(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2014/184164 A1

(43) International Publication Date 20 November 2014 (20.11.2014)

(51) International Patent Classification: C12N 9/20 (2006.01) C11D 3/386 (2006.01)

(21) International Application Number:

PCT/EP2014/059701

(22) International Filing Date:

13 May 2014 (13.05.2014)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

14 May 2013 (14.05.2013) 13167632.2

- (71) Applicant: NOVOZYMES A/S [DK/DK]; Krogshoejvej 36, DK-2880 Bagsvaerd (DK).
- (72) Inventors: MALTEN, Marco: Blaamunkevei 7, DK-2400 Copenhagen NV (DK). BORCH, Kim; Vandtaarnsvej 18, DK-3460 Birkeroed (DK). MIKKELSEN, Lise Munch; Lysbrovej 34, DK-2610 Roedovre (DK). POULSEN, Thomas Agersten; Ludvig Holsteins Allé 66, DK-2750 Ballerup (DK). ERLANDSEN, Luise; Midgaard 3, DK-3600 Frederikssund (DK). NIELSEN, Hanne Philbert; Fyrhoejvej 20 B, DK-2880 Lyngby (DK). HANSEN, Carsten Hørslev; Hasselhaven 2, DK-3500 Vaerloese (DK). SVENDSEN, Allan; Overdamsvej 13, DK-2970 Hoersholm (DK). GYLSTORFF, Christian Lundager; Jaegersborggade 3, 3. tv., DK-2200 Copenhagen N (DK). VIND, Jesper; Hejrebakken 20, DK-3500 Vaerloese (DK). JÄCKEL, Christian; Tibberup Alle 33 st.th, DK-3500 Vaerloese (DK).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: DETERGENT COMPOSITIONS

(57) Abstract: The present invention relates to detergent compositions comprising a variant of a parent lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T, and G38A of SEQ ID NO: 2. The present invention also relates to use of the compositions, methods of producing the compositions, and methods of cleaning. The present invention furthermore relates to variants and polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides.

DETERGENT COMPOSITIONS

REFERENCE TO A SEQUENCE LISTING

This application contains a Sequence Listing in computer readable form, which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

5

10

15

20

30

The present invention relates to compositions comprising lipase variants, methods of producing and using said compositions, lipase variants, polynucleotides encoding the variants, as well as methods of producing and using said variants.

Description of the Related Art

Lipases are important biocatalysts which have shown to be useful for various applications and a large number of different lipases have been identified and many commercialized. However, new lipases suitable for use in various compositions adapted to conditions currently used are desirable.

Lipases have been employed in compositions for the removal of lipid stains by hydrolyzing triglycerides to generate fatty acids. Current detergent, cleaning and/or fabric care compositions comprise many active ingredients which are interfering with the ability of lipases to remove lipid stains, futhermore such compositions are not used immediately after production and as a consequence the stability of the lipases may be affected during storage. Thus, a need exists for lipases that are active and stable in the harsh environment of detergent compositions.

25 **SUMMARY OF THE INVENTION**

The present invention relates to detergent compositions comprising a variant of a parent lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T, and G38A of SEQ ID NO: 2. The present invention also relates to use of the compositions, methods of producing the compositions, and methods of cleaning.

The present invention furthermore relates to variants and polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides.

35 **DEFINITIONS**

Lipase: The terms "lipase", "lipase enzyme", "lipolytic enzyme", "lipid esterase", "lipolytic polypeptide", and "lipolytic protein" refers to an enzyme in class EC3.1.1 as defined by Enzyme

Nomenclature. It may have lipase activity (triacylglycerol lipase, EC3.1.1.3), cutinase activity (EC3.1.1.74), sterol esterase activity (EC3.1.1.13) and/or wax-ester hydrolase activity (EC3.1.1.50). For purposes of the present invention, lipase activity is determined according to the procedure described in the Examples. In one aspect, the variants of the present invention have at least 20%, *e.g.*, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or 100% of the lipase activity of the polypeptide of SEQ ID NO: 2.

5

10

15

20

25

30

35

Allelic variant: The term "allelic variant" means any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequences. An allelic variant of a polypeptide is a polypeptide encoded by an allelic variant of a gene.

cDNA: The term "cDNA" means a DNA molecule that can be prepared by reverse transcription from a mature, spliced, mRNA molecule obtained from a eukaryotic or prokaryotic cell. cDNA lacks intron sequences that may be present in the corresponding genomic DNA. The initial, primary RNA transcript is a precursor to mRNA that is processed through a series of steps, including splicing, before appearing as mature spliced mRNA.

Coding sequence: The term "coding sequence" means a polynucleotide, which directly specifies the amino acid sequence of a variant. The boundaries of the coding sequence are generally determined by an open reading frame, which begins with a start codon such as ATG, GTG or TTG and ends with a stop codon such as TAA, TAG, or TGA. The coding sequence may be a genomic DNA, cDNA, synthetic DNA, or a combination thereof.

Control sequences: The term "control sequences" means nucleic acid sequences necessary for expression of a polynucleotide encoding a variant of the present invention. Each control sequence may be native (*i.e.*, from the same gene) or foreign (*i.e.*, from a different gene) to the polynucleotide encoding the variant or native or foreign to each other. Such control sequences include, but are not limited to, a leader, polyadenylation sequence, propeptide sequence, promoter, signal peptide sequence, and transcription terminator. At a minimum, the control sequences include a promoter, and transcriptional and translational stop signals. The control sequences may be provided with linkers for the purpose of introducing specific restriction sites facilitating ligation of the control sequences with the coding region of the polynucleotide encoding a variant.

Expression: The term "expression" includes any step involved in the production of a variant including, but not limited to, transcription, post-transcriptional modification, translation, post-translational modification, and secretion.

Expression vector: The term "expression vector" means a linear or circular DNA molecule that comprises a polynucleotide encoding a variant and is operably linked to control sequences that provide for its expression.

Fragment: The term "fragment" means a polypeptide having one or more (*e.g.*, several) amino acids absent from the amino and/or carboxyl terminus of a polypeptide; wherein the fragment has lipase activity. In one aspect, a fragment contains at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% but less than 100% of the number of amino acids 1 to 369 of SEQ ID NO: 2.

5

10

15

20

25

30

35

High stringency conditions: The term "high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 65°C.

Host cell: The term "host cell" means any cell type that is susceptible to transformation, transfection, transduction, or the like with a nucleic acid construct or expression vector comprising a polynucleotide of the present invention. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication.

Improved property: The term "improved property" means a characteristic associated with a variant that is improved compared to the parent lipase. Such improved properties include, but are not limited to, detergent stability, stability in detergent with protease present, protease stability, chemical stability, oxidation stability, pH stability, stability under storage conditions, and thermostability.

Isolated: The term "isolated" means a substance in a form or environment which does not occur in nature. Non-limiting examples of isolated substances include (1) any non-naturally occurring substance, (2) any substance including, but not limited to, any enzyme, variant, nucleic acid, protein, peptide or cofactor, that is at least partially removed from one or more or all of the naturally occurring constituents with which it is associated in nature; (3) any substance modified by the hand of man relative to that substance found in nature; or (4) any substance modified by increasing the amount of the substance relative to other components with which it is naturally associated (e.g., multiple copies of a gene encoding the substance; use of a stronger promoter than the promoter naturally associated with the gene encoding the substance). An isolated substance may be present in a fermentation broth sample.

Low stringency conditions: The term "low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide,

following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 50°C.

Mature polypeptide: The term "mature polypeptide" means a polypeptide in its final form following translation and any post-translational modifications, such as N-terminal processing, C-terminal truncation, glycosylation, phosphorylation, etc. In one aspect, the mature polypeptide is amino acids 1 to 269 of SEQ ID NO: 2. It is known in the art that a host cell may produce a mixture of two or more different mature polypeptides (*i.e.*, with a different C-terminal and/or N-terminal amino acid) expressed by the same polynucleotide.

5

10

15

20

25

30

35

Mature polypeptide coding sequence: The term "mature polypeptide coding sequence" means a polynucleotide that encodes a mature polypeptide having lipase activity. In one aspect, the mature polypeptide coding sequence is nucleotides 1 to 807 of SEQ ID NO: 1.

Medium stringency conditions: The term "medium stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 55°C.

Medium-high stringency conditions: The term "medium-high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 35% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 60°C.

Mutant: The term "mutant" means a polynucleotide encoding a variant.

Nucleic acid construct: The term "nucleic acid construct" means a nucleic acid molecule, either single- or double-stranded, which is isolated from a naturally occurring gene or is modified to contain segments of nucleic acids in a manner that would not otherwise exist in nature or which is synthetic, which comprises one or more control sequences.

Operably linked: The term "operably linked" means a configuration in which a control sequence is placed at an appropriate position relative to the coding sequence of a polynucleotide such that the control sequence directs expression of the coding sequence.

Parent or parent lipase: The term "parent" or "parent lipase" means a lipase to which an alteration is made to produce the enzyme variants of the present invention. The parent lipase may be a naturally occurring (wild-type) polypeptide or a variant or fragment thereof.

Sequence identity: The relatedness between two amino acid sequences or between two nucleotide sequences is described by the parameter "sequence identity".

For purposes of the present invention, the sequence identity between two amino acid sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch,

1970, *J. Mol. Biol.* 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000, *Trends Genet.* 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix. The output of Needle labeled "longest identity" (obtained using the –nobrief option) is used as the percent identity and is calculated as follows:

5

10

15

20

25

30

35

(Identical Residues x 100)/(Length of Alignment – Total Number of Gaps in Alignment)

For purposes of the present invention, the sequence identity between two deoxyribonucleotide sequences is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, *supra*) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000, *supra*), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EDNAFULL (EMBOSS version of NCBI NUC4.4) substitution matrix. The output of Needle labeled "longest identity" (obtained using the –nobrief option) is used as the percent identity and is calculated as follows:

(Identical Deoxyribonucleotides x 100)/(Length of Alignment – Total Number of Gaps in Alignment).

Stability: The stability of a lipase may be expressed as the residual activity or the residual performance of said lipase during or after exposure to various test conditions such as e.g. storage in a detergent composition, at various temperatures, at various pH, in the presence of different components such as protease, chemicals, and/or oxidative substances (stress conditions). The stability of a variant lipase can be measured relative to a known activity or performance of a parent lipase, or alternatively to a known activity or performance of the variant lipase when initially added to the detergent composition optionally stored cold or frozen or relative to the variant lipase stored cold or frozen (unstressed conditions).

Subsequence: The term "subsequence" means a polynucleotide having one or more (e.g., several) nucleotides absent from the 5' and/or 3' end of a mature polypeptide coding sequence; wherein the subsequence encodes a fragment having lipase activity. In one aspect, a subsequence contains at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% but less than 100% of the number of nucleotides 1 to 807 of SEQ ID NO: 1.

Variant: The term "variant" means a polypeptide having lipase activity comprising an alteration, *i.e.*, a substitution, insertion, and/or deletion, at one or more (*e.g.*, several) positions. A substitution means replacement of the amino acid occupying a position with a different amino acid; a deletion means removal of the amino acid occupying a position; and an insertion means adding an amino acid adjacent to and immediately following the amino acid occupying a position. The variants of the present invention have at least 20%, *e.g.*, at least 40%, at least

50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 100% of the lipase activity of the polypeptide of SEQ ID NO: 2.

Very high stringency conditions: The term "very high stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 50% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 70°C.

Very low stringency conditions: The term "very low stringency conditions" means for probes of at least 100 nucleotides in length, prehybridization and hybridization at 42°C in 5X SSPE, 0.3% SDS, 200 micrograms/ml sheared and denatured salmon sperm DNA, and 25% formamide, following standard Southern blotting procedures for 12 to 24 hours. The carrier material is finally washed three times each for 15 minutes using 2X SSC, 0.2% SDS at 45°C.

Wild-type lipase: The term "wild-type" lipase means a lipase expressed by a naturally occurring microorganism, such as a bacterium, yeast, or filamentous fungus found in nature.

Conventions for Designation of Variants

5

10

15

20

25

30

35

For purposes of the present invention, the polypeptide disclosed in SEQ ID NO: 2 is used to determine the corresponding amino acid residue in another lipase. The amino acid sequence of another lipase is aligned with SEQ ID NO: 2, and based on the alignment, the amino acid position number corresponding to any amino acid residue in the polypeptide disclosed in SEQ ID NO: 2 is determined using the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970, *J. Mol. Biol.* 48: 443-453) as implemented in the Needle program of the EMBOSS package (EMBOSS: The European Molecular Biology Open Software Suite, Rice *et al.*, 2000, *Trends Genet.* 16: 276-277), preferably version 5.0.0 or later. The parameters used are gap open penalty of 10, gap extension penalty of 0.5, and the EBLOSUM62 (EMBOSS version of BLOSUM62) substitution matrix.

Identification of the corresponding amino acid residue in another lipase can be determined by an alignment of multiple polypeptide sequences using several computer programs including, but not limited to, MUSCLE (multiple sequence comparison by log-expectation; version 3.5 or later; Edgar, 2004, *Nucleic Acids Research* 32: 1792-1797), MAFFT (version 6.857 or later; Katoh and Kuma, 2002, *Nucleic Acids Research* 30: 3059-3066; Katoh *et al.*, 2005, *Nucleic Acids Research* 33: 511-518; Katoh and Toh, 2007, *Bioinformatics* 23: 372-374; Katoh *et al.*, 2009, *Methods in Molecular Biology* 537:_39-64; Katoh and Toh, 2010, *Bioinformatics* 26:_1899-1900), and EMBOSS EMMA employing ClustalW (1.83 or later; Thompson *et al.*, 1994, *Nucleic Acids Research* 22: 4673-4680), using their respective default parameters.

5

10

15

20

25

30

35

When the other enzyme has diverged from the polypeptide of SEQ ID NO: 2 such that traditional sequence-based comparison fails to detect their relationship (Lindahl and Elofsson, 2000, J. Mol. Biol. 295: 613-615), other pairwise sequence comparison algorithms can be used. Greater sensitivity in sequence-based searching can be attained using search programs that utilize probabilistic representations of polypeptide families (profiles) to search databases. For example, the PSI-BLAST program generates profiles through an iterative database search process and is capable of detecting remote homologs (Atschul et al., 1997, Nucleic Acids Res. 25: 3389-3402). Even greater sensitivity can be achieved if the family or superfamily for the polypeptide has one or more representatives in the protein structure databases. Programs such as GenTHREADER (Jones, 1999, J. Mol. Biol. 287: 797-815; McGuffin and Jones, 2003, Bioinformatics 19: 874-881) utilize information from a variety of sources (PSI-BLAST, secondary structure prediction, structural alignment profiles, and solvation potentials) as input to a neural network that predicts the structural fold for a query sequence. Similarly, the method of Gough et al., 2000, J. Mol. Biol. 313: 903-919, can be used to align a sequence of unknown structure with the superfamily models present in the SCOP database. These alignments can in turn be used to generate homology models for the polypeptide, and such models can be assessed for accuracy using a variety of tools developed for that purpose.

For proteins of known structure, several tools and resources are available for retrieving and generating structural alignments. For example the SCOP superfamilies of proteins have been structurally aligned, and those alignments are accessible and downloadable. Two or more protein structures can be aligned using a variety of algorithms such as the distance alignment matrix (Holm and Sander, 1998, *Proteins* 33: 88-96) or combinatorial extension (Shindyalov and Bourne, 1998, *Protein Engineering* 11: 739-747), and implementation of these algorithms can additionally be utilized to query structure databases with a structure of interest in order to discover possible structural homologs (e.g., Holm and Park, 2000, *Bioinformatics* 16: 566-567).

In describing the variants of the present invention, the nomenclature described below is adapted for ease of reference. The accepted IUPAC single letter or three letter amino acid abbreviation is employed.

<u>Substitutions</u>. For an amino acid substitution, the following nomenclature is used: Original amino acid, position, substituted amino acid. Accordingly, the substitution of threonine at position 226 with alanine is designated as "Thr226Ala" or "T226A". Multiple mutations are separated by addition marks ("+"), e.g., "Gly205Arg + Ser411Phe" or "G205R + S411F", representing substitutions at positions 205 and 411 of glycine (G) with arginine (R) and serine (S) with phenylalanine (F), respectively.

<u>Deletions</u>. For an amino acid deletion, the following nomenclature is used: Original amino acid, position, *. Accordingly, the deletion of glycine at position 195 is designated as

"Gly195*" or "G195*". Multiple deletions are separated by addition marks ("+"), e.g., "Gly195* + Ser411*" or "G195* + S411*".

Insertions. For an amino acid insertion, the following nomenclature is used: Original amino acid, position, original amino acid, inserted amino acid. Accordingly the insertion of lysine after glycine at position 195 is designated "Gly195GlyLys" or "G195GK". An insertion of multiple amino acids is designated [Original amino acid, position, original amino acid, inserted amino acid #1, inserted amino acid #2; etc.]. For example, the insertion of lysine and alanine after glycine at position 195 is indicated as "Gly195GlyLysAla" or "G195GKA".

In such cases the inserted amino acid residue(s) are numbered by the addition of lower case letters to the position number of the amino acid residue preceding the inserted amino acid residue(s). In the above example, the sequence would thus be:

Parent:	Variant:
195	195 195a 195b
G	G - K - A

<u>Multiple alterations</u>. Variants comprising multiple alterations are separated by addition marks ("+"), *e.g.*, "Arg170Tyr+Gly195Glu" or "R170Y+G195E" representing a substitution of arginine and glycine at positions 170 and 195 with tyrosine and glutamic acid, respectively.

<u>Different alterations</u>. Where different alterations can be introduced at a position, the different alterations are separated by a comma, *e.g.*, "Arg170Tyr,Glu" represents a substitution of arginine at position 170 with tyrosine or glutamic acid. Thus, "Tyr167Gly,Ala + Arg170Gly,Ala" designates the following variants:

20 "Tyr167Gly+Arg170Gly", "Tyr167Gly+Arg170Ala", "Tyr167Ala+Arg170Gly", and "Tyr167Ala+Arg170Ala".

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to compositions comprising lipase variants which variant comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of the polypeptide of SEQ ID NO: 2, wherein the variant has lipase activity.

Variants

5

10

15

25

30

The present invention provides lipase variants, comprising substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T and G38A of SEQ ID NO: 2, wherein the variant has lipase activity. In some aspects the variants further comprises substitutions at positions corresponding to D27R and/or N33Q of SEQ ID NO: 2.

In one aspect, the variant has sequence identity of at least 60%, *e.g.*, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, to the amino acid sequence of the parent lipase. In another aspect, the variant has at least 60%, *e.g.*, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, such as at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to SEQ ID NO: 2.

5

10

15

20

25

30

35

In one aspect, the number of substitutions in the variants of the present invention is 1-40, e.g., 1-30, 1-20, 1-10 and 1-5, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 substitutions.

In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T and G38A of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at two positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at three positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at four positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at five positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at six positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at seven positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at eight positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2. In another aspect, a variant comprises substitutions at positions corresponding to T231R+N233R and at nine positions corresponding to any of positions D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 96. In another aspect, the amino acid at a position corresponding to position 96 is substituted with Glu, Gly, Ser, or Val, preferably with Glu. In another aspect, the variant comprises or consists of the substitution D96E of SEQ ID NO: 2.

5

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 111. In another aspect, the amino acid at a position corresponding to position 111 is substituted with Ala, Gly, Ile, Leu, Met, or Val, preferably with Ala. In another aspect, the variant comprises or consists of the substitution D111A of SEQ ID NO: 2.

10

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 254. In another aspect, the amino acid at a position corresponding to position 254 is substituted with Ser, or Thr, preferably with Ser. In another aspect, the variant comprises or consists of the substitution D254S of SEQ ID NO: 2.

15

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 163. In another aspect, the amino acid at a position corresponding to position 163 is substituted with Asp, Glu, His, or Lys. In another aspect, the variant comprises or consists of the substitution G163K of SEQ ID NO: 2.

20

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 256. In another aspect, the amino acid at a position corresponding to position 256 is substituted with Lys, Ser, or Thr, preferably with Thr. In another aspect, the variant comprises or consists of the substitution P256T of SEQ ID NO: 2.

25

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 91. In another aspect, the amino acid at a position corresponding to position 91 is substituted with Ala, Asn, Gln, Glu, Ile, Leu, Ser, Thr, Trp, or Val, preferably with Thr. In another aspect, the variant comprises or consists of the substitution G91T of SEQ ID NO: 2.

30

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 38. In another aspect, the amino acid at a position corresponding to position 38 is substituted with Ala, Arg, Asn, Asp, Gln, Glu, Ile, Leu, Met, or Val, preferably with Ala. In another aspect, the variant comprises or consists of the substitution G38A of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 27. In another aspect, the amino acid at a position corresponding to position 27 is substituted with Arg, His, or Lys, preferably with Arg. In another aspect, the variant comprises or consists of the substitution D27R of SEQ ID NO: 2.

35

In another aspect, the variant comprises or consists of substitutions at positions corresponding to T231R+N233R and position 33. In another aspect, the amino acid at a position

corresponding to position 33 is substituted with Gln, Lys, Ser, or Thr, preferably with Gln. In another aspect, the variant comprises or consists of the substitution N33Q of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33; 27+38; 27+91; 27+96; 27+111; 27+163; 27+254; 27+256; 33+38; 33+91; 33+96; 33+111; 33+163; 33+254; 33+256; 38+91; 38+96; 38+111; 38+163; 38+254; 38+256; 91+96; 91+111; 91+163; 91+254; 91+256; 96+111; 96+163; 96+254; 96+256; 111+163; 111+254; 111+256; 163+254; 163+256; or 254+256, such as those described above.

5

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33+38; 27+33+91; 27+33+96; 27+33+111; 10 27+33+163; 27+33+254; 27+33+256; 27+38+91; 27+38+96; 27+38+111; 27+38+163; 27+38+254; 27+38+256; 27+91+96; 27+91+111; 27+91+163; 27+91+254; 27+91+256; 27+96+111; 27+96+163; 27+96+254; 27+96+256; 27+111+163; 27+111+254; 27+111+256; 27+163+254; 27+163+256; 27+254+256; 33+38+91; 33+38+96; 33+38+111; 33+38+163; 33+38+254; 33+38+256; 33+91+96; 33+91+111; 33+91+163; 33+91+254; 33+91+256; 15 33+96+111; 33+96+163; 33+96+254; 33+96+256; 33+111+163; 33+111+254; 33+111+256; 33+163+254; 33+163+256; 33+254+256; 38+91+96; 38+91+111; 38+91+163; 38+91+254; 38+91+256; 38+96+111; 38+96+163; 38+96+254; 38+96+256; 38+111+163; 38+111+254; 38+111+256; 38+163+254; 38+163+256; 38+254+256; 91+96+111; 91+96+163; 91+96+254; 20 91+96+256; 91+111+163; 91+111+254; 91+111+256; 91+163+254; 91+163+256; 91+254+256; 96+111+254; 96+111+256; 96+163+254; 96+163+256; 111+163+254; 111+163+256; 111+254+256; or 163+254+256 such as those described above.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33+38+91; 27+33+38+96; 27+33+38+111; 27+33+38+163; 27+33+38+254; 27+33+38+256; 27+33+91+96; 25 27+33+91+111; 27+33+91+163; 27+33+91+254; 27+33+91+256; 27+33+96+111; 27+33+96+163; 27+33+96+254; 27+33+96+256; 27+33+111+163; 27+33+111+254; 27+33+111+256; 27+33+163+254; 27+33+163+256; 27+33+254+256; 27+38+91+96; 27+38+91+111; 27+38+91+163; 27+38+91+254; 27+38+91+256; 27+38+96+111; 27+38+96+163; 27+38+96+254; 27+38+96+256; 30 27+38+111+163; 27+38+111+254; 27+38+111+256; 27+38+163+254; 27+38+163+256; 27+38+254+256; 27+91+96+111; 27+91+96+163; 27+91+96+254; 27+91+96+256; 27+91+111+163; 27+91+111+254; 27+91+111+256; 27+91+163+254; 27+91+163+256; 27+91+254+256; 27+96+111+163; 27+96+111+254; 27+96+111+256; 27+96+163+254; 27+96+163+256; 27+96+254+256; 27+111+163+254; 35 27+111+163+256; 27+111+254+256; 27+163+254+256; 33+38+91+96; 33+38+91+111; 33+38+91+163; 33+38+91+254; 33+38+91+256; 33+38+96+111; 33+38+96+163; 33+38+96+254; 33+38+96+256; 33+38+111+163; 33+38+111+254; 33+38+111+256;

33+38+163+254; 33+38+163+256; 33+38+254+256; 33+91+96+111: 33+91+96+163: 33+91+96+254; 33+91+96+256; 33+91+111+163; 33+91+111+254; 33+91+111+256; 33+91+163+254; 33+91+163+256; 33+91+254+256; 33+96+111+163; 33+96+111+254; 33+96+111+256; 33+96+163+254; 33+96+163+256; 33+96+254+256; 33+111+163+254; 33+111+163+256; 33+111+254+256; 33+163+254+256; 38+91+96+111; 38+91+96+163; 38+91+96+254; 38+91+96+256; 38+91+111+163; 38+91+111+254; 38+91+111+256; 38+91+163+254; 38+91+163+256; 38+91+254+256; 38+96+111+163; 38+96+111+254; 38+96+163+254; 38+96+163+256; 38+96+254+256; 38+111+163+254; 38+96+111+256: 38+111+163+256; 38+111+254+256; 38+163+254+256; 91+96+111+163; 91+96+111+254; 91+96+111+256; 91+96+163+254; 91+96+163+256; 91+96+254+256; 91+111+163+254; 91+111+163+256; 91+111+254+256; 91+163+254+256; 96+111+163+254; 96+111+163+256; 96+111+254+256; 96+163+254+256; or 111+163+254+256 such as those described above.

5

10

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33+38+91+96; 27+33+38+91+111; 27+33+38+91+163; 15 27+33+38+91+254; 27+33+38+91+256; 27+33+38+96+111; 27+33+38+96+163; 27+33+38+96+254; 27+33+38+96+256; 27+33+38+111+163; 27+33+38+111+254; 27+33+38+111+256; 27+33+38+163+254; 27+33+38+163+256; 27+33+38+254+256; 27+33+91+96+163: 27+33+91+96+111; 27+33+91+96+254; 27+33+91+96+256; 27+33+91+111+163; 27+33+91+111+254; 27+33+91+111+256; 20 27+33+91+163+254; 27+33+91+163+256; 27+33+91+254+256; 27+33+96+111+163; 27+33+96+111+254; 27+33+96+111+256; 27+33+96+163+254; 27+33+96+163+256; 27+33+96+254+256; 27+33+111+163+254; 27+33+111+163+256; 27+33+111+254+256; 27+33+163+254+256; 27+38+91+96+111; 27+38+91+96+163; 27+38+91+96+254; 27+38+91+96+256; 27+38+91+111+163; 27+38+91+111+254; 27+38+91+111+256; 27+38+91+163+254; 27+38+96+111+163; 25 27+38+91+163+256; 27+38+91+254+256; 27+38+96+111+254; 27+38+96+111+256; 27+38+96+163+254; 27+38+96+163+256; 27+38+96+254+256; 27+38+111+163+256; 27+38+111+163+254; 27+38+111+254+256; 27+38+163+254+256; 27+91+96+111+163; 27+91+96+111+254; 27+91+96+111+256; 27+91+96+163+254; 27+91+96+163+256; 27+91+96+254+256; 27+91+111+163+254; 30 27+91+111+163+256; 27+91+111+254+256; 27+91+163+254+256; 27+96+111+163+254; 27+96+111+163+256; 27+96+111+254+256; 27+96+163+254+256; 27+111+163+254+256; 33+38+91+96+111; 33+38+91+96+163; 33+38+91+96+254; 33+38+91+96+256; 33+38+91+111+163; 33+38+91+111+254; 33+38+91+111+256; 33+38+91+163+254; 33+38+91+163+256: 33+38+91+254+256: 33+38+96+111+163; 33+38+96+111+254; 35 33+38+96+111+256: 33+38+96+163+254: 33+38+96+163+256: 33+38+96+254+256: 33+38+111+163+254; 33+38+111+163+256; 33+38+111+254+256; 33+38+163+254+256; 33+91+96+111+163; 33+91+96+111+254; 33+91+96+111+256; 33+91+96+163+254;

33+91+96+163+256; 33+91+96+254+256; 33+91+111+163+254; 33+91+111+163+256: 33+91+111+254+256: 33+91+163+254+256; 33+96+111+163+254; 33+96+111+163+256; 33+96+111+254+256; 33+96+163+254+256; 33+111+163+254+256; 38+91+96+111+163; 38+91+96+111+254; 38+91+96+111+256; 38+91+96+163+254; 38+91+96+163+256; 38+91+96+254+256; 38+91+111+163+254; 38+91+111+163+256; 38+91+111+254+256; 38+91+163+254+256; 38+96+111+163+254; 38+96+111+163+256; 38+96+111+254+256; 38+96+163+254+256; 38+111+163+254+256; 91+96+111+163+254; 91+96+111+163+256; 91+96+111+254+256; 91+96+163+254+256; 91+111+163+254+256; or 96+111+163+254+256 such as those described above.

5

10 In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33+38+91+96+111; 27+33+38+91+96+163; 27+33+38+91+96+254; 27+33+38+91+96+256; 27+33+38+91+111+163; 27+33+38+91+111+254; 27+33+38+91+111+256; 27+33+38+91+163+254; 27+33+38+91+163+256; 27+33+38+91+254+256; 27+33+38+96+111+163; 15 27+33+38+96+111+254; 27+33+38+96+111+256; 27+33+38+96+163+254; 27+33+38+96+163+256; 27+33+38+96+254+256; 27+33+38+111+163+254; 27+33+38+111+163+256; 27+33+38+111+254+256; 27+33+38+163+254+256; 27+33+91+96+111+163; 27+33+91+96+111+254; 27+33+91+96+111+256; 27+33+91+96+163+254; 27+33+91+96+163+256; 27+33+91+96+254+256; 20 27+33+91+111+163+254; 27+33+91+111+163+256; 27+33+91+111+254+256; 27+33+91+163+254+256; 27+33+96+111+163+254; 27+33+96+111+163+256; 27+33+96+111+254+256: 27+33+96+163+254+256: 27+33+111+163+254+256; 27+38+91+96+111+163; 27+38+91+96+111+254; 27+38+91+96+111+256; 27+38+91+96+163+254; 27+38+91+96+163+256; 27+38+91+96+254+256; 27+38+91+111+163+254; 27+38+91+111+163+256; 27+38+91+111+254+256; 25 27+38+91+163+254+256; 27+38+96+111+163+254; 27+38+96+111+163+256; 27+38+96+111+254+256; 27+38+111+163+254+256; 27+38+96+163+254+256: 27+91+96+111+163+254; 27+91+96+111+163+256; 27+91+96+111+254+256; 27+91+96+163+254+256; 27+91+111+163+254+256; 27+96+111+163+254+256; 30 33+38+91+96+111+163; 33+38+91+96+111+254; 33+38+91+96+111+256; 33+38+91+96+163+254: 33+38+91+96+254+256; 33+38+91+96+163+256: 33+38+91+111+163+254; 33+38+91+111+163+256; 33+38+91+111+254+256; 33+38+91+163+254+256; 33+38+96+111+163+254; 33+38+96+111+163+256; 33+38+96+111+254+256; 33+38+96+163+254+256: 33+38+111+163+254+256; 35 33+91+96+111+163+254: 33+91+96+111+163+256; 33+91+96+111+254+256: 33+91+96+163+254+256; 33+91+111+163+254+256; 33+96+111+163+254+256; 38+91+96+111+163+254; 38+91+96+111+163+256; 38+91+96+111+254+256;

38+91+96+163+254+256; 38+91+111+163+254+256; 38+96+111+163+254+256; or 91+96+111+163+254+256 such as those described above.

In another aspect, the variant comprises or consists of the substitutions at positions T231R+N233R 27+33+38+91+96+111+163; corresponding to and one of 5 27+33+38+91+96+111+254; 27+33+38+91+96+111+256; 27+33+38+91+96+163+254; 27+33+38+91+96+163+256; 27+33+38+91+96+254+256; 27+33+38+91+111+163+254; 27+33+38+91+111+163+256; 27+33+38+91+111+254+256; 27+33+38+91+163+254+256; 27+33+38+96+111+163+254; 27+33+38+96+111+163+256; 27+33+38+96+111+254+256; 27+33+38+96+163+254+256; 27+33+38+111+163+254+256; 27+33+91+96+111+163+254; 10 27+33+91+96+111+163+256; 27+33+91+96+111+254+256; 27+33+91+96+163+254+256; 27+33+91+111+163+254+256; 27+33+96+111+163+254+256; 27+38+91+96+111+163+254; 27+38+91+96+111+163+256; 27+38+91+96+111+254+256; 27+38+91+96+163+254+256; 27+38+91+111+163+254+256; 27+38+96+111+163+254+256; 27+91+96+111+163+254+256; 33+38+91+96+111+163+254; 33+38+91+96+111+163+256; 33+38+91+96+111+254+256; 15 33+38+91+96+163+254+256; 33+38+91+111+163+254+256; 33+38+96+111+163+254+256; 33+91+96+111+163+254+256; or 38+91+96+111+163+254+256 such as those described above.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of 27+33+38+91+96+111+163+254; 27+33+38+91+96+111+163+256; 27+33+38+91+96+111+254+256; 27+33+38+91+96+163+254+256; 27+33+38+91+111+163+254+256; 27+33+38+96+111+163+254+256; 27+33+91+96+111+163+254+256; 27+38+91+96+111+163+254+256; or 33+38+91+96+111+163+254+256 such as those; described above.

