simultaneous stream
ing to any number of consumers), consistency (i.e., consistent
live backup, data sharing and forensics Support), agility (i.e.,
Vendorindependence and rapid adoption of analysis engines),
governance (i.e., secure policy-driven management over dis
tribution), and/or forensics (i.e., replay and restore past ver
sions of data at high speed).
0024. In addition, some embodiments of the integrated
data distribution system allow developers to identify data in

Oct. 17, 2013

simple terms (Schema and business purpose) and Submit high
Volumes of data into a bus where policies govern storage,
transformation, and streaming into multiple targets simulta
neously. All versions of data sent through the bus can be
compressed and stored and then replayed seconds, days or
years later with guaranteed consistency into any target. Some
embodiments include features that can be applied more
broadly including an adaptable component-based, message
driven architecture, stateless and declarative setup, and spe
cial compression and optimization features.
0025. Some embodiments bridge data flows with cost
saving cloud technologies across internal and external
domains. To this end. Some embodiments of the technology
can include features to Support a variety of distributed/non
distributed flow combinations, such as, but not limited to the
following: 1) high Volume data capture and replay; 2) policy
based encryption for security on the wire and on disk; 3)
high-throughput parallel transport; 4) en-route parallel pro
cessing or transformation; 5) Superior structured compres
sion; 6) ability to monitor and manage data processing and
storage costs at a business level; and/or 7) flexible adapters
into and out of repeatable data flows.
0026. While many traditional systems use an imperative
data flow, various embodiments of the present technology use
rule-based or “declarative' data flow. As a result, provision,
Subscription, channeling, archiving, and entitlement of all
data may be decoupled from any proprietary implementation
through a set of well-understood rules. In addition, data can
be abstracted from the underlying repository models.
Because captured data is kept in ordered, raw form, the data
can be replayed from any point in the past into new database
Solutions, providing an excellent platform for fast adoption of
new technologies. Built-in consistency mechanisms help
manage simultaneous flows in Some embodiments. This
allows different data stores to be populated and used in par
allel. By using consistent stores in parallel, a new hybrid
reporting architecture becomes possible. For example, the
combined advantage of tandem relational and NoSQL
engines can be made available to the application layer in ways
that give new performance and cost-scaling dynamics for
large data reporting challenges.
0027. In the following description, for the purposes of
explanation, numerous specific details are set forth in order to
provide a thorough understanding of embodiments of the
technology. It will be apparent, however, to one skilled in the
art that embodiments of the technology may be practiced
without some of these specific details.
0028 Moreover, the techniques introduced here can be
embodied as special-purpose hardware (e.g., circuitry), as
programmable circuitry appropriately programmed with
Software and/or firmware, or as a combination of special
purpose and programmable circuitry. Hence, embodiments
may include a non-transitory machine-readable medium hav
ing stored thereon non-transitory instructions that may be
used to program a computer (or other electronic devices) to
perform a process. The machine-readable medium may
include, but is not limited to, optical disks, compact disc
read-only memories (CD-ROMs), magneto-optical disks,
ROMs, random access memories (RAMS), erasable program
mable read-only memories (EPROMs), electrically erasable
programmable read-only memories (EEPROMs), applica
tion-specific integrated circuits (ASICs), magnetic or optical
cards, flash memory, or other type of media/machine-read
able medium Suitable for storing electronic instructions.

US 2013/0275612 A1

Terminology

0029 Brief definitions of terms, abbreviations, and
phrases used throughout this application are given below.
0030. The terms “connected” or “coupled” and related
terms are used in an operational sense and are not necessarily
limited to a direct physical connection or coupling. Thus, for
example, two devices may be coupled directly, or via one or
more intermediary media or devices. As another example,
devices may be coupled in Such away that information can be
passed therebetween, while not sharing any physical connec
tion with one another. Based on the disclosure provided
herein, one of ordinary skill in the art will appreciate a variety
of ways in which connection or coupling exists in accordance
with the aforementioned definition.

0031. The phrases “in some embodiments.” “according to
some embodiments,” “in the embodiments shown,” “in other
embodiments, and the like generally mean the particular
feature, structure, or characteristic following the phrase is
included in at least one implementation of the present tech
nology, and may be included in more than one implementa
tion. In addition, Such phrases do not necessarily refer to the
same embodiments or different embodiments.

0032. If the specification states a component or feature
“may”, “can”, “could', or “might be included or have a
characteristic, that particular component or feature is not
required to be included or have the characteristic.

General Description

0033 FIG. 1 illustrates an example of an environment 100
in which some embodiments of the present technology may
be utilized. As illustrated in FIG. 1, data producers 110A
110N produce data that is distributed over data distribution
network 120 to data consumers 130A-130N. In accordance
with various embodiments, data distribution network 120
achieves scalable data flow through a combination of fea
tures. Data generated by data producers 110A-110N can be
structured, and flow processing components can all be given
awareness of this structure. This awareness can be injected at
runtime and can even be injected per work cycle, if needed,
for more dynamic resource sharing. By structuring the data
generated by the data producers in a systematic manner, Vari
ous embodiments can take advantage of one or more of the
following features: 1) efficient in-process and on disk colum
nar compression; 2) separation of data and control flow; 3)
transparency and monitoring of flow by Surfacing important
business constructs; 4) ability to efficiently manage streams
through Subscriptions, filtering, forking, or merging; and 5)
ability to implant structured data services into the flow such as
key-generation services upstream of target data stores.
0034. In some embodiments, data distribution network
120 includes flow processing components that push all prod
ucts to external services for State management and recovery
on a per work-cycle basis. Services that save down state can
be specialized for that purpose. In this way, all the heavy
processing components of the system recover off of external
service state and can be made completely dynamic from cycle
to cycle. The stateless rule of processing is to read progress
from the downstream product through a designated Stateful
service that specializes in managing state (no processing).
Similarly, flow processing components may only receive the
input pushed to them or request it from a declared upstream
service.