20

25

30

35

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and 27+33+38+91+96+111+163+254+256 such as those described above.

In another aspect, the variant comprises or consists of T231R+N233R and one or more (e.g., several) substitutions selected from the group consisting of D27R, N33Q, G38A, G91T, D96E, D111A, G163K, D254S, and P256T.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of D27R+N33Q; D27R+G38A; D27R+G91T; D27R+D96E; D27R+D111A; D27R+G163K; D27R+D254S; D27R+P256T; N33Q+G38A; N33Q+G91T; N33Q+D96E; N33Q+D111A; N33Q+G163K; N33Q+D254S; N33Q+P256T; G38A+G91T; G38A+D96E; G38A+D111A; G38A+G163K; G38A+D254S; G38A+P256T; G91T+D96E; G91T+D111A; G91T+G163K; G91T+D254S; G91T+P256T; D96E+D111A;

D96E+G163K; D96E+D254S; D96E+P256T; D111A+G163K; D111A+D254S; D111A+P256T; G163K+D254S; G163K+P256T; or D254S+P256T of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of D27R+N33Q+G38A; D27R+N33Q+G91T; 5 D27R+N33Q+D96E; D27R+N33Q+D111A; D27R+N33Q+G163K; D27R+N33Q+D254S; D27R+N33Q+P256T; D27R+G38A+G91T; D27R+G38A+D96E; D27R+G38A+D111A; D27R+G38A+G163K; D27R+G38A+D254S; D27R+G38A+P256T; D27R+G91T+D96E; D27R+G91T+D111A; D27R+G91T+G163K; D27R+G91T+D254S; D27R+G91T+P256T; D27R+D96E+D111A; D27R+D96E+G163K; D27R+D96E+D254S; D27R+D96E+P256T; 10 D27R+D111A+G163K; D27R+D111A+D254S; D27R+D111A+P256T; D27R+G163K+D254S; D27R+G163K+P256T; D27R+D254S+P256T; N33Q+G38A+G91T; N33Q+G38A+D96E; N33Q+G38A+D111A; N33Q+G38A+G163K; N33Q+G38A+D254S; N33Q+G38A+P256T; N33Q+G91T+D96E; N33Q+G91T+D111A; N33Q+G91T+G163K; N33Q+G91T+D254S; N33Q+G91T+P256T; N33Q+D96E+D111A; N33Q+D96E+G163K; N33Q+D96E+D254S; 15 N33Q+D96E+P256T; N33Q+D111A+G163K; N33Q+D111A+D254S; N33Q+D111A+P256T; N33Q+G163K+D254S; N33Q+G163K+P256T; N33Q+D254S+P256T; G38A+G91T+D96E; G38A+G91T+D111A; G38A+G91T+G163K; G38A+G91T+D254S; G38A+G91T+P256T; G38A+D96E+D111A; G38A+D96E+G163K; G38A+D96E+D254S; G38A+D96E+P256T; G38A+D111A+G163K; G38A+D111A+D254S; G38A+D111A+P256T; G38A+G163K+D254S; 20 G38A+G163K+P256T; G38A+D254S+P256T; G91T+D96E+D111A; G91T+D96E+G163K; G91T+D96E+D254S; G91T+D96E+P256T; G91T+D111A+G163K; G91T+D111A+D254S; G91T+D111A+P256T; G91T+G163K+D254S; G91T+G163K+P256T; G91T+D254S+P256T; D96E+D111A+G163K; D96E+D111A+D254S; D96E+D111A+P256T; D96E+G163K+D254S; D96E+G163K+P256T; D96E+D254S+P256T; D111A+G163K+D254S; D111A+G163K+P256T; D111A+D254S+P256T; or G163K+D254S+P256T of SEQ ID NO: 2. 25

In another aspect, the variant comprises or consists of the substitutions at positions D27R+N33Q+G38A+G91T: corresponding to T231R+N233R and of one D27R+N33Q+G38A+D96E; D27R+N33Q+G38A+D111A; D27R+N33Q+G38A+G163K; D27R+N33Q+G38A+D254S; D27R+N33Q+G38A+P256T; D27R+N33Q+G91T+D96E; D27R+N33Q+G91T+D111A; D27R+N33Q+G91T+G163K; D27R+N33Q+G91T+D254S; D27R+N33Q+G91T+P256T; D27R+N33Q+D96E+D111A; D27R+N33Q+D96E+G163K; D27R+N33Q+D96E+D254S; D27R+N33Q+D96E+P256T; D27R+N33Q+D111A+G163K; D27R+N33Q+D111A+D254S; D27R+N33Q+D111A+P256T; D27R+N33Q+G163K+D254S; D27R+N33Q+G163K+P256T: D27R+N33Q+D254S+P256T; D27R+G38A+G91T+D96E; D27R+G38A+G91T+D111A; D27R+G38A+G91T+G163K; D27R+G38A+G91T+D254S; D27R+G38A+G91T+P256T; D27R+G38A+D96E+D111A; D27R+G38A+D96E+G163K; D27R+G38A+D96E+D254S; D27R+G38A+D96E+P256T; D27R+G38A+D111A+G163K;

30

D27R+G38A+D111A+D254S: D27R+G38A+D111A+P256T; D27R+G38A+G163K+D254S: D27R+G38A+G163K+P256T; D27R+G38A+D254S+P256T; D27R+G91T+D96E+D111A: D27R+G91T+D96E+G163K; D27R+G91T+D96E+D254S; D27R+G91T+D96E+P256T; D27R+G91T+D111A+G163K; D27R+G91T+D111A+D254S; D27R+G91T+D111A+P256T; 5 D27R+G91T+G163K+D254S; D27R+G91T+G163K+P256T; D27R+G91T+D254S+P256T; D27R+D96E+D111A+G163K; D27R+D96E+D111A+D254S; D27R+D96E+D111A+P256T; D27R+D96E+G163K+D254S; D27R+D96E+G163K+P256T; D27R+D96E+D254S+P256T; D27R+D111A+G163K+D254S; D27R+D111A+G163K+P256T; D27R+D111A+D254S+P256T; D27R+G163K+D254S+P256T; N33Q+G38A+G91T+D96E; N33Q+G38A+G91T+D111A; 10 N33Q+G38A+G91T+G163K; N33Q+G38A+G91T+D254S: N33Q+G38A+G91T+P256T; N33Q+G38A+D96E+D111A; N33Q+G38A+D96E+G163K; N33Q+G38A+D96E+D254S; N33Q+G38A+D96E+P256T; N33Q+G38A+D111A+G163K; N33Q+G38A+D111A+D254S; N33Q+G38A+D111A+P256T; N33Q+G38A+G163K+D254S; N33Q+G38A+G163K+P256T; N33Q+G38A+D254S+P256T: N33Q+G91T+D96E+D111A: N33Q+G91T+D96E+G163K: N33Q+G91T+D96E+D254S; N33Q+G91T+D111A+G163K; 15 N33Q+G91T+D96E+P256T; N33Q+G91T+G163K+D254S; N33Q+G91T+D111A+D254S; N33Q+G91T+D111A+P256T; N33Q+G91T+G163K+P256T; N33Q+G91T+D254S+P256T: N33Q+D96E+D111A+G163K; N33Q+D96E+D111A+D254S: N33Q+D96E+D111A+P256T: N33Q+D96E+G163K+D254S: N33Q+D96E+G163K+P256T; N33Q+D96E+D254S+P256T; N33Q+D111A+G163K+D254S; 20 N33Q+D111A+G163K+P256T; N33Q+D111A+D254S+P256T; N33Q+G163K+D254S+P256T; G38A+G91T+D96E+D111A: G38A+G91T+D96E+G163K: G38A+G91T+D96E+D254S: G38A+G91T+D96E+P256T: G38A+G91T+D111A+G163K: G38A+G91T+D111A+D254S: G38A+G91T+D111A+P256T; G38A+G91T+G163K+D254S; G38A+G91T+G163K+P256T; G38A+G91T+D254S+P256T; G38A+D96E+D111A+G163K; G38A+D96E+D111A+D254S; 25 G38A+D96E+D111A+P256T; G38A+D96E+G163K+D254S; G38A+D96E+G163K+P256T; G38A+D96E+D254S+P256T; G38A+D111A+G163K+D254S; G38A+D111A+G163K+P256T; G38A+D111A+D254S+P256T: G38A+G163K+D254S+P256T; G91T+D96E+D111A+G163K; G91T+D96E+D111A+D254S; G91T+D96E+D111A+P256T; G91T+D96E+G163K+D254S; G91T+D96E+G163K+P256T; G91T+D96E+D254S+P256T; G91T+D111A+G163K+D254S; 30 G91T+D111A+G163K+P256T; G91T+D111A+D254S+P256T; G91T+G163K+D254S+P256T; D96E+D111A+G163K+D254S: D96E+D111A+G163K+P256T: D96E+D111A+D254S+P256T: D96E+G163K+D254S+P256T; or D111A+G163K+D254S+P256T of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of D27R+N33Q+G38A+G91T+D96E; D27R+N33Q+G38A+G91T+D111A; D27R+N33Q+G38A+G91T+D254S; D27R+N33Q+G38A+G91T+P256T; D27R+N33Q+G38A+D96E+D111A; D27R+N33Q+G38A+D96E+G163K;

	WO 2014/184164	PCT/EP2014/059701
	D27R+N33Q+G38A+D96E+D254S;	D27R+N33Q+G38A+D96E+P256T;
	D27R+N33Q+G38A+D111A+G163K;	D27R+N33Q+G38A+D111A+D254S;
	D27R+N33Q+G38A+D111A+P256T;	D27R+N33Q+G38A+G163K+D254S;
	D27R+N33Q+G38A+G163K+P256T;	D27R+N33Q+G38A+D254S+P256T;
5	D27R+N33Q+G91T+D96E+D111A;	D27R+N33Q+G91T+D96E+G163K;
	D27R+N33Q+G91T+D96E+D254S;	D27R+N33Q+G91T+D96E+P256T;
	D27R+N33Q+G91T+D111A+G163K;	D27R+N33Q+G91T+D111A+D254S;
	D27R+N33Q+G91T+D111A+P256T;	D27R+N33Q+G91T+G163K+D254S;
	D27R+N33Q+G91T+G163K+P256T;	D27R+N33Q+G91T+D254S+P256T;
10	D27R+N33Q+D96E+D111A+G163K;	D27R+N33Q+D96E+D111A+D254S;
	D27R+N33Q+D96E+D111A+P256T;	D27R+N33Q+D96E+G163K+D254S;
	D27R+N33Q+D96E+G163K+P256T;	D27R+N33Q+D96E+D254S+P256T;
	D27R+N33Q+D111A+G163K+D254S;	D27R+N33Q+D111A+G163K+P256T;
	D27R+N33Q+D111A+D254S+P256T;	D27R+N33Q+G163K+D254S+P256T;
15	D27R+G38A+G91T+D96E+D111A;	D27R+G38A+G91T+D96E+G163K;
	D27R+G38A+G91T+D96E+D254S;	D27R+G38A+G91T+D96E+P256T;
	D27R+G38A+G91T+D111A+G163K;	D27R+G38A+G91T+D111A+D254S;
	D27R+G38A+G91T+D111A+P256T;	D27R+G38A+G91T+G163K+D254S;
	D27R+G38A+G91T+G163K+P256T;	D27R+G38A+G91T+D254S+P256T;
20	D27R+G38A+D96E+D111A+G163K;	D27R+G38A+D96E+D111A+D254S;
	D27R+G38A+D96E+D111A+P256T;	D27R+G38A+D96E+G163K+D254S;
	D27R+G38A+D96E+G163K+P256T;	D27R+G38A+D96E+D254S+P256T;
	D27R+G38A+D111A+G163K+D254S;	D27R+G38A+D111A+G163K+P256T;
	D27R+G38A+D111A+D254S+P256T;	D27R+G38A+G163K+D254S+P256T;
25	D27R+G91T+D96E+D111A+G163K;	D27R+G91T+D96E+D111A+D254S;
	D27R+G91T+D96E+D111A+P256T;	D27R+G91T+D96E+G163K+D254S;
	D27R+G91T+D96E+G163K+P256T;	D27R+G91T+D96E+D254S+P256T;
	D27R+G91T+D111A+G163K+D254S;	D27R+G91T+D111A+G163K+P256T;
	D27R+G91T+D111A+D254S+P256T;	D27R+G91T+G163K+D254S+P256T;
30	D27R+D96E+D111A+G163K+D254S;	D27R+D96E+D111A+G163K+P256T;
	D27R+D96E+D111A+D254S+P256T;	D27R+D96E+G163K+D254S+P256T;
	D27R+D111A+G163K+D254S+P256T;	N33Q+G38A+G91T+D96E+D111A;
	N33Q+G38A+G91T+D96E+G163K;	N33Q+G38A+G91T+D96E+D254S;
	N33Q+G38A+G91T+D96E+P256T;	N33Q+G38A+G91T+D111A+G163K;
35	N33Q+G38A+G91T+D111A+D254S;	N33Q+G38A+G91T+D111A+P256T;
	N33Q+G38A+G91T+G163K+D254S;	N33Q+G38A+G91T+G163K+P256T;
	N33Q+G38A+G91T+D254S+P256T;	N33Q+G38A+D96E+D111A+G163K;
		4-7

N33Q+G38A+D96E+D111A+D254S; N33Q+G38A+D96E+D111A+P256T; N33Q+G38A+D96E+G163K+D254S: N33Q+G38A+D96E+G163K+P256T: N33Q+G38A+D96E+D254S+P256T; N33Q+G38A+D111A+G163K+D254S; N33Q+G38A+D111A+G163K+P256T; N33Q+G38A+D111A+D254S+P256T; 5 N33Q+G38A+G163K+D254S+P256T; N33Q+G91T+D96E+D111A+G163K; N33Q+G91T+D96E+D111A+D254S; N33Q+G91T+D96E+D111A+P256T; N33Q+G91T+D96E+G163K+D254S; N33Q+G91T+D96E+G163K+P256T; N33Q+G91T+D96E+D254S+P256T; N33Q+G91T+D111A+G163K+D254S; N33Q+G91T+D111A+G163K+P256T; N33Q+G91T+D111A+D254S+P256T; 10 N33Q+G91T+G163K+D254S+P256T; N33Q+D96E+D111A+G163K+D254S; N33Q+D96E+D111A+G163K+P256T; N33Q+D96E+D111A+D254S+P256T; N33Q+D96E+G163K+D254S+P256T; N33Q+D111A+G163K+D254S+P256T; G38A+G91T+D96E+D111A+G163K; G38A+G91T+D96E+D111A+D254S; G38A+G91T+D96E+D111A+P256T; G38A+G91T+D96E+G163K+D254S: G38A+G91T+D96E+D254S+P256T; 15 G38A+G91T+D96E+G163K+P256T; G38A+G91T+D111A+G163K+D254S; G38A+G91T+D111A+G163K+P256T; G38A+G91T+D111A+D254S+P256T; G38A+G91T+G163K+D254S+P256T; G38A+D96E+D111A+G163K+D254S: G38A+D96E+D111A+G163K+P256T: G38A+D96E+D111A+D254S+P256T; G38A+D96E+G163K+D254S+P256T; 20 G38A+D111A+G163K+D254S+P256T; G91T+D96E+D111A+G163K+D254S; G91T+D96E+D111A+G163K+P256T; G91T+D96E+D111A+D254S+P256T; G91T+D96E+G163K+D254S+P256T: G91T+D111A+G163K+D254S+P256T: or D96E+D111A+G163K+D254S+P256T of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of D27R+N33Q+G38A+G91T+D96E+D111A; 25 D27R+N33Q+G38A+G91T+D96E+G163K; D27R+N33Q+G38A+G91T+D96E+D254S; D27R+N33Q+G38A+G91T+D96E+P256T; D27R+N33Q+G38A+G91T+D111A+G163K: D27R+N33Q+G38A+G91T+D111A+D254S; D27R+N33Q+G38A+G91T+D111A+P256T; D27R+N33Q+G38A+G91T+G163K+D254S; D27R+N33Q+G38A+G91T+G163K+P256T; 30 D27R+N33Q+G38A+G91T+D254S+P256T; D27R+N33Q+G38A+D96E+D111A+G163K; D27R+N33Q+G38A+D96E+D111A+D254S: D27R+N33Q+G38A+D96E+D111A+P256T: D27R+N33Q+G38A+D96E+G163K+D254S; D27R+N33Q+G38A+D96E+G163K+P256T; D27R+N33Q+G38A+D96E+D254S+P256T; D27R+N33Q+G38A+D111A+G163K+D254S; D27R+N33Q+G38A+D111A+G163K+P256T; D27R+N33Q+G38A+D111A+D254S+P256T; D27R+N33Q+G38A+G163K+D254S+P256T: D27R+N33Q+G91T+D96E+D111A+G163K: 35 D27R+N33Q+G91T+D96E+D111A+D254S; D27R+N33Q+G91T+D96E+D111A+P256T; D27R+N33Q+G91T+D96E+G163K+D254S; D27R+N33Q+G91T+D96E+G163K+P256T;

D27R+N33Q+G91T+D111A+G163K+D254S: D27R+N33Q+G91T+D96E+D254S+P256T; D27R+N33Q+G91T+D111A+G163K+P256T; D27R+N33Q+G91T+D111A+D254S+P256T: D27R+N33Q+G91T+G163K+D254S+P256T; D27R+N33Q+D96E+D111A+G163K+D254S; D27R+N33Q+D96E+D111A+G163K+P256T; D27R+N33Q+D96E+D111A+D254S+P256T; 5 D27R+N33Q+D96E+G163K+D254S+P256T; D27R+N33Q+D111A+G163K+D254S+P256T; D27R+G38A+G91T+D96E+D111A+G163K; D27R+G38A+G91T+D96E+D111A+D254S; D27R+G38A+G91T+D96E+D111A+P256T; D27R+G38A+G91T+D96E+G163K+D254S; D27R+G38A+G91T+D96E+G163K+P256T; D27R+G38A+G91T+D96E+D254S+P256T; D27R+G38A+G91T+D111A+G163K+D254S; D27R+G38A+G91T+D111A+G163K+P256T; 10 D27R+G38A+G91T+D111A+D254S+P256T; D27R+G38A+G91T+G163K+D254S+P256T; D27R+G38A+D96E+D111A+G163K+D254S; D27R+G38A+D96E+D111A+G163K+P256T; D27R+G38A+D96E+D111A+D254S+P256T; D27R+G38A+D96E+G163K+D254S+P256T; D27R+G38A+D111A+G163K+D254S+P256T; D27R+G91T+D96E+D111A+G163K+D254S; D27R+G91T+D96E+D111A+G163K+P256T: D27R+G91T+D96E+D111A+D254S+P256T; D27R+G91T+D96E+G163K+D254S+P256T; D27R+G91T+D111A+G163K+D254S+P256T; 15 D27R+D96E+D111A+G163K+D254S+P256T; N33Q+G38A+G91T+D96E+D111A+G163K; N33Q+G38A+G91T+D96E+D111A+D254S; N33Q+G38A+G91T+D96E+D111A+P256T; N33Q+G38A+G91T+D96E+G163K+D254S; N33Q+G38A+G91T+D96E+G163K+P256T: N33Q+G38A+G91T+D96E+D254S+P256T; N33Q+G38A+G91T+D111A+G163K+D254S; 20 N33Q+G38A+G91T+D111A+G163K+P256T; N33Q+G38A+G91T+D111A+D254S+P256T; N33Q+G38A+G91T+G163K+D254S+P256T; N33Q+G38A+D96E+D111A+G163K+D254S: N33Q+G38A+D96E+D111A+D254S+P256T; N33Q+G38A+D96E+D111A+G163K+P256T; N33Q+G38A+D96E+G163K+D254S+P256T; N33Q+G38A+D111A+G163K+D254S+P256T; N33Q+G91T+D96E+D111A+G163K+D254S; N33Q+G91T+D96E+D111A+G163K+P256T; 25 N33Q+G91T+D96E+D111A+D254S+P256T; N33Q+G91T+D96E+G163K+D254S+P256T; N33Q+G91T+D111A+G163K+D254S+P256T; N33Q+D96E+D111A+G163K+D254S+P256T; G38A+G91T+D96E+D111A+G163K+D254S: G38A+G91T+D96E+D111A+G163K+P256T: G38A+G91T+D96E+D111A+D254S+P256T; G38A+G91T+D96E+G163K+D254S+P256T; G38A+G91T+D111A+G163K+D254S+P256T; G38A+D96E+D111A+G163K+D254S+P256T; or G91T+D96E+D111A+G163K+D254S+P256T of SEQ ID NO: 2. 30

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and one of D27R+N33Q+G38A+G91T+D96E+D111A+G163K; D27R+N33Q+G38A+G91T+D96E+D111A+D254S; D27R+N33Q+G38A+G91T+D96E+D111A+P256T;

35 D27R+N33Q+G38A+G91T+D96E+G163K+D254S; D27R+N33Q+G38A+G91T+D96E+G163K+P256T; D27R+N33Q+G38A+G91T+D96E+D254S+P256T;

```
D27R+N33Q+G38A+G91T+D111A+G163K+D254S:
    D27R+N33Q+G38A+G91T+D111A+G163K+P256T:
    D27R+N33Q+G38A+G91T+D111A+D254S+P256T;
    D27R+N33Q+G38A+G91T+G163K+D254S+P256T;
5
    D27R+N33Q+G38A+D96E+D111A+G163K+D254S:
    D27R+N33Q+G38A+D96E+D111A+G163K+P256T;
    D27R+N33Q+G38A+D96E+D111A+D254S+P256T;
    D27R+N33Q+G38A+D96E+G163K+D254S+P256T;
    D27R+N33Q+G38A+D111A+G163K+D254S+P256T;
10
    D27R+N33Q+G91T+D96E+D111A+G163K+D254S;
    D27R+N33Q+G91T+D96E+D111A+G163K+P256T;
    D27R+N33Q+G91T+D96E+D111A+D254S+P256T;
    D27R+N33Q+G91T+D96E+G163K+D254S+P256T;
    D27R+N33Q+G91T+D111A+G163K+D254S+P256T:
    D27R+N33Q+D96E+D111A+G163K+D254S+P256T;
15
    D27R+G38A+G91T+D96E+D111A+G163K+D254S;
    D27R+G38A+G91T+D96E+D111A+G163K+P256T;
    D27R+G38A+G91T+D96E+D111A+D254S+P256T:
    D27R+G38A+G91T+D96E+G163K+D254S+P256T;
20
    D27R+G38A+G91T+D111A+G163K+D254S+P256T;
    D27R+G38A+D96E+D111A+G163K+D254S+P256T;
    D27R+G91T+D96E+D111A+G163K+D254S+P256T:
    N33Q+G38A+G91T+D96E+D111A+G163K+D254S;
    N33Q+G38A+G91T+D96E+D111A+G163K+P256T:
    N33Q+G38A+G91T+D96E+D111A+D254S+P256T;
25
    N33Q+G38A+G91T+D96E+G163K+D254S+P256T;
    N33Q+G38A+G91T+D111A+G163K+D254S+P256T:
    N33Q+G38A+D96E+D111A+G163K+D254S+P256T;
    N33Q+G91T+D96E+D111A+G163K+D254S+P256T;
                                                                            or
30
    G38A+G91T+D96E+D111A+G163K+D254S+P256T of SEQ ID NO: 2.
          In another aspect, the variant comprises or consists of the substitutions at positions
                                 T231R+N233R
    corresponding
                        to
                                                     and
                                                                 one
                                                                            of
    D27R+N33Q+G38A+G91T+D96E+D111A+G163K+D254S:
    D27R+N33Q+G38A+G91T+D96E+D111A+G163K+P256T:
    D27R+N33Q+G38A+G91T+D96E+D111A+D254S+P256T:
35
    D27R+N33Q+G38A+G91T+D96E+G163K+D254S+P256T;
    D27R+N33Q+G38A+G91T+D111A+G163K+D254S+P256T;
```

D27R+N33Q+G38A+D96E+D111A+G163K+D254S+P256T;

D27R+N33Q+G91T+D96E+D111A+G163K+D254S+P256T;

D27R+G38A+G91T+D96E+D111A+G163K+D254S+P256T;

or

N33Q+G38A+G91T+D96E+D111A+G163K+D254S+P256T of SEQ ID NO: 2.

In another aspect, the variant comprises or consists of the substitutions at positions corresponding to T231R+N233R and

D27R+N33Q+G38A+G91T+D96E+D111A+G163K+D254S+P256T of SEQ ID NO: 2.

In another aspect, the variants comprise or consist of the substitutions at positions corresponding to the following of SEQ ID No: 2:

D96E T231R N233R; N33Q D96E T231R N233R; N33Q D111A T231R N233R; N33Q T231R N233R P256T; N33Q G38A G91T G163K T231R N233R D254S; N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G3	
N33Q D111A T231R N233R; N33Q T231R N233R P256T; N33Q G38A G91T G163K T231R N233R D254S; N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	D96E T231R N233R;
N33Q T231R N233R P256T; N33Q G38A G91T G163K T231R N233R D254S; N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	·
N33Q G38A G91T G163K T231R N233R D254S; N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R R33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R R33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	·
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S; D27R D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163M T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	,
D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	N33Q G38A G91T G163K T231R N233R D254S;
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T; D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T;
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	·
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	,
D96E T231R N233R D254S; T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	
T231R N233R D254S P256T; G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D36E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T;
G163K T231R N233R D254S; D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D36A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	D96E T231R N233R D254S;
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T; D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T;	T231R N233R D254S P256T;
D27R G91T D96E D111A G163K T231R N233R D254S P256T; D96E G163K T231R N233R D254S; D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T: D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	·
D96E G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	
D27R G163K T231R N233R D254S; D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	D27R G91T D96E D111A G163K T231R N233R D254S P256T;
D27R G38A G91T D96E D111A G163K T231R N233R D254S; D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	·
D27R G38A G91T D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163B T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	· · · · · · · · · · · · · · · · · · ·
D27R G38A D96E D111A G163K T231R N233R D254S P256T: D27R D96E G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	· · · · · · · · · · · · · · · · · · ·
D27R D96E G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	· · · · · · · · · · · · · · · · · · ·
D27R D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	
D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T;	·
D27R G38A D96E D111A G163K T231R N233R D254S; D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R D254S; D27R D111A G163K T231R N233R D254S P256T; D27R D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	,
D27R D96E G163K T231R N233R; D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	
D27R D96E G163K T231R N233R D254S P256T; D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R G38A D96E D111A G163K T231R N233R D254S;
D27R D96E D111A G163D T231R N233R D254S P256T; D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R D96E G163K T231R N233R;
D27R D96E D111A G163K T231R N233R D254S; D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	,
D27R D96E D111A G163K T231R N233R P256T; D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R D96E D111A G163D T231R N233R D254S P256T;
D27R D111A G163K T231R N233R D254S P256T; D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	· ·
D96E D111A G163K T231R N233R D254S P256T; D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R D96E D111A G163K T231R N233R P256T;
D27R G38A D96E D111A G163K T231R N233R P256T; D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R D111A G163K T231R N233R D254S P256T;
D27R G38A D96E D111A T231R N233R D254S P256T; D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D96E D111A G163K T231R N233R D254S P256T;
D27R G38A D96E G163K T231R N233R D254S P256T; D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	·
D27R D96E G163K T231R N233R D254S P256T; D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	D27R G38A D96E D111A T231R N233R D254S P256T;
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T;	· · · · · · · · · · · · · · · · · · ·
	<u> </u>
D27R G38A D111A G163K T231R N233R D254S P256T;	
	D27R G38A D111A G163K T231R N233R D254S P256T;

10

D111A G163K T231R N233R D254S P256T
D111A T231R N233R
D111A T231R N233R D254S P256T
D27R D96E D111A G163K T231R N233R
D27R D96E D111A T231R N233R
D27R G38A D96E D111A G163K T231R N233R D254S P256T
D27R N33Q G38A D96E D111A T231R N233R D254S P256T
D27R G38A D96E D111A G163K E210Q T231R N233R D254S P256T
D27R T231R N233R D254S P256T
D96E D111A G163K T231R N233R
D96E D111A G163K T231R N233R D254S P256T
D96E D111A G163K T231R N233R P256T
D96E D111A T231R N233R
D96E D111A T231R N233R D254S
D96E D111A T231R N233R P256T
D96E G163K T231R N233R D254S P256T
D96E T231R N233R D254S P256T
D96E T231R N233R P256T
G38A D96E D111A T231R N233R
G91T D96E D111A G163K T231R N233R D254S P256T
G91T D96E D111A T231R N233R
G91T D96E T231R N233R
G91T T231R N233R D254S P256T
N33Q D96E D111A G163K T231R N233R D254S P256T
T231R N233R D254S P256T
T231R N233R P256T

The variants may further comprise one or more additional substitutions at one or more (e.g., several) other positions.

The amino acid changes may be of a minor nature, that is conservative amino acid substitutions or insertions that do not significantly affect the folding and/or activity of the protein; small deletions, typically of 1-30 amino acids; small amino- or carboxyl-terminal extensions, such as an amino-terminal methionine residue; a small linker peptide of up to 20-25 residues; or a small extension that facilitates purification by changing net charge or another function, such as a poly-histidine tract, an antigenic epitope or a binding domain.

5

10

15

Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine and asparagine), hydrophobic amino acids (leucine, isoleucine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine, serine, threonine and methionine). Amino acid substitutions that do not generally alter specific activity are known in the art and are described, for example, by H. Neurath and R.L. Hill, 1979, *In*, *The Proteins*, Academic Press, New York. Common substitutions are Ala/Ser, Val/Ile,

Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, and Asp/Gly.

Alternatively, the amino acid changes are of such a nature that the physico-chemical properties of the polypeptides are altered. For example, amino acid changes may improve the thermal stability of the polypeptide, alter the substrate specificity, change the pH optimum, and the like.

5

10

15

20

25

30

35

Essential amino acids in a polypeptide can be identified according to procedures known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham and Wells, 1989, *Science* 244: 1081-1085). In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for lipase activity to identify amino acid residues that are critical to the activity of the molecule. See also, Hilton *et al.*, 1996, *J. Biol. Chem.* 271: 4699-4708. The active site of the enzyme or other biological interaction can also be determined by physical analysis of structure, as determined by such techniques as nuclear magnetic resonance, crystallography, electron diffraction, or photoaffinity labeling, in conjunction with mutation of putative contact site amino acids. See, for example, de Vos *et al.*, 1992, *Science* 255: 306-312; Smith *et al.*, 1992, *J. Mol. Biol.* 224: 899-904; Wlodaver *et al.*, 1992, *FEBS Lett.* 309: 59-64. The identity of essential amino acids can also be inferred from an alignment with a related polypeptide.

The variants may consist or contain at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the number of amino acids of SEQ ID NO: 2.

In an embodiment, the variant has improved stability in detergent with protease present compared to the parent lipase.

In an embodiment, the variant has improved detergent stability compared to the parent lipase.

In an embodiment, the variant has improved protease stability compared to the parent lipase.

In an embodiment, the variant has improved chemical stability compared to the parent lipase.

In an embodiment, the variant has improved oxidation stability compared to the parent lipase.

In an embodiment, the variant has improved pH stability compared to the parent lipase.

In an embodiment, the variant has improved stability under storage conditions compared to the parent lipase.

In an embodiment, the variant has improved thermostability compared to the parent lipase.

Parent lipases

5

10

15

20

25

30

35

The parent lipase may be (a) a polypeptide having at least 60% sequence identity to the polypeptide of SEQ ID NO: 2; (b) a polypeptide encoded by a polynucleotide that hybridizes under low stringency conditions with (i) the polypeptide coding sequence of SEQ ID NO: 1, (ii) the full-length complement of (i); or (c) a polypeptide encoded by a polynucleotide having at least 60% sequence identity to the polypeptide coding sequence of SEQ ID NO: 1.

In an aspect, the parent has a sequence identity to the polypeptide of SEQ ID NO: 2 of at least 60%, *e.g.*, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%, which have lipase activity. In one aspect, the amino acid sequence of the parent differs by up to 40 amino acids, *e.g.*, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 from the polypeptide of SEQ ID NO: 2.

In another aspect, the parent comprises or consists of the amino acid sequence of SEQ ID NO: 2.

In another aspect, the parent is a fragment of the polypeptide of SEQ ID NO: 2 containing at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the number of amino acids of SEQ ID NO: 2.

In another embodiment, the parent is an allelic variant of the polypeptide of SEQ ID NO: 2.

In another aspect, the parent is encoded by a polynucleotide that hybridizes under very low stringency conditions, low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the polypeptide coding sequence of SEQ ID NO: 1, (ii) the full-length complement of (i) (Sambrook *et al.*, 1989, *Molecular Cloning, A Laboratory Manual*, 2d edition, Cold Spring Harbor, New York).

The polynucleotide of SEQ ID NO: 1 or a subsequence thereof, as well as the polypeptide of SEQ ID NO: 2 or a fragment thereof, may be used to design nucleic acid probes to identify and clone DNA encoding a parent from strains of different genera or species according to methods well known in the art. In particular, such probes can be used for hybridization with the genomic DNA or cDNA of a cell of interest, following standard Southern blotting procedures, in order to identify and isolate the corresponding gene therein. Such probes can be considerably shorter than the entire sequence, but should be at least 15, *e.g.*, at least 25, at least 35, or at least 70 nucleotides in length. Preferably, the nucleic acid probe is at least 100 nucleotides in length, *e.g.*, at least 200 nucleotides, at least 300 nucleotides, at least 700 nucleotides, at least 700 nucleotides, at least 700 nucleotides, at least 300 nucleotides, a

800 nucleotides, or at least 900 nucleotides in length. Both DNA and RNA probes can be used. The probes are typically labeled for detecting the corresponding gene (for example, with ³²P, ³H, ³⁵S, biotin, or avidin). Such probes are encompassed by the present invention.