Oct. 17, 2013

0035. One way to visualize embodiments of the design is
to think of flow processing components as segments of pipe
that can be dynamically attached to compatible upstream and
downstream segments of pipe. Pipe connectivity is highly
dynamic in that more processing can be spun up between
stateful components without need to upload or restore any
previous state information. In various embodiments, there is
only one stateful service component from which all other
stateful services can eventually recover. This is the raw data
archive service 140. Archiving requirements of all down
stream state services can be relaxed in some embodiments.
0036 FIG. 2 illustrates phases of operation of a data dis
tribution system 200 in accordance with one or more embodi
ments of the technology. As illustrated in FIG. 2, data distri
bution system 200 is able to ingest streaming data from one or
more data producers 110A-110N. As explained further below,
the data is thenbundled into discrete data packages that can be
compressed (e.g., using columnar compression). These dis
crete data packages are then distributed to one or more data
consumers. Substantially simultaneously, the discrete data
packages may be provided a unique identifier and archived
(not shown in FIG. 2). The data consumers can then unpack
the data from the discrete data packages and generate reports
or otherwise use the data.
0037 Data distribution system 200 may have a pluggable
component architecture. The data distribution system can
have processing components and stateful services. In some
embodiments, the processing components can include two
channel pipe segments—one channel for data flow and one
channel for control flow. The stateful services may also have
separate data and control channels, but serve as demultiplex
ors for multiple destination fan-out as illustrated in FIG. 2.
The components can be language and platform independent.
Contracts between components can be implemented through
messaging Subscription/publication, which includes instru
mentation output through narrow delivery APIs of a store/
fetch nature and through process control APIs for startup/
shutdown.
0038 External components behave very similarly from an
operational standpoint. They publish consistent instrumenta
tion information aligned with the distributed master clock so
that progress and capacity can be understood through the
system. Instrumentation can be aligned with the unique iden
tifiers of the data packages (i.e., bundle IDs). That is, there are
instrumentation events at the beginning of consuming a
bundle or upon completion of processing a bundle. This
aspect of instrumentation lines up the instrumentation events
with the master clock. Lining up instrumentation with master
clock events allows for the instrumentation aligned with the
stream clock events to act as a control event.

0039 Components of data distribution system 200 extend
beyond basic transport and can be used in any step towards
end-delivery of data. Some embodiments provide for a data
curation process that shapes data into a format accessible in
the future. If the data needs to be recovered or replayed, the
archive can locate and retransmit an exact replica of the data
based on the unique identifiers. For example, would also
follow the dual-pipe stateless process model with consistent
instrumentation. In this way, capacity and monitoring can be
managed with a single toolset all the way through the flow.
0040 Data distribution system 200 can maximize event
efficiency because durability requirements are not essential
downstream from the archive. Durable messages are only
required coming into a bundler for packaging and archiving.

US 2013/0275612 A1

From that point on, all data is repeatable in view of the unique
identifier and packaging. Non-durable topics are used to pub
lish all activity out of and downstream of the bundler, greatly
reducing the infrastructural burden.
0041. By making the component configuration of the data
distribution system 200 declarative, the system can dynami
cally spin up flow processing components, as explained
above. By making data structure and data source models
declarative, the system provides operational transparency on
those sources and a simple means to build a public catalog of
what data is available from where. Declarative subscriptions
can be used to precisely understand the data flows shared
between departments using data distribution system 200. All
data and control signals may be pushed through the system,
thus allowing a declarative contract and decoupling between
publishers and Subscribers of data along with dynamic setup
and Scaling.
0042 FIG. 3 is a flowchart illustrating a set of operations
300 for bundling data in accordance with various embodi
ments of the present technology. Receiving operation 310
receives streaming data from one or more data producers.
Determination operation 320 determines bundling param
eters (e.g., bundle size) for bundling the disparate Small
pieces of the streaming data in accordance with the bundling
parameters. The bundling parameters can include business
rules that allow a business to determine how the data should
be grouped or bundled (e.g., by abundler as illustrated in FIG.
5) into the data packages (e.g., based on content, source,
expected use, etc.) In some cases, the bundler can aggregate
raw messages or data before any transformation is performed.
The bundles can be assigned a monotonically increasing
bundle ID or other unique identifier to sequentially order the
bundles. This unique ID may be a public ID that is leveraged
in reporting for versions, verification, and any other query
activity that needs to leverage guaranteed order of bundle
stream data.

0043 Storing operation 330 stores the bundled data pack
ages in an archive. Publishing operation 340 can then publish
metadata associated with the bundles on a control channel. In
Some embodiments, the metadata can include bundle IDs. In
addition to publishing the metadata on the control channel,
publishing operation 350 may publish the metadata to a sepa
rate stream. While the control information can be sent out on
a non-durable topic, an identical copy of the control data may
be available with the data itself. Some advantages of includ
ing the control data with the packages include the following:
1) exact behavior of the system can be read and replayed from
the archive as the package contains all events and data; and 2)
control Summary information including index information
located in the bundle itself allows for fast scanning of the files
(just the index), eliminating the need to scan through the
entire file in many cases.
0044 FIG. 4 is a flowchart illustrating a set of operations
400 for processing data streams in accordance with some
embodiments of the technology. One or more of these opera
tions can be performed by various system components such as
a submission service or a bundler. As illustrated in FIG. 4,
receiving operation 410 receives streaming data from one or
more data producers. Bundling operation 420 bundles the
streaming data into data packages, as illustrated in FIG.3, that
are assigned a unique identifier by ordering operation 430.
Delivery operation 440 delivers the data packages with the
assigned unique identifier to one or more data consumers.

Oct. 17, 2013

0045 Bundling operation 420 can aggregate disparate
small pieces of information that enter the data distribution
system into larger logically-clocked blocks of data, data
packages, or bundles. The aggregation of large data flows
performed by bundling operation 420 allows the system to
leverage the separation of data and control. By tuning bundle
size and controlling information that is included in the bun
dle's metadata, the system can create many-fold efficiency for
managing data by the bundle's metadata (a.k.a. control data).
Various embodiments allow for the selection of the content of
the control data in order to tune decisions for large data flows.
0046) Aggregation or “chunking of the data by bundling
operation 420 also has the direct and simple benefit of
improving IO performance. In some embodiments, bundling
is closely related to serialization and identifying the order of
the bundles by a unique ID, which can be useful in creating
reliable distribution of data. Data flow cannot be reliably
reproduced in multiple locations (e.g., primary and backup)
without consistent ordering given by the serialization and
identification.
0047 FIG. 5 illustrates a set of components of a data
distribution system 500 in accordance with one or more
embodiments of the technology. As illustrated in FIG. 5, data
distribution system 500 can include bundlers 510, archive
520, transformers 530, repository services 540, loaders 550,
reporting stores 560, and storage 570.
0048. From a data flow perspective, bundlers 510 may sit
between a submission service and archive service 520. The
Submission service, while not shown, receives the raw
streaming data from one or more data producers and feeds the
raw data into the bundlers 510. Bundlers 510 create serially
ordered bundles for specific data streams—that is, there is a
specific set of coordinated bundler processes for each type of
message flow. These coordinated processes create an aggre
gated data representation and sends it to the archive service.
0049 Given that bundles are generated and flowed in
monotonically increasing order, different “bundle streams'
may be created to facilitate dynamic acceleration of different
parts of a data flow where some bundles are made to flow
faster than others based on Some selection criteria. A selection
of metadata can be used to identify and separately enumerate
a series of bundles.
0050. As an example, multiple bundles can be constructed
by the following criteria: Business Date, Type:
={Greeks|CreditGreeks UnderlierAttributes, and Region:
={GLIASEUIAM). This will result in twelve bundle streams
flowing through the data distribution system per business
date; the unique identifier for each bundle stream must be
separate to allow for prioritization, and gapless and ordered
monotonically incrementing unique IDs.
0051. In some embodiments, the bundle contents can
include control data that is packaged together with data into
bundles. While the control information also is sent out on a
non-durable topic, an identical copy of it is available with the
data itself. Some advantages include the following: 1) exact
behavior of the system can be read and replayed from the
archive since the bundles contain all events and data; and 2)
control Summary information including index information
located in the bundle itself allows for fast scanning of the files
(just the index), thereby reducing or eliminating the need to
scan through the entire file.
0052 A bundle can be an aggregate of raw messages
before any transformation is performed. Bundles may be
serialized via the unique identifier, which may be a mono

US 2013/0275612 A1

tonically increasing bundle ID. This unique identifier may be
a public ID that is leveraged in reporting for versions, verifi
cation, and any other query activity that needs to leverage
guaranteed order of bundle stream data. A bundle message
may include any of the five following sections: 1) a Summary
section; 2) a quality section; 3) an index section; 4) a check
Sum section; and/or 5) a data section.
0053. The summary segment of the bundle can be used to
uniquely identify a bundle with key information and also
those top-level attributes of a bundle that are generally inter
esting across all types of data Such as the data stream that is
bundled, the bundle series number, row counts of tabular data,
and data segment size. In some embodiments, the Summary
segment may be sent independently of all other sections as a
fast control signal.
0054 The quality sections are optional light-weight
reserved segments in bundle messages that are at the discre
tion of sourcing processes to populate. For example, a pricing
process might Supply indicators about the nature of the data it
is producing Such as sanity check failures. By placing sanity
check failures in a special area for consumption indepen
dently of data, Sourcing can Supply higher-velocity informa
tion to Subscribers to this quality segment. Infra teams might
Subscribe to Such signals to know ahead-of-time of bad data
as soon as it hits the bundler. MR analysts might also sub
scribe to certain signals to get early warning of sanity check
failures. The size of these message segments will be physi
cally limited, and the usefulness will depend on how well
organized the data is when provided.
0055. The index segments are optional bundle segments
that indicate the content of the bundle in a condensed form
that is useful for tracking and problem-solving. Unlike qual
ity segments, index segments may be built by the bundler
using a business aligned policy based key-rule applied to
tabular data. Index segments might be a fraction of the size of
the data itself, but are expected to be sometimes larger than
Summary and quality segments.
0056. The checksum message segment can be included in
messages that contain the data segment. By including the
checksum message segment, the data loads become indepen
dently verifiable in all distributed locations. In some embodi
ments, the checksum message segment includes a checksum
representing an aggregation/sum/hash of all columns of the
tabular data in the data section.
0057. In some embodiments, the data segment of the
bundle can be a tabular reformulation of a collection of mes
sages or data. The data can be kept in a neutral form. The
format of the data may be selected by balancing between
keeping consistent with incoming message formats and being
optimized for transformation into several other forms. Typi
cally, the data segment can be any size up to the maximum
size allowed for abundle.
0058. In some embodiments, the archive service 520
stores complete bundles that include all segments. By storing
complete bundles, fault tolerance as well as back-population
of new systems using replay can be provided. In addition,
storing complete bundles also has an optimization benefit and
impact to light-weight messaging since control messages
need not be durable; if all message segments are retained in an
available archive store, then non-durable messaging strate
gies can simply be backed by archive polling to take advan
tage of more efficient distribution.
0059. The summary segment provides the key information

to uniquely identify a bundle and is what allows different

Oct. 17, 2013

messages about the same bundle to be associated. Non-key
elements of the Summary section provide Some general char
acteristics that are useful for viewing and identifying a seg
ment visually in monitoring tools (e.g., data count, size, data
flow, and bundle number). Messages that have the data seg
ment may also include the checksum segment. By including
checksum segments with data segments, distributed indepen
dent locations can independently verify data quality post
transformation and upload without needing to cross-refer
ence other locations. This independence is a key enabler of
low-touch reliable distribution of large amounts of data.
0060 Using these constraints, any other message combi
nations can be created according to what is needed. A simple
strategy is to create a lighter-weight message that includes
everything except data as the control message. If segments are
consistently light-weight, this strategy results in just two
bundle types for a particular data stream—the control mes
sage including Summary, quality, index, and checksum infor
mation, and a full data message that includes all of these plus
data. The bundler could publish these two message types
according to rules configured for dynamic message cargo.
0061 As an example, the Summary section may contain
the following structure: the name of each value is shown
before the “:='', and the value can either bean enumerated list
of exclusive items, a type of data or another structure.