A genomic DNA or cDNA library prepared from such other strains may be screened for DNA that hybridizes with the probes described above and encodes a parent. Genomic or other DNA from such other strains may be separated by agarose or polyacrylamide gel electrophoresis, or other separation techniques. DNA from the libraries or the separated DNA may be transferred to and immobilized on nitrocellulose or other suitable carrier material. In order to identify a clone or DNA that hybridizes with SEQ ID NO: 1 or a subsequence thereof, the carrier material is used in a Southern blot.

5

10

15

20

25

30

35

For purposes of the present invention, hybridization indicates that the polynucleotide hybridizes to a labeled nucleic acid probe corresponding to (i) SEQ ID NO: 1; (ii) the polypeptide coding sequence of SEQ ID NO: 1; (iii) the full-length complement thereof; or (iv) a subsequence thereof; under very low to very high stringency conditions. Molecules to which the nucleic acid probe hybridizes under these conditions can be detected using, for example, X-ray film or any other detection means known in the art.

In one aspect, the nucleic acid probe is the polypeptide coding sequence of SEQ ID NO: 1. In another aspect, the nucleic acid probe is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the number of nucleotides of SEQ ID NO: 1. In another aspect, the nucleic acid probe is a polynucleotide that encodes the polypeptide of SEQ ID NO: 2; the polypeptide thereof; or a fragment thereof. In another aspect, the nucleic acid probe is SEQ ID NO: 1.

In another embodiment, the parent is encoded by a polynucleotide having a sequence identity to the polypeptide coding sequence of SEQ ID NO: 1 of at least 60%, *e.g.*, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100%.

The polypeptide may be a hybrid polypeptide in which a region of one polypeptide is fused at the N-terminus or the C-terminus of a region of another polypeptide.

The parent may be a fusion polypeptide or cleavable fusion polypeptide in which another polypeptide is fused at the N-terminus or the C-terminus of the polypeptide of the present invention. A fusion polypeptide is produced by fusing a polynucleotide encoding another polypeptide to a polynucleotide of the present invention. Techniques for producing fusion polypeptides are known in the art, and include ligating the coding sequences encoding the polypeptides so that they are in frame and that expression of the fusion polypeptide is under control of the same promoter(s) and terminator. Fusion polypeptides may also be constructed

using intein technology in which fusion polypeptides are created post-translationally (Cooper *et al.*, 1993, *EMBO J.* 12: 2575-2583; Dawson *et al.*, 1994, *Science* 266: 776-779).

A fusion polypeptide can further comprise a cleavage site between the two polypeptides. Upon secretion of the fusion protein, the site is cleaved releasing the two polypeptides. Examples of cleavage sites include, but are not limited to, the sites disclosed in Martin *et al.*, 2003, *J. Ind. Microbiol. Biotechnol.* 3: 568-576; Svetina *et al.*, 2000, *J. Biotechnol.* 76: 245-251; Rasmussen-Wilson *et al.*, 1997, *Appl. Environ. Microbiol.* 63: 3488-3493; Ward *et al.*, 1995, *Biotechnology* 13: 498-503; and Contreras *et al.*, 1991, *Biotechnology* 9: 378-381; Eaton *et al.*, 1986, *Biochemistry* 25: 505-512; Collins-Racie *et al.*, 1995, *Biotechnology* 13: 982-987; Carter *et al.*, 1989, *Proteins: Structure, Function, and Genetics* 6: 240-248; and Stevens, 2003, *Drug Discovery World* 4: 35-48.

5

10

15

20

25

30

35

The parent may be obtained from microorganisms of any genus. For purposes of the present invention, the term "obtained from" as used herein in connection with a given source shall mean that the parent encoded by a polynucleotide is produced by the source or by a strain in which the polynucleotide from the source has been inserted. In one aspect, the parent is secreted extracellularly.

The parent may be a bacterial lipase. For example, the parent may be a Gram-positive bacterial polypeptide such as a *Bacillus*, *Clostridium*, *Enterococcus*, *Geobacillus*, *Lactobacillus*, *Lactococcus*, *Oceanobacillus*, *Staphylococcus*, *Streptococcus*, *Streptomyces* or *Thermobifida* lipase, or a Gram-negative bacterial polypeptide such as a *Campylobacter*, *E. coli*, *Flavobacterium*, *Fusobacterium*, *Helicobacter*, *Ilyobacter*, *Neisseria*, *Pseudomonas*, *Salmonella*, or *Ureaplasma* lipase.

In one aspect, the parent is a Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, or Bacillus thuringiensis lipase.

In another aspect, the parent is a *Streptococcus equisimilis*, *Streptococcus pyogenes*, *Streptococcus uberis*, or *Streptococcus equi* subsp. *Zooepidemicus* lipase.

In another aspect, the parent is a *Streptomyces achromogenes*, *Streptomyces avermitilis*, *Streptomyces coelicolor*, *Streptomyces griseus*, or *Streptomyces lividans* lipase.

In another aspect, the parent is a *Thermobifida alba or Thermobifida fusca* (formerly known as *Thermomonaspora fusca*) lipase.

The parent may be a fungal lipase. For example, the parent may be a yeast lipase such as a Candida, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia lipase; or a filamentous fungal lipase such as an Acremonium, Agaricus, Alternaria, Aspergillus, Aureobasidium, Botryospaeria, Ceriporiopsis, Chaetomidium, Chrysosporium, Claviceps, Cochliobolus, Coprinopsis, Coptotermes, Corynascus, Cryphonectria, Cryptococcus, Diplodia,

Exidia, Filibasidium, Fusarium, Gibberella, Holomastigotoides, Humicola, Irpex, Lentinula, Leptospaeria, Magnaporthe, Melanocarpus, Meripilus, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Piromyces, Poitrasia, Pseudoplectania, Pseudotrichonympha, Rhizomucor, Schizophyllum, Scytalidium, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trichoderma, Trichophaea, Verticillium, Volvariella, or Xylaria lipase.

5

10

15

20

25

30

35

In another aspect, the parent is a Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, or Saccharomyces oviformis lipase.

In another aspect, the parent is an Acremonium cellulolyticus, Aspergillus aculeatus, Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium Chrysosporium zonatum, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola grisea, Humicola insolens, Humicola lanuginosa, Irpex lacteus, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium funiculosum, Penicillium purpurogenum, Phanerochaete chrysosporium, Thielavia achromatica, Thielavia albomyces, albopilosa, Thielavia australeinsis, Thielavia fimeti, Thielavia microspora, Thielavia ovispora, Thielavia peruviana, Thielavia setosa, Thielavia spededonium, Thielavia subthermophila, Thielavia terrestris, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride lipase.

In another aspect, the parent is a *Thermomyces lanuginosus* lipase, *e.g.*, the lipase of SEQ ID NO: 2.

It will be understood that for the aforementioned species, the invention encompasses both the perfect and imperfect states, and other taxonomic equivalents, *e.g.*, anamorphs, regardless of the species name by which they are known. Those skilled in the art will readily recognize the identity of appropriate equivalents.

Strains of these species are readily accessible to the public in a number of culture collections, such as the American Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ), Centraalbureau Voor Schimmelcultures (CBS), and Agricultural Research Service Patent Culture Collection, Northern Regional Research Center (NRRL).

The parent may be identified and obtained from other sources including microorganisms isolated from nature (*e.g.*, soil, composts, water, etc.) or DNA samples obtained directly from natural materials (*e.g.*, soil, composts, water, etc.) using the above-mentioned probes. Techniques for isolating microorganisms and DNA directly from natural habitats are well known in the art. A polynucleotide encoding a parent may then be obtained by similarly screening a genomic DNA or cDNA library of another microorganism or mixed DNA sample. Once a polynucleotide encoding a parent has been detected with the probe(s), the polynucleotide can be isolated or cloned by utilizing techniques that are known to those of ordinary skill in the art (see, *e.g.*, Sambrook *et al.*, 1989, *supra*).

10

15

5

Preparation of Variants

The present invention also relates to methods for obtaining lipase variants comprising: (a) introducing substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T, G38A, D27R, and N33Q of SEQ ID NO: 2; (b) selecting the variant which has lipase activity and in comparison with the parent lipase has improved stability; and (c) recovering the variant.

The variants can be prepared using any mutagenesis procedure known in the art, such as site-directed mutagenesis, synthetic gene construction, semi-synthetic gene construction, random mutagenesis, shuffling, etc.

20

25

Site-directed mutagenesis is a technique in which one or more (e.g., several) mutations are introduced at one or more defined sites in a polynucleotide encoding the parent lipase.

Site-directed mutagenesis can be accomplished *in vitro* by PCR involving the use of oligonucleotide primers containing the desired mutation. Site-directed mutagenesis can also be performed *in vitro* by cassette mutagenesis involving the cleavage by a restriction enzyme at a site in the plasmid comprising a polynucleotide encoding the parent lipase and subsequent ligation of an oligonucleotide containing the mutation in the polynucleotide. Usually the restriction enzyme that digests the plasmid and the oligonucleotide is the same, permitting sticky ends of the plasmid and the insert to ligate to one another. See, *e.g.*, Scherer and Davis, 1979, *Proc. Natl. Acad. Sci. USA* 76: 4949-4955; and Barton *et al.*, 1990, *Nucleic Acids Res.* 18: 7349-4966.

30

Site-directed mutagenesis can also be accomplished *in vivo* by methods known in the art. See, *e.g.*, US2004/0171154; Storici *et al.*, 2001, *Nature Biotechnol.* 19: 773-776; Kren *et al.*, 1998, *Nat. Med.* 4: 285-290; and Calissano and Macino, 1996, *Fungal Genet. Newslett.* 43: 15-16.

35

Any site-directed mutagenesis procedure can be used in the present invention. There are many commercial kits available that can be used to prepare variants.

Synthetic gene construction entails *in vitro* synthesis of a designed polynucleotide molecule to encode a polypeptide of interest. Gene synthesis can be performed utilizing a number of techniques, such as the multiplex microchip-based technology described by Tian *et al.* (2004, *Nature* 432: 1050-1054) and similar technologies wherein oligonucleotides are synthesized and assembled upon photo-programmable microfluidic chips.

Single or multiple amino acid substitutions, deletions, and/or insertions can be made and tested using known methods of mutagenesis, recombination, and/or shuffling, followed by a relevant screening procedure, such as those disclosed by Reidhaar-Olson and Sauer, 1988, *Science* 241: 53-57; Bowie and Sauer, 1989, *Proc. Natl. Acad. Sci. USA* 86: 2152-2156; WO95/17413; or WO95/22625. Other methods that can be used include error-prone PCR, phage display (e.g., Lowman *et al.*, 1991, *Biochemistry* 30: 10832-10837; U.S. Patent No. 5,223,409; WO 92/06204) and region-directed mutagenesis (Derbyshire *et al.*, 1986, *Gene* 46: 145; Ner *et al.*, 1988, *DNA* 7: 127).

Mutagenesis/shuffling methods can be combined with high-throughput, automated screening methods to detect activity of cloned, mutagenized polypeptides expressed by host cells (Ness *et al.*, 1999, *Nature Biotechnology* 17: 893-896). Mutagenized DNA molecules that encode active polypeptides can be recovered from the host cells and rapidly sequenced using standard methods in the art. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide.

Semi-synthetic gene construction is accomplished by combining aspects of synthetic gene construction, and/or site-directed mutagenesis, and/or random mutagenesis, and/or shuffling. Semi-synthetic construction is typified by a process utilizing polynucleotide fragments that are synthesized, in combination with PCR techniques. Defined regions of genes may thus be synthesized *de novo*, while other regions may be amplified using site-specific mutagenic primers, while yet other regions may be subjected to error-prone PCR or non-error prone PCR amplification. Polynucleotide subsequences may then be shuffled.

Polynucleotides

5

10

15

20

25

30

35

The present invention also relates to isolated polynucleotides encoding a variant of the present invention. In certain aspects the present invention relates to a nucleic acid construct comprising the polynucleotide of the invention. In certain aspects the present invention relates to an expression vector comprising the polynucleotide of the invention. In certain aspects the present invention relates to a host cell comprising the polynucleotide of the invention. In certain aspects the present invention relates to a method of producing a lipase variant, comprising: (a) cultivating the host cell of the invention under conditions suitable for expression of the variant; and (b) recovering the variant.

Nucleic Acid Constructs

5

10

15

20

25

30

35

The present invention also relates to nucleic acid constructs comprising a polynucleotide encoding a variant of the present invention operably linked to one or more control sequences that direct the expression of the coding sequence in a suitable host cell under conditions compatible with the control sequences.

The polynucleotide may be manipulated in a variety of ways to provide for expression of a variant. Manipulation of the polynucleotide prior to its insertion into a vector may be desirable or necessary depending on the expression vector. The techniques for modifying polynucleotides utilizing recombinant DNA methods are well known in the art.

The control sequence may be a promoter, a polynucleotide which is recognized by a host cell for expression of the polynucleotide. The promoter contains transcriptional control sequences that mediate the expression of the variant. The promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell.

Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a bacterial host cell are the promoters obtained from the *Bacillus amyloliquefaciens* alpha-amylase gene (*amyQ*), *Bacillus licheniformis* alpha-amylase gene (*amyL*), *Bacillus licheniformis* penicillinase gene (*penP*), *Bacillus stearothermophilus* maltogenic amylase gene (*amyM*), *Bacillus subtilis* levansucrase gene (*sacB*), *Bacillus subtilis xylA* and *xylB* genes, *Bacillus thuringiensis crylIIA* gene (Agaisse and Lereclus, 1994, *Molecular Microbiology* 13: 97-107), *E. coli lac* operon, *E. coli trc* promoter (Egon *et al.*, 1988, *Gene* 69: 301-315), *Streptomyces coelicolor* agarase gene (*dagA*), and prokaryotic beta-lactamase gene (Villa-Kamaroff *et al.*, 1978, *Proc. Natl. Acad. Sci. USA* 75: 3727-3731), as well as the *tac* promoter (DeBoer *et al.*, 1983, *Proc. Natl. Acad. Sci. USA* 80: 21-25). Further promoters are described in "Useful proteins from recombinant bacteria" in Gilbert *et al.*, 1980, *Scientific American* 242: 74-94; and in Sambrook *et al.*, 1989, *supra.* Examples of tandem promoters are disclosed in WO 99/43835.

Examples of suitable promoters for directing transcription of the nucleic acid constructs of the present invention in a filamentous fungal host cell are promoters obtained from the genes for Aspergillus nidulans acetamidase, Aspergillus niger neutral alpha-amylase, Aspergillus niger acid stable alpha-amylase, Aspergillus niger or Aspergillus awamori glucoamylase (glaA), Aspergillus oryzae TAKA amylase, Aspergillus oryzae alkaline protease, Aspergillus oryzae triose phosphate isomerase, Fusarium oxysporum trypsin-like protease (WO96/00787), Fusarium venenatum amyloglucosidase (WO00/56900), Fusarium venenatum Daria (WO00/56900), Fusarium venenatum Quinn (WO00/56900), Rhizomucor miehei lipase, Rhizomucor miehei aspartic proteinase, Trichoderma reesei beta-glucosidase, Trichoderma

reesei cellobiohydrolase I, *Trichoderma reesei* cellobiohydrolase II, *Trichoderma reesei* endoglucanase II, *Trichoderma reesei* endoglucanase III, *Trichoderma reesei* endoglucanase III, *Trichoderma reesei* endoglucanase IV, *Trichoderma reesei* endoglucanase V, *Trichoderma reesei* xylanase I, *Trichoderma reesei* xylanase II, *Trichoderma reesei* beta-xylosidase, as well as the NA2-tpi promoter (a modified promoter from an *Aspergillus* neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an *Aspergillus* triose phosphate isomerase gene; non-limiting examples include modified promoters from an *Aspergillus niger* neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an *Aspergillus niger* neutral alpha-amylase gene in which the untranslated leader has been replaced by an untranslated leader from an *Aspergillus nidulans* or *Aspergillus oryzae* triose phosphate isomerase gene); and mutant, truncated, and hybrid promoters thereof.

5

10

15

20

25

30

35

In a yeast host, useful promoters are obtained from the genes for *Saccharomyces cerevisiae* enolase (ENO-1), *Saccharomyces cerevisiae* galactokinase (GAL1), *Saccharomyces cerevisiae* alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH1, ADH2/GAP), *Saccharomyces cerevisiae* triose phosphate isomerase (TPI), *Saccharomyces cerevisiae* metallothionein (CUP1), and *Saccharomyces cerevisiae* 3-phosphoglycerate kinase. Other useful promoters for yeast host cells are described by Romanos *et al.*, 1992, *Yeast* 8: 423-488.

The control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription. The terminator sequence is operably linked to the 3'-terminus of the polynucleotide encoding the variant. Any terminator that is functional in the host cell may be used.

Preferred terminators for bacterial host cells are obtained from the genes for *Bacillus clausii* alkaline protease (*aprH*), *Bacillus licheniformis* alpha-amylase (*amyL*), and *Escherichia coli* ribosomal RNA (*rrnB*).

Preferred terminators for filamentous fungal host cells are obtained from the genes for Aspergillus nidulans anthranilate synthase, Aspergillus niger glucoamylase, Aspergillus niger alpha-glucosidase, Aspergillus oryzae TAKA amylase, and Fusarium oxysporum trypsin-like protease.

Preferred terminators for yeast host cells are obtained from the genes for Saccharomyces cerevisiae enolase, Saccharomyces cerevisiae cytochrome C (CYC1), and Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase. Other useful terminators for yeast host cells are described by Romanos et al., 1992, supra.

The control sequence may also be an mRNA stabilizer region downstream of a promoter and upstream of the coding sequence of a gene which increases expression of the gene.

Examples of suitable mRNA stabilizer regions are obtained from a *Bacillus thuringiensis* crylllA gene (WO94/25612) and a *Bacillus subtilis* SP82 gene (Hue *et al.*, 1995, *Journal of Bacteriology* 177: 3465-3471).

The control sequence may also be a leader, a nontranslated region of an mRNA that is important for translation by the host cell. The leader sequence is operably linked to the 5'-terminus of the polynucleotide encoding the variant. Any leader that is functional in the host cell may be used.

Preferred leaders for filamentous fungal host cells are obtained from the genes for Aspergillus oryzae TAKA amylase and Aspergillus nidulans triose phosphate isomerase.

5

10

15

20

25

30

35

Suitable leaders for yeast host cells are obtained from the genes for Saccharomyces (ENO-1), Saccharomyces cerevisiae 3-phosphoglycerate cerevisiae enolase kinase, Saccharomyces cerevisiae alpha-factor, and Saccharomyces cerevisiae alcohol dehydrogenase/glyceraldehyde-3-phosphate dehydrogenase (ADH2/GAP).

The control sequence may also be a polyadenylation sequence, a sequence operably linked to the 3'-terminus of the variant-encoding sequence and, when transcribed, is recognized by the host cell as a signal to add polyadenosine residues to transcribed mRNA. Any polyadenylation sequence that is functional in the host cell may be used.

Preferred polyadenylation sequences for filamentous fungal host cells are obtained from the genes for *Aspergillus nidulans* anthranilate synthase, *Aspergillus niger* glucoamylase, *Aspergillus niger* alpha-glucosidase, *Aspergillus oryzae* TAKA amylase, and *Fusarium oxysporum* trypsin-like protease.

Useful polyadenylation sequences for yeast host cells are described by Guo and Sherman, 1995, *Mol. Cellular Biol.* 15: 5983-5990.

The control sequence may also be a signal peptide coding region that encodes a signal peptide linked to the N-terminus of a variant and directs the variant into the cell's secretory pathway. The 5'-end of the coding sequence of the polynucleotide may inherently contain a signal peptide coding sequence naturally linked in translation reading frame with the segment of the coding sequence that encodes the variant. Alternatively, the 5'-end of the coding sequence may contain a signal peptide coding sequence that is foreign to the coding sequence. A foreign signal peptide coding sequence may be required where the coding sequence does not naturally contain a signal peptide coding sequence. Alternatively, a foreign signal peptide coding sequence may simply replace the natural signal peptide coding sequence in order to enhance secretion of the variant. However, any signal peptide coding sequence that directs the expressed variant into the secretory pathway of a host cell may be used.

Effective signal peptide coding sequences for bacterial host cells are the signal peptide coding sequences obtained from the genes for *Bacillus* NCIB 11837 maltogenic amylase, *Bacillus licheniformis* subtilisin, *Bacillus licheniformis* beta-lactamase, *Bacillus stearothermophilus* alpha-amylase, *Bacillus stearothermophilus* neutral proteases (*nprT*, *nprS*, *nprM*), and *Bacillus subtilis prsA*. Further signal peptides are described by Simonen and Palva, 1993, *Microbiological Reviews* 57: 109-137.

Effective signal peptide coding sequences for filamentous fungal host cells are the signal peptide coding sequences obtained from the genes for *Aspergillus niger* neutral amylase, *Aspergillus niger* glucoamylase, *Aspergillus oryzae* TAKA amylase, *Humicola insolens* cellulase, *Humicola insolens* endoglucanase V, *Humicola lanuginosa* lipase, and *Rhizomucor miehei* aspartic proteinase.

5

10

15

20

25

30

Useful signal peptides for yeast host cells are obtained from the genes for Saccharomyces cerevisiae alpha-factor and Saccharomyces cerevisiae invertase. Other useful signal peptide coding sequences are described by Romanos et al., 1992, supra.

The control sequence may also be a propeptide coding sequence that encodes a propeptide positioned at the N-terminus of a variant. The resultant polypeptide is known as a proenzyme or propolypeptide (or a zymogen in some cases). A propolypeptide is generally inactive and can be converted to an active polypeptide by catalytic or autocatalytic cleavage of the propeptide from the propolypeptide. The propeptide coding sequence may be obtained from the genes for *Bacillus subtilis* alkaline protease (*aprE*), *Bacillus subtilis* neutral protease (*nprT*), *Myceliophthora thermophila* laccase (WO95/33836), *Rhizomucor miehei* aspartic proteinase, and *Saccharomyces cerevisiae* alpha-factor.

Where both signal peptide and propertide sequences are present, the propertide sequence is positioned next to the N-terminus of the variant and the signal peptide sequence is positioned next to the N-terminus of the propertide sequence.

It may also be desirable to add regulatory sequences that regulate expression of the variant relative to the growth of the host cell. Examples of regulatory systems are those that cause expression of the gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Regulatory systems in prokaryotic systems include the *lac*, *tac*, and *trp* operator systems. In yeast, the ADH2 system or GAL1 system may be used. In filamentous fungi, the *Aspergillus niger* glucoamylase promoter, *Aspergillus oryzae* TAKA alpha-amylase promoter, and *Aspergillus oryzae* glucoamylase promoter may be used. Other examples of regulatory sequences are those that allow for gene amplification. In eukaryotic systems, these regulatory sequences include the dihydrofolate reductase gene that is amplified in the presence of methotrexate, and the metallothionein genes that are amplified with heavy metals. In these cases, the polynucleotide encoding the variant would be operably linked with the regulatory sequence.

Expression Vectors

5

10

15

20

25

30

35

The present invention also relates to recombinant expression vectors comprising a polynucleotide encoding a variant of the present invention, a promoter, and transcriptional and translational stop signals. The various nucleotide and control sequences may be joined together to produce a recombinant expression vector that may include one or more convenient restriction sites to allow for insertion or substitution of the polynucleotide encoding the variant at such sites. Alternatively, the polynucleotide may be expressed by inserting the polynucleotide or a nucleic acid construct comprising the polynucleotide into an appropriate vector for expression. In creating the expression vector, the coding sequence is located in the vector so that the coding sequence is operably linked with the appropriate control sequences for expression.

The recombinant expression vector may be any vector (e.g., a plasmid or virus) that can be conveniently subjected to recombinant DNA procedures and can bring about expression of the polynucleotide. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. The vector may be a linear or closed circular plasmid.

The vector may be an autonomously replicating vector, *i.e.*, a vector that exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, *e.g.*, a plasmid, an extrachromosomal element, a minichromosome, or an artificial chromosome. The vector may contain any means for assuring self-replication. Alternatively, the vector may be one that, when introduced into the host cell, it is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Furthermore, a single vector or plasmid or two or more vectors or plasmids that together contain the total DNA to be introduced into the genome of the host cell, or a transposon, may be used.

The vector preferably contains one or more selectable markers that permit easy selection of transformed, transfected, transduced, or the like cells. A selectable marker is a gene the product of which provides for biocide or viral resistance, resistance to heavy metals, prototrophy to auxotrophs, and the like.

Examples of bacterial selectable markers are *Bacillus licheniformis* or *Bacillus subtilis* dal genes, or markers that confer antibiotic resistance such as ampicillin, chloramphenicol, kanamycin, neomycin, spectinomycin or tetracycline resistance. Suitable markers for yeast host cells include, but are not limited to, ADE2, HIS3, LEU2, LYS2, MET3, TRP1, and URA3. Selectable markers for use in a filamentous fungal host cell include, but are not limited to, *amdS* (acetamidase), *argB* (ornithine carbamoyltransferase), *bar* (phosphinothricin acetyltransferase), *hph* (hygromycin phosphotransferase), *niaD* (nitrate reductase), *pyrG* (orotidine-5'-phosphate decarboxylase), *sC* (sulfate adenyltransferase), and *trpC* (anthranilate synthase), as well as equivalents thereof. Preferred for use in an *Aspergillus* cell are *Aspergillus nidulans* or *Aspergillus oryzae amdS* and *pyrG* genes and a *Streptomyces hygroscopicus bar* gene.

5

10

15

20

25

30

35

The vector preferably contains an element(s) that permits integration of the vector into the host cell's genome or autonomous replication of the vector in the cell independent of the genome.

For integration into the host cell genome, the vector may rely on the polynucleotide's sequence encoding the variant or any other element of the vector for integration into the genome by homologous or non-homologous recombination. Alternatively, the vector may contain additional polynucleotides for directing integration by homologous recombination into the genome of the host cell at a precise location(s) in the chromosome(s). To increase the likelihood of integration at a precise location, the integrational elements should contain a sufficient number of nucleic acids, such as 100 to 10,000 base pairs, 400 to 10,000 base pairs, and 800 to 10,000 base pairs, which have a high degree of sequence identity to the corresponding target sequence to enhance the probability of homologous recombination. The integrational elements may be any sequence that is homologous with the target sequence in the genome of the host cell. Furthermore, the integrational elements may be non-encoding or encoding polynucleotides. On the other hand, the vector may be integrated into the genome of the host cell by non-homologous recombination.

For autonomous replication, the vector may further comprise an origin of replication enabling the vector to replicate autonomously in the host cell in question. The origin of replication may be any plasmid replicator mediating autonomous replication that functions in a cell. The term "origin of replication" or "plasmid replicator" means a polynucleotide that enables a plasmid or vector to replicate *in vivo*.

Examples of bacterial origins of replication are the origins of replication of plasmids pBR322, pUC19, pACYC177, and pACYC184 permitting replication in *E. coli*, and pUB110, pE194, pTA1060, and pAMß1 permitting replication in *Bacillus*.

Examples of origins of replication for use in a yeast host cell are the 2 micron origin of replication, ARS1, ARS4, the combination of ARS1 and CEN3, and the combination of ARS4 and CEN6.

Examples of origins of replication useful in a filamentous fungal cell are AMA1 and ANS1 (Gems *et al.*, 1991, *Gene* 98: 61-67; Cullen *et al.*, 1987, *Nucleic Acids Res.* 15: 9163-9175; WO 00/24883). Isolation of the AMA1 gene and construction of plasmids or vectors comprising the gene can be accomplished according to the methods disclosed in WO 00/24883.

More than one copy of a polynucleotide of the present invention may be inserted into a host cell to increase production of a variant. An increase in the copy number of the polynucleotide can be obtained by integrating at least one additional copy of the sequence into the host cell genome or by including an amplifiable selectable marker gene with the polynucleotide where cells containing amplified copies of the selectable marker gene, and

thereby additional copies of the polynucleotide, can be selected for by cultivating the cells in the presence of the appropriate selectable agent.

The procedures used to ligate the elements described above to construct the recombinant expression vectors of the present invention are well known to one skilled in the art (see, e.g., Sambrook et al., 1989, supra).

Host Cells

5

10

15

20

25

30

35

The present invention also relates to recombinant host cells, comprising a polynucleotide encoding a variant of the present invention operably linked to one or more control sequences that direct the production of a variant of the present invention. A construct or vector comprising a polynucleotide is introduced into a host cell so that the construct or vector is maintained as a chromosomal integrant or as a self-replicating extra-chromosomal vector as described earlier. The term "host cell" encompasses any progeny of a parent cell that is not identical to the parent cell due to mutations that occur during replication. The choice of a host cell will to a large extent depend upon the gene encoding the variant and its source.

The host cell may be any cell useful in the recombinant production of a variant, e.g., a prokaryote or a eukaryote.

The prokaryotic host cell may be any Gram-positive or Gram-negative bacterium. Gram-positive bacteria include, but are not limited to, *Bacillus*, *Clostridium*, *Enterococcus*, *Geobacillus*, *Lactobacillus*, *Lactococcus*, *Oceanobacillus*, *Staphylococcus*, *Streptococcus*, and *Streptomyces*. Gram-negative bacteria include, but are not limited to, *Campylobacter*, *E. coli*, *Flavobacterium*, *Fusobacterium*, *Helicobacter*, *Ilyobacter*, *Neisseria*, *Pseudomonas*, *Salmonella*, and *Ureaplasma*.

The bacterial host cell may be any Bacillus cell including, but not limited to, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus coagulans, Bacillus firmus, Bacillus lautus, Bacillus lentus, Bacillus licheniformis, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus, Bacillus subtilis, and Bacillus thuringiensis cells.

The bacterial host cell may also be any *Streptococcus* cell including, but not limited to, *Streptococcus equisimilis*, *Streptococcus pyogenes*, *Streptococcus uberis*, and *Streptococcus equi* subsp. *Zooepidemicus* cells.

The bacterial host cell may also be any *Streptomyces* cell, including, but not limited to, *Streptomyces achromogenes*, *Streptomyces avermitilis*, *Streptomyces coelicolor*, *Streptomyces griseus*, and *Streptomyces lividans* cells.

The introduction of DNA into a *Bacillus* cell may be effected by protoplast transformation (see, *e.g.*, Chang and Cohen, 1979, *Mol. Gen. Genet.* 168: 111-115), competent cell transformation (see, *e.g.*, Young and Spizizen, 1961, *J. Bacteriol.* 81: 823-829, or Dubnau and

5

10

15

20

25

30

35

Davidoff-Abelson, 1971, J. Mol. Biol. 56: 209-221), electroporation (see, e.g., Shigekawa and Dower, 1988, Biotechniques 6: 742-751), or conjugation (see, e.g., Koehler and Thorne, 1987, J. Bacteriol. 169: 5271-5278). The introduction of DNA into an E. coli cell may be effected by protoplast transformation (see, e.g., Hanahan, 1983, J. Mol. Biol. 166: 557-580) or electroporation (see, e.g., Dower et al., 1988, Nucleic Acids Res. 16: 6127-6145). The introduction of DNA into a Streptomyces cell may be effected by protoplast transformation, electroporation (see, e.g., Gong et al., 2004, Folia Microbiol. (Praha) 49: 399-405), conjugation (see, e.g., Mazodier et al., 1989, J. Bacteriol. 171: 3583-3585), or transduction (see, e.g., Burke et al., 2001, Proc. Natl. Acad. Sci. USA 98: 6289-6294). The introduction of DNA into a Pseudomonas cell may be effected by electroporation (see, e.g., Choi et al., 2006, J. Microbiol. Methods 64: 391-397), or conjugation (see, e.g., Pinedo and Smets, 2005, Appl. Environ. Microbiol. 71: 51-57). The introduction of DNA into a Streptococcus cell may be effected by natural competence (see, e.g., Perry and Kuramitsu, 1981, Infect. Immun. 32: 1295-1297), protoplast transformation (see, e.g., Catt and Jollick, 1991, Microbios 68: 189-207), electroporation (see, e.g., Buckley et al., 1999, Appl. Environ. Microbiol. 65: 3800-3804) or conjugation (see, e.g., Clewell, 1981, Microbiol. Rev. 45: 409-436). However, any method known in the art for introducing DNA into a host cell can be used.

The host cell may also be a eukaryote, such as a mammalian, insect, plant, or fungal cell.

The host cell may be a fungal cell. "Fungi" as used herein includes the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota as well as the Oomycota and all mitosporic fungi (as defined by Hawksworth *et al.*, *In*, *Ainsworth and Bisby's Dictionary of The Fungi*, 8th edition, 1995, CAB International, University Press, Cambridge, UK).

The fungal host cell may be a yeast cell. "Yeast" as used herein includes ascosporogenous yeast (Endomycetales), basidiosporogenous yeast, and yeast belonging to the Fungi Imperfecti (Blastomycetes). Since the classification of yeast may change in the future, for the purposes of this invention, yeast shall be defined as described in *Biology and Activities of Yeast* (Skinner, Passmore, and Davenport, editors, *Soc. App. Bacteriol. Symposium Series* No. 9, 1980).