Summary := {
SourceComponentType := { Bundler | Transformer | Loader
SourceComponentId := <arbitraryStrings:<instanceNumbers
BundleStream := {

BusinessDate := <date
Type := { Greeks | CreditGreeks | UnderlierAttributes
Region := {GL | AS | EU I AM

Size := <integers
ComponentFields := {

bundleId := <integers i? used by bundle only
firstBundleId:= <integers i? used by transformerloader
lastBundleId := <integers if used by transformerloader

0062. Additionally, values that need to be selected on or
inspected prior to message parsing may be included in the
Message properties section (limited to strings and numbers
only). For example, to allow for filtering, a stringified version
of the bundle stream will be added as a string message prop
erty. Dates, time stamps, and any data that must be parsed to
interpret should only be included in the payload of the mes
sage (the JSON text).
0063 Data is bundled and tagged with a unique identifier
by bundlers 510 and placed into archive 520. Transformers
530 pull data from archive 520 to convert it into consumer
friendly load data. Loaders 550 aligned with target reporting
stores 560 ensure the data is loaded according to contract
(serial and atomic bundles).
0064 Archive 520 and repository services 540 manage
state storage. The archive service can repeat all flows through
the system. Achieving consistency in distributed data requires
a solution to ordering of events that affect data. Data distri
bution system 500 achieves consistency by distributing
events as data and achieving order and integrity of that deliv
ery to all consumers via the monotonically increasing unique
identifiers. To put this in terms familiar to database adminis
trators, data distribution system 500 manages the delivery of

US 2013/0275612 A1

the transaction log components in an efficient and consistent
manner to all databases and data stores of all types. The
transaction log component stream is the flow. This is a reverse
of the way technologists usually think about databases. The
transaction log is normally considered to be backing the data
in a database, not at the forefront of multiple databases.
0065. To guarantee consistency under adverse circum
stances, this stream of transaction data is persisted and made
re-playable. This persisted re-playable stream is the center of
the pipeline state. It is the only state that needs to be carefully
managed for recoverability. All components and state down
stream of this stream are recoverable at whatever rate the
stream can flow.

0066 Reversing the positioning of transaction log and
database in a system can add complexity to applications built
upon Sucha paradigm. Applications built on top of this type of
delivery need to be mindful of version metadata if they need
to compare data between different physical locations. One
goal of the data distribution system is making this versioning
paradigm as adoptable and simple as possible by establishing
the simplest possible foundation for a distributed versioning
scheme. At the heart of this versioning scheme is a new
clocking methodology aimed at precise distribution.
0067 Various embodiments of the present technology use
monotonic consumer-aligned clocks and streams. One
example of a clocking and ordering device is an increasing
series of integers without gaps. Data distribution system 500
guarantees that for every designated data stream, there is one
and only one contiguous series of integer ticks ordering the
data (i.e., the Master Clock).
0068. The most important aspect of the Master Clock is
the alignment relative to the consumer. The ticks of the clock
are aligned with consumer upload. Each tick represents a
loadable set of data or “bundle'. For clients to get the benefits
of consistency in the system, they must load each bundle in
the transaction and in the order delivered by the clock. In
other words, each bundle is an atomic upload client. This is
made easier for clients by having a deterministic naming
scheme with which to fetch any needed bundle and a deter
ministic series of bundles to be delivered (monotonically
increasing order).
0069 Data streams can be configured from any data series

to establish independent data flow. What this technically
means is that the stream will have its own independent series
of clock ticks. This allows the stream to be run at a different
rate from other streams. Any set of dimensions in a data set
can be called out to declare a stream. Typically, these are
aligned with different flow priority. For example, if a data set
consisting of client price valuations were divided into streams
by business date and business prices for a select business date,
business could be allowed to flow at a higher priority to other
businesses.

0070. Some embodiments of the present technology allow
for the ability to reference streaming data by allowing a
contract to create referenced immutable archives immedi
ately after consuming and writing down the data. The bundles
that are created for distribution are forever identifiable
through a well-defined reference strategy, which relies on
their streaming package (bundle) identity. This approach,
along with business-aligned archiving rules, bridges stream
ing and archive data almost as soon as data is written to disk.
Every signal about the data or report related to the data can

Oct. 17, 2013

leverage permanent reference to the package. Data lineage is
given very immediate (near real-time) Support in a streaming
environment.
0071. Distributed delivery to multiple targets could intro
duce a nightmarish reconciliation requirement. Various
embodiments of data distribution system 500 include recon
ciliation in the flows through checksums. Checksums can be
included in control messages with every data bundle. These
checksums are used to ensure that data is as expected after
delivery to target store.
0072 Data distribution system 500 can employ a colum
nar checksum strategy. This strategy is threefold effective
over row checksums. First, columnar checksums are in line
with columnar compression optimizations. They can be much
more efficient when compared with row checksums. Second,
columnar checksums can work across different data stores
and be given tolerance for rounding errors across platforms
with different float representation. Third, columnar check
Sums are a more effective combination with columnar Sub
scriptions where clients subscribe to only a subset of columns
of data.
0073 FIG. 6 is a flowchart illustrating a set of operations
600 for delivering data in accordance with various embodi
ments of the present technology. As illustrated in FIG. 6, there
can be two threads running within the data distribution sys
tem. One thread can allow the data packages received from
produces to be archived and automatically pushed to any data
subscribers. The second thread can allow data subscribers to
request that some of the data be replayed.
0074 Receiving operation 610 receives streaming data
from one or more data producers. Bundling operation 620 can
bundle the data into data packages that are assigned unique
identifier which are ordered. The data packages can then be
archived using archiving operation 630. Transformation
operation 640 transforms the data packages into a loadable
format requested by the Subscriber. The data packages can
then be delivered to the data consumers in the desired format
using delivery operation 650.
0075 When replay operation 660 receives a request to
replay some of the data packages, then retrieval operation 670
can retrieve the desired data packages from the archive. These
data packages are then transformed, using transformation
operation 640, into a loadable format requested. The data
packages can then be delivered in the desired format using
delivery operation 650.
0076 FIG. 7 illustrates an overview of a data distribution
system architecture 700 which can be used in one or more
embodiments of the present technology. FIG. 7 shows how
message and control data are replicated exactly from Archive
to DC2 Archive. There are two basic options for fault toler
ance of the Archive. Guaranteed—local replication and
across partition (e.g., to the DC2 archive). For MRT, the data
flow is reproducible, and so local guarantees with 15 minute
replication to partition satisfy those needs. For transactional
activity, higher degrees of guarantee of data replication across
partitions may be warranted.
0077. The archive service employs tiered storage to get
maximum throughput. Tiered storage allows the archive to
fulfill its role as a high volume demultiplexer (write once,
read many). Data can be written to the archive service, and
Subsequently, almost immediately, read by multiple consum
ers. Various embodiments of the present technology include
an API for consumers of bundles from the archive. The API
can be very simple, but can make clear the responsibility of

US 2013/0275612 A1

consumers of bundles (callers of the API which are prima
rily the transformers) to declare what bundles they are asking
for which enforces the principle that consumers know the
state of bundles to consume. This allows for clarifying one
way dependency as well as fault recovery responsibilities. For
example, the AP can be a single function Such as the follow
ing: MsgArchive::Get Bundles (data stream, start number,
max bundles, max data size, max wait time).
0078 Data consumers also can interact with the archive
indirectly through events that are fired after archive write.
Publishing of all data in small bundles can allow various
embodiments of the technology to function efficiently and
flexibly when Small messages requiring atomic handling and
real-time load increase in frequency.
0079 Transformers may only partially transform data

(i.e., they are responsible for maintaining the basic schema,
aggregation and pivot of the structured data they consume
from the archive service). The “transformation' is a conver
sion to an upload-friendly format. Each transformer may
consume a consecutive sequence ofbundles for a specific data
stream and convert it into a form that is loadable and uploads
it to the Transform Repository Service. Oftentimes, the prod
uct of a transformer can be consumed by multiple loader
processes.

0080 Transformers can be stateless and may make incre
mental progress on the data stream. As a result, the trans
former may pick up state from their output (from the trans
form repository), and so, emergency maintenance is possible
by simply deleting or moving output in the repository; the
transformer will continue work from the end of the latest
batch in the repository in which it writes. Consumption fol
lows the Subscription With Heartbeat pattern that facilitates
message push and pull according to dynamic message cargo
configuration. The transformer can operate on a per bundle
stream basis, allowing each stream to be generated in isola
tion and prevent one bundle stream from holding up another.
In accordance with various embodiments, transformers may
be owned by the producer/provider of data and are the sole
consumers of raw data bundles to ensure that external con
Sumers do not directly consume bundle messages. Instead,
transformers can consume the product of transformation
according to a declared contract.
0081. This service is much like the Archive Service for
bundles, but it stores transformed product of the transformers.
Transformed data packages can be significantly larger than
bundles, consisting of multiple bundles in an upload package.
0082 Loaders upload optimized packages from the Trans
form Repository Service into a designated target store. The
loader configuration is provided at runtime and includes
Transform Repository Service, target store and data schema
information. Much like the transformer/archive service rela
tionship, loaders can Subscribe to Transform Repository con
trol signals and pick up what is needed from the Transform
Repository Service. Also like the transformer, loaders lever
age state in the targeted Stateful store to ensure the bundles
received are not repeated. This responsibility is made clearby
the fact that the transformer API requires the loader to give the
starting bundle ID of batches to fetch. Only the loader has
insight into load State in its target store and how it has pro
gressed, so it makes sense for the loader to drive the requests
for data. Note that this does not mean that the loaders are
purely polling. Like transformers, loaders leverage the Sub

Oct. 17, 2013

scription With Heartbeat approach to collecting data that
gives the best of push efficiency with the added monitoring
reliability of heartbeats.
0083 Loaders create an additional Load Control Stream
into the target store for every data stream. This second stream
is a store-specific load table history and checksum reconcili
ation result. It represents a particular data target's load record
and checksum results. Note that the data stream is indepen
dent of this load record stream.

I0084 Various streams created by embodiments of the
technology can be designed to facilitate high Volume loading
into a variety of reporting stores. For this reason, and because
update-in-place is not an option for many types of stores, data
streams are often best captured as tables of immutable events.
When taking this approach, the data table becomes logically
identical across all such reporting stores. It contains no
instance-specific concepts Such as time stamps. All instance
specific information is captured in the Load Control Table.
One advantage of removing time stamps is the simplicity
created in the clean separation of a data table that is logically
identical across systems, while the Load Control Table is
instance-specific. The unique identifiers can be used as a
quasi-universal clock increment, so no time stamps would be
needed in a data table to understand relative versions. The
Load Control Table maps instance-specific times to stream
time for a particular data store.
I0085. Some embodiments support distributed transactions
of any length or size and across any number of different data
streams through a logical, rather than physical, approach to
transactions. Transaction completeness is enforced at desti
nation, and timeout is configurable. Transactions are a type of
logical data set with an added service for timeout. Distributed
transactions can be achieved in one or more embodiments by
flowing a special transaction condition on a separate channel
from the data and assigning all data of the intended transac
tion with a transaction ID. The transaction signal contains a
transaction ID tag and a timeout threshold. Completion cri
teria consistent with a rule such as "Row Count” and a mea
sure such as “2555' can be sent along with this initial signal
if it is known, or sent at a later point if unknown. All data
submitted with this identity is considered part of the transac
tion. The idea of logical transactions is to flow all transaction
information to every target data store, even pending and
uncommitted transaction data. The machinery of the transport
processes pushes information completely agnostic to trans
actions between streams.

I0086 Data elements of a transaction may be assigned a
unique transaction ID. For components like the bundler,
transformer and loader, this ID may be just another dimension
of the data with no special purpose. The transaction ID can be
assigned to any data elements across one or more streams
without restriction. For Sophisticated transaction handling of
complex granular transactions, gaps between elements that
are assigned the transaction ID are even allowable, and So,
any transaction across data elements can be specified.
I0087 Completion criteria for a transaction may be distrib
uted to all end data stores via a separate transaction stream.
Completion criteria can be as simple as the number of rows
expected in every stream (or landing table) affected by the
transaction, or as complex as rule-driven configuration
allows. Completion criteria can include a time-out interval in
Some embodiments. From bundler, archive, transformer, and
loader perspectives, a transaction stream is a stream like any
other within the data distribution system. There does not have