The yeast host cell may be a Candida, Hansenula, Kluyveromyces, Pichia, Saccharomyces, Schizosaccharomyces, or Yarrowia cell such as a Kluyveromyces lactis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces diastaticus, Saccharomyces douglasii, Saccharomyces kluyveri, Saccharomyces norbensis, Saccharomyces oviformis, or Yarrowia lipolytica cell.

The fungal host cell may be a filamentous fungal cell. "Filamentous fungi" include all filamentous forms of the subdivision Eumycota and Oomycota (as defined by Hawksworth *et al.*, 1995, *supra*). The filamentous fungi are generally characterized by a mycelial wall composed of

chitin, cellulose, glucan, chitosan, mannan, and other complex polysaccharides. Vegetative growth is by hyphal elongation and carbon catabolism is obligately aerobic. In contrast, vegetative growth by yeasts such as *Saccharomyces cerevisiae* is by budding of a unicellular thallus and carbon catabolism may be fermentative.

5

The filamentous fungal host cell may be an Acremonium, Aspergillus, Aureobasidium, Bjerkandera, Ceriporiopsis, Chrysosporium, Coprinus, Coriolus, Cryptococcus, Filibasidium, Fusarium, Humicola, Magnaporthe, Mucor, Myceliophthora, Neocallimastix, Neurospora, Paecilomyces, Penicillium, Phanerochaete, Phlebia, Piromyces, Pleurotus, Schizophyllum, Talaromyces, Thermoascus, Thielavia, Tolypocladium, Trametes, or Trichoderma cell.

10

15

20

25

For example, the filamentous fungal host cell may be an Aspergillus awamori, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Bjerkandera adusta, Ceriporiopsis aneirina, Ceriporiopsis Ceriporiopsis gilvescens, Ceriporiopsis pannocinta, caregiea, Ceriporiopsis Ceriporiopsis subrufa, Ceriporiopsis subvermispora, Chrysosporium inops, Chrysosporium keratinophilum, Chrysosporium lucknowense, Chrysosporium merdarium, Chrysosporium pannicola, Chrysosporium queenslandicum, Chrysosporium tropicum, Chrysosporium zonatum, Coprinus cinereus, Coriolus hirsutus, Fusarium bactridioides, Fusarium cerealis, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium graminum, Fusarium heterosporum, Fusarium negundi, Fusarium oxysporum, Fusarium reticulatum, Fusarium roseum, Fusarium sambucinum, Fusarium sarcochroum, Fusarium sporotrichioides, Fusarium sulphureum, Fusarium torulosum, Fusarium trichothecioides, Fusarium venenatum, Humicola insolens, Humicola lanuginosa, Mucor miehei, Myceliophthora thermophila, Neurospora crassa, Penicillium purpurogenum, Phanerochaete chrysosporium, Phlebia radiata, Pleurotus eryngii, Thielavia terrestris, Trametes villosa, Trametes versicolor, Trichoderma harzianum, Trichoderma koningii, Trichoderma longibrachiatum, Trichoderma reesei, or Trichoderma viride cell.

30

Fungal cells may be transformed by a process involving protoplast formation, transformation of the protoplasts, and regeneration of the cell wall in a manner known *per se*. Suitable procedures for transformation of *Aspergillus* and *Trichoderma* host cells are described in EP238023, Yelton *et al.*, 1984, *Proc. Natl. Acad. Sci. USA* 81: 1470-1474, and Christensen *et al.*, 1988, *Bio/Technology* 6: 1419-1422. Suitable methods for transforming *Fusarium* species are described by Malardier *et al.*, 1989, *Gene* 78: 147-156, and WO96/00787. Yeast may be transformed using the procedures described by Becker and Guarente, *In* Abelson, J.N. and Simon, M.I., editors, *Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology*, Volume 194, pp 182-187, Academic Press, Inc., New York; Ito *et al.*, 1983, *J. Bacteriol.* 153: 163; and Hinnen *et al.*, 1978, *Proc. Natl. Acad. Sci. USA* 75: 1920.

35

Methods of Production

5

10

15

20

25

30

35

The present invention also relates to methods of producing a variant, comprising: (a) cultivating a host cell of the present invention under conditions suitable for expression of the variant; and (b) recovering the variant.

The host cells are cultivated in a nutrient medium suitable for production of the variant using methods known in the art. For example, the cell may be cultivated by shake flask cultivation, or small-scale or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermentors performed in a suitable medium and under conditions allowing the variant to be expressed and/or isolated. The cultivation takes place in a suitable nutrient medium comprising carbon and nitrogen sources and inorganic salts, using procedures known in the art. Suitable media are available from commercial suppliers or may be prepared according to published compositions (e.g., in catalogues of the American Type Culture Collection). If the variant is secreted into the nutrient medium, the variant can be recovered directly from the medium. If the variant is not secreted, it can be recovered from cell lysates.

The variant may be detected using methods known in the art that are specific for the variants. These detection methods include, but are not limited to, use of specific antibodies, formation of an enzyme product, or disappearance of an enzyme substrate. For example, an enzyme assay may be used to determine the activity of the variant such as those described in the examples.

The variant may be recovered using methods known in the art. For example, the variant may be recovered from the nutrient medium by conventional procedures including, but not limited to, collection, centrifugation, filtration, extraction, spray-drying, evaporation, or precipitation.

The variant may be purified by a variety of procedures known in the art including, but not limited to, chromatography (e.g., ion exchange, affinity, hydrophobic, chromatofocusing, and size exclusion), electrophoretic procedures (e.g., preparative isoelectric focusing), differential solubility (e.g., ammonium sulfate precipitation), SDS-PAGE, or extraction (see, e.g., Protein Purification, Janson and Ryden, editors, VCH Publishers, New York, 1989) to obtain substantially pure variants.

In an alternative aspect, the variant is not recovered, but rather a host cell of the present invention expressing the variant is used as a source of the variant.

Compositions

Compositions comprising the polypeptide of the present inventions are contemplated.

In certain aspects the present invention relates to detergent composition comprising a variant of a parent lipase which variant has lipase activity, has at least 60% but less than 100%

5

10

15

20

25

30

35

sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T, and G38A, of SEQ ID NO: 2. In certain aspects the composition further comprises substitutions at positions corresponding to D27R and/or N33Q of SEQ ID NO: 2.

In certain aspects said variant has increased stability in comparison with the parent lipase. In certain aspects the stability is stability under storage conditions, stability in the presence of surfactants; stability in the presence of protease, stability in the presence of protease and surfactants; stability in the presence of detergent components; chemical stability, oxidation stability, pH stability, and/or thermostability. The increased stability may be expressed as a halflife improvement factor (HIF) above 1 as described in Examle 1. In certain aspects the variants has a HIF above 1.0; above 1.5; above 2.0; above 2.5; above 3.0; above 3.5; above 4.0; above 4.5; above 5.0; above 5.5; or above 6.0.

The non-limiting list of composition components illustrated hereinafter are suitable for use in the compositions and methods herein may be desirably incorporated in certain embodiments of the invention, e.g. to assist or enhance cleaning performance, for treatment of the substrate to be cleaned, or to modify the aesthetics of the composition as is the case with perfumes, colorants, dyes or the like. The levels of any such components incorporated in any compositions are in addition to any materials previously recited for incorporation. The precise nature of these additional components, and levels of incorporation thereof, will depend on the physical form of the composition and the nature of the cleaning operation for which it is to be used. Although components mentioned below are categorized by general header according to a particular functionality, this is not to be construed as a limitation, as a component may comprise additional functionalities as will be appreciated by the skilled artisan.

Unless otherwise indicated the amounts in percentage is by weight of the composition (wt%). Suitable component materials include, but are not limited to, surfactants, builders, chelating agents, dye transfer inhibiting agents, dispersants, enzymes, and enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, hueing dyes, perfumes, perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents and/or pigments. In addition to the disclosure below, suitable examples of such other components and levels of use are found in US5576282, US6306812, and US6326348 hereby incorporated by reference.

Thus, in certain embodiments the invention do not contain one or more of the following adjuncts materials: surfactants, soaps, builders, chelating agents, dye transfer inhibiting agents, dispersants, additional enzymes, enzyme stabilizers, catalytic materials, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, preformed peracids, polymeric dispersing

5

10

15

20

25

30

35

agents, clay soil removal/anti-redeposition agents, brighteners, suds suppressors, dyes, perfumes, perfume delivery systems, structure elasticizing agents, fabric softeners, carriers, hydrotropes, processing aids, solvents and/or pigments. However, when one or more components are present, such one or more components may be present as detailed below:

<u>Surfactants</u> - The compositions according to the present invention may comprise a surfactant or surfactant system wherein the surfactant can be selected from nonionic surfactants, anionic surfactants, cationic surfactants, ampholytic surfactants, zwitterionic surfactants, semi-polar nonionic surfactants and mixtures thereof. When present, surfactant is typically present at a level of from 0.1 to 60wt%, from 0.2 to 40wt%, from 0.5 to 30wt%, from 1 to 50wt%, from 1 to 40wt%, from 1 to 30wt%, from 1 to 20wt%, from 3 to 10wt%, from 3 to 5wt%, from 5 to 40wt%, from 5 to 30wt%, from 5 to 15wt%, from 3 to 20wt%, from 3 to 10wt%, from 8 to 12wt%, from 10 to 12wt%, from 20 to 25wt% or from 25-60%.

Suitable anionic detersive surfactants include sulphate and sulphonate detersive surfactants.

Suitable sulphonate detersive surfactants include alkyl benzene sulphonate, in one aspect, C₁₀₋₁₃ alkyl benzene sulphonate. Suitable alkyl benzene sulphonate (LAS) may be obtained, by sulphonating commercially available linear alkyl benzene (LAB); suitable LAB includes low 2-phenyl LAB, such as Isochem® or Petrelab®, other suitable LAB include high 2-phenyl LAB, such as Hyblene®. A suitable anionic detersive surfactant is alkyl benzene sulphonate that is obtained by DETAL catalyzed process, although other synthesis routes, such as HF, may also be suitable. In one aspect a magnesium salt of LAS is used.

Suitable sulphate detersive surfactants include alkyl sulphate, in one aspect, C_{8-18} alkyl sulphate, or predominantly C_{12} alkyl sulphate.

Another suitable sulphate detersive surfactant is alkyl alkoxylated sulphate, in one aspect, alkyl ethoxylated sulphate, in one aspect, a C_{8-18} alkyl alkoxylated sulphate, in another aspect, a C_{8-18} alkyl ethoxylated sulphate, typically the alkyl alkoxylated sulphate has an average degree of alkoxylation of from 0.5 to 20, or from 0.5 to 10, typically the alkyl alkoxylated sulphate is a C_{8-18} alkyl ethoxylated sulphate having an average degree of ethoxylation of from 0.5 to 10, from 0.5 to 7, from 0.5 to 5 or from 0.5 to 3.

The alkyl sulphate, alkyl alkoxylated sulphate and alkyl benzene sulphonates may be linear or branched, substituted or un-substituted.

The detersive surfactant may be a mid-chain branched detersive surfactant, in one aspect, a mid-chain branched anionic detersive surfactant, in one aspect, a mid-chain branched alkyl sulphate and/or a mid-chain branched alkyl benzene sulphonate, e.g. a mid-chain branched alkyl sulphate. In one aspect, the mid-chain branches are C₁₋₄ alkyl groups, typically methyl and/or ethyl groups.

Non-limiting examples of anionic surfactants include sulfates and sulfonates, in particular, linear alkylbenzenesulfonates (LAS), isomers of LAS, branched alkylbenzenesulfonates (BABS), phenylalkanesulfonates, alpha-olefinsulfonates (AOS), olefin sulfonates, alkene sulfonates, alkane-2,3-diylbis(sulfates), hydroxyalkanesulfonates and disulfonates, alkyl sulfates (AS) such as sodium dodecyl sulfate (SDS), fatty alcohol sulfates (FAS), primary alcohol sulfates (PAS), alcohol ethersulfates (AES or AEOS or FES, also known as alcohol ethoxysulfates or fatty alcohol ether sulfates), secondary alkanesulfonates (SAS), paraffin sulfonates (PS), ester sulfonates, sulfonated fatty acid glycerol esters, alpha-sulfo fatty acid methyl esters (alpha-SFMe or SES) including methyl ester sulfonate (MES), alkyl- or alkenylsuccinic acid, dodecenyl/tetradecenyl succinic acid (DTSA), fatty acid derivatives of amino acids, diesters and monoesters of sulfo-succinic acid or soap, and combinations thereof.

5

10

15

20

25

30

35

Suitable non-ionic detersive surfactants are selected from the group consisting of: C_8 - C_{18} alkyl ethoxylates, such as, NEODOL®; C_6 - C_{12} alkyl phenol alkoxylates wherein the alkoxylate units may be ethyleneoxy units, propyleneoxy units or a mixture thereof; C_{12} - C_{18} alcohol and C_6 - C_{12} alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic®; C_{14} - C_{22} mid-chain branched alcohols; C_{14} - C_{22} mid-chain branched alkyl alkoxylates, typically having an average degree of alkoxylation of from 1 to 30; alkylpolysaccharides, in one aspect, alkylpolyglycosides; polyhydroxy fatty acid amides; ether capped poly(oxyalkylated) alcohol surfactants; and mixtures thereof.

Suitable non-ionic detersive surfactants include alkyl polyglucoside and/or an alkyl alkoxylated alcohol.

In one aspect, non-ionic detersive surfactants include alkyl alkoxylated alcohols, in one aspect C_{8-18} alkyl alkoxylated alcohol, e.g. a C_{8-18} alkyl ethoxylated alcohol, the alkyl alkoxylated alcohol may have an average degree of alkoxylation of from 1 to 50, from 1 to 30, from 1 to 20, or from 1 to 10. In one aspect, the alkyl alkoxylated alcohol may be a C_{8-18} alkyl ethoxylated alcohol having an average degree of ethoxylation of from 1 to 10, from 1 to 7, more from 1 to 5 or from 3 to 7. The alkyl alkoxylated alcohol can be linear or branched, and substituted or unsubstituted. Suitable nonionic surfactants include Lutensol®.

Non-limiting examples of nonionic surfactants include alcohol ethoxylates (AE or AEO), alcohol propoxylates, propoxylated fatty alcohols (PFA), alkoxylated fatty acid alkyl esters, such as ethoxylated and/or propoxylated fatty acid alkyl esters, alkylphenol ethoxylates (APE), nonylphenol ethoxylates (NPE), alkylpolyglycosides (APG), alkoxylated amines, fatty acid monoethanolamides (FAM), fatty acid diethanolamides (FADA), ethoxylated fatty acid monoethanolamides (EFAM), propoxylated fatty acid monoethanolamides (PFAM), polyhydroxyalkyl fatty acid amides, or N-acyl N-alkyl derivatives of glucosamine (glucamides, GA, or fatty acid glucamides, FAGA), as well as products available under the trade names SPAN and TWEEN, and combinations thereof.

5

10

15

20

25

30

35

Suitable cationic detersive surfactants include alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof.

Suitable cationic detersive surfactants are quaternary ammonium compounds having the general formula: $(R)(R_1)(R_2)(R_3)N^+$ X^- , wherein, R is a linear or branched, substituted or unsubstituted C_{6-18} alkyl or alkenyl moiety, R_1 and R_2 are independently selected from methyl or ethyl moieties, R_3 is a hydroxyl, hydroxymethyl or a hydroxyethyl moiety, X is an anion which provides charge neutrality, suitable anions include: halides, e.g. chloride; sulphate; and sulphonate. Suitable cationic detersive surfactants are mono- C_{6-18} alkyl mono-hydroxyethyl dimethyl quaternary ammonium chlorides. Highly suitable cationic detersive surfactants are mono- C_{8-10} alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride, mono- C_{10-12} alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride and mono- C_{10} alkyl mono-hydroxyethyl di-methyl quaternary ammonium chloride.

Non-limiting examples of cationic surfactants include alkyldimethylethanolamine quat (ADMEAQ), cetyltrimethylammonium bromide (CTAB), dimethyldistearylammonium chloride (DSDMAC), and alkylbenzyldimethylammonium, alkyl quaternary ammonium compounds, alkoxylated quaternary ammonium (AQA) compounds, ester quats, and combinations thereof.

Suitable amphoteric/zwitterionic surfactants include amine oxides and betaines such as alkyldimethylbetaines, sulfobetaines, or combinations thereof. Amine-neutralized anionic surfactants - Anionic surfactants of the present invention and adjunct anionic cosurfactants, may exist in an acid form, and said acid form may be neutralized to form a surfactant salt which is desirable for use in the present detergent compositions. Typical agents for neutralization include the metal counterion base such as hydroxides, eq. NaOH or KOH. Further preferred agents for neutralizing anionic surfactants of the present invention and adjunct anionic surfactants or cosurfactants in their acid forms include ammonia, amines, or alkanolamines. Alkanolamines are preferred. Suitable non-limiting examples including monoethanolamine, diethanolamine, triethanolamine, and other linear or branched alkanolamines known in the art; alkanolamines include 2-amino-1-propanol, preferred 1-aminopropanol, monoisopropanolamine, or 1-amino-3-propanol. Amine neutralization may be done to a full or partial extent, e.g. part of the anionic surfactant mix may be neutralized with sodium or potassium and part of the anionic surfactant mix may be neutralized with amines or alkanolamines.

Non-limiting examples of semipolar surfactants include amine oxides (AO) such as alkyldimethylamineoxide

Surfactant systems comprising mixtures of one or more anionic and in addition one or more nonionic surfactants optionally with an additional surfactant such as a cationic surfactant,

may be preferred. Preferred weight ratios of anionic to nonionic surfactant are at least 2:1, or at least 1:1 to 1:10.

In one aspect a surfactant system may coprise a mixture of isoprenoid surfactants represented by formula A and formula B:

5

10

15

20

25

30

35

where Y is CH₂ or null, and Z may be chosen such that the resulting surfactant is selected from the following surfactants: an alkyl carboxylate surfactant, an alkyl polyalkoxy surfactant, an alkyl anionic polyalkoxy sulfate surfactant, an alkyl glycerol ester sulfonate surfactant, an alkyl dimethyl amine oxide surfactant, an alkyl polyhydroxy based surfactant, an alkyl phosphate ester surfactant, an alkyl glycerol sulfonate surfactant, an alkyl polygluconate surfactant, an alkyl polyphosphate ester surfactant, an alkyl phosphonate surfactant, an alkyl polyglycoside surfactant, an alkyl monoglycoside surfactant, an alkyl diglycoside surfactant, an alkyl sulfosuccinate surfactant, an alkyl disulfate surfactant, an alkyl disulfonate surfactant, an alkyl sulfosuccinamate surfactant, an alkyl glucamide surfactant, an alkyl taurinate surfactant, an alkyl sarcosinate surfactant, an alkyl glycinate surfactant, an alkyl isethionate surfactant, an dialkanolamide surfactant. an alkyl monoalkanolamide surfactant. monoalkanolamide sulfate surfactant, an alkyl diglycolamide surfactant, an alkyl diglycolamide sulfate surfactant, an alkyl glycerol ester surfactant, an alkyl glycerol ester sulfate surfactant, an alkyl glycerol ether surfactant, an alkyl glycerol ether sulfate surfactant, alkyl methyl ester sulfonate surfactant, an alkyl polyglycerol ether surfactant, an alkyl polyglycerol ether sulfate surfactant, an alkyl sorbitan ester surfactant, an alkyl ammonioalkanesulfonate surfactant, an alkyl amidopropyl betaine surfactant, an alkyl allylated quat based surfactant, an alkyl monohydroxyalkyl-di-alkylated quat based surfactant, an alkyl di-hydroxyalkyl monoalkyl quat based surfactant, an alkylated quat surfactant, an alkyl trimethylammonium quat surfactant, an alkyl polyhydroxalkyl oxypropyl quat based surfactant, an alkyl glycerol ester quat surfactant, an alkyl glycol amine quat surfactant, an alkyl monomethyl dihydroxyethyl quaternary ammonium surfactant, an alkyl dimethyl monohydroxyethyl quaternary ammonium surfactant, an alkyl trimethylammonium surfactant, an alkyl imidazoline-based surfactant, an alken-2-yl- succinate surfactant, an alkyl a-sulfonated carboxylic acid surfactant, an alkyl a-sulfonated carboxylic acid alkyl ester surfactant, an alpha olefin sulfonate surfactant, an alkyl phenol ethoxylate surfactant, alkyl benzenesulfonate surfactant, an alkyl sulfobetaine surfactant, alkyl hydroxysulfobetaine surfactant, an alkyl ammoniocarboxylate betaine surfactant, an alkyl sucrose ester surfactant, an alkyl alkanolamide surfactant, an alkyl di(polyoxyethylene) monoalkyl ammonium surfactant, an alkyl mono(polyoxyethylene) dialkyl ammonium surfactant, an alkyl benzyl dimethylammonium surfactant, an alkyl aminopropionate surfactant, an alkyl amidopropyl dimethylamine surfactant, or a mixture thereof; and if Z is a charged moiety, Z is

charge-balanced by a suitable metal or organic counter ion. Suitable counter ions include a metal counter ion, an amine, or an alkanolamine, e.g., C1-C6 alkanolammonium. More specifically, suitable counter ions include Na+, Ca+, Li+, K+, Mg+, e.g., monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), 2- amino-l-propanol, 1-aminopropanol, methyldiethanolamine, dimethylethanolamine, monoisopropanolamine, triisopropanolamine, l-amino-3-propanol, or mixtures thereof. In one embodiment, the compositions contain from 5% to 97% of one or more non- isoprenoid surfactants; and one or more adjunct cleaning additives; wherein the weight ratio of surfactant of formula A to surfactant of formula B is from 50:50 to 95:5.

5

10

15

20

25

30

35

<u>Soap</u> - The compositions herein may contain soap. Without being limited by theory, it may be desirable to include soap as it acts in part as a surfactant and in part as a builder and may be useful for suppression of foam and may furthermore interact favorably with the various cationic compounds of the composition to enhance softness on textile fabrics treaded with the inventive compositions. Any soap known in the art for use in laundry detergents may be utilized. In one embodiment, the compositions contain from 0wt% to 20wt%, from 0.5wt% to 20wt%, from 4wt% to 10wt%, or from 4wt% to 7wt% of soap.

Examples of soap useful herein include oleic acid soaps, palmitic acid soaps, palm kernel fatty acid soaps, and mixtures thereof. Typical soaps are in the form of mixtures of fatty acid soaps having different chain lengths and degrees of substitution. One such mixture is topped palm kernel fatty acid.

In one embodiment, the soap is selected from free fatty acid. Suitable fatty acids are saturated and/or unsaturated and can be obtained from natural sources such a plant or animal esters (e.g., palm kernel oil, palm oil, coconut oil, babassu oil, safflower oil, tall oil, castor oil, tallow and fish oils, grease, and mixtures thereof), or synthetically prepared (e.g., via the oxidation of petroleum or by hydrogenation of carbon monoxide via the Fisher Tropsch process).

Examples of suitable saturated fatty acids for use in the compositions of this invention include captic, lauric, myristic, palmitic, stearic, arachidic and behenic acid. Suitable unsaturated fatty acid species include: palmitoleic, oleic, linoleic, linolenic and ricinoleic acid. Examples of preferred fatty acids are saturated Cn fatty acid, saturated Ci₂-Ci₄ fatty acids, and saturated or unsaturated Cn to Ci₈ fatty acids, and mixtures thereof.

When present, the weight ratio of fabric softening cationic cosurfactant to fatty acid is preferably from about 1:3 to about 3:1, more preferably from about 1:1.5 to about 1.5:1, most preferably about 1:1.

Levels of soap and of nonsoap anionic surfactants herein are percentages by weight of the detergent composition, specified on an acid form basis. However, as is commonly

5

10

15

20

25

30

35

understood in the art, anionic surfactants and soaps are in practice neutralized using sodium, potassium or alkanolammonium bases, such as sodium hydroxide or monoethanolamine.

Hydrotropes - The compositions of the present invention may comprise one or more hydrotropes. A hydrotrope is a compound that solubilises hydrophobic compounds in aqueous solutions (or oppositely, polar substances in a non-polar environment). Typically, hydrotropes have both hydrophilic and a hydrophobic character (so-called amphiphilic properties as known from surfactants); however the molecular structure of hydrotropes generally do not favor spontaneous self-aggregation, see e.g. review by Hodgdon and Kaler (2007), Current Opinion in Colloid & Interface Science 12: 121-128. Hydrotropes do not display a critical concentration above which self-aggregation occurs as found for surfactants and lipids forming miceller, lamellar or other well defined meso-phases. Instead, many hydrotropes show a continuous-type aggregation process where the sizes of aggregates grow as concentration increases. However, many hydrotropes alter the phase behavior, stability, and colloidal properties of systems containing substances of polar and non-polar character, including mixtures of water, oil, surfactants, and polymers. Hydrotropes are classically used across industries from pharma, personal care, food, to technical applications. Use of hydrotropes in detergent compositions allow for example more concentrated formulations of surfactants (as in the process of compacting liquid detergents by removing water) without inducing undesired phenomena such as phase separation or high viscosity.

The detergent may contain from 0 to 10wt%, such as from 0 to 5wt%, 0.5 to 5wt%, or from 3% to 5wt%, of a hydrotrope. Any hydrotrope known in the art for use in detergents may be utilized. Non-limiting examples of hydrotropes include sodium benzenesulfonate, sodium ptoluene sulfonate (STS), sodium xylene sulfonate (SXS), sodium cumene sulfonate (SCS), sodium cymene sulfonate, amine oxides, alcohols and polyglycolethers, sodium hydroxynaphthoate, sodium hydroxynaphthoate, sodium ethylhexyl sulfate, and combinations thereof.

<u>Builders</u> - The compositions of the present invention may comprise one or more builders, co-builders, builder systems or a mixture thereof. When a builder is used, the cleaning composition will typically comprise from 0 to 65wt%, at least 1wt%, from 2 to 60wt% or from 5 to 10wt% builder. In a dish wash cleaning composition, the level of builder is typically 40 to 65wt% or 50 to 65wt%. The composition may be substantially free of builder; substantially free means "no deliberately added" zeolite and/or phosphate. Typical zeolite builders include zeolite A, zeolite P and zeolite MAP. A typical phosphate builder is sodium tri-polyphosphate.

The builder and/or co-builder may particularly be a chelating agent that forms water-soluble complexes with Ca and Mg. Any builder and/or co-builder known in the art for use in detergents may be utilized. Non-limiting examples of builders include zeolites, diphosphates (pyrophosphates), triphosphates such as sodium triphosphate (STP or STPP), carbonates such as

5

10

15

20

25

30

35

sodium carbonate, soluble silicates such as sodium metasilicate, layered silicates (*e.g.*, SKS-6 from Hoechst), ethanolamines such as 2-aminoethan-1-ol (MEA), iminodiethanol (DEA) and 2,2',2"-nitrilotriethanol (TEA), and carboxymethylinulin (CMI), and combinations thereof.

The cleaning composition may include a co-builder alone, or in combination with a builder, e.g. a zeolite builder. Non-limiting examples of co-builders include homopolymers of polyacrylates or copolymers thereof, such as poly(acrylic acid) (PAA) or copoly(acrylic acid/maleic acid) (PAA/PMA). Further non-limiting examples include citrate, chelators such as aminocarboxylates, aminopolycarboxylates and phosphonates, and alkyl- or alkenylsuccinic acid. Additional specific examples include 2,2',2"-nitrilotriacetic acid (NTA), etheylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), iminodisuccinic acid (IDS), ethylenediamine-N,N'disuccinic acid (EDDS), methylglycinediacetic acid (MGDA), glutamic acid-N,N-diacetic acid 1-hydroxyethane-1,1-diylbis(phosphonic (GLDA), acid) (HEDP), (EDTMPA), ethylenediaminetetrakis(methylene)tetrakis(phosphonic acid) diethylenetriaminepentakis(methylene)pentakis(phosphonic acid) (DTPMPA), N-(2hydroxyethyl)iminodiacetic acid (EDG), aspartic acid-N-monoacetic acid (ASMA), aspartic acid-N,N-diacetic acid (ASDA), aspartic acid-N- monopropionic acid (ASMP), iminodisuccinic acid (IDA), N- (2-sulfomethyl) aspartic acid (SMAS), N- (2-sulfoethyl) aspartic acid (SEAS), N- (2sulfomethyl) glutamic acid (SMGL), N- (2- sulfoethyl) glutamic acid (SEGL), N- methyliminodiacetic acid (MIDA), α- alanine-N,N-diacetic acid (α -ALDA), serine-N,N-diacetic acid (SEDA), isoserine-N,N-diacetic acid (ISDA), phenylalanine-N,N-diacetic acid (PHDA), anthranilic acid- N,N - diacetic acid (ANDA), sulfanilic acid-N, N-diacetic acid (SLDA), taurine-N, N-diacetic acid (TUDA) and sulfomethyl-N,N-diacetic acid (SMDA), N-(hydroxyethyl)-ethylidenediaminetriacetate (HEDTA), diethanolglycine (DEG), Diethylenetriamine Penta (Methylene Phosphonic acid) (DTPMP), aminotris(methylenephosphonic acid) (ATMP), and combinations and salts thereof. Further exemplary builders and/or co-builders are described in, e.g., WO09/102854, US5977053.

Chelating Agents and Crystal Growth Inhibitors - The compositions herein may contain a chelating agent and/or a crystal growth inhibitor. Suitable molecules include copper, iron and/or manganese chelating agents and mixtures thereof. Suitable molecules include DTPA (Diethylene triamine pentaacetic acid), HEDP (Hydroxyethane diphosphonic acid), DTPMP (Diethylene triamine penta(methylene phosphonic acid)), 1,2-Dihydroxybenzene-3,5-disulfonic acid disodium salt hydrate, ethylenediamine, diethylene triamine, ethylenediaminedisuccinic acid (EDDS), N-hydroxyethylethylenediaminetri-acetic acid (HEDTA), triethylenetetraaminehexaacetic acid (TTHA), N-hydroxyethyliminodiacetic acid (HEIDA), dihydroxyethylglycine (DHEG), ethylenediaminetetrapropionic acid (EDTP), carboxymethyl inulin and 2-Phosphonobutane 1,2,4-tricarboxylic acid (Bayhibit® AM) and derivatives thereof. Typically the composition may comprise from 0.005 to 15wt% or from 3.0 to 10wt% chelating agent or crystal growth inhibitor.

Bleach Component - The bleach component suitable for incorporation in the methods and compositions of the invention comprise one or a mixture of more than one bleach component. Suitable bleach components include bleaching catalysts, photobleaches, bleach activators, hydrogen peroxide, sources of hydrogen peroxide, pre-formed peracids and mixtures thereof. In general, when a bleach component is used, the compositions of the present invention may comprise from 0 to 30wt%, from 0.00001 to 90wt%, 0.0001 to 50wt%, from 0.001 to 25wt% or from 1 to 20wt%. Examples of suitable bleach components include:

(1) Pre-formed peracids: Suitable preformed peracids include, but are not limited to, compounds selected from the group consisting of pre-formed peroxyacids or salts thereof, typically either a peroxycarboxylic acid or salt thereof, or a peroxysulphonic acid or salt thereof.

The pre-formed peroxyacid or salt thereof is preferably a peroxycarboxylic acid or salt thereof, typically having a chemical structure corresponding to the following chemical formula:

$$\begin{array}{c|c}
O \\
\parallel \\
R^{14} - C - O - O & Y
\end{array}$$

wherein: R^{14} is selected from alkyl, aralkyl, cycloalkyl, aryl or heterocyclic groups; the R^{14} group can be linear or branched, substituted or unsubstituted; and Y is any suitable counter-ion that achieves electric charge neutrality, preferably Y is selected from hydrogen, sodium or potassium. Preferably, R^{14} is a linear or branched, substituted or unsubstituted C_{6-9} alkyl. Preferably, the peroxyacid or salt thereof is selected from peroxyhexanoic acid, peroxyheptanoic acid, peroxyoctanoic acid, peroxynonanoic acid, peroxydecanoic acid, any salt thereof, or any combination thereof. Particularly preferred peroxyacids are phthalimido-peroxyalkanoic acids, in particular ϵ -phthahlimido peroxy hexanoic acid (PAP). Preferably, the peroxyacid or salt thereof has a melting point in the range of from 30°C to 60°C.

The pre-formed peroxyacid or salt thereof can also be a peroxysulphonic acid or salt thereof, typically having a chemical structure corresponding to the following chemical formula:

$$\begin{array}{c|cccc}
O & & & \oplus \\
R^{15} & S & O & O & Z
\end{array}$$

25

30

5

10

15

20

wherein: R^{15} is selected from alkyl, aralkyl, cycloalkyl, aryl or heterocyclic groups; the R^{15} group can be linear or branched, substituted or unsubstituted; and Z is any suitable counter-ion that achieves electric charge neutrality, preferably Z is selected from hydrogen, sodium or potassium. Preferably R^{15} is a linear or branched, substituted or unsubstituted C_{6-9} alkyl. Preferably such bleach components may be present in the compositions of the invention in an amount from 0.01 to 50wt% or from 0.1 to 20wt%.