US 2013/0275612 A1

to be any special handling that is different from any other
high-speed, light-weight stream (like user edit streams).
Completion criteria can arrive at any time before or after the
data to which it refers.
0088 As a consequence of this, and in order to elegantly
support distributed transactions, transaction IDs for which
there are no completion criteria may be considered pending
transactions, and all data associated with them may be con
sidered incomplete. IOW, the presence of a non-zero transac
tion ID, is all that is needed to mark data as part of a transac
tion, and absence of any Supporting transaction information is
interpreted exactly as a transaction that had not yet met
completion criteria.
0089. A special Transaction Completion Process (or TCP)
may run against a designated authoritative reporting instance
and subscribes to all loader events that may affect the trans
action streams that it handles. This process encapsulates all
the logic for determining if a transaction is complete based
upon completion criteria and data that has arrived. Note the
implementation and configuration advantages of confining
this complex logic to one process and advantages of keeping
this complexity out of the reporting/query API. TCP may hold
a simple cache keyed by the transaction ID of all pending
transactions. As data arrives, it would update transaction
completion status in the End Data Store and remove the
completed transaction from the cache. Like other robust sys
tem components, TCP could leverage only the end data store
state for start-up/recovery. Completion status can be updated
by publishing to the Transaction Stream. This gives consistent
transaction status to all distributed stores.
0090 Completion status events may contain the transac
tion ID and maximum bundle IDs of data that satisfies the
transaction completion criteria. If a normalized table is used
for transaction status with one row entry per data stream (a
general, flexible and probably best approach), completion
criteria can be specified only for tables where data is
expected, and the completion status bundle ID will be the max
bundle ID of the data that completed the transaction. Similar
to other pipeline components that process streams, TCP pub
lishes start and end handling for all transaction stream
bundles (for consistency of monitoring, Support and exten
sion). TCP does not need to publish receiving signals from
other data streams, however, because it is not transacting
writes or commits in those streams. TCP handles Time-Outs
by marking the status of any transaction exceeding a given
time limit as Timed Out (and also removing the timed out
transaction from the cache of pending transactions).
0091 Reporting queries leverage completion criteria in
the Transaction Stream to query data when the Bundle ID is
less than the Lowest Pending Tran Bundle ID. The simplest
interpretation of transactions is to ignore any data bundles
that are equal to or greater than the start of pending transac
tions where Transaction Status is not equal to a Timed Out,
thereby ignoring timed-out transactions
0092. For more complex transaction handling, TCP would
be enhanced to check its cache of pending and progressing
transactions for overlap on specified key spaces (combination
of dimensions) and would publish/write transaction failure
for latter transactions that collided with key spaces of other
pending transactions.
0093 Conveniently, the increasing complexity that is put
into TCP for granular transactions can reduce the complexity
of queries. Queries of complex granular transactions need not
select from Lowest Pending Tran Bundle ID; they can simply

Oct. 17, 2013

select only where transactions have a successful complete
status. Notice that by designing transaction completion han
dling into a single process, it becomes easier to configure
different processing strategies for sets of streams as configu
ration rules when starting up a TCP. Sophistication of trans
action processing can grow without complicating other core
system components.
0094. Because transaction assignment is orthogonal to
bundles and completely flexible in how it can apply across
data, transaction implementations can grow more Sophisti
cated than with a bundle-dependent approach. Business-spe
cific handling of what constitutes a collision can be encapsu
lated in the TCP, and query logic as a result can become even
simpler than with less granular block-based selection.
0.095 Because processes within the system keep purely to
their basic transportation responsibility, performance abnor
malities and problems can be more easily isolated and under
stood. Load balancing and optimizations are not complicated
by table-locking or any other type of inter-play or wait-for
completion in the flow. Since all transaction information is
published to the end data store, it is reportable. It becomes a
simple matter to investigate excessive numbers of collided
transactions or time-outs.
0096 Various embodiments of the technology keep pri
mary components as purely a transportation infrastructure
independent of business transactional requirements. As a
result, these embodiments are able to reduce the future like
lihood of processes that need to "peer into the guts of system
to spy pending transaction activity or other state. Application
activity can instead leverage end data stores which are better
designed to Support processes and tools.
0097 Logical transactions work in conjunction with nor
mal non-transactional flow via optimistic locking. The trans
actions are feeble (i.e., optimistic) compared to the data flow
in that any flow that conflicts with a transaction will cause the
transaction to fail, not the flow. It is possible to make trans
actions strong (i.e., locking) by creating logical flow failures
using locking transactions that invalidate all data that arrives
during a transaction that is not part of the transaction. How
ever, backing up flow on the data distribution system (not
physically, but through logical invalidation) seems against the
spirit of guaranteed eventually consistent distribution. Such a
feature, if ever needed, would have to be used with great care.
0.098 Logical transactions take advantage of hardware
trends where storage capacity has grown and continues to
grow many-fold, but IO capabilities are lagging behind that
growth. Capturing and storing all proposed transactions is
cheap; the waste of space is not such a concern. As mentioned
above, having failed transaction information available for
Some time is great for understanding and tuning the system.
0099. There can be a considerable difference between
schemas for managing flowing or changing data and schemas
for reporting static data. Curation can be used in some
embodiments for converting transaction-ridden distributed
data into cleaner forms better Suited to historical query.
0100 Some embodiments can use a dynamic message
cargo to dynamically optimize message flow for messages of
variable size. All message bundles can still be stored in the
Archive in complete form, including control, index, quality,
and data segments. For large messages (the "large threshold
is configurable in the bundler), all but the data section may be
published on the EMS bus, signaling successful archiving of
the bundle. The transformers then reach back to request the
data bundle from the archive. However, for large counts of

US 2013/0275612 A1

Small messages, we can publish the entire message including
the data section, obviating the need for consumers to come
back and request the data.
0101 Transformers consuming dynamic messages then
have a contract to respect the data content that is sent to them.
For pure control messages, they reach back and grab the large
data from archive. For Small messages, they can simply go
ahead and consume the data in the message and forgo the
extra trip (and spare the archive server from getting Swamped
with requests for Small datasets). This dynamic strategy
becomes very important as we ramp up different message
flows with edits, blessing and variable message contents.
Flows that are suitable for push will push. Flows with very
large datasets suitable for file-store-and-fetch will do that
automatically without any adjustment to the various server
processes. The system becomes highly tunable by adjust
ments to bundling sizes, message thresholds, and compres
sion strategies.
0102 Packet size tuning can be left to operational teams
that manage infrastructure. Infrastructure can be expected to
change frequently and be different from environment to envi
ronment. Tiered storage solutions will evolve, and optimal
packaging for transport changes almost every time hardware
is upgraded. This is why bundles are given a three-threshold
configuration: by time threshold, by size threshold, and by
logical row count threshold.
(0103 Subscription With Heartbeat is a combined
approach to Subscribing to non-durable messages while occa
sionally polling. The heartbeat (poll) alleviates durable store
and-forward responsibilities on producers and gives flow
architects the ability to choose between durable and non
durable publication of control. However, benefits of a heart
beat go beyond simple monitoring checks when heartbeat is
coupled with recovery logic; the combination gives a very
simple and robust implementation of recovery.
0104. As an example, consider the following transform
er's consumption of bundles. A transformer starts up by ask
ing the transform repository how far it has gone in process
ing in other words, what is the next bundle to process and
store in the repository. It then calls the archive service for the
next n bundles to process (whatever seems like a reasonable
number). The archive service returns the bundles. After pro
cessing the batch, the transformer waits some time for a signal
to come from the Archive Service indicating a desired number
of bundles are ready for the next batch.
0105. If bundles are ready, the transformer requests the
next step—repeating step 1. If no bundles are ready and there
has been no incoming activity, the transformer will wait for
the configured time interval before going and requesting
bundles anyway. Remember, signals are not durable, so there
is a small chance that no signal will arrive, but the transformer
must go and ask to be certain. If there are still no bundles, then
the time decay adds some amount to wait for the next heart
beat check. The heartbeats keep slowing down. Whenbundles
are finally available again, they are fetched, and the heartbeat
rate is increased again for more frequent polling in absence of
control messages.
0106 Data targets bear some responsibility for allowing
the data distribution system to ensure consistency. They must
make data readable back to the data distribution system if the
data distribution system is to manage consistency of the data
created. However, this is normally a small cost relative to the
gain from a reduced need for reconciliations between targets.

Oct. 17, 2013

0107 Data versioning can be used for getting consistent
data across different target data stores. For the data distribu
tion system clients, the version strategy requires a shift away
from traditional ACID approaches and into an approach
where every request for data returns not only the data, but also
the stream clock information. Queries that need to be consis
tent across different destinations need to provide the stream
clock time (the bundle ID) in order to get the same results, or
fail/warn if data is not yet available. However, the data distri
bution systems contract is that the data will be consistent
eventually.
0.108 Updates of data are essentially just replacements of
the same data, where “same is determined by an identity
strategy. Identity strategies are basically a selection of key
attributes by which to rankforder and select. Later data arriv
ing in a stream of the same identity replaces earlier data.
However, data is not always controlled or replaced or invali
dated by identity. In some cases, it makes sense to manage
data by attributes outside of identity. Logical data sets,
explained below, are another way to manage collections of
data not by identity, but by other attributes such as by whom
the data was submitted or for what purpose.
0109 The identity service is another example of how a
data flow that has embedded declarative structure can have
great advantages over unstructured flows. The identity Ser
vices can generate short integer identity keys in the flow for a
Subset of chosen columns and enrich the dataset using these
keys. Such keys serve as a performance boost for report
operations in any target store. This is especially effective
when modeling broad, denormalized streams, which is often
a practice for distributed Sourcing. Currently, we plan to use
daily-generated key sets because it is only within the daily
flow where the boost is needed. Historical key generation
does not need to be done within the flow.

0110. The load control table is the way to ensure the data
for a particular series is consistent with respect to checksums.
Clients that want absolute assurance that they select only
checked-out reconciled data need to use the load control table
to determine the highest watermark that they can safely
select. For example: Select from Dataset where BundleID
(Select MIN (InvalidBundleStatus) from DatasetControl) ...
where InvalidBundleStatus is determined by finding the low
est bundle ID that has not yet been successfully validated or
by returning MAX bundle ID+1. Such an algorithm treats all
pending validations as invalid until run.
0111 While this adds some complexity overhead to cli
ents that care about bundle check status, the leverage gained
from bundle size relative to individual data items (typically in
the 1000's to 1), means no noticeable performance overhead.
One advantage of Such a system is that it puts criticality of
checksum failure in the hands of the client. It can very well be
the case in very large data flows that a client still wants access
to data, even knowing a checksum failed. The client may very
well decide, based on the immateriality of the data, to use
Subsequent data while the bad data is being repaired.
0112 Logical data sets are an extension of the idea used
for creating transactions. Since bundles are a physical packet
domain owned completely by infrastructure operations for
tuning flow, a separate logical construct must be introduced to
manage any type of application data set. A logical data set is
created by sending out a logical data set definition with a
unique identity and then tagging all Subsequently Submitted
data with that identity. The logical data set definition is pub
lished on a separate stream with a separate structure from the

US 2013/0275612 A1

data stream(s) to which it refers. Clients can then select prop
erties of the logical set stream and select out the data to which
it applies.
0113 Logical data sets help facilitate completeness func

tionality. Similar to transactions, completeness criteria Sup
plied in the logical data stream and tagged against relevant
data can indicate whether all data within a logical set is
available in a particular reporting Store.
0114 Transactions are one type of completeness logical
data set with an added factor of timeout checking. Since
logical sets are represented as streams, they enjoy the same
bundle and versioning features as regular data streams. This
means that logical set information can evolve just as data in
data streams. And so a series of logical events is queued up in
a stream, and there is a logical clock against which to alignal
of these logical events across systems. A good strategy is to
allow logical set events to show up as included or excluded
from default general consumption. The logical event stream
can, in this way, form a common perspective on the data for all
consumers, while consumers may choose to include orignore
certain components in their own preview—and then push out
status updates to the logical set stream to make desired
aspects public. The official common view of data and events
can then be communicated as stream/max bundle ID pairings
for both data sets and logical data sets. This is perhaps the
most concise and intuitive way to express Such a selection of
complex streamed events.
0115 The publication of a set of approved pairings of
streams and bundle IDs is known as a “Blessing. Blessings
can be published by any stream authority who has determined
that the data stream as of a particular point is good for con
Sumption. Blessings of parallel-delivered streams provide
parallel availability of large data sets and coordination/con
sistency in using those data sets.
0116 Edits within some embodiments are anotherform of
logical dataset. Data that is being modified is simply added to
a stream to replace the prior versions of that data with a unique
edit identity to tie it to all other data in the edit. In this way, an
edit can be included or ignored. Deletes are a special form of
modification. A delete may be implemented as an invalidation
of a particular logical set. For example, a bad sourcing run
could be “deleted by ignoring the logical set associated with
that sourcing run. Deletes of individual items independent of
invalidating any particular logical set, would be done by
submitting a data item with the same identity of what is to be
deleted and a logical delete status set to true in the data table.
0117 Fault tolerance can be achieved through dual flows
off of a replicated message archive. Given that all data can be
regenerated off of the archive, the only critical point of con
sideration is how to create fault tolerance of the archive itself.