(2) Sources of hydrogen peroxide include e.g., inorganic perhydrate salts, including alkali metal salts such as sodium salts of perborate (usually mono- or tetra-hydrate), percarbonate, persulphate, perphosphate, persilicate salts and mixtures thereof. In one aspect of the invention the inorganic perhydrate salts such as those selected from the group consisting of sodium salts of perborate, percarbonate and mixtures thereof. When employed, inorganic perhydrate salts are typically present in amounts of 0.05 to 40wt% or 1 to 30wt% of the overall composition and are typically incorporated into such compositions as a crystalline solid that may be coated. Suitable coatings include: inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as water-soluble or dispersible polymers, waxes, oils or fatty soaps. Preferably such bleach components may be present in the compositions of the invention in an amount of 0.01 to 50wt% or 0.1 to 20wt%.

5

10

15

20

25

30

35

(3) The term bleach activator is meant herein as a compound which reacts with hydrogen peroxide to form a peracid via perhydrolysis. The peracid thus formed constitutes the activated bleach. Suitable bleach activators to be used herein include those belonging to the class of esters, amides, imides or anhydrides. Suitable bleach activators are those having R-(C=O)-L wherein R is an alkyl group, optionally branched, having, when the bleach activator is hydrophobic, from 6 to 14 carbon atoms, or from 8 to 12 carbon atoms and, when the bleach activator is hydrophilic, less than 6 carbon atoms or less than 4 carbon atoms; and L is leaving group. Examples of suitable leaving groups are benzoic acid and derivatives thereof - especially benzene sulphonate. Suitable bleach activators include dodecanoyl oxybenzene sulphonate, decanoyl oxybenzene sulphonate, decanoyl oxybenzoic acid or salts thereof, 3,5,5-trimethyl hexanoyloxybenzene sulphonate, tetraacetyl ethylene diamine (TAED), sodium 4-[(3,5,5trimethylhexanoyl)oxy]benzene-1-sulfonate (ISONOBS), 4-(dodecanoyloxy)benzene-1-sulfonate (LOBS), 4-(decanoyloxy)benzene-1-sulfonate, 4-(decanoyloxy)benzoate (DOBS or DOBA), 4-(nonanoyloxy)benzene-1-sulfonate (NOBS), and/or those disclosed in WO98/17767. A family of bleach activators is disclosed in EP624154 and particularly preferred in that family is acetyl triethyl citrate (ATC). ATC or a short chain triglyceride like triacetin has the advantage that it is environmentally friendly. Furthermore acetyl triethyl citrate and triacetin have good hydrolytical stability in the product upon storage and are efficient bleach activators. Finally ATC is multifunctional, as the citrate released in the perhydrolysis reaction may function as a builder. Alternatively, the bleaching system may comprise peroxyacids of, for example, the amide, imide, or sulfone type. The bleaching system may also comprise peracids such as 6-(phthalimido)peroxyhexanoic acid (PAP). Suitable bleach activators are also disclosed in WO98/17767. While any suitable bleach activator may be employed, in one aspect of the invention the subject cleaning composition may comprise NOBS, TAED or mixtures thereof. When present, the peracid and/or bleach activator is generally present in the composition in an amount of 0.1 to 60wt%, 0.5 to 40wt% or 0.6 to 10wt% based on the fabric and home care

composition. One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof. Preferably such bleach components may be present in the compositions of the invention in an amount of 0.01 to 50wt%, or 0.1 to 20wt%.

The amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1:1 to 35:1, or even 2:1 to 10:1.

5

10

15

20

25

30

(4) Diacyl peroxides – preferred diacyl peroxide bleaching species include those selected from diacyl peroxides of the general formula: R^1 -C(O)-OO-(O)C- R^2 , in which R^1 represents a C_6 - C_{18} alkyl, preferably C_6 - C_{12} alkyl group containing a linear chain of at least 5 carbon atoms and optionally containing one or more substituents (e.g. $-N^+$ (CH $_3$) $_3$, -COOH or -CN) and/or one or more interrupting moieties (e.g. -CONH- or -CH=CH-) interpolated between adjacent carbon atoms of the alkyl radical, and R^2 represents an aliphatic group compatible with a peroxide moiety, such that R^1 and R^2 together contain a total of 8 to 30 carbon atoms. In one preferred aspect R^1 and R^2 are linear unsubstituted C_6 - C_{12} alkyl chains. Most preferably R^1 and R^2 are identical. Diacyl peroxides, in which both R^1 and R^2 are C_6 - C_{12} alkyl groups, are particularly preferred. Preferably, at least one of, most preferably only one of, the R groups (R_1 or R_2), does not contain branching or pendant rings in the alpha position, or preferably neither in the alpha nor beta positions or most preferably in none of the alpha or beta or gamma positions. In one further preferred embodiment the DAP may be asymmetric, such that preferably the hydrolysis of R1 acyl group is rapid to generate peracid, but the hydrolysis of R2 acyl group is slow.

The tetraacyl peroxide bleaching species is preferably selected from tetraacyl peroxides of the general formula: R^3 -C(O)-OO-C(O)-(CH₂)n-C(O)-OO-C(O)-R³, in which R^3 represents a C_1 - C_0 alkyl, or C_3 - C_7 , group and n represents an integer from 2 to 12, or 4 to 10 inclusive.

Preferably, the diacyl and/or tetraacyl peroxide bleaching species is present in an amount sufficient to provide at least 0.5ppm, at least 10ppm, or at least 50ppm by weight of the wash liquor. In a preferred embodiment, the bleaching species is present in an amount sufficient to provide from 0.5 to 300ppm, from 30 to 150ppm by weight of the wash liquor.

Preferably the bleach component comprises a bleach catalyst (5 and 6).

(5) Preferred are organic (non-metal) bleach catalysts include bleach catalyst capable of accepting an oxygen atom from a peroxyacid and/or salt thereof, and transferring the oxygen atom to an oxidizeable substrate. Suitable bleach catalysts include, but are not limited to: iminium cations and polyions; iminium zwitterions; modified amines; modified amine oxides; N-

sulphonyl imines; N-phosphonyl imines; N-acyl imines; thiadiazole dioxides; perfluoroimines; cyclic sugar ketones and mixtures thereof.

Suitable iminium cations and polyions include, but are not limited to, N-methyl-3,4-dihydroisoquinolinium tetrafluoroborate, prepared as described in Tetrahedron (1992), 49(2), 423-38 (e.g. compound 4, p.433); N-methyl-3,4-dihydroisoquinolinium p-toluene sulphonate, prepared as described in US5360569 (e.g. Column 11, Example 1); and N-octyl-3,4-dihydroisoquinolinium p-toluene sulphonate, prepared as described in US5360568 (e.g. Column 10, Ex. 3).

5

10

15

20

25

30

35

Suitable iminium zwitterions include, but are not limited to, N-(3-sulfopropyl)-3,4-dihydroisoquinolinium, inner salt, prepared as described in US5576282 (e.g. Column 31, Ex. II); N-[2-(sulphooxy)dodecyl]-3,4-dihydroisoquinolinium, inner salt, prepared as described in US5817614 (e.g. Column 32, Ex. V); 2-[3-[(2-ethylhexyl)oxy]-2-(sulphooxy)propyl]-3,4-dihydroisoquinolinium, inner salt, prepared as described in WO05/047264 (e.g. p.18, Ex. 8), and 2-[3-[(2-butyloctyl)oxy]-2-(sulphooxy)propyl]-3,4-dihydroisoquinolinium, inner salt.

Suitable modified amine oxygen transfer catalysts include, but are not limited to, 1,2,3,4-tetrahydro-2-methyl-1-isoquinolinol, which can be made according to the procedures described in Tetrahedron Letters (1987), 28(48), 6061-6064. Suitable modified amine oxide oxygen transfer catalysts include, but are not limited to, sodium 1-hydroxy-N-oxy-N-[2-(sulphooxy)decyl]-1,2,3,4-tetrahydroisoguinoline.

Suitable N-sulphonyl imine oxygen transfer catalysts include, but are not limited to, 3-methyl-1,2-benzisothiazole 1,1-dioxide, prepared according to the procedure described in the Journal of Organic Chemistry (1990), 55(4), 1254-61.

Suitable N-phosphonyl imine oxygen transfer catalysts include, but are not limited to, [R-(E)]-N-[(2-chloro-5-nitrophenyl)methylene]-P-phenyl-P-(2,4,6-trimethylphenyl)- phosphinic amide, which can be made according to the procedures described in the Journal of the Chemical Society, Chemical Communications (1994), (22), 2569-70.

Suitable N-acyl imine oxygen transfer catalysts include, but are not limited to, [N(E)]-N-(phenylmethylene)acetamide, which can be made according to the procedures described in Polish Journal of Chemistry (2003), 77(5), 577-590.

Suitable thiadiazole dioxide oxygen transfer catalysts include but are not limited to, 3-methyl-4-phenyl-1,2,5-thiadiazole 1,1-dioxide, which can be made according to the procedures described in US5753599 (Column 9, Ex. 2).

Suitable perfluoroimine oxygen transfer catalysts include, but are not limited to, (Z)-2,2,3,3,4,4,4-heptafluoro-N-(nonafluorobutyl)butanimidoyl fluoride, which can be made according to the procedures described in Tetrahedron Letters (1994), 35(34), 6329-30.

5

10

15

20

25

30

Suitable cyclic sugar ketone oxygen transfer catalysts include, but are not limited to, 1,2:4,5-di-O-isopropylidene-D-erythro-2,3-hexodiuro-2,6-pyranose as prepared in US6649085 (Column 12, Ex. 1).

Preferably, the bleach catalyst comprises an iminium and/or carbonyl functional group and is typically capable of forming an oxaziridinium and/or dioxirane functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof. Preferably, the bleach catalyst comprises an oxaziridinium functional group and/or is capable of forming an oxaziridinium functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof. Preferably, the bleach catalyst comprises a cyclic iminium functional group, preferably wherein the cyclic moiety has a ring size of from five to eight atoms (including the nitrogen atom), preferably six atoms. Preferably, the bleach catalyst comprises an aryliminium functional group, preferably a bi-cyclic aryliminium functional group, preferably a 3,4dihydroisoguinolinium functional group. Typically, the imine functional group is a quaternary imine functional group and is typically capable of forming a quaternary oxaziridinium functional group upon acceptance of an oxygen atom, especially upon acceptance of an oxygen atom from a peroxyacid and/or salt thereof. In another aspect, the detergent composition comprises a bleach component having a logPow no greater than 0, no greater than -0.5, no greater than -1.0, no greater than -1.5, no greater than -2.0, no greater than -2.5, no greater than -3.0, or no greater than -3.5. The method for determining logP_{o/w} is described in more detail below.

Typically, the bleach ingredient is capable of generating a bleaching species having a X_{SO} of from 0.01 to 0.30, from 0.05 to 0.25, or from 0.10 to 0.20. The method for determining X_{SO} is described in more detail below. For example, bleaching ingredients having an isoquinolinium structure are capable of generating a bleaching species that has an oxaziridinium structure. In this example, the X_{SO} is that of the oxaziridinium bleaching species.

Preferably, the bleach catalyst has a chemical structure corresponding to the following chemical formula:

$$R^{1}_{(n)} \xrightarrow{R^{2}_{(m)}} R^{2}_{(m)}$$

$$R^{1}_{(n)} \xrightarrow{R^{2}_{(m)}} R^{4}$$

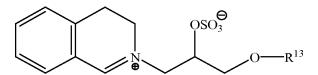
$$R^{3}_{(n)} \xrightarrow{R^{3}_{(n)}} R^{4}$$

wherein: n and m are independently from 0 to 4, preferably n and m are both 0; each R¹ is independently selected from a substituted or unsubstituted radical selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, fused aryl, heterocyclic ring, fused heterocyclic ring, nitro, halo, cyano, sulphonato, alkoxy, keto, carboxylic, and carboalkoxy radicals; and any

5

10

15


20

25

30

two vicinal R¹ substituents may combine to form a fused aryl, fused carbocyclic or fused heterocyclic ring; each R² is independently selected from a substituted or unsubstituted radical independently selected from the group consisting of hydrogen, hydroxy, alkyl, cycloalkyl, alkaryl, aryl, aralkyl, alkylenes, heterocyclic ring, alkoxys, arylcarbonyl groups, carboxyalkyl groups and amide groups; any R² may be joined together with any other of R² to form part of a common ring; any geminal R² may combine to form a carbonyl; and any two R² may combine to form a substituted or unsubstituted fused unsaturated moiety; R³ is a C₁ to C₂₀ substituted or unsubstituted alkyl; R⁴ is hydrogen or the moiety Q₁-A, wherein: Q is a branched or unbranched alkylene, t = 0 or 1 and A is an anionic group selected from the group consisting of OSO₃, SO₃, CO₂⁻, OCO₂⁻, OPO₃²-, OPO₃H⁻ and OPO₂⁻; R⁵ is hydrogen or the moiety -CR¹¹R¹²-Y-G_b-Y_c-[(CR⁹R¹⁰)_v-O]_k-R⁸, wherein: each Y is independently selected from the group consisting of O, S, N-H, or N-R⁸; and each R⁸ is independently selected from the group consisting of alkyl, aryl and heteroaryl, said moieties being substituted or unsubstituted, and whether substituted or unsubstituted said moieties having less than 21 carbons; each G is independently selected from the group consisting of CO, SO₂, SO, PO and PO₂; R⁹ and R¹⁰ are independently selected from the group consisting of H and C₁-C₄ alkyl; R¹¹ and R¹² are independently selected from the group consisting of H and alkyl, or when taken together may join to form a carbonyl; b = 0 or 1; c can = 0 or 1, but c must = 0 if b = 0; y is an integer from 1 to 6; k is an integer from 0 to 20; R⁶ is H, or an alkyl, aryl or heteroaryl moiety; said moieties being substituted or unsubstituted; and X, if present, is a suitable charge balancing counterion, preferably X is present when R⁴ is hydrogen, suitable X, include but are not limited to: chloride, bromide, sulphate, methosulphate, sulphonate, p-toluenesulphonate, borontetraflouride and phosphate.

In one embodiment of the present invention, the bleach catalyst has a structure corresponding to general formula below:

wherein R¹³ is a branched alkyl group containing from three to 24 carbon atoms (including the branching carbon atoms) or a linear alkyl group containing from one to 24 carbon atoms; preferably R¹³ is a branched alkyl group containing from eight to 18 carbon atoms or linear alkyl group containing from eight to eighteen carbon atoms; preferably R¹³ is selected from the group consisting of 2-propylheptyl, 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, n-dodecyl, n-tetradecyl, n-hexadecyl, n-octadecyl, iso-nonyl, iso-decyl, iso-tridecyl and iso-pentadecyl; preferably R¹³ is selected from the group consisting of 2-butyloctyl, 2-pentylnonyl, 2-hexyldecyl, iso-tridecyl and iso-pentadecyl.

Preferably the bleach component comprises a source of peracid in addition to bleach catalyst, particularly organic bleach catalyst. The source of peracid may be selected from (a) pre-formed peracid; (b) percarbonate, perborate or persulfate salt (hydrogen peroxide source) preferably in combination with a bleach activator; and (c) perhydrolase enzyme and an ester for forming peracid in situ in the presence of water in a textile or hard surface treatment step.

5

10

15

20

25

30

35

When present, the peracid and/or bleach activator is generally present in the composition in an amount of from 0.1 to 60wt%, from 0.5 to 40wt% or from 0.6 to 10wt% based on the composition. One or more hydrophobic peracids or precursors thereof may be used in combination with one or more hydrophilic peracid or precursor thereof.

The amounts of hydrogen peroxide source and peracid or bleach activator may be selected such that the molar ratio of available oxygen (from the peroxide source) to peracid is from 1:1 to 35:1, or 2:1 to 10:1.

(6) Metal-containing Bleach Catalysts – The bleach component may be provided by a catalytic metal complex. One type of metal-containing bleach catalyst is a catalyst system comprising a transition metal cation of defined bleach catalytic activity, such as copper, iron, titanium, ruthenium, tungsten, molybdenum, or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrate having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in US4430243. Preferred catalysts are described in WO09/839406, US6218351 and WO00/012667. Particularly preferred are transition metal catalyst or ligands therefore that are cross-bridged polydentate N-donor ligands.

If desired, the compositions herein can be catalyzed by means of a manganese compound. Such compounds and levels of use are well known in the art and include, e.g., the manganese-based catalysts disclosed in US5576282.

Cobalt bleach catalysts useful herein are known, and are described e.g. in US5597936; US5595967. Such cobalt catalysts are readily prepared by known procedures, such as taught e.g. in US5597936 and US5595967.

Compositions herein may also suitably include a transition metal complex of ligands such as bispidones (US7501389) and/or macropolycyclic rigid ligands - abbreviated as "MRLs". As a practical matter, and not by way of limitation, the compositions and processes herein can be adjusted to provide on the order of at least one part per hundred million of the active MRL species in the aqueous washing medium, and will typically provide from 0.005 to 25ppm, from 0.05 to 10ppm, or from 0.1 to 5ppm, of the MRL in the wash liquor.

Suitable transition-metals in the instant transition-metal bleach catalyst include e.g. manganese, iron and chromium. Suitable MRLs include 5,12-diethyl-1,5,8,12-

tetraazabicyclo[6.6.2]hexadecane. Suitable transition metal MRLs are readily prepared by known procedures, such as taught e.g. in US6225464 and WO00/32601.

(7) Photobleaches – suitable photobleaches include e.g. sulfonated zinc phthalocyanine sulfonated aluminium phthalocyanines, xanthene dyes and mixtures thereof. Preferred bleach components for use in the present compositions of the invention comprise a hydrogen peroxide source, bleach activator and/or organic peroxyacid, optionally generated in situ by the reaction of a hydrogen peroxide source and bleach activator, in combination with a bleach catalyst. Preferred bleach components comprise bleach catalysts, preferably organic bleach catalysts, as described above.

5

10

15

20

25

30

35

Particularly preferred bleach components are the bleach catalysts in particular the organic bleach catalysts.

Exemplary bleaching systems are also described, e.g. in WO2007/087258, WO2007/087244, WO2007/087259 and WO2007/087242.

<u>Fabric Hueing Agents</u> - The composition may comprise a fabric hueing agent. Suitable fabric hueing agents include dyes, dye-clay conjugates, and pigments. Suitable dyes include small molecule dyes and polymeric dyes. Suitable small molecule dyes include small molecule dyes selected from the group consisting of dyes falling into the Color Index (C.I.) classifications of Direct Blue, Direct Red, Direct Violet, Acid Blue, Acid Red, Acid Violet, Basic Blue, Basic Violet and Basic Red, or mixtures thereof.

In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Color Index (Society of Dyers and Colorists, Bradford, UK) numbers Direct Violet 9, Direct Violet 35, Direct Violet 48, Direct Violet 51, Direct Violet 66, Direct Violet 99, Direct Blue 1, Direct Blue 71, Direct Blue 80, Direct Blue 279, Acid Red 17, Acid Red 73, Acid Red 88, Acid Red 150, Acid Violet 15, Acid Violet 17, Acid Violet 24, Acid Violet 43, Acid Red 52, Acid Violet 49, Acid Violet 50, Acid Blue 15, Acid Blue 17, Acid Blue 25, Acid Blue 29, Acid Blue 40, Acid Blue 45, Acid Blue 75, Acid Blue 80, Acid Blue 83, Acid Blue 90 and Acid Blue 113, Acid Black 1, Basic Violet 1, Basic Violet 3, Basic Violet 4, Basic Violet 10, Basic Violet 35, Basic Blue 3, Basic Blue 16, Basic Blue 22, Basic Blue 47, Basic Blue 66, Basic Blue 75, Basic Blue 159 and mixtures thereof. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Color Index (Society of Dyers and Colorists, Bradford, UK) numbers Acid Violet 17, Acid Violet 43, Acid Red 52, Acid Red 73, Acid Red 88, Acid Red 150, Acid Blue 25, Acid Blue 29, Acid Blue 45, Acid Blue 113, Acid Black 1, Direct Blue 1, Direct Blue 71, Direct Violet 51 and mixtures thereof. In another aspect, suitable small molecule dyes include small molecule dyes selected from the group consisting of Color Index (Society of Dyers and Colorists, Bradford, UK) numbers Acid Violet 17, Direct Blue 71, Direct Violet 51, Direct Blue 1, Acid Red 88, Acid Red 150, Acid Blue 29, Acid Blue 113 or mixtures thereof.

Suitable polymeric dyes include polymeric dyes selected from the group consisting of polymers containing conjugated chromogens (dye-polymer conjugates) and polymers with chromogens co-polymerized into the backbone of the polymer and mixtures thereof.

In another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of fabric-substantive colorants sold under the name of Liquitint® (Milliken), dye-polymer conjugates formed from at least one reactive dye and a polymer selected from the group consisting of polymers comprising a moiety selected from the group consisting of a hydroxyl moiety, a primary amine moiety, a secondary amine moiety, a thiol moiety and mixtures thereof. In still another aspect, suitable polymeric dyes include polymeric dyes selected from the group consisting of Liquitint® Violet CT, carboxymethyl cellulose (CMC) conjugated with a reactive blue, reactive violet or reactive red dye such as CMC conjugated with C.I. Reactive Blue 19, sold by Megazyme, Wicklow, Ireland under the product name AZO-CM-CELLULOSE, product code S-ACMC, alkoxylated triphenyl-methane polymeric colorants, alkoxylated thiophene polymeric colorants, and mixtures thereof.

Preferred hueing dyes include the whitening agents found in WO08/87497. These whitening agents may be characterized by the following structure (I):

$$H_3C$$
 H_3C
 H_3C
 H
 R_2

(l)

wherein R₁ and R₂ can independently be selected from:

a) $[(CH_2CR'HO)_x(CH_2CR''HO)_vH]$

5

10

15

20

- wherein R' is selected from the group consisting of H, CH_3 , $CH_2O(CH_2CH_2O)_zH$, and mixtures thereof; wherein R" is selected from the group consisting of H, $CH_2O(CH_2CH_2O)_zH$, and mixtures thereof; wherein $x + y \le 5$; wherein $y \ge 1$; and wherein z = 0 to 5;
 - b) R_1 = alkyl, aryl or aryl alkyl and R_2 = [(CH₂CR'HO)_x(CH₂CR"HO)_yH] wherein R' is selected from the group consisting of H, CH₃, CH₂O(CH₂CH₂O)_zH, and mixtures thereof; wherein R" is selected from the group consisting of H, CH₂O(CH₂CH₂O)_zH, and mixtures thereof; wherein x + y \leq 10; wherein y \geq 1; and wherein z = 0 to 5;
 - c) $R_1 = [CH_2CH_2(OR_3)CH_2OR_4]$ and $R_2 = [CH_2CH_2(OR_3)CH_2OR_4]$ wherein R_3 is selected from the group consisting of H, $(CH_2CH_2O)_zH$, and mixtures thereof; and wherein z = 0 to 10;

wherein R_4 is selected from the group consisting of $(C_1\text{-}C_{16})$ alkyl , aryl groups, and mixtures thereof; and

d) wherein R1 and R2 can independently be selected from the amino addition product of styrene oxide, glycidyl methyl ether, isobutyl glycidyl ether, isopropylglycidyl ether, t-butyl glycidyl ether, 2-ethylhexylgycidyl ether, and glycidylhexadecyl ether, followed by the addition of from 1 to 10 alkylene oxide units.

A preferred whitening agent of the present invention may be characterized by the following structure (II):

(II)

wherein R' is selected from the group consisting of H, CH_3 , $CH_2O(CH_2CH_2O)_zH$, and mixtures thereof; wherein R" is selected from the group consisting of H, $CH_2O(CH_2CH_2O)_zH$, and mixtures thereof; wherein $x + y \le 5$; wherein $y \ge 1$; and wherein z = 0 to 5.

A further preferred whitening agent of the present invention may be characterized by the following structure (III):

15

10

5

typically comprising a mixture having a total of 5 EO groups. Suitable preferred molecules are those in Structure I having the following pendant groups in "part a" above.

TABLE 1

	R1				R2			
	R'	R"	Х	У	R'	R"	х	У
Α	Н	Н	3	1	Н	Н	0	1
В	Н	Н	2	1	Н	Н	1	1
c = b	Н	Н	1	1	Н	Н	2	1
d = a	Н	Н	0	1	Н	Н	3	1

Further whitening agents of use include those described in US2008/34511 (Unilever). A preferred agent is "Violet 13".

5

10

15

20

25

30

35

Suitable dye clay conjugates include dye clay conjugates selected from the group comprising at least one cationic/basic dye and a smectite clay, and mixtures thereof. In another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of one cationic/basic dye selected from the group consisting of C.I. Basic Yellow 1 through 108, C.I. Basic Orange 1 through 69, C.I. Basic Red 1 through 118, C.I. Basic Violet 1 through 51, C.I. Basic Blue 1 through 164, C.I. Basic Green 1 through 14, C.I. Basic Brown 1 through 23, CI Basic Black 1 through 11, and a clay selected from the group consisting of Montmorillonite clay, Hectorite clay, Saponite clay and mixtures thereof. In still another aspect, suitable dye clay conjugates include dye clay conjugates selected from the group consisting of: Montmorillonite Basic Blue B7 C.I. 42595 conjugate, Montmorillonite Basic Blue B9 C.I. 52015 conjugate, Montmorillonite Basic Violet V3 C.I. 42555 conjugate, Montmorillonite Basic Green G1 C.I. 42040 conjugate, Montmorillonite Basic Red R1 C.I. 45160 conjugate, Montmorillonite C.I. Basic Black 2 conjugate, Hectorite Basic Blue B7 C.I. 42595 conjugate, Hectorite Basic Blue B9 C.I. 52015 conjugate, Hectorite Basic Violet V3 C.I. 42555 conjugate, Hectorite Basic Green G1 C.I. 42040 conjugate, Hectorite Basic Red R1 C.I. 45160 conjugate, Hectorite C.I. Basic Black 2 conjugate, Saponite Basic Blue B7 C.I. 42595 conjugate, Saponite Basic Blue B9 C.I. 52015 conjugate, Saponite Basic Violet V3 C.I. 42555 conjugate, Saponite Basic Green G1 C.I. 42040 conjugate, Saponite Basic Red R1 C.I. 45160 conjugate, Saponite C.I. Basic Black 2 conjugate and mixtures thereof.

Suitable pigments include pigments selected from the group consisting of flavanthrone, indanthrone, chlorinated indanthrone containing from 1 to 4 chlorine atoms, pyranthrone, monobromodichloropyranthrone, dibromodichloropyranthrone, dichloropyranthrone, tetrabromopyranthrone, perylene-3,4,9,10-tetracarboxylic acid diimide, wherein the imide groups may be unsubstituted or substituted by C1-C3 -alkyl or a phenyl or heterocyclic radical, and wherein the phenyl and heterocyclic radicals may additionally carry substituents which do not confer solubility in water, anthrapyrimidinecarboxylic acid amides, violanthrone, isoviolanthrone, dioxazine pigments, copper phthalocyanine which may contain up to 2 chlorine phthalocyanine atoms per molecule. polychloro-copper or polybromochloro-copper phthalocyanine containing up to 14 bromine atoms per molecule and mixtures thereof. In another aspect, suitable pigments include pigments selected from the group consisting of

Ultramarine Blue (C.I. Pigment Blue 29), Ultramarine Violet (C.I. Pigment Violet 15) and mixtures thereof.

The aforementioned fabric hueing agents can be used in combination (any mixture of fabric hueing agents can be used). Suitable hueing agents are described in more detail in

US7208459. Preferred levels of dye in compositions of the invention are 0.00001 to 0.5wt%, or 0.0001 to 0.25wt%. The concentration of dyes preferred in water for the treatment and/or cleaning step is from 1ppb to 5ppm, 10ppb to 5ppm or 20ppb to 5ppm. In preferred compositions, the concentration of surfactant will be from 0.2 to 3g/l.

<u>Encapsulates</u> - The composition may comprise an encapsulate. In one aspect, an encapsulate comprising a core, a shell having an inner and outer surface, said shell encapsulating said core.

5

10

15

20

25

30

35

In one aspect of said encapsulate, said core may comprise a material selected from the group consisting of perfumes; brighteners; dyes; insect repellants; silicones; waxes; flavors; vitamins; fabric softening agents; skin care agents in one aspect, paraffins; enzymes; anti-bacterial agents; bleaches; sensates; and mixtures thereof; and said shell may comprise a material selected from the group consisting of polyethylenes; polyamides; polyvinylalcohols, optionally containing other co-monomers; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast may comprise a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea may comprise polyoxymethyleneurea and/or melamine formaldehyde; polyolefins; polysaccharides, in one aspect said polysaccharide may comprise alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.

In one aspect of said encapsulate, said core may comprise perfume.

In one aspect of said encapsulate, said shell may comprise melamine formaldehyde and/or cross linked melamine formaldehyde.

In a one aspect, suitable encapsulates may comprise a core material and a shell, said shell at least partially surrounding said core material, is disclosed. At least 75%, 85% or 90% of said encapsulates may have a fracture strength of from 0.2 to 10 MPa, from 0.4 to 5MPa, from 0.6 to 3.5 MPa, or from 0.7 to 3MPa; and a benefit agent leakage of from 0 to 30%, from 0 to 20%, or from 0 to 5%.

In one aspect, at least 75%, 85% or 90% of said encapsulates may have a particle size from 1 to 80 microns, from 5 to 60 microns, from 10 to 50 microns, or from 15 to 40 microns.

In one aspect, at least 75%, 85% or 90% of said encapsulates may have a particle wall thickness from 30 to 250nm, from 80 to 180nm, or from 100 to 160nm.

In one aspect, said encapsulates' core material may comprise a material selected from the group consisting of a perfume raw material and/or optionally a material selected from the group consisting of vegetable oil, including neat and/or blended vegetable oils including castor oil, coconut oil, cottonseed oil, grape oil, rapeseed, soybean oil, corn oil, palm oil, linseed oil, safflower oil, olive oil, peanut oil, coconut oil, palm kernel oil, castor oil, lemon oil and mixtures thereof; esters of vegetable oils, esters, including dibutyl adipate, dibutyl phthalate, butyl benzyl adipate, benzyl octyl adipate, tricresyl phosphate, trioctyl phosphate and mixtures thereof;

straight or branched chain hydrocarbons, including those straight or branched chain hydrocarbons having a boiling point of greater than about 80°C; partially hydrogenated terphenyls, dialkyl phthalates, alkyl biphenyls, including monoisopropylbiphenyl, alkylated naphthalene, including dipropylnaphthalene, petroleum spirits, including kerosene, mineral oil and mixtures thereof; aromatic solvents, including benzene, toluene and mixtures thereof; silicone oils; and mixtures thereof.

5

10

15

20

25

30

35

In one aspect, said encapsulates' wall material may comprise a suitable resin including the reaction product of an aldehyde and an amine, suitable aldehydes include, formaldehyde. Suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof. Suitable melamines include methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof. Suitable ureas include dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.

In one aspect, suitable formaldehyde scavengers may be employed with the encapsulates e.g. in a capsule slurry and/or added to a composition before, during or after the encapsulates are added to such composition. Suitable capsules may be made by the following teaching of US2008/0305982; and/or US2009/0247449.

In a preferred aspect the composition can also comprise a deposition aid, preferably consisting of the group comprising cationic or nonionic polymers. Suitable polymers include cationic starches, cationic hydroxyethylcellulose, polyvinylformaldehyde, locust bean gum, mannans, xyloglucans, tamarind gum, polyethyleneterephthalate and polymers containing dimethylaminoethyl methacrylate, optionally with one or monomers selected from the group comprising acrylic acid and acrylamide.

Perfumes - In one aspect the composition comprises a perfume that comprises one or more perfume raw materials selected from the group consisting of 1,1'-oxybis-2-propanol; 1,4cyclohexanedicarboxylic acid, diethyl ester; (ethoxymethoxy)cyclododecane; 1,3-nonanediol, monoacetate; (3-methylbutoxy)acetic acid, 2-propenyl ester: beta-methyl cyclododecaneethanol; 2-methyl-3-[(1,7,7-trimethylbicyclo[2.2.1]hept-2-yl)oxy]-1-propanol; oxacyclohexadecan-2-one; alpha-methyl-benzenemethanol acetate; trans-3-ethoxy-1,1,5-4-(1,1-dimethylethyl)cyclohexanol trimethylcyclohexane; acetate; dodecahydro-3a,6,6,9atetramethylnaphtho[2,1-b]furan; beta-methyl benzenepropanal; beta-methyl-3-(1methylethyl)benzenepropanal; 4-phenyl-2-butanone; 2-methylbutanoic acid, ethyl ester; benzaldehyde; 2-methylbutanoic acid, 1-methylethyl ester; dihydro-5-pentyl-2(3H)furanone; (2E)-1-(2,6,6-trimethyl-2-cyclohexen-1-yl)-2-buten-1-one; dodecanal; undecanal; 2-ethyl- alpha, alpha-dimethylbenzenepropanal; decanal; alpha, alpha-dimethylbenzeneethanol acetate; 2-(phenylmethylene)octanal; 2-[[3-[4-(1,1-dimethylethyl)phenyl]-2methylpropylidene]amino]benzoic acid, methyl ester; 1-(2,6,6-trimethyl-3-cyclohexen-1-yl)-2buten-1-one; 2-pentylcyclopentanone; 3-oxo-2-pentyl cyclopentaneacetic acid, methyl ester; 4-

5

10

15

20

25

30

35

hydroxy-3-methoxybenzaldehyde; 3-ethoxy-4-hydroxybenzaldehyde; 2-heptylcyclopentanone; 1-(4-methylphenyl)ethanone; (3E)-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one; (3E)-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-one; benzeneethanol; 2H-1-benzopyran-2-one; 4methoxybenzaldehyde; 10-undecenal; propanoic acid, phenylmethyl ester: betamethylbenzenepentanol; 1,1-diethoxy-3,7-dimethyl-2,6-octadiene; alpha, alphadimethylbenzeneethanol; (2E)-1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-buten-1-one; acetic acid, phenylmethyl ester; cyclohexanepropanoic acid, 2-propenyl ester; hexanoic acid, 2-propenyl ester; 1,2-dimethoxy-4-(2-propenyl)benzene; 1,5-dimethyl-bicyclo[3.2.1]octan-8-one oxime; 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde; 3-buten-2-ol; 2-[[[2,4(or 3,5)dimethyl-3-cyclohexen-1-yl]methylene]amino]benzoic acid, methyl ester; 8-cyclohexadecen-1one; methyl ionone; 2,6-dimethyl-7-octen-2-ol; 2-methoxy-4-(2-propenyl)phenol; (2E)-3,7dimethyl-2,6-Octadien-1-ol; 2-hydroxy-Benzoic acid, (3Z)-3-hexenyl ester; 2-tridecenenitrile; 4-(2,2-dimethyl-6-methylenecyclohexyl)-3-methyl-3-buten-2-one; tetrahydro-4-methyl-2-(2-methyl-1-propenyl)-2H-pyran; Acetic acid, (2-methylbutoxy)-, 2-propenyl ester; Benzoic acid, 2-hydroxy-3-methylbutyl ester; 2-Buten-1-one, 1-(2,6,6-trimethyl-1-cyclohexen-1-yl)-, (Z)-; Cyclopentanecarboxylic acid, 2-hexyl-3-oxo-, methyl ester; Benzenepropanal, 4-ethyl-.alpha...alpha.-dimethyl-; 3-Cyclohexene-1-carboxaldehyde. 3-(4-hydroxy-4-methylpentyl)-; Ethanone, 1-(2,3,4,7,8,8a-hexahydro-3,6,8,8-tetramethyl-1H-3a,7- methanoazulen-5-yl)-, [3R-(3.alpha.,3a.beta.,7.beta.,8a.alpha.)]-; Undecanal, 2-methyl-2H-Pyran-2-one, 6-butyltetrahydro-; Benzenepropanal, 4-(1,1-dimethylethyl)-.alpha.-methyl-; 2(3H)-Furanone, 5-heptyldihydro-; Benzoic acid, 2-[(7-hydroxy-3,7-dimethyloctylidene)amino]-, methyl; Benzoic acid, 2-hydroxy-, phenylmethyl ester; Naphthalene, 2-methoxy-; 2-Cyclopenten-1-one, 2-hexyl-; 2(3H)-Furanone, 5-hexyldihydro-; Oxiranecarboxylic acid, 3-methyl-3-phenyl-, ethyl ester; 2-Oxabicyclo[2.2.2]octane, 1,3,3-trimethyl-; Benzenepentanol, .gamma.-methyl-; 3-Octanol, 3,7dimethyl-; 3,7-dimethyl-2,6-octadienenitrile; 3,7-dimethyl-6-octen-1-ol; Terpineol acetate; 2methyl-6-methylene-7-Octen-2-ol, dihydro derivative; 3a,4,5,6,7,7a-hexahydro-4,7-Methano-1Hinden-6-ol propanoate; 3-methyl-2-buten-1-ol acetate; (Z)-3-Hexen-1-ol acetate; 2-ethyl-4-(2,2,3-trimethyl-3-cyclopenten-1-yl)-2-buten-1-ol; 4-(octahydro-4,7-methano-5H-inden-5ylidene)-butanal; 3-2,4-dimethyl-cyclohexene-1-carboxaldehyde; 1-(1,2,3,4,5,6,7,8-octahydro-2.3.8.8-tetramethyl-2- naphthalenyl)-ethanone; 2-hydroxy-benzoic acid, methyl ester; 2-hydroxybenzoic acid, hexyl ester; 2-phenoxy-ethanol; 2-hydroxy-benzoic acid, pentyl ester; 2,3heptanedione; 2-hexen-1-ol; 6-Octen-2-ol, 2,6-dimethyl-; damascone (alpha, beta, gamma or delta or mixtures thereof), 4,7-Methano-1H-inden-6-ol, 3a,4,5,6,7,7a-hexahydro-, acetate; 9-Undecenal; 8-Undecenal; Isocyclocitral; Ethanone, 1-(1,2,3,5,6,7,8,8a-octahydro-2,3,8,8tetramethyl-2-naphthalenyl)-; 3-Cyclohexene-1-carboxaldehyde, 3,5-dimethyl-; 3-Cyclohexene-1-carboxaldehyde, 2,4-dimethyl-; 1,6-Octadien-3-ol, 3,7-dimethyl-; 1,6-Octadien-3-ol, 3,7-

dimethyl-, acetate; Lilial (p-t-Bucinal), and Cyclopentanone, 2-[2-(4-methyl-3-cyclohexen-1-yl)propyl]- and 1-methyl-4-(1-methylethenyl)cyclohexene and mixtures thereof.

In one aspect the composition may comprise an encapsulated perfume particle comprising either a water-soluble hydroxylic compound or melamine-formaldehyde or modified polyvinyl alcohol. In one aspect the encapsulate comprises (a) an at least partially water-soluble solid matrix comprising one or more water-soluble hydroxylic compounds, preferably starch; and (b) a perfume oil encapsulated by the solid matrix.

5

10

15

20

25

30

35

In a further aspect the perfume may be pre-complexed with a polyamine, preferably a polyethylenimine so as to form a Schiff base.

<u>Polymers</u> - The composition may comprise one or more polymers. Examples are carboxymethylcellulose, poly(vinyl-pyrrolidone), poly (ethylene glycol), poly(vinyl alcohol), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid co-polymers.

The composition may comprise one or more amphiphilic cleaning polymers such as the compound having the following general structure: bis($(C_2H_5O)(C_2H_4O)n)(CH_3)-N^+-C_xH_{2x}-N^+-(CH_3)-bis((C_2H_5O)(C_2H_4O)n)$, wherein n = from 20 to 30, and x = from 3 to 8, or sulphated or sulphonated variants thereof.

The composition may comprise amphiphilic alkoxylated grease cleaning polymers which have balanced hydrophilic and hydrophobic properties such that they remove grease particles from fabrics and surfaces. Specific embodiments of the amphiphilic alkoxylated grease cleaning polymers of the present invention comprise a core structure and a plurality of alkoxylate groups attached to that core structure. These may comprise alkoxylated polyalkylenimines, preferably having an inner polyethylene oxide block and an outer polypropylene oxide block.

Alkoxylated polycarboxylates such as those prepared from polyacrylates are useful herein to provide additional grease removal performance. Such materials are described in WO91/08281 and PCT90/01815. Chemically, these materials comprise polyacrylates having one ethoxy side-chain per every 7-8 acrylate units. The side-chains are of the formula - (CH₂CH₂O)_m (CH₂)_nCH₃ wherein m is 2-3 and n is 6-12. The side-chains are ester-linked to the polyacrylate "backbone" to provide a "comb" polymer type structure. The molecular weight can vary, but is typically in the range of 2000 to 50,000. Such alkoxylated polycarboxylates can comprise from 0.05wt% to 10wt% of the compositions herein.

The isoprenoid-derived surfactants of the present invention, and their mixtures with other cosurfactants and other adjunct ingredients, are particularly suited to be used with an amphilic graft co-polymer, preferably the amphilic graft co-polymer comprises (i) polyethyelene glycol backbone; and (ii) and at least one pendant moiety selected from polyvinyl acetate, polyvinyl alcohol and mixtures thereof. A preferred amphilic graft co-polymer is Sokalan HP22, supplied from BASF. Suitable polymers include random graft copolymers, preferably a polyvinyl acetate

grafted polyethylene oxide copolymer having a polyethylene oxide backbone and multiple polyvinyl acetate side chains. The molecular weight of the polyethylene oxide backbone is preferably 6000 and the weight ratio of the polyethylene oxide to polyvinyl acetate is 40 to 60 and no more than 1 grafting point per 50 ethylene oxide units.

5

10

<u>Carboxylate polymer</u> - The composition of the present invention may also include one or more carboxylate polymers such as a maleate/acrylate random copolymer or polyacrylate homopolymer. In one aspect, the carboxylate polymer is a polyacrylate homopolymer having a molecular weight of from 4,000 to 9,000Da, or from 6,000 to 9,000Da.

Soil release polymer - The composition of the present invention may also include one or more soil release polymers having a structure as defined by one of the following structures (I), (II) or (III):

- (I) $-[(OCHR^1-CHR^2)_a-O-OC-Ar-CO-]_d$
- (II) -[(OCHR³-CHR⁴)_b-O-OC-sAr-CO-]_e
- (III) -[(OCHR⁵-CHR⁶)_c-OR⁷]_f

15 wherein:

a, b and c are from 1 to 200;

d, e and f are from 1 to 50;

Ar is a 1,4-substituted phenylene;

sAr is 1,3-substituted phenylene substituted in position 5 with SO₃Me;

Me is Li, K, Mg/2, Ca/2, Al/3, ammonium, mono-, di-, tri-, or tetraalkylammonium wherein the alkyl groups are C₁-C₁₈ alkyl or C₂-C₁₀ hydroxyalkyl, or mixtures thereof;

 R^1 , R^2 , R^3 , R^4 , R^5 and R^6 are independently selected from H or C_1 - C_{18} n- or iso-alkyl; and R^7 is a linear or branched C_1 - C_{18} alkyl, or a linear or branched C_2 - C_{30} alkenyl, or a cycloalkyl group with 5 to 9 carbon atoms, or a C_8 - C_{30} aryl group, or a C_6 - C_{30} arylalkyl group.

25

Suitable soil release polymers are polyester soil release polymers such as Repel-o-tex polymers, including Repel-o-tex, SF-2 and SRP6 supplied by Rhodia. Other suitable soil release polymers include Texcare polymers, including Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN300 and SRN325 supplied by Clariant. Other suitable soil release polymers are Marloquest polymers, such as Marloquest SL supplied by Sasol.

30

35

<u>Cellulosic polymer</u> - The composition of the present invention may also include one or more cellulosic polymers including those selected from alkyl cellulose, alkyl alkoxyalkyl cellulose, carboxyalkyl cellulose, alkyl carboxyalkyl cellulose. In one aspect, the cellulosic polymers are selected from the group comprising carboxymethyl cellulose, methyl cellulose, methyl carboxymethyl cellulose, and mixures thereof. In one aspect, the carboxymethyl cellulose has a degree of carboxymethyl substitution from 0.5 to 0.9 and a molecular weight from 100,000 to 300,000Da.

Enzymes - The composition may comprise one or more enzymes which provide cleaning performance and/or fabric care benefits. Examples of suitable enzymes include, but are not to, hemicellulases, peroxidases, proteases, cellulases, xylanases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ß-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, chlorophyllases, amylases, or mixtures thereof. A typical combination is an enzyme cocktail that may comprise e.g. a protease and lipase in conjunction with amylase. When present in a composition, the aforementioned additional enzymes may be present at levels from 0.00001 to 2wt%, from 0.0001 to 1wt% or from 0.001 to 0.5wt% enzyme protein by weight of the composition.

5

10

15

20

25

30

35

In general the properties of the selected enzyme(s) should be compatible with the selected detergent, (*i.e.*, pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, etc.), and the enzyme(s) should be present in effective amounts.

In one aspect preferred enzymes would include a cellulase. Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera *Bacillus*, *Pseudomonas*, *Humicola*, *Fusarium*, *Thielavia*, *Acremonium*, e.g., the fungal cellulases produced from *Humicola insolens*, *Myceliophthora thermophila* and *Fusarium oxysporum* disclosed in US4435307, US5648263, US5691178, US5776757 and WO89/09259.

Especially suitable cellulases are the alkaline or neutral cellulases having colour care benefits. Examples of such cellulases are cellulases described in EP0495257, EP0531372, WO96/11262, WO96/29397, WO98/08940. Other examples are cellulase variants such as those described in WO94/07998, EP0531315, US5457046, US5686593, US5763254, WO95/24471, WO98/12307 and PCT/DK98/00299.

Commercially available cellulases include Celluzyme[™], and Carezyme[™] (Novozymes A/S), Clazinase[™], and Puradax HA[™] (Genencor International Inc.), and KAC-500(B)[™] (Kao Corporation).

In one aspect preferred enzymes would include a protease. Suitable proteases include those of bacterial, fungal, plant, viral or animal origin e.g. vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included. It may be an alkaline protease, such as a serine protease or a metalloprotease. A serine protease may for example be of the S1 family, such as trypsin, or the S8 family such as subtilisin. A metalloproteases protease may for example be a thermolysin from e.g. family M4 or other metalloprotease such as those from M5, M7 or M8 families.

The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991) 719-737 and Siezen et al. Protein Science 6 (1997) 501-523. Serine

5

10

15

20

25

30

35

proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 sub-divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.

Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Other useful proteases may those described WO92/175177, WO01/016285. WO02/026024 be in and WO02/016547. Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270, WO94/25583 and WO05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and WO05/052146.

A further preferred protease is the alkaline protease from *Bacillus lentus* DSM 5483, as described for example in WO95/23221, and variants thereof which are described in WO92/21760, WO95/23221, EP1921147 and EP1921148.

Examples of metalloproteases are the neutral metalloprotease as described in WO07/044993 (Genencor Int.) such as those derived from *Bacillus amyloliquefaciens*.

Examples of useful proteases are the variants described in: WO92/19729, WO96/034946, WO98/20115, WO98/20116, WO99/011768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, WO11/036263, WO11/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 106, 118, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering. More preferred the subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, *36D, V68A, N76D, N87S,R, *97E, A98S, S99G,D,A, S99AD, S101G,M,R S103A, V104I,Y,N, S106A, G118V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).

Suitable commercially available protease enzymes include those sold under the trade names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra,Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A/S), those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, PreferenzTm, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®, Properase®, EffectenzTm, FN2®, FN3®, FN4®, Excellase®, ,

Opticlean® and Optimase® (Danisco/DuPont), Axapem[™] (Gist-Brocases N.V.), BLAP (sequence shown in Figure 29 of US5352604) and variants hereof (Henkel AG) and KAP (*Bacillus alkalophilus* subtilisin) from Kao.

In one aspect preferred enzymes would include an amylase. Suitable amylases may be an alpha-amylase or a glucoamylase and may be of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from *Bacillus*, *e.g.*, a special strain of *Bacillus licheniformis*, described in more detail in GB1296839.

Suitable amylases include amylases having SEQ ID NO: 3 in WO95/10603 or variants having 90% sequence identity to SEQ ID NO: 3 thereof. Preferred variants are described in WO94/02597, WO94/18314, WO97/43424 and SEQ ID NO: 4 of WO99/019467, such as variants with substitutions in one or more of the following positions: 15, 23, 105, 106, 124, 128, 133, 154, 156, 178, 179, 181, 188, 190, 197, 201, 202, 207, 208, 209, 211, 243, 264, 304, 305, 391, 408, and 444.

Different suitable amylases include amylases having SEQ ID NO: 6 in WO02/010355 or variants thereof having 90% sequence identity to SEQ ID NO: 6. Preferred variants of SEQ ID NO: 6 are those having a deletion in positions 181 and 182 and a substitution in position 193.

Other amylases which are suitable are hybrid alpha-amylase comprising residues 1-33 of the alpha-amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 6 of WO2006/066594 and residues 36-483 of the *B. licheniformis* alpha-amylase shown in SEQ ID NO: 4 of WO2006/066594 or variants having 90% sequence identity thereof. Preferred variants of this hybrid alpha-amylase are those having a substitution, a deletion or an insertion in one of more of the following positions: G48, T49, G107, H156, A181, N190, M197, I201, A209 and Q264. Most preferred variants of the hybrid alpha-amylase comprising residues 1-33 of the alpha-amylase derived from *B. amyloliquefaciens* shown in SEQ ID NO: 6 of WO2006/066594 and residues 36-483 of SEQ ID NO: 4 are those having the substitutions:

M197T;

5

10

15

20

25

30

35

H156Y+A181T+N190F+A209V+Q264S; or

G48A+T49I+G107A+H156Y+A181T+N190F+I201F+A209V+Q264S.

Further amylases which are suitable are amylases having SEQ ID NO: 6 in WO99/019467 or variants thereof having 90% sequence identity to SEQ ID NO: 6. Preferred variants of SEQ ID NO: 6 are those having a substitution, a deletion or an insertion in one or more of the following positions: R181, G182, H183, G184, N195, I206, E212, E216 and K269. Particularly preferred amylases are those having deletion in positions R181 and G182, or positions H183 and G184.

Additional amylases which can be used are those having SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 2 or SEQ ID NO: 7 of WO96/023873 or variants thereof having 90% sequence

identity to SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7. Preferred variants of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 or SEQ ID NO: 7 are those having a substitution, a deletion or an insertion in one or more of the following positions: 140, 181, 182, 183, 184, 195, 206, 212, 243, 260, 269, 304 and 476. More preferred variants are those having a deletion in positions 181 and 182 or positions 183 and 184. Most preferred amylase variants of SEQ ID NO: 1, SEQ ID NO: 2 or SEQ ID NO: 7 are those having a deletion in positions 183 and 184 and a substitution in one or more of positions 140, 195, 206, 243, 260, 304 and 476.

Other amylases which can be used are amylases having SEQ ID NO: 2 of WO08/153815, SEQ ID NO: 10 in WO01/66712 or variants thereof having 90% sequence identity to SEQ ID NO: 2 of WO08/153815 or 90% sequence identity to SEQ ID NO: 10 in WO01/66712. Preferred variants of SEQ ID NO: 10 in WO01/66712 are those having a substitution, a deletion or an insertion in one of more of the following positions: 176, 177, 178, 179, 190, 201, 207, 211 and 264.

Further suitable amylases are amylases having SEQ ID NO: 2 of WO09/061380 or variants having 90% sequence identity to SEQ ID NO: 2 thereof. Preferred variants of SEQ ID NO: 2 are those having a truncation of the C-terminus and/or a substitution, a deletion or an insertion in one of more of the following positions: Q87, Q98, S125, N128, T131, T165, K178, R180, S181, T182, G183, M201, F202, N225, S243, N272, N282, Y305, R309, D319, Q320, Q359, K444 and G475. More preferred variants of SEQ ID NO: 2 are those having the substitution in one of more of the following positions: Q87E,R, Q98R, S125A, N128C, T131I, T165I, K178L, T182G, M201L, F202Y, N225E,R, N272E,R, S243Q,A,E,D, Y305R, R309A, Q320R, Q359E, K444E and G475K and/or deletion in position R180 and/or S181 or of T182 and/or G183. Most preferred amylase variants of SEQ ID NO: 2 are those having the substitutions:

N128C+K178L+T182G+Y305R+G475K;

5

10

15

20

25

30

35

N128C+K178L+T182G+F202Y+Y305R+D319T+G475K;

S125A+N128C+K178L+T182G+Y305R+G475K; or

S125A+N128C+T131I+T165I+K178L+T182G+Y305R+G475K wherein the variants are C-terminally truncated and optionally further comprises a substitution at position 243 and/or a deletion at position 180 and/or position 181.

Other suitable amylases are the alpha-amylase having SEQ ID NO: 12 in WO01/66712 or a variant having at least 90% sequence identity to SEQ ID NO: 12. Preferred amylase variants are those having a substitution, a deletion or an insertion in one of more of the following positions of SEQ ID NO: 12 in WO01/66712: R28, R118, N174; R181, G182, D183, G184, G186, W189, N195, M202, Y298, N299, K302, S303, N306, R310, N314; R320, H324, E345, Y396, R400, W439, R444, N445, K446, Q449, R458, N471, N484. Particular preferred amylases include variants having a deletion of D183 and G184 and having the substitutions

R118K, N195F, R320K and R458K, and a variant additionally having substitutions in one or more position selected from the group: M9, G149, G182, G186, M202, T257, Y295, N299, M323, E345 and A339, most preferred a variant that additionally has substitutions in all these positions.

Other examples are amylase variants such as those described in WO2011/098531, WO2013/001078 and WO2013/001087.

5

10

15

20

25

30

35

Commercially available amylases are DuramylTM, TermamylTM, Termamyl UltraTM, FungamylTM, BanTM, StainzymeTM, Stainzyme PlusTM, Amplify®, SupramylTM, NatalaseTM, Liquozyme X and BANTM (from Novozymes A/S), KEMZYM® AT 9000 Biozym Biotech Trading GmbH Wehlistrasse 27b A-1200 Wien Austria, and RapidaseTM, PurastarTM/EffectenzTM, Powerase, Preferenz S100, Preferenx S110, ENZYSIZE®, OPTISIZE HT PLUS®, and PURASTAR OXAM® (Danisco/DuPont) and KAM® (Kao).

Suitable lipases and cutinases include those of bacterial or fungal origin. Chemically modified or protein engineered mutant enzymes are included. Examples include lipase from *Thermomyces*, e.g. from *T. lanuginosus* (previously named *Humicola lanuginosa*) as described in EP258068 and EP305216, cutinase from *Humicola*, e.g. *H. insolens* (WO96/13580), lipase from strains of *Pseudomonas* (some of these now renamed to *Burkholderia*), e.g. *P. alcaligenes* or *P. pseudoalcaligenes* (EP218272), *P. cepacia* (EP331376), *P. sp.* strain SD705 (WO95/06720 & WO96/27002), *P. wisconsinensis* (WO96/12012), GDSL-type *Streptomyces* lipases (WO10/065455), cutinase from *Magnaporthe grisea* (WO10/107560), cutinase from *Pseudomonas mendocina* (US5,389,536), lipase from *Thermobifida fusca* (WO11/084412, WO13/033318), *Geobacillus stearothermophilus* lipase (WO11/084417), lipase from *Bacillus subtilis* (WO11/084599), and lipase from *Streptomyces griseus* (WO11/150157) and *S. pristinaespiralis* (WO12/137147).

Other examples are lipase variants such as those described in EP407225, WO92/05249, WO94/01541, WO94/25578, WO95/14783, WO95/30744, WO95/35381, WO95/22615, WO96/00292, WO97/04079, WO97/07202, WO00/34450, WO00/60063, WO01/92502, WO07/87508 and WO09/109500.

Preferred commercial lipase products include Lipolase[™], Lipex[™]; Lipolex[™] and Lipoclean[™] (Novozymes A/S), Lumafast (originally from Genencor) and Lipomax (originally from Gist-Brocades).

Still other examples are lipases sometimes referred to as acyltransferases or perhydrolases, e.g. acyltransferases with homology to *Candida antarctica* lipase A (WO10/111143), acyltransferase from *Mycobacterium smegmatis* (WO05/56782), perhydrolases from the CE 7 family (WO09/67279), and variants of the *M. smegmatis* perhydrolase in particular the S54V variant used in the commercial product Gentle Power Bleach from Huntsman Textile Effects Pte Ltd (WO10/100028).

In one aspect, other preferred enzymes include microbial-derived endoglucanases exhibiting endo-beta-1,4-glucanase activity (EC3.2.1.4), including a bacterial polypeptide endogenous to a member of the genus Bacillus which has a sequence of at least 90%, 94%, 97% or 99% identity to the amino acid sequence SEQ ID NO:2 in US7141403 and mixtures thereof. Suitable endoglucanases are sold under the tradenames Celluclean® and Whitezyme® (Novozymes).

5

10

15

20

25

30

35

Other preferred enzymes include pectate lyases sold under the tradenames Pectawash®, Pectaway®, Xpect® and mannanases sold under the tradenames Mannaway® (Novozymes), and Purabrite® (Danisco/DuPont).

The detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes. A detergent additive of the invention, *i.e.*, a separate additive or a combined additive, can be formulated, for example, as granulate, liquid, slurry, etc. Preferred detergent additive formulations are granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids, or slurries.

Non-dusting granulates may be produced, *e.g.* as disclosed in US4106991 and US4661452 and may optionally be coated by methods known in the art. Examples of waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1000 to 20000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids. Examples of film-forming coating materials suitable for application by fluid bed techniques are given in GB1483591. Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods. Protected enzymes may be prepared according to the method disclosed in EP238216.

<u>Dye Transfer Inhibiting Agents</u> - The compositions of the present invention may also include one or more dye transfer inhibiting agents. Suitable polymeric dye transfer inhibiting agents include, but are not limited to, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles or mixtures thereof. When present in a composition, the dye transfer inhibiting agents may be present at levels from 0.0001 to 10wt%, from 0.01 to 5wt% or from 0.1 to 3wt%.

<u>Brighteners</u> - The compositions of the present invention can also contain additional components that may tint articles being cleaned, such as fluorescent brighteners.

The composition may comprise C.I. fluorescent brightener 260 in alpha-crystalline form having the following structure:

In one aspect, the brightener is a cold water soluble brightener, such as the C.I. fluorescent brightener 260 in alpha-crystalline form. In one aspect the brightener is predominantly in alpha-crystalline form, which means that typically at least 50wt%, at least 75wt%, at least 99wt%, or even substantially all, of the C.I. fluorescent brightener 260 is in alpha-crystalline form.

The brightener is typically in micronized particulate form, having a weight average primary particle size of from 3 to 30 micrometers, from 3 micrometers to 20 micrometers, or from 3 to 10 micrometers.

The composition may comprise C.I. fluorescent brightener 260 in beta-crystalline form, and the weight ratio of: (i) C.I. fluorescent brightener 260 in alpha-crystalline form, to (ii) C.I. fluorescent brightener 260 in beta-crystalline form may be at least 0.1, or at least 0.6. BE680847 relates to a process for making C.I fluorescent brightener 260 in alpha-crystalline form.

Commercial optical brighteners which may be useful in the present invention can be classified into subgroups, which include, but are not necessarily limited to, derivatives of stilbene, pyrazoline, coumarin, carboxylic acid, methinecyanines, dibenzothiophene-5,5-dioxide, azoles, 5- and 6-membered-ring heterocycles, and other miscellaneous agents. Examples of such brighteners are disclosed in "The Production and Application of Fluorescent Brightening Agents", M. Zahradnik, Published by John Wiley & Sons, New York (1982). Specific nonlimiting examples of optical brighteners which are useful in the present compositions are those identified in US4790856 and US3646015.

A further suitable brightener has the structure below:

5

10

15

Suitable fluorescent brightener levels include lower levels of from 0.01wt%, from 0.05wt%, from 0.1wt% or from 0.2wt% to upper levels of 0.5wt% or 0.75wt%.

In one aspect the brightener may be loaded onto a clay to form a particle. Silicate salts - The compositions of the present invention can also contain silicate salts, such as sodium or potassium silicate. The composition may comprise of from 0wt% to less than 10wt% silicate salt, to 9wt%, or to 8wt%, or to 7wt%, or to 6wt%, or to 5wt%, or to 4wt%, or to 3wt%, or even to 2wt%, and from above 0wt%, or from 0.5wt%, or from 1wt% silicate salt. A suitable silicate salt is sodium silicate.

5

10

15

20

25

30

35

<u>Dispersants</u> - The compositions of the present invention can also contain dispersants. Suitable water-soluble organic materials include the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.

Enzyme Stabilizers - Enzymes for use in compositions can be stabilized by various techniques. The enzymes employed herein can be stabilized by the presence of water-soluble sources of calcium and/or magnesium ions. Examples of conventional stabilizing agents are, e.g. a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, a peptide aldehyde, lactic acid, boric acid, or a boric acid derivative, e.g. an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in, for example, WO92/19709 and WO92/19708 In case of aqueous compositions comprising protease, a reversible protease inhibitor, such as a boron compound including borate, 4-formyl phenylboronic acid, phenylboronic acid and derivatives thereof, or compounds such as calcium formate, sodium formate and 1,2-propane diol can be added to further improve stability. The peptide aldehyde may be of the formula B₂-B₁-B₀-R wherein: R is hydrogen, CH₃, CX_{3.} CHX₂, or CH₂X, wherein X is a halogen atom; B₀ is a phenylalanine residue with an OH substituent at the p-position and/or at the m-position; B₁ is a single amino acid residue; and B₂ consists of one or more amino acid residues, optionally comprising an N-terminal protection group. Preferred peptide aldehydes include but are not limited to: Z-RAY-H, Ac-GAY-H, Z-GAY-H, Z-GAL-H, Z-GAF-H, Z-GAV-H, Z-RVY-H, Z-LVY-H, Ac-LGAY-H, Ac-FGAY-H, Ac-YGAY-H, Ac-FGVY-H or Ac-WLVY-H, where Z is benzyloxycarbonyl and Ac is acetyl.

<u>Solvents</u> – Suitable solvents include water and other solvents such as lipophilic fluids. Examples of suitable lipophilic fluids include siloxanes, other silicones, hydrocarbons, glycol ethers, glycerine derivatives such as glycerine ethers, perfluorinated amines, perfluorinated and hydrofluoroether solvents, low-volatility nonfluorinated organic solvents, diol solvents, other environmentally-friendly solvents and mixtures thereof.

<u>Structurant/Thickeners</u> - Structured liquids can either be internally structured, whereby the structure is formed by primary ingredients (e.g. surfactant material) and/or externally structured by providing a three dimensional matrix structure using secondary ingredients (e.g.

polymers, clay and/or silicate material). The composition may comprise a structurant, from 0.01 to 5wt%, or from 0.1 to 2.0wt%. The structurant is typically selected from the group consisting of diglycerides and triglycerides, ethylene glycol distearate, microcrystalline cellulose, cellulose-based materials, microfiber cellulose, hydrophobically modified alkali-swellable emulsions such as Polygel W30 (3VSigma), biopolymers, xanthan gum, gellan gum, and mixtures thereof. A suitable structurant includes hydrogenated castor oil, and non-ethoxylated derivatives thereof. A suitable structurant is disclosed in US6855680. Such structurants have a thread-like structuring system having a range of aspect ratios. Other suitable structurants and the processes for making them are described in WO10/034736.

5

10

15

20

25

30

35

Conditioning Agents - The composition of the present invention may include a high melting point fatty compound. The high melting point fatty compound useful herein has a melting point of 25°C or higher, and is selected from the group consisting of fatty alcohols, fatty acids, fatty alcohol derivatives, fatty acid derivatives, and mixtures thereof. Such compounds of low melting point are not intended to be included in this section. Non-limiting examples of the high melting point compounds are found in International Cosmetic Ingredient Dictionary, Fifth Edition, 1993, and CTFA Cosmetic Ingredient Handbook, Second Edition, 1992.

The high melting point fatty compound is included in the composition at a level of from 0.1 to 40wt%, from 1 to 30wt%, from 1.5 to 16wt%, from 1.5 to 8wt% in view of providing improved conditioning benefits such as slippery feel during the application to wet hair, softness and moisturized feel on dry hair.

The compositions of the present invention may contain a cationic polymer. Concentrations of the cationic polymer in the composition typically range from 0.05 to 3wt%, from 0.075 to 2.0wt%, or from 0.1 to 1.0wt%. Suitable cationic polymers will have cationic charge densities of at least 0.5 meq/gm, at least 0.9 meq/gm, at least 1.2 meq/gm, at least 1.5 meq/gm, or less than 7 meq/gm, and less than 5 meq/gm, at the pH of intended use of the composition, which pH will generally range from pH3 to pH9, or between pH4 and pH8. Herein, "cationic charge density" of a polymer refers to the ratio of the number of positive charges on the polymer to the molecular weight of the polymer. The average molecular weight of such suitable cationic polymers will generally be between 10,000 and 10 million, between 50,000 and 5 million, or between 100,000 and 3 million.

Suitable cationic polymers for use in the compositions of the present invention contain cationic nitrogen-containing moieties such as quaternary ammonium or cationic protonated amino moieties. Any anionic counterions can be used in association with the cationic polymers so long as the polymers remain soluble in water, in the composition, or in a coacervate phase of the composition, and so long as the counterions are physically and chemically compatible with the essential components of the composition or do not otherwise unduly impair composition

performance, stability or aesthetics. Nonlimiting examples of such counterions include halides (e.g., chloride, fluoride, bromide, iodide), sulfate and methylsulfate.

Nonlimiting examples of such polymers are described in the CTFA Cosmetic Ingredient Dictionary, 3rd edition, edited by Estrin, Crosley, and Haynes, (The Cosmetic, Toiletry, and Fragrance Association, Inc., Washington, D.C. (1982)).

Other suitable cationic polymers for use in the composition include polysaccharide polymers, cationic guar gum derivatives, quaternary nitrogen-containing cellulose ethers, synthetic polymers, copolymers of etherified cellulose, guar and starch. When used, the cationic polymers herein are either soluble in the composition or are soluble in a complex coacervate phase in the composition formed by the cationic polymer and the anionic, amphoteric and/or zwitterionic surfactant component described hereinbefore. Complex coacervates of the cationic polymer can also be formed with other charged materials in the composition. Suitable cationic polymers are described in US3962418; US3958581; and US2007/0207109.

The composition of the present invention may include a nonionic polymer as a conditioning agent. Polyalkylene glycols having a molecular weight of more than 1000 are useful herein. Useful are those having the following general formula:

5

10

15

20

25

30

35

wherein R⁹⁵ is selected from the group consisting of H, methyl, and mixtures thereof. Conditioning agents, and in particular silicones, may be included in the composition. The conditioning agents useful in the compositions of the present invention typically comprise a water insoluble, water dispersible, non-volatile, liquid that forms emulsified, liquid particles. Suitable conditioning agents for use in the composition are those conditioning agents characterized generally as silicones (e.g., silicone oils, cationic silicones, silicone gums, high refractive silicones, and silicone resins), organic conditioning oils (e.g., hydrocarbon oils, polyolefins, and fatty esters) or combinations thereof, or those conditioning agents which otherwise form liquid, dispersed particles in the aqueous surfactant matrix herein. Such conditioning agents should be physically and chemically compatible with the essential components of the composition, and should not otherwise unduly impair composition stability, aesthetics or performance.