Exemplary Computer System Overview
0118 Embodiments of the present technology include
various steps and operations, which have been described
above. A variety of these steps and operations may be per
formed by hardware components or may be embodied in
machine-executable instructions, which may be used to cause
a general-purpose or special-purpose processor programmed
with the instructions to perform the steps. Alternatively, the
steps may be performed by a combination of hardware, Soft
ware, and/or firmware. As such, FIG. 8 is an example of a
computer system 800 with which embodiments of the present
technology may be utilized. According to the present
example, the computer system includes abus 810, at least one

Oct. 17, 2013

processor 820, at least one communication port 830, a main
memory 840, a removable storage media 850, a read only
memory 860, and a mass storage 870.
0119 Processor(s) 820 can be any known processor, such
as, but not limited to, an Intel(R) processor(s); AMDR) proces
sor(s); ARM-based processors; or Motorola(R) lines of proces
sors. Communication port(s) 830 can be any of an RS-232
port for use with a modem-based dialup connection, a 10/100
Ethernet port, or a Gigabit port using copper or fiber. Com
munication port(s) 830 may be chosen depending on a net
work such as a Local Area Network (LAN), Wide Area Net
work (WAN), or any network to which the computer system
800 connects.
I0120 Main memory 840 can be Random Access Memory
(RAM) or any other dynamic storage device(s) commonly
known in the art. Read only memory 860 can be any static
storage device(s) such as Programmable Read Only Memory
(PROM) chips for storing static information such as instruc
tions for processor 820.
I0121 Mass storage 870 can be used to store information
and instructions. For example, hard disks Such as the
Adaptec(R) family of SCSI drives, an optical disc, an array of
disks such as RAID, such as the Adaptec family of RAID
drives, or any other mass storage devices may be used.
0.122 Bus 810 communicatively couples processor(s) 820
with the other memory, storage and communication blocks.
Bus 810 can be a PCI/PCI-X or SCSI based system bus
depending on the storage devices used.
I0123 Removable storage media 850 can be any kind of
external hard-drives, floppy drives, IOMEGAR Zip Drives,
Compact Disc-Read Only Memory (CD-ROM), Compact
Disc-Re-Writable (CD-RW), and/or DigitalVideo Disc-Read
Only Memory (DVD-ROM).
0.124. The components described above are meant to
exemplify some types of possibilities. In no way should the
aforementioned examples limit the scope of the application,
as they are only exemplary embodiments.
0.125. In conclusion, the technology of the present appli
cation provides novel systems, methods and arrangements for
structured data distribution. While detailed descriptions of
one or more embodiments of the technology have been given
above, various alternatives, modifications, and equivalents
will be apparent to those skilled in the art without varying
from the spirit of the application. For example, while the
embodiments described above refer to particular features, the
Scope of this application also includes embodiments having
different combinations of features and embodiments that do
not include all of the described features.
What is claimed is:
1. A method comprising:
receiving streaming data from a data producer,
determining business aligned archive sequence from the

streaming data that should be bundled together in accor
dance with a set of bundling parameters;

bundling the data into packages of data having a standard
format;

ordering each of the packages of data using a series of
consecutive integers produced by a master clock;

publishing metadata regarding availability of the packages
of data on a control channel; and

delivering the packages of data to data consumers which
have subscribed to the data producer.

2. The method of claim 1, wherein the bundling parameters
include declarative rules specified by a business.

US 2013/0275612 A1

3. The method of claim 1, wherein the standard format is a
standard neutral format biased for movement and compres
sion of the streaming data.

4. The method of claim 1, further comprising replaying the
packages of databased on the ordering upon a request from a
data consumer.

5. The method of claim 1, further comprising archiving the
packages of data in a platform independent manner.

6. The method of claim 1, wherein the metadata that is
published on the control channel includes indexes.

7. The method of claim 1, wherein bundling the data
includes identifying data that when compressed will result in
each package in the packages of data having a desired size.

8. The method of claim 1, wherein bundling the data
includes associating new metadata with each of the bundled
packages, wherein the new metadata comprises at least one of
Summary data, quality data, index data, or checksum data.

9. The method of claim 1, wherein the delivery of the
packages of data to the consumers comprises parallel deliv
ery.

10. The method of claim 1, further comprising using
columnar checksums for verifying the data.

11. The method of claim 10, wherein the columnar check
Sums allow for rounding errors with a specified tolerance.

12. A system comprising:
abundler configured to receive streaming raw data from a

data producer and bundle the raw data into a series of
data packages and associate with each of the data pack
ages a unique identifier having a monotonically increas
ing order based on upload from the data producer,

a transformer to receive the data packages having the asso
ciated unique identifier and generate loadable data struc
tures for a reporting store associated with a data Sub
scriber; and

a loader to receive and store the loadable data structures
into a storage device associated with the data Subscriber
based on the monotonically increasing order.

13. The system of claim 12, wherein the streaming raw data
comprises multiple streams.

14. The system of claim 13, wherein the data packages
from each of the multiple streams are assigned different sets
of unique identifiers.

15. The system of claim 13, wherein each of the multiple
streams of streaming raw data are assigned a flow priority.

Oct. 17, 2013

16. The system of claim 12, further comprising an identi
fication module to receive a logical series of integers from the
stream clock and generate the unique identifier having the
logical ordering.

17. The system of claim 16, further comprising a stream
clock configured to generate the logical series of integers, and
wherein a single integer is the unique identifier associated
with a single data package in the series of data packages.

18. The system of claim 12, further comprising:
a data channel allowing data from a data producer to be

continuously streamed to the data Subscriberthrough the
bundler;

a messaging channel to provide a current status of the data
being continuously streamed from the data producer to
the data subscriber; and

a control channel separate from the data channel to allow
the data subscriber to request replay of the data.

19. The system of claim 18, wherein the control channel is
running at a faster rate than the data channel.

20. The system of claim 18, wherein the control channel
recursively publishes metadata regarding the data packages.

21. The system of claim 12, further comprising an
archiving service to archive the data packages.

22. A method comprising:
receiving a request to replay data bundled into data pack

ages having a logical ordering assigned to the data pack
ages before being stored in an archive, wherein the
request includes a logical bound on the data to be
replayed and identifies a format for the data subscriber;

retrieving, from the archive, data consistent with the logi
cal bound; and

transforming the data packages into the loadable format
identified in the request to replay the data.

23. The method of claim 22, wherein data packages after
the logical bound are ignored.

24. The method of claim 22, further comprising:
receiving a selection of an archiving strategy; and
archiving the data in accordance with the archiving strat

egy.
25. The method of claim 24, wherein the archiving strategy

is a dimension-based archiving strategy.
26. The method of claim 22, wherein the data packages are

compressed using columnar compression.
27. The method of claim 22, wherein the data packages

include metadata with each providing Summary data, quality
data, index data, or checksum data.

k k k k k