The concentration of the conditioning agent in the composition should be sufficient to provide the desired conditioning benefits. Such concentration can vary with the conditioning agent, the conditioning performance desired, the average size of the conditioning agent particles, the type and concentration of other components, and other like factors.

The concentration of the silicone conditioning agent typically ranges from 0.01 to 10wt%. Non-limiting examples of suitable silicone conditioning agents, and optional suspending agents

for the silicone, are described in U.S. Reissue Pat. No. 34,584; US5104646; US5106609; US4152416; US2826551; US3964500; US4364837; US6607717; US6482969; US5807956; US5981681; US6207782; US7465439; US7041767; US7217777; US2007/0286837A1; US2005/0048549A1; US2007/0041929A1; GB849433; DE10036533, which are all incorporated herein by reference; Chemistry and Technology of Silicones, New York: Academic Press (1968); General Electric Silicone Rubber Product Data Sheets SE 30, SE 33, SE 54 and SE 76; Silicon Compounds, Petrarch Systems, Inc. (1984); and in Encyclopedia of Polymer Science and Engineering, vol. 15, 2d ed., pp 204-308, John Wiley & Sons, Inc. (1989).

5

10

15

20

25

30

35

The compositions of the present invention may also comprise from 0.05 to 3wt% of at least one organic conditioning oil as the conditioning agent, either alone or in combination with other conditioning agents, such as the silicones (described herein). Suitable conditioning oils include hydrocarbon oils, polyolefins, and fatty esters. Also suitable for use in the compositions herein are the conditioning agents described in US5674478 and US5750122 or in US4529586; US4507280; US4663158; US4197865; US4217914; US4381919; and US4422853.

<u>Hygiene and malodour</u> – The compositions of the present invention may also comprise one or more of zinc ricinoleate, thymol, quaternary ammonium salts such as Bardac®, polyethylenimines (such as Lupasol® from BASF) and zinc complexes thereof, silver and silver compounds, especially those designed to slowly release Ag⁺ or nano-silver dispersions.

<u>Probiotics</u> – The compositions may comprise probiotics such as those described in WO09/043709.

<u>Suds Boosters</u> - If high sudsing is desired, suds boosters such as the C_{10} - C_{16} alkanolamides or C_{10} - C_{14} alkyl sulphates can be incorporated into the compositions, typically at 1 to 10wt% levels. The C_{10} - C_{14} monoethanol and diethanol amides illustrate a typical class of such suds boosters. Use of such suds boosters with high sudsing adjunct surfactants such as the amine oxides, betaines and sultaines noted above is also advantageous. If desired, water-soluble magnesium and/or calcium salts such as $MgCl_2$, $MgSO_4$, $CaCl_2$, $CaSO_4$ and the like, can be added at levels of, typically, 0.1 to 2wt%, to provide additional suds and to enhance grease removal performance.

<u>Suds Suppressors</u> - Compounds for reducing or suppressing the formation of suds can be incorporated into the compositions of the present invention. Suds suppression can be of particular importance in the so-called "high concentration cleaning process" as described in US4489455 and US4489574, and in front-loading -style washing machines. A wide variety of materials may be used as suds suppressors, and suds suppressors are well known to those skilled in the art. See e.g. Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, p.430-447 (John Wiley & Sons, Inc., 1979). Examples of suds supressors include monocarboxylic fatty acid and soluble salts therein, high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent

alcohols, aliphatic C_{18} - C_{40} ketones (e.g., stearone), N-alkylated amino triazines, waxy hydrocarbons preferably having a melting point below about 100° C, silicone suds suppressors, and secondary alcohols. Suds supressors are described in US2954347; US4265779; US4265779; US3455839; US3933672; US4652392; US4978471; US4983316; US5288431; US4639489; US4749740; US4798679; US4075118; EP89307851.9; EP150872; and DOS 2,124,526.

For any detergent compositions to be used in automatic laundry washing machines, suds should not form to the extent that they overflow the washing machine. Suds suppressors, when utilized, are preferably present in a "suds suppressing amount. By "suds suppressing amount" is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.

The compositions herein will generally comprise from 0 to 10wt% of suds suppressor. When utilized as suds suppressors, monocarboxylic fatty acids, and salts therein, will be present typically in amounts up to 5wt%. Preferably, from 0.5 to 3wt% of fatty monocarboxylate suds suppressor is utilized. Silicone suds suppressors are typically utilized in amounts up to 2.0wt%, although higher amounts may be used. Monostearyl phosphate suds suppressors are generally utilized in amounts ranging from 0.1 to 2wt%. Hydrocarbon suds suppressors are typically utilized in amounts ranging from 0.01 to 5.0wt%, although higher levels can be used. The alcohol suds suppressors are typically used at 0.2 to 3wt%.

The compositions herein may have a cleaning activity over a broad range of pH. In certain embodiments the compositions have cleaning activity from pH4 to pH11.5. In other embodiments, the compositions are active from pH6 to pH11, from pH7 to pH11, from pH8 to pH11, from pH9 to pH11, or from pH10 to pH11.5.

The compositions herein may have cleaning activity over a wide range of temperatures, e.g., from 10°C or lower to 90°C. Preferably the temperature will be below 50°C or 40°C or even 30°C. In certain embodiments, the optimum temperature range for the compositions is from 10°C to 20°C, from 15°C to 25°C, from 15°C to 30°C, from 20°C to 30°C, from 25°C to 35°C, from 30°C to 40°C, from 35°C to 45°C, or from 40°C to 50°C.

Form of the composition

5

10

15

20

25

30

35

The compositions described herein are advantageously employed for example, in laundry applications, hard surface cleaning, dishwashing applications, as well as cosmetic applications such as dentures, teeth, hair and skin. The compositions of the invention are in particular solid or liquid cleaning and/or treatment compositions. In one aspect the invention relates to a composition, wherein the form of the composition is selected from the group consisting of a regular, compact or concentrated liquid; a gel; a paste; a soap bar; a regular or a

compacted powder; a granulated solid; a homogenous or a multilayer tablet with two or more layers (same or different phases); a pouch having one or more compartments; a single or a multi-compartment unit dose form; or any combination thereof.

The form of the composition may separate the components physically from each other in compartments such as e.g. water dissolvable pouches or in different layers of tablets. Thereby negative storage interaction between components can be avoided. Different dissolution profiles of each of the compartments can also give rise to delayed dissolution of selected components in the wash solution.

5

10

15

20

25

30

35

Pouches can be configured as single or multicompartments. It can be of any form, shape and material which is suitable for hold the composition, e.g. without allowing the release of the composition to release of the composition from the pouch prior to water contact. The pouch is made from water soluble film which encloses an inner volume. Said inner volume can be divided into compartments of the pouch. Preferred films are polymeric materials preferably polymers which are formed into a film or sheet. Preferred polymers, copolymers or derivates thereof are selected polyacrylates, and water soluble acrylate copolymers, methyl cellulose, carboxy methyl cellulose, sodium dextrin, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, malto dextrin, poly methacrylates, most preferably polyvinyl alcohol copolymers and, hydroxypropyl methyl cellulose (HPMC). Preferably the level of polymer in the film for example PVA is at least about 60%. Preferred average molecular weight will typically be about 20,000 to about 150,000. Films can also be of blended compositions comprising hydrolytically degradable and water soluble polymer blends such as polylactide and polyvinyl alcohol (known under the Trade reference M8630 as sold by MonoSol LLC, Indiana, USA) plus plasticisers like glycerol, ethylene glycerol, propylene glycol, sorbitol and mixtures thereof. The pouches can comprise a solid laundry cleaning composition or part components and/or a liquid cleaning composition or part components separated by the water soluble film. The compartment for liquid components can be different in composition than compartments containing solids (US2009/0011970 A1).

Water-Soluble Film – The compositions of the present invention may also be encapsulated within a water-soluble film. Preferred film materials are preferably polymeric materials. The film material can e.g. be obtained by casting, blow-moulding, extrusion or blown extrusion of the polymeric material, as known in the art. Preferred polymers, copolymers or derivatives thereof suitable for use as pouch material are selected from polyvinyl alcohols, polyvinyl pyrrolidone, polyalkylene oxides, acrylamide, acrylic acid, cellulose, cellulose ethers, polyvinyl acetates, polycarboxylic acids and salts, cellulose esters, cellulose amides, polyaminoacids or peptides, polyamides, polyacrylamide, copolymers of maleic/acrylic acids, polysaccharides including starch and gelatine, natural gums such as xanthum and carragum. More preferred polymers are selected from polyacrylates and water-soluble acrylate copolymers, methylcellulose, carboxymethylcellulose sodium, dextrin, ethylcellulose,

hydroxyethyl cellulose, hydroxypropyl methylcellulose, maltodextrin, polymethacrylates, and most preferably selected from polyvinyl alcohols, polyvinyl alcohol copolymers and hydroxypropyl methyl cellulose (HPMC), and combinations thereof. Preferably, the level of polymer in the pouch material, e.g. a PVA polymer, is at least 60wt%. The polymer can have any weight average molecular weight, preferably from about 1.000 to 1.000.000, from about 10.000 to 300.000, from about 20.000 to 150.000. Mixtures of polymers can also be used as the pouch material.

Naturally, different film material and/or films of different thickness may be employed in making the compartments of the present invention. A benefit in selecting different films is that the resulting compartments may exhibit different solubility or release characteristics.

Preferred film materials are PVA films known under the MonoSol trade reference M8630, M8900, H8779 and those described in US6166117 and US6787512 and PVA films of corresponding solubility and deformability characteristics.

The film material herein can also comprise one or more additive ingredients. For example, it can be beneficial to add plasticisers, e.g. glycerol, ethylene glycol, diethyleneglycol, propylene glycol, sorbitol and mixtures thereof. Other additives include functional detergent additives to be delivered to the wash water, e.g. organic polymeric dispersants, etc.

Processes of Making the Compositions

5

10

15

20

25

30

35

The compositions of the present invention can be formulated into any suitable form and prepared by any process chosen by the formulator, non-limiting examples of which are described in Applicants' examples and in US4990280; US20030087791A1; US20030087790A1; US20050003983A1; US20040048764A1; US4762636; US6291412; US20050227891A1; EP1070115A2; US5879584; US5691297; US5574005; US5569645; US5565422; US5516448; US5489392; US5486303 all of which are incorporated herein by reference. The compositions of the invention or prepared according to the invention comprise cleaning and/or treatment composition including, but not limited to, compositions for treating fabrics, hard surfaces and any other surfaces in the area of fabric and home care, including: air care including air fresheners and scent delivery systems, car care, dishwashing, fabric conditioning (including softening and/or freshening), laundry detergency, laundry and rinse additive and/or care, hard surface cleaning and/or treatment including floor and toilet bowl cleaners, granular or powderform all-purpose or "heavy-duty" washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use: car or carpet shampoos, bathroom cleaners including toilet bowl cleaners; as well as cleaning auxiliaries such as bleach

additives and "stain-stick" or pre-treat types, substrate-laden compositions such as dryer added sheets. Preferred are compositions and methods for cleaning and/or treating textiles and/or hard surfaces, most preferably textiles. The compositions are preferably compositions used in a pre-treatment step or main wash step of a washing process, most preferably for use in textile washing step.

As used herein, the term "fabric and/or hard surface cleaning and/or treatment composition" is a subset of cleaning and treatment compositions that includes, unless otherwise indicated, granular or powder-form all-purpose or "heavy-duty" washing agents, especially cleaning detergents; liquid, gel or paste-form all-purpose washing agents, especially the so-called heavy-duty liquid types; liquid fine-fabric detergents; hand dishwashing agents or light duty dishwashing agents, especially those of the high-foaming type; machine dishwashing agents, including the various tablet, granular, liquid and rinse-aid types for household and institutional use; liquid cleaning and disinfecting agents, car or carpet shampoos, bathroom cleaners including toilet bowl cleaners; fabric conditioning compositions including softening and/or freshening that may be in liquid, solid and/or dryer sheet form; as well as cleaning auxiliaries such as bleach additives and "stain-stick" or pre-treat types, substrate-laden compositions such as dryer added sheets. All of such compositions which are applicable may be in standard, concentrated or even highly concentrated form even to the extent that such compositions may in certain aspect be non-aqueous.

20

25

30

35

15

5

10

Method of Use

The present invention includes a method for cleaning any surface including treating a textile or a hard surface or other surfaces in the field of fabric and/or home care. It is comtemplated that cleaning as described may be both in small scale as in e.g. family house hold as well as in large scale as in e.g. industrial and professional settings. In one aspect of the invention, the method comprises the step of contacting the surface to be treated in a pretreatment step or main wash step of a washing process, most preferably for use in a textile washing step or alternatively for use in dishwashing including both manual as well as automated/mechanical dishwashing. In one embodiment of the invention the lipase variant and other components are added sequentially into the method for cleaning and/or treating the surface. Alternatively, the lipase variant and other components are added simultaneously.

As used herein, washing includes but is not limited to, scrubbing, and mechanical agitation. Washing may be conducted with a foam composition as described in WO08/101958 and/or by applying alternating pressure (pressure/vaccum) as an addition or as an alternative to scrubbing and mechanical agitation. Drying of such surfaces or fabrics may be accomplished by any one of the common means employed either in domestic or industrial settings. The cleaning compositions of the present invention are ideally suited for use in laundry as well as

dishwashing applications. Accordingly, the present invention includes a method for cleaning an object including but not limiting to fabric, tableware, cutlery and kitchenware. The method comprises the steps of contacting the object to be cleaned with a said cleaning composition comprising at least one embodiment of Applicants' cleaning composition, cleaning additive or mixture thereof. The fabric may comprise most any fabric capable of being laundered in normal consumer or institutional use conditions. The solution may have a pH from 8 to 10.5. The compositions may be employed at concentrations from 500 to 15.000ppm in solution. The water temperatures typically range from 5°C to 90°C. The water to fabric ratio is typically from 1:1 to 30:1.

In one aspect the invention relates to a method of using the polypeptide with at least 60% identity to SEQ ID NO: 2 for producing a composition. In one aspect the invention relates to use of the composition for cleaning an object.

In one aspect the invention relates to a method of producing the composition, comprising adding a polypeptide with at least 60% identity to SEQ ID NO: 2, and a surfactant. In one aspect the invention relates to a method for cleaning a surface, comprising contacting a lipid stain present on the surface to be cleaned with the cleaning composition. In one aspect the invention relates to a method for hydrolyzing a lipid present in a soil and/or a stain on a surface, comprising contacting the soil and/or the stain with the cleaning composition. In one aspect the invention relates to use of the composition in the hydrolysis of a carboxylic acid ester. In one aspect the invention relates to use of the composition in the hydrolysis, synthesis or interesterification of an ester. In one aspect the invention relates to use of the composition for the manufacture of a stable formulation.

Plants

5

10

15

20

25

30

35

The present invention also relates to plants, *e.g.*, a transgenic plant, plant part, or plant cell, comprising a polynucleotide of the present invention so as to express and produce the variant in recoverable quantities. The variant may be recovered from the plant or plant part. Alternatively, the plant or plant part containing the variant may be used as such for improving the quality of a food or feed, *e.g.*, improving nutritional value, palatability, and rheological properties, or to destroy an antinutritive factor.

The transgenic plant can be dicotyledonous (a dicot) or monocotyledonous (a monocot). Examples of monocot plants are grasses, such as meadow grass (blue grass, Poa), forage grass such as Festuca, Lolium, temperate grass, such as Agrostis, and cereals, e.g., wheat, oats, rye, barley, rice, sorghum, and maize (corn).

Examples of dicot plants are tobacco, legumes, such as lupins, potato, sugar beet, pea, bean and soybean, and cruciferous plants (family Brassicaceae), such as cauliflower, rape seed, and the closely related model organism *Arabidopsis thaliana*.

Examples of plant parts are stem, callus, leaves, root, fruits, seeds, and tubers as well as the individual tissues comprising these parts, *e.g.*, epidermis, mesophyll, parenchyme, vascular tissues, meristems. Specific plant cell compartments, such as chloroplasts, apoplasts, mitochondria, vacuoles, peroxisomes and cytoplasm are also considered to be a plant part. Furthermore, any plant cell, whatever the tissue origin, is considered to be a plant part. Likewise, plant parts such as specific tissues and cells isolated to facilitate the utilization of the invention are also considered plant parts, *e.g.*, embryos, endosperms, aleurone and seed coats.

5

10

15

20

25

30

35

Also included within the scope of the present invention are the progeny of such plants, plant parts, and plant cells.

The transgenic plant or plant cell expressing a variant may be constructed in accordance with methods known in the art. In short, the plant or plant cell is constructed by incorporating one or more expression constructs encoding a variant into the plant host genome or chloroplast genome and propagating the resulting modified plant or plant cell into a transgenic plant or plant cell.

The expression construct is conveniently a nucleic acid construct that comprises a polynucleotide encoding a variant operably linked with appropriate regulatory sequences required for expression of the polynucleotide in the plant or plant part of choice. Furthermore, the expression construct may comprise a selectable marker useful for identifying plant cells into which the expression construct has been integrated and DNA sequences necessary for introduction of the construct into the plant in question (the latter depends on the DNA introduction method to be used).

The choice of regulatory sequences, such as promoter and terminator sequences and optionally signal or transit sequences, is determined, for example, on the basis of when, where, and how the variant is desired to be expressed. For instance, the expression of the gene encoding a variant may be constitutive or inducible, or may be developmental, stage or tissue specific, and the gene product may be targeted to a specific tissue or plant part such as seeds or leaves. Regulatory sequences are, for example, described by Tague *et al.*, 1988, *Plant Physiology* 86: 506.

For constitutive expression, the 35S-CaMV, the maize ubiquitin 1, or the rice actin 1 promoter may be used (Franck *et al.*, 1980, *Cell* 21: 285-294; Christensen *et al.*, 1992, *Plant Mol. Biol.* 18: 675-689; Zhang *et al.*, 1991, *Plant Cell* 3: 1155-1165). Organ-specific promoters may be, for example, a promoter from storage sink tissues such as seeds, potato tubers, and fruits (Edwards and Coruzzi, 1990, *Ann. Rev. Genet.* 24: 275-303), or from metabolic sink tissues such as meristems (Ito *et al.*, 1994, *Plant Mol. Biol.* 24: 863-878), a seed specific promoter such as the glutelin, prolamin, globulin, or albumin promoter from rice (Wu *et al.*, 1998, *Plant Cell Physiol.* 39: 885-889), a *Vicia faba* promoter from the legumin B4 and the unknown seed protein gene from *Vicia faba* (Conrad *et al.*, 1998, *J. Plant Physiol.* 152: 708-711), a

promoter from a seed oil body protein (Chen *et al.*, 1998, *Plant Cell Physiol.* 39: 935-941), the storage protein *napA* promoter from *Brassica napus*, or any other seed specific promoter known in the art, *e.g.*, as described in WO 91/14772. Furthermore, the promoter may be a leaf specific promoter such as the *rbcs* promoter from rice or tomato (Kyozuka *et al.*, 1993, *Plant Physiol.* 102: 991-1000), the chlorella virus adenine methyltransferase gene promoter (Mitra and Higgins, 1994, *Plant Mol. Biol.* 26: 85-93), the *aldP* gene promoter from rice (Kagaya *et al.*, 1995, *Mol. Gen. Genet.* 248: 668-674), or a wound inducible promoter such as the potato *pin2* promoter (Xu *et al.*, 1993, *Plant Mol. Biol.* 22: 573-588). Likewise, the promoter may be induced by abiotic treatments such as temperature, drought, or alterations in salinity or induced by exogenously applied substances that activate the promoter, *e.g.*, ethanol, oestrogens, plant hormones such as ethylene, abscisic acid, and gibberellic acid, and heavy metals.

5

10

15

20

25

30

35

A promoter enhancer element may also be used to achieve higher expression of a variant in the plant. For instance, the promoter enhancer element may be an intron that is placed between the promoter and the polynucleotide encoding a variant. For instance, Xu *et al.*, 1993, *supra*, disclose the use of the first intron of the rice actin 1 gene to enhance expression.

The selectable marker gene and any other parts of the expression construct may be chosen from those available in the art.

The nucleic acid construct is incorporated into the plant genome according to conventional techniques known in the art, including *Agrobacterium*-mediated transformation, virus-mediated transformation, microinjection, particle bombardment, biolistic transformation, and electroporation (Gasser *et al.*, 1990, *Science* 244: 1293; Potrykus, 1990, *Bio/Technology* 8: 535; Shimamoto *et al.*, 1989, *Nature* 338: 274).

Agrobacterium tumefaciens-mediated gene transfer is a method for generating transgenic dicots (for a review, see Hooykas and Schilperoort, 1992, Plant Mol. Biol. 19: 15-38) and for transforming monocots, although other transformation methods may be used for these plants. A method for generating transgenic monocots is particle bombardment (microscopic gold or tungsten particles coated with the transforming DNA) of embryonic calli or developing embryos (Christou, 1992, Plant J. 2: 275-281; Shimamoto, 1994, Curr. Opin. Biotechnol. 5: 158-162; Vasil et al., 1992, Bio/Technology 10: 667-674). An alternative method for transformation of monocots is based on protoplast transformation as described by Omirulleh et al., 1993, Plant Mol. Biol. 21: 415-428. Additional transformation methods include those described in US6395966 and US7151204 (both of which are herein incorporated by reference in their entirety).

Following transformation, the transformants having incorporated the expression construct are selected and regenerated into whole plants according to methods well known in the art. Often the transformation procedure is designed for the selective elimination of selection genes either during regeneration or in the following generations by using, for example, co-

5

10

15

20

25

30

transformation with two separate T-DNA constructs or site specific excision of the selection gene by a specific recombinase.

In addition to direct transformation of a particular plant genotype with a construct of the present invention, transgenic plants may be made by crossing a plant having the construct to a second plant lacking the construct. For example, a construct encoding a variant can be introduced into a particular plant variety by crossing, without the need for ever directly transforming a plant of that given variety. Therefore, the present invention encompasses not only a plant directly regenerated from cells which have been transformed in accordance with the present invention, but also the progeny of such plants. As used herein, progeny may refer to the offspring of any generation of a parent plant prepared in accordance with the present invention. Such progeny may include a DNA construct prepared in accordance with the present invention. Crossing results in the introduction of a transgene into a plant line by cross pollinating a starting line with a donor plant line. Non-limiting examples of such steps are described in US7151204.

Plants may be generated through a process of backcross conversion. For example, plants include plants referred to as a backcross converted genotype, line, inbred, or hybrid.

Genetic markers may be used to assist in the introgression of one or more transgenes of the invention from one genetic background into another. Marker assisted selection offers advantages relative to conventional breeding in that it can be used to avoid errors caused by phenotypic variations. Further, genetic markers may provide data regarding the relative degree of elite germplasm in the individual progeny of a particular cross. For example, when a plant with a desired trait which otherwise has a non-agronomically desirable genetic background is crossed to an elite parent, genetic markers may be used to select progeny which not only possess the trait of interest, but also have a relatively large proportion of the desired germplasm. In this way, the number of generations required to introgress one or more traits into a particular genetic background is minimized.

The present invention also relates to methods of producing a variant of the present invention comprising: (a) cultivating a transgenic plant or a plant cell comprising a polynucleotide encoding the variant under conditions conducive for production of the variant; and (b) recovering the variant.

The present invention is further described by the following examples that should not be construed as limiting the scope of the invention.

EXAMPLES

Example 1: Real time storage stability assay

5 Protocol A: Detergent

10

15

20

25

35

After active site titration purified lipase variants were diluted with a buffer (10mM Succinic acid + 2mM CaCl2 + 0.02% Brij 35 adjusted to pH6.5) to the specified concentration. 10uL of the 100ppm lipase solution was added to a 90uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at 4°C in detergent D002 (unstressed) and in detergent D001 or D002 at 47°C (stressed). Storage time was 335.5 hours.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 235uL of buffer (0.1M Tris-HCl, 9mM CaCl2, 0.0225% Brij-30, pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.35-fold dilution. After 10 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. The median value of the residual activity was calculated based on four replicates and normalized by a lipase variant reference run with each experimental set.

Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * ln(0.5)/ln(residual activity)

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

The half life of Lipex was determined at an incubation time of 23.25h at the same conditions. The residual activity was 6% in D001 and 20% in D002 resulting in half lifes of 6 and 10 hours respectively.

30 Protocol B: Detergent with protease

After active site titration purified lipase variants were diluted with a buffer (10mM Succinic acid + 2mM CaCl2 + 0.02% Brij 35 adjusted to pH6.5) to the specified concentration. 10uL of the 100ppm lipase solution was added to a 70uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at 4°C in detergent D001 without protease (unstressed) and in detergent D001 with 1.35% Savinase 16L at 30°C (stressed). Storage time was 160 hours.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 230ul of buffer (0.1M Tris-HCl, 9mM CaCl2, 0.0225% Brij-30, pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.3-fold dilution. After 5 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. The median value of the residual activity was calculated based on four replicates and normalized by a lipase variant reference run with each experimental set.

Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * ln(0,5)/ln(residual activity)

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

The half life of Lipex was determined at an incubation time of 23.25h at the same conditions. The residual activity was 15% in D001 with 1.35% Savinase resulting in a half life of 8.5 hours.

20 Protocol C: Detergent with protease

The protocol was conducted essentially as described for protocol B except that the stress incubation was at 25°C for 164 hours. Lipex had at these conditions a residual activity of 4% and a half life of 35 hours.

25 Protocol D: Detergent

5

10

15

30

35

After active site titration purified lipase variants were diluted with a buffer (10mM Succinic acid + 2mM CaCl2 + 0.02% Brij 35 adjusted to pH6.5) to the specified concentration. 10uL of the 100ppm lipase solution was added to a 90uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at 4°C in detergent D002 (unstressed) and in detergent D001 or D002 at 47°C (stressed). Storage time was 13.33 hours.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 235uL of buffer (0.1M Tris-HCl, 9mM CaCl2, 0.0225% Brij-30, pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.35-fold dilution. After 10 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of

the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. The median value of the residual activity was calculated based on four replicates and normalized by a lipase variant reference run with each experimental set.

Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * $ln(0,5)/ln(residual\ activity)$

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

10

15

20

25

30

5

Protocol E: Detergent with protease

After active site titration purified lipase variants were diluted with a buffer (10mM Succinic acid + 2mM CaCl2 + 0.02% Brij 35 adjusted to pH6.5) to a the specified concentration. 10uL of the 100ppm lipase solution was added to a 90uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at 4°C in detergent D001 without protease (unstressed) and in detergent D001 with 1.35% Savinase 16L at 30°C (stressed). Storage time was 13.33 hours.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 235ul of buffer (0.1M Tris-HCl, 9mM CaCl2, 0.0225% Brij-30, pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.35-fold dilution. After 5 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. The median value of the residual activity was calculated based on four replicates and normalized by a lipase variant reference run with each experimental set.

Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * ln(0,5)/ln(residual activity)

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

Protocol F: culture broth with produced enzyme variant incubated in detergent

35

Aspergillus oryzae strains producing the lipase variant were grown for 5 days at 37°C in 2xSC medium with 2% maltose without shaking. 2xSC medium is 15g yeast nitrogen base without amino acids (Difco 291920), 22,6g succinic acid (Merck 822260), 13,6g sodium

hydroxide (Merck 106498), 11,2g casamino acids (vitamin assay, Difco 228830) and 0,2g L-tryptophan (Merck 108374) dissolved in 1L deionized water.

10uL of the culture broth were added to 90uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at -20°C in detergent D001 (unstressed) and in detergent D001 at 47°C (stressed). Storage time is indicated in the data tables.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 230uL of buffer (0.1M Tris-HCl; 9mM CaCl2; 0.0225% Brij-30; pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.3-fold dilution. After 10 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * ln(0,5)/ln(residual activity)

5

10

15

20

25

30

35

The median value of the residual activity and the halflifes was calculated based on four replicates.

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

Protocol G: culture broth with produced enzyme variant incubated in detergent with protease

10uL of the culture broth from protocol F were added to 90uL of detergent composition, stirred for 5 minutes and sealed. Samples were stored at -20°C in detergent D001 without protease (unstressed) and in detergent D001 with 1.35% Savinase 16L at 30°C (stressed). Storage time is indicated in the data tables.

After storage possible condensation liquid was collected by centrifugation. To the 100uL stressed or unstressed sample 230uL of buffer (0.1M Tris-HCl, 9mM CaCl2, 0.0225% Brij-30, pH8.0 + 0.85% 4-FBPA (31.5g/l)) were added corresponding to a 3.3-fold dilution. After 10 minutes stirring 5uL sample aliquots were further diluted with the same buffer 60-fold. Then one part of this lipase dilution was mixed with four parts of 0.5mM pNP-palmitate, 1mM calcium chloride, 100mM Tris (pH8.0), 6.5mM Deoxycholate, 1.4g/L AOS and for 30 minutes release of the pNP chromophore was measured spectrophotometrically. This was used to determine activity via the initial linear slope of the reaction.

Residual activity was calculated as the ratio of the measured velocities of stressed versus unstressed sample. Half life $(T_{1/2})$ was calculated based on the following formula:

Half life = Stress time * ln(0,5)/ln(residual activity)

The median value of the residual activity and the halflifes was calculated based on four replicates.

The half life improvement factor (HIF) of the specific mutations was calculated by dividing the half life of the lipase variant with the half life of the parent lipase.

TABLE 1A: Composition of D001

Components	wt%
(*amounts based on the actual dry matter contents)	WI/O
Soft water	49.0
NaOH, pellets	3.0
Linear alkyl sulfonic (LAS) acid	12.0
Soy fatty acid (Edenor SJ,)	6.0
Coco fatty acid (Radiacid 0631)	5.0
Alkyl ethoxylate C13AE8EO; (90%*)	10.0
Triethanol amine (99/90%*)	2.0
Na-citrate, dehydrate	1.0
DTPMPA; diethylenetriaminepentakis(methylenephosphonic) acid (Dequest 2066 C2)	3.0
Propylene glycol	5.0
EtOH (99,9%*)	5.0
Colorant	added
Opacifier (Syntran 5909,35w%*)	0.1
pH	8.4

TABLE 1B: Composition of D002

Components (Content of active component in ingredient)	wt%
Soft water	34.14
NaOH, pellets (>99%)	1.75
Linear alkylbenzenesulfonic acid (LAS) (97%)	12.00
Sodium laureth sulfate (SLES) (28%)	17.63
Soy fatty acid (>90%)	2.75
Coco fatty acid (>90%)	2.75
AEO;alcohol ethoxylate with 8 mol EO;Lutensol TO 8 (~100%)	11.00
Triethanol amine (100%)	3.33
Na-citrate, dihydrate (100%)	2.00
DTMPA; diethylenetriaminepentakis(methylene)pentakis(phosphonic acid), heptasodium salt (Dequest 2066 C) (~42% as Na7 salt)	0.48
MPG (>98%)	6.00
EtOH, propan-2-ol (90/10%)	3.00
Glycerol (>99.5)	1.71

Sodium formate (>95%)	1.00
PCA (40% as sodium salt)	0.46

Example 2: Stabilizing effect of D27R

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D27R are shown.

_

5

15

TABLE 2A: Storage stability was determined according to protocol A.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	370	17	123	1.6
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	1.7	192	1.0

TABLE 2B: Storage stability was determined according to protocol B.

Mutations	T _{1/2} (h)	HIF
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	64	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	110	1.7

10 TABLE 2D: Storage stability was determined according to protocol D.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
T231R N233R	3.3	1 1	13.3	1.4
D27R T231R N233R	3.6	1.1	18.3	1.4

TABLE 2E: Storage stability was determined according to protocol E.

Mutations	T _{1/2} (h)	HIF
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	17.5	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	1.5

TABLE 2F-1: Storage stability was determined according to protocol F with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A G163K T231R N233R	7	2.0
D27R D96E D111A G163K T231R N233R	13	2.0

WO 2014/184164 PCT/EP2014/059701

TABLE 2F-2: Storage stability was determined according to protocol F with a storage time of 331h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	189	1.7
D27R T231R N233R D254S P256T	318	

TABLE 2G: Storage stability was determined according to protocol G with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A T231R N233R	30	1.7
D27R D96E D111A T231R N233R	53*	1.7
D96E D111A G163K T231R N233R	32	11.1
D27R D96E D111A G163K T231R N233R	352	11.1

^{5 *} determined from one replicate

10

Example 3: Stabilizing effect of N33Q

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of N33Q are shown.

TABLE: 3A: Storage stability was determined according to protocol A.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	503	1.2	178	1 1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	1.2	192	1.1

TABLE 3B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S	94	1.2
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	126	1.3

15 TABLE 3C: Storage stability was determined according to protocol C.

Mutation	T _{1/2} (h)	HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	202	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	731	3.6

TABLE 3E: Storage stability was determined according to protocol E.

Mutations	T _{1/2} (h)	HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S	24.0	1 4
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	33.3	1.4

Example 4: Stabilizing effect of G38A

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for the effect of G38A are shown.

TABLE 4A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	29	21.4	43	4.5
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	21. 4	192	4.5

10 TABLE 4B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	30	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	110	3.6

TABLE 4D: Storage stability was determined according to protocol D.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	4.7	>8.7	19.4	>2.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	~0.1	>41	-Z. I

TABLE 4E: Storage stability was determined according to protocol E.

Mutations	T _{1/2} (h)	HIF
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	8.5	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	3.1

Example 5: Stabilizing effect of G91T

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of G91T are shown.

5 TABLE 5A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T	428	1.4	142	1.3
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	1.4	192	1.3
D27R G38A D96E D111A G163K T231R N233R D254S P256T	362	1.4	144	1.2
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	503	1.4	178	1.2
D27R D96E D111A G163K T231R N233R D254S P256T	410	1.5	152	1.3
D27R G91T D96E D111A G163K T231R N233R D254S P256T	597	1.5	196	1.3
D27R G38A D96E G163K T231R N233R D254S P256T	387	1.4	131	1.3
D27R G38A G91T D96E G163K T231R N233R D254S P256T	530	1.4	172	1.3
D27R G38A D96E D111A G163K T231R N233R D254S	239	1.8	81	1.4
D27R G38A G91T D96E D111A G163K T231R N233R D254S	421	1.0	110	1.4

TABLE 5D: Storage stability was determined according to protocol D.

15

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
N33Q T231R N233R	3.8	1 2	14.3	1 2
N33Q G91T T231R N233R	5.1	1.3	18.8	1.5

Furthermore, stabilizing effect of the substitutions G91I, G91N, and G91V determined as 10 HIF > 1 were observed in experiments with detergent conducted essentially according to protocol A as well as in experiments with detergent with protease conducted essentially according to protocol B.

TABLE 5F-1: Storage stability was determined according to protocol F with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
-----------	---------------------	-------------

D96E D111A T231R N233R	21	1 1
G91T D96E D111A T231R N233R	24	1.1

TABLE 5F-2: Storage stability was determined according to protocol F with a storage time of 331 h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	189	3.1
G91T T231R N233R D254S P256T	584	3.1

5 TABLE 5G-1: Storage stability was determined according to protocol G with a storage time of 18h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	10	13
G91T T231R N233R D254S P256T	13	1.3

TABLE 5G-2: Storage stability was determined according to protocol G with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A T231R N233R	30	1.4
G91T D96E D111A T231R N233R	44	1.4

Example 6: Stabilizing effect of D96E

The half lifes in hours $(T_{1/2})$ of the lipase variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D96E are shown.

15 TABLE 6B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T	<21	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	110	>5.2
D27R G38A D111A G163K T231R N233R D254S P256T	34	3.6
D27R G38A D96E D111A G163K T231R N233R D254S P256T	125	3.0
D27R D111A G163K T231R N233R D254S P256T	47	26
D27R D96E D111A G163K T231R N233R D254S P256T	124	2.0

TABLE 6C: Storage stability was determined according to protocol C.

Mutation	T _{1/2} (h)	HIF
D27R G163K T231R N233R D254S	40	2.4
D27R D96E G163K T231R N233R D254S	96	Z. 4
G163K T231R N233R D254S	35	21
D96E G163K T231R N233R D254S	75	2.1
T231R N233R	39	1.6
D96E T231R N233R	64	1.0
T231R N233R D254S	30	24
D96E T231R N233R D254S	70	2.4

TABLE 6D: Storage stability was determined according to protocol D.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G38A D111A G163K T231R N233R D254S P256T	-		22.4	>1.8
D27R G38A D96E D111A G163K T231R N233R D254S P256T	-	-	>41	71.0
D27R D111A G163K T231R N233R D254S P256T	4.4		24.6	
D27R D96E D111A G163K T231R N233R D254S P256T	>41	>9.3	>41	>1.7
N33Q T231R N233R	3.8	1.1	14.3	17
N33Q D96E T231R N233R	4.1	1.1	24.9	1.7

5 TABLE 6E: Storage stability was determined according to protocol E.

Mutations	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T	8.8	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	3.0
D27R G38A D111A G163K T231R N233R D254S P256T	10.8	>3.8
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	/3.0
D27R D111A G163K T231R N233R D254S P256T	10.7	3.5
D27R D96E D111A G163K T231R N233R D254S P256T	37.2	3.5
N33Q T231R N233R	5.5	1.8
N33Q D96E T231R N233R	9.7	1.0

TABLE 6F-1: Storage stability was determined according to protocol F with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	7	6.6
D96E T231R N233R	49	0.0
D111A T231R N233R	13	1.7
D96E D111A T231R N233R	21	1.7

TABLE 6F-2: Storage stability was determined according to protocol F with a storage time of 331h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	189	1.5
D96E T231R N233R D254S P256T	285	1.5

5 TABLE 6G-1: Storage stability was determined according to protocol G with a storage time of 18h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	10	3.5
D96E T231R N233R D254S P256T	34	3.5

TABLE 6G-2: Storage stability was determined according to protocol G with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	12	2.0
D96E T231R N233R	24	2.0
D111A T231R N233R	15	2.0
D96E D111A T231R N233R	30	2.0
D111A G163K T231R N233R D254S P256T	14	5.4
D96E D111A G163K T231R N233R D254S P256T	74	5.4

Example 7: Stabilizing effect of D111A

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D111A are shown.

15 TABLE 7A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	513	1.0	163	1.2
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	1.2	192	1.2

TABLE 7B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	65	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	110	1.7
D27R G38A G91T D96E G163K T231R N233R D254S P256T	63	1.8
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	116	1.0
D27R G38A D96E G163K T231R N233R D254S P256T	62	2.0
D27R G38A D96E D111A G163K T231R N233R D254S P256T	125	2.0
D27R D96E G163K T231R N233R D254S P256T	87	1 4
D27R D96E D111A G163K T231R N233R D254S P256T	124	1.4

TABLE 7C: Storage stability was determined according to protocol C.

Mutation	T _{1/2} (h)	HIF
D27R G38A D96E G163K T231R N233R D254S P256T	111	4.1
D27R G38A D96E D111A G163K T231R N233R D254S P256T	452	4.1
D27R G38A G91T D96E G163K T231R N233R D254S P256T	133	1.3
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	168	1.3

5 TABLE 7E: Storage stability was determined according to protocol E.

Mutations	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	20.7	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	1.3
D27R G38A G91T D96E G163K T231R N233R D254S P256T	27.9	>1.5
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	71.0
D27R G38A D96E G163K T231R N233R D254S P256T	24.8	>1.7
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	71.7
D27R D96E G163K T231R N233R D254S P256T	21.2	1.8
D27R D96E D111A G163K T231R N233R D254S P256T	37.2	1.0
N33Q T231R N233R	5.5	1.3
N33Q D111A T231R N233R	7.2	1.3

TABLE 7F-1: Storage stability was determined according to protocol F with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	7	17
D111A T231R N233R	13	1.7

10 TABLE 7F-2: Storage stability was determined according to protocol F with a storage time of 331h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	189	2.0
D111A T231R N233R D254S P256T	379	2.0
D96E G163K T231R N233R D254S P256T	206*	1.3
D96E D111A G163K T231R N233R D254S P256T	264	1.3

^{*} determined from two replicates

5

TABLE 7G-1: Storage stability was determined according to protocol G with a storage time of 18h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R D254S P256T	10	1.8
D111A T231R N233R D254S P256T	17	1.0

TABLE 7G-2: Storage stability was determined according to protocol G with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	12	1.3
D111A T231R N233R	15	1.0
D96E T231R N233R	24	1.3
D96E D111A T231R N233R	30	1.0
D96E G163K T231R N233R D254S P256T	25*	3.0
D96E D111A G163K T231R N233R D254S P256T	74	3.0

^{*} determined from two replicates

10 Example 8: Stabilizing effect of G163K

TABLE 8A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	114	5.4	78	2.5
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617		192	2.5

TABLE 8B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	54	2.0

D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	110	
P256T	110	

TABLE 8D: Storage stability was determined according to protocol D.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	6.9	>6.0	21.8	>1.9
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41		>41	71.9

TABLE 8E: Storage stability was determined according to protocol E.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	10.4	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	2.5
D27R G38A D96E D111A T231R N233R D254S P256T	32.6	1.3
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	1.3

Example 9: Stabilizing effect of D254S

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D254S are shown.

10 TABLE 9A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	143	4.3	91	2.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617		192	۷.۱
D27R G38A D96E D111A G163K T231R N233R P256T	62	5.8	<41	. 2.5
D27R G38A D96E D111A G163K T231R N233R D254S P256T	362		144	>3.5
D27R D96E D111A G163K T231R N233R P256T	87		53	
D27R D96E D111A G163K T231R N233R D254S P256T	410	4.7	152	2.8
T231R N233R	3.3	32.7	13.3	3.8
T231R N233R D254S	108	32.1	50	5.0

TABLE 9B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	79	1 4
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	110	1.4

P256T		
D27R G38A D96E D111A G163K T231R N233R P256T	66	1.0
D27R G38A D96E D111A G163K T231R N233R D254S P256T	125	1.9
D27R D96E D111A G163K T231R N233R P256T	107	4.0
D27R D96E D111A G163K T231R N233R D254S P256T	124	1.2

TABLE 9D: Storage stability was determined according to protocol D.

Mutation	D001 T _{1/2} (h)	D001 HIF
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	14.3	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>2.9
D27R G38A D96E D111A G163K T231R N233R P256T	6.5	>6.3
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	70.3
D27R D96E D111A G163K T231R N233R P256T	7.6	>5.4
D27R D96E D111A G163K T231R N233R D254S P256T	>41	/5.4
T231R N233R	3.3	3.6
T231R N233R D254S	11.8	3.0

TABLE 9E: Storage stability was determined according to protocol E.

Mutations	T1/2 (h)	HIF
D27R G38A D96E D111A G163K T231R N233R P256T	27.1	\1 E
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	>1.5
D27R D96E D111A G163K T231R N233R P256T	24.0	1.6
D27R D96E D111A G163K T231R N233R D254S P256T	37.2	1.6

TABLE 9F: Storage stability was determined according to protocol F with a storage time of 63 h.

,	•	
Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A T231R N233R	21	1.5
D96E D111A T231R N233R D254S	32	1.5
T231R N233R	7	4.8
T231R N233R D254S	35	4.0
T231R N233R P256T	32	6.0
T231R N233R D254S P256T	189*	0.0
D96E D111A G163K T231R N233R P256T	17	15.9
D96E D111A G163K T231R N233R D254S P256T	264*	15.9

^{*} storage time 331 hours

TABLE 9G-1: Storage stability was determined according to protocol G with a storage time of 18h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	10	1.0
T231R N233R D254S	17	1.8

TABLE 9G-2: Storage stability was determined according to protocol G with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A T231R N233R	30	3.5
D96E D111A T231R N233R D254S	105	3.5
D96E D111A G163K T231R N233R P256T	30	2.4
D96E D111A G163K T231R N233R D254S P256T	74	2.4

Example 10: Stabilizing effect of P256T

5

10

The half lifes in hours $(T_{1/2})$ of the lipase variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of P256T are shown.

TABLE 10A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S	421	1.0	110	1.6
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	503	1.2	178	1.0
D27R G38A D96E D111A G163K T231R N233R D254S	239	1 5	81	1.0
D27R G38A D96E D111A G163K T231R N233R D254S P256T	362	1.5	144	1.8
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	315	2.0	89	2.2
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	2.0	192	2.2
T231R N233R D254S	108	3.1	50	2.4
T231R N233R D254S P256T	339	3.1	120	2.4

TABLE 10B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S	94	1.2

D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	116	
D27R G38A D96E D111A G163K T231R N233R D254S	97	1.3
D27R G38A D96E D111A G163K T231R N233R D254S P256T	125	1.5
D27R D96E D111A G163K T231R N233R D254S	116	4.4
D27R D96E D111A G163K T231R N233R D254S P256T	124	'.'

TABLE 10D: Storage stability was determined according to protocol D.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G38A D96E D111A G163K T231R N233R D254S	30.2	>1.4	-	
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	>1.4	-	_
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	27.8	>15	-	
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>1.5	-	-
T231R N233R D254S	11.8	3.0	14.0	1.2
T231R N233R D254S P256T	34.9	3.0	16.6	1.2

TABLE 10E: Storage stability was determined according to protocol E.

5

Mutation	T _{1/2} (h)	HIF
D27R G38A G91T D96E D111A G163K T231R N233R D254S	24.0	>1.8
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	/1.0
T231R N233R D254S	5.7	1.0
T231R N233R D254S P256T	7.3	1.3

TABLE 10F: Storage stability was determined according to protocol F with a storage time of 63h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	7	4.3
T231R N233R P256T	32	4.3
T231R N233R D254S	35	2.4
T231R N233R D254S P256T	86	2.4
D96E D111A G163K T231R N233R	7	24
D96E D111A G163K T231R N233R P256T	17	2.4

TABLE 10G-1: Storage stability was determined according to protocol G with a storage time of 10 18 h.

Mutations	D001 T1/2 (h)	D001 HIF
T231R N233R	10	4.2

	1	
T231R N233R P256T	1 11	
1231R N233R F2301	4 1	

TABLE 10G-2: Storage stability was determined according to protocol G with a storage time of 63 h.

Mutations	D001 T1/2 (h)	D001 HIF
D96E D111A T231R N233R	30	2.6
D96E D111A T231R N233R P256T	81	2.0

5 Example 11: Stabilizing effect of D254S and P256T

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D254S and P256T are shown.

TABLE 11A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R D96E G163K T231R N233R	<29	>14.6	<37	>3.8
D27R D96E G163K T231R N233R D254S P256T	417	714.0	141	/ 3.0
T231R N233R	3.3	102.7	13,3	9.0
T231R N233R D254S P256T	339	102.7	120	9.0

TABLE 11D: Storage stability was determined according to protocol D.

Mutation	D001 T _{1/2} (h)	D001 HIF
D27R D96E G163K T231R N233R	3.3	>12.5
D27R D96E G163K T231R N233R D254S P256T	>41	12.5

TABLE 11F: Storage stability was determined according to protocol F with indicated storage time.

Mutations	D001 T1/2 (h)	D001 HIF	Stress time (h)
D96E D111A G163K T231R N233R	7	38.8	63
D96E D111A G163K T231R N233R D254S P256T	264	36.6	331
T231R N233R	7	28.0	63
T231R N233R D254S P256T	206	20.0	331
D96E T231R N233R	49	5.9	63
D96E T231R N233R D254S P256T	285	3.9	331
D111A T231R N233R	13	30.3	63
D111A T231R N233R D254S P256T	379	30.3	331

Example 12: Improved stability as compared to T231R N233R

The half lifes in hours $(T_{1/2})$ of the lipase variant and the resulting half life improvement factor (HIF) towards the lipase variant with the T231R N233R mutations are shown.

5 TABLE 12A: Storage stability was determined according to protocol A.

Mutation	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G91T D96E D111A G163K T231R N233R D254S P256T	597	181	196	14.7
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	617	187	192	14.4
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T	580	176	184	13.8
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	503	152	178	13.4
D27R G38A G91T D96E G163K T231R N233R D254S P256T	530	161	172	12.9
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	513	155	163	12.3
D27R D96E D111A G163D T231R N233R D254S P256T	465	141	157	11.8
D27R D96E D111A G163K T231R N233R D254S	437	132	157	11.8
D27R D111A G163K T231R N233R D254S P256T	474	144	150	11.3
D27R D96E D111A G163K T231R N233R D254S P256T	410	124	152	11.4
D27R G38A D111A G163K T231R N233R D254S P256T	439	133	150	11.3
D96E D111A G163K T231R N233R D254S P256T	409	124	148	11.1
D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T	428	130	142	10.7
D27R D96E G163K T231R N233R D254S P256T	417	126	141	10.6
D27R G38A D96E D111A G163K T231R N233R D254S P256T	362	110	144	10.8
D27R G38A D96E D111A T231R N233R D254S P256T	380	115	139	10.5
T231R N233R D254S P256T	339	103	120	9.0
D27R G38A D96E G163K T231R N233R D254S P256T	387	117	131	9.8
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	370	112	123	9.2
D27R G38A G91T D96E D111A G163K T231R N233R D254S	421	128	110	8.3
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	315	95	89	6.7
D27R G38A D96E D111A G163K T231R N233R D254S	239	72	81	6.1
G163K T231R N233R D254S	122	37	54	4.1
N33Q G38A G91T G163K T231R N233R D254S	107	32	55	4.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	143	43	91	6.8
T231R N233R D254S	108	33	50	3.8

D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	114	35	78	5.9
T231R N233R	3.3	1	13.3	1

TABLE 12B: Storage stability was determined according to protocol B.

Mutation	T _{1/2} (h)	HIF
D27R G38A D96E D111A T231R N233R D254S P256T	137	24.5
D27R D96E D111A G163D T231R N233R D254S P256T	128	22.9
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	126	22.5
D27R G38A D96E D111A G163K T231R N233R D254S P256T	125	22.3
D27R D96E D111A G163K T231R N233R D254S P256T	124	22.1
D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T	119	21.3
D96E D111A G163K T231R N233R D254S P256T	118	21.1
D27R G91T D96E D111A G163K T231R N233R D254S P256T	116	20.7
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	116	20.7
D27R D96E D111A G163K T231R N233R D254S	116	20.7
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	110	19.6
D27R D96E D111A G163K T231R N233R P256T	107	19.1
D27R G38A D96E D111A G163K T231R N233R D254S	97	17.3
D27R G38A G91T D96E D111A G163K T231R N233R D254S	94	16.8
D27R D96E G163K T231R N233R D254S P256T	87	15.5
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	79	14.1
D27R D96E G163K T231R N233R	74	13.2
D27R G38A D96E D111A G163K T231R N233R P256T	66	11.8
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	65	11.6
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	64	11.4
D27R G38A G91T D96E G163K T231R N233R D254S P256T	63	11.3
D27R G38A D96E G163K T231R N233R D254S P256T	62	11.1
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	54	9.6
D27R D111A G163K T231R N233R D254S P256T	47	8.4
N33Q D96E T231R N233R	44	7.9
D27R G38A D111A G163K T231R N233R D254S P256T	34	6.1
T231R N233R D254S P256T	33	5.9
T231R N233R	5.6	1.0

TABLE 12D: Storage stability was determined according to protocol D.

Mutations	D001 T _{1/2} (h)	D001 HIF	D002 T _{1/2} (h)	D002 HIF
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R D96E D111A G163D T231R N233R D254S P256T	37.2	11.3	>41	>3.1
D27R G91T D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1

D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R G38A D96E D111A G163K T231R N233R D254S	30.2	9.2	>41	>3.1
D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	27.8	8.4	>41	>3.1
D27R G38A D96E D111A T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R D96E D111A G163K T231R N233R D254S	>41	>12.4	>41	>3.1
D27R D96E D111A G163K T231R N233R P256T	7.6	2.3	>41	>3.1
D27R D96E G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R G38A D96E D111A G163K T231R N233R P256T	6.5	2.0	>41	>3.1
D27R G38A G91T D96E D111A G163K T231R N233R D254S	38.4	11.6	>41	>3.1
D27R G38A D96E G163K T231R N233R D254S P256T	40.6	12.3	>41	>3.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	14.3	4.3	>41	>3.1
D27R G38A G91T D96E G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
D27R D96E G163K T231R N233R	3.3	1.0	>41	>3.1
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>12.4	>41	>3.1
N33Q D96E T231R N233R	4.1	1.2	24.9	1.9
D27R D111A G163K T231R N233R D254S P256T	4.4	1.3	24.6	1.9
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T	>41	>12.4	23.9	1.8
D27R G38A D111A G163K T231R N233R D254S P256T	>41	>12.4	22.4	1.7
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	6.9	2.1	21.8	1.6
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	4.7	1.4	19.4	1.5
N33Q G91T T231R N233R	5.1	1.5	18.8	1.4
D27R T231R N233R	3.6	1.1	18.3	1.4
N33Q D111A T231R N233R	4.0	1.2	17.2	1.3
N33Q G38A G91T G163K T231R N233R D254S	8.1	2.4	17.0	1.3
T231R N233R D254S P256T	34.9	10.6	16.6	1.2
G163K T231R N233R D254S	12.4	3.8	15.4	1.2
N33Q T231R N233R P256T	4.3	1.3	14.4	1.1
N33Q T231R N233R	3.8	1.2	14.3	1.1
T231R N233R D254S	11.8	3.6	14.0	1.1
T231R N233R	3.3	1.0	13.3	1.0

TABLE 12E: Storage stability was determined according to protocol E.

Mutation	T _{1/2} (h)	HIF
D27R G38A D96E D111A G163K T231R N233R D254S	>41	>7.3
D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T	>41	>7.3
D27R G38A D96E D111A G163K T231R N233R D254S P256T	>41	>7.3
D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T	>41	>7.3
D27R D96E D111A G163K T231R N233R D254S	40.0	7.2
D27R G91T D96E D111A G163K T231R N233R D254S P256T	37.3	6.7
D27R D96E D111A G163K T231R N233R D254S P256T	37.2	6.6
D27R D96E D111A G163D T231R N233R D254S P256T	33.9	6.0
D96E D111A G163K T231R N233R D254S P256T	33.6	6.0
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S	33.3	6.0
D27R G38A D96E D111A T231R N233R D254S P256T	32.6	5.8
D27R G38A G91T D96E G163K T231R N233R D254S P256T	27.9	5.0
D27R G38A D96E D111A G163K T231R N233R P256T	27.1	4.8
D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T	26.3	4.7
D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	26.2	4.7
D27R G38A D96E G163K T231R N233R D254S P256T	24.8	4.4
D27R G38A G91T D96E D111A G163K T231R N233R D254S	24.0	4.3
D27R D96E D111A G163K T231R N233R P256T	24.0	4.3
D27R D96E G163K T231R N233R D254S P256T	21.2	3.8
D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T	20.7	3.7
D27R D96E G163K T231R N233R	19.3	3.5
D27R D96E G163K T231R N233R D254S P256T	17.9	3.2
N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T	17.5	3.1
D27R G38A D111A G163K T231R N233R D254S P256T	10.8	1.9
D27R D111A G163K T231R N233R D254S P256T	10.7	1.9
D27R N33Q G38A G91T D96E D111A T231R N233R D254S P256T	10.4	1.9
N33Q D96E T231R N233R	9.7	1.7
D27R N33Q G38A G91T D111A G163K T231R N233R D254S P256T	8.8	1.6
D27R N33Q G91T D96E D111A G163K T231R N233R D254S P256T	8.5	1.5
T231R N233R D254S P256T	7.3	1.3
N33Q D111A T231R N233R	7.2	1.3
D27R T231R N233R	6.6	1.2
N33Q T231R N233R P256T	6.5	1.2
T231R N233R D254S	5.7	1.0
T231R N233R	5.6	1.0

TABLE 12F: Storage stability was determined according to protocol F with indicated storage time.

Mutations	D001 T1/2 (h)	D001 HIF	Stress time (h)
G91T T231R N233R D254S P256T	584	79.3	331
D111A G163K T231R N233R D254S P256T	381	51.7	331
D111A T231R N233R D254S P256T	379	51.4	331
D27R N33Q G38A D96E D111A T231R N233R D254S P256T	372	50.5	331
D27R T231R N233R D254S P256T	318	43.1	331

D96E T231R N233R D254S P256T	285	38.6	331
D27R G38A D96E D111A G163K T231R N233R D254S P256T	284	38.5	331
D96E D111A G163K T231R N233R D254S P256T	264	35.8	331
G91T D96E D111A G163K T231R N233R D254S P256T	262	35.6	331
N33Q D96E D111A G163K T231R N233R D254S P256T	248	33.7	331
D96E G163K T231R N233R D254S P256T	206	27.9	331
T231R N233R D254S P256T	189	25.7	331
G163K T231R N233R D254S	88	12.0	331
D96E T231R N233R	49	6.6	63
T231R N233R D254S	35	4.8	63
D96E D111A T231R N233R D254S	32	4.4	63
T231R N233R P256T	32	4.3	63
G91T D96E D111A T231R N233R	24	3.2	63
D96E D111A T231R N233R	21	2.9	63
D96E D111A G163K T231R N233R P256T	17	2.2	63
D27R D96E D111A G163K T231R N233R	13	1.8	63
D111A T231R N233R	13	1.7	63
T231R N233R	7	1.0	63

TABLE 12G: Storage stability was determined according to protocol F with indicated storage time. The half life of the lipase variant with the T231R N233R mutations determined with 63h storage time was chosen.

Mutations	D001 T1/2 (h)	D001 HIF	Stress time (h)
D27R N33Q G38A D96E D111A T231R N233R D254S P256T	384	33.0	162
D27R D96E D111A G163K T231R N233R	352	30.2	63
D27R G38A D96E D111A G163K T231R N233R D254S P256T	324	27.8	63
D96E D111A T231R N233R D254S	105	9.0	63
D96E D111A T231R N233R P256T	81	6.9	63
D96E D111A G163K T231R N233R D254S P256T	74	6.3	63
D27R D96E D111A T231R N233R	53*	4.6	63
G91T D96E D111A T231R N233R	44	3.7	63
T231R N233R P256T	41	3.5	18
G91T D96E T231R N233R	38	3.3	63
N33Q D96E D111A G163K T231R N233R D254S P256T	35	3.0	63
D96E T231R N233R D254S P256T	34	2.9	18
G91T D96E D111A G163K T231R N233R D254S P256T	33	2.9	63
D96E D111A G163K T231R N233R		2.7	63
D96E D111A T231R N233R		2.6	63
D96E D111A G163K T231R N233R P256T	30	2.6	63
D96E T231R N233R P256T	27	2.3	63
D96E G163K T231R N233R D254S P256T	25**	2.1	63

G38A D96E D111A T231R N233R	24	2.1	63
D96E T231R N233R	24	2.0	63
T231R N233R D254S	17	1.5	18
D111A T231R N233R D254S P256T	17	1.5	18
D111A T231R N233R	15	1.3	63
D111A G163K T231R N233R D254S P256T	14	1.2	63
G91T T231R N233R D254S P256T	13	1.1	18
T231R N233R	12	1.0	63
T231R N233R	10	0.8	18

^{*} determined from one replicate, ** determined from two replicates

Example 13: Stabilizing effect of D96E and D111A

The half lifes in hours $(T_{1/2})$ of the variant and its reference lipase and the resulting half life improvement factor (HIF) for effect of D96E and D111A are shown.

TABLE 13G: Storage stability was determined according to protocol G with indicated storage time.

Mutations	D001 T1/2 (h)	D001 HIF	Stress time (h)
T231R N233R	12	2.6	63
D96E D111A T231R N233R	30		63
T231R N233R D254S	17	6.1	18
D96E D111A T231R N233R D254S	105		63
T231R N233R P256T	41	2.0	18
D96E D111A T231R N233R P256T	81		63

10

15

5

The invention described and claimed herein is not to be limited in scope by the specific aspects herein disclosed, since these aspects are intended as illustrations of several aspects of the invention. Any equivalent aspects are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. In the case of conflict, the present disclosure including definitions will control.

The invention is further defined in the following paragraphs:

CLAIMS

5

30

35

1. A detergent composition comprising a variant of a parent lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T and G38A of SEQ ID NO: 2.

- 2. The composition of claim 1 further comprising substitutions at positions corresponding to D27R and/or N33Q of SEQ ID NO: 2.
- 10 3. The composition of any of claims 1-2, further comprising one or more enzymes selected from: hemicellulases, peroxidases, proteases, cellulases, xylanases, lipases, phospholipases, esterases, cutinases, pectinases, mannanases, pectate lyases, keratinases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, ß-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase, chlorophyllases, amylases, or mixtures thereof.
 - 4. The composition of any of claims 1-3, wherein said variant in comparison with the parent lipase has increased stability.
- 5. The composition of claim 4, wherein the stability is stability under storage conditions, stability in the presence of surfactants; stability in the presence of protease, stability in the presence of detergent components; chemical stability, oxidation stability, pH stability, and/or thermostability
- 25 6. The composition of any of claims 1-5, wherein the variant is selected from the group consisting of:
 - a) a polypeptide having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identity, at least 96%, at least 97%, at least 98%, or at least 99%, but less than 100%, sequence identity to SEQ ID NO: 2;
 - b) a polypeptide encoded by a polynucleotide that hybridizes under low stringency conditions, medium stringency conditions, medium-high stringency conditions, high stringency conditions, or very high stringency conditions with (i) the polypeptide coding sequence of SEQ ID NO: 1 or (ii) the full-length complement of (i);
 - c) a polypeptide encoded by a polynucleotide having at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, but less than 100% sequence identity to SEQ ID NO: 1; and

- a fragment of the polypeptide of SEQ ID NO: 2. d)
- 7. The composition of any of claims 1-6, further comprising at least one surfactant, at least one surfactant system, at least one soap, or any mixtures thereof.

5

8. The composition of any of claims 1-7, wherein the composition is a laundry cleaning composition, a dishwashing cleaning composition, a hard-surface cleaning composition and/or a personal care cleaning composition.

10 9. The composition of any of claims 1-8, wherein the composition is formulated as a regular, compact or concentrated liquid; a gel; a paste; a soap bar; a regular or a compacted powder; a granulated solid; a homogenous or a multilayer tablet with two or more layers (same or different phases); a pouch having one or more compartments; a single or a multicompartment unit dose form; or any combination thereof.

15

- 10. A method of producing the composition according to any of claims 1-9, comprising adding a variant of a parent lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A,
- 20 D254S, G163K, P256T, G91T and G38A of SEQ ID NO: 2.
 - 11. A method for cleaning a subject, comprising contacting a lipid stain present on the subject to be cleaned with the composition according to any of claims 1-9.
- 25 12. Use of the composition of any of claims 1-9 in the hydrolysis of a carboxylic acid ester.
 - 13. Use of the composition of any of claims 1-9 in the hydrolysis, synthesis or interesterification of an ester.
- 14. Use of the composition of any of claims 1-9 for the manufacture of a stable formulation. 30
 - A variant of a parent lipase, wherein the variant has lipase activity, has at least 60% but 15. less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least one or more (e.g., several) of D96E, D111A, D254S, G163K, P256T, G91T and G38A of SEQ ID NO: 2 selected from the group of:
 - a) D96E T231R N233R;
 - b) N33Q D96E T231R N233R;

- c) N33Q D111A T231R N233R;
- d) N33Q T231R N233R P256T;
- e) N33Q G38A G91T G163K T231R N233R D254S;
- f) N33Q G38A G91T D96E D111A G163K T231R N233R D254S P256T;
- g) D27R N33Q G38A D96E D111A G163K T231R N233R D254S P256T;
 - h) D27R N33Q G38A G91T D96E D111A G163K T231R N233R P256T;
- i) D27R N33Q G38A G91T D96E D111A G163K T231R N233R D254S;
- j) D27R G38A G91T D96E D111A G163K T231R N233R D254S P256T;
- k) D96E T231R N233R D254S;
- 10 I) T231R N233R D254S P256T;

- m) G163K T231R N233R D254S;
- n) D27R N33Q G38A G91T D96E G163K T231R N233R D254S P256T;
- o) D27R G91T D96E D111A G163K T231R N233R D254S P256T;
- p) D96E G163K T231R N233R D254S;
- 15 q) D27R G163K T231R N233R D254S;
 - r) D27R G38A G91T D96E D111A G163K T231R N233R D254S;
 - s) D27R G38A G91T D96E G163K T231R N233R D254S P256T;
 - t) D27R G38A D96E D111A G163K T231R N233R D254S P256T:
 - u) D27R D96E G163K T231R N233R D254S;
- 20 v) D27R D96E D111A G163K T231R N233R D254S P256T;
 - w) D27R G38A D96E G163K T231R N233R D254S P256T
 - x) D111A G163K T231R N233R D254S P256T;
 - y) D111A T231R N233R;
 - z) D111A T231R N233R D254S P256T;
- 25 aa) D27R D96E D111A G163K T231R N233R;
 - bb) D27R D96E D111A T231R N233R;
 - cc) D27R G38A D96E D111A G163K T231R N233R D254S P256T;
 - dd) D27R N33Q G38A D96E D111A T231R N233R D254S P256T;
 - ee) D27R G38A D96E D111A G163K E210Q T231R N233R D254S P256T;
- 30 ff) D27R T231R N233R D254S P256T;
 - gg) D96E D111A G163K T231R N233R;
 - hh) D96E D111A G163K T231R N233R D254S P256T;
 - ii) D96E D111A G163K T231R N233R P256T;
 - jj) D96E D111A T231R N233R;
- 35 kk) D96E D111A T231R N233R D254S;
 - II) D96E D111A T231R N233R D254S P256T
 - mm) D96E D111A T231R N233R P256T;

- nn) D96E G163K T231R N233R D254S P256T;
- oo) D96E T231R N233R D254S P256T;
- pp) D96E T231R N233R P256T;
- qq) G38A D96E D111A T231R N233R;
- 5 rr) G91T D96E D111A G163K T231R N233R D254S P256T;
 - ss) G91T D96E D111A T231R N233R;
 - tt) G91T D96E T231R N233R;
 - uu) G91T T231R N233R D254S P256T;
 - vv) N33Q D96E D111A G163K T231R N233R D254S P256T;
- 10 ww) T231R N233R D254S P256T;
 - xx) T231R N233R P256T.
- The variant of claim 15, wherein said variant in comparison with the parent lipase has increased stability selected from: stability under storage conditions, stability in the presence of a protease, stability in the presence of surfactant and protease, chemical stability, oxidation stability, pH stability, and/or thermostability.

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2014/059701

A. CLASSIFICATION OF SUBJECT MATTER C11D3/386 INV. C12N9/20 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C11D Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, Sequence Search C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category' Citation of document, with indication, where appropriate, of the relevant passages US 2009/217464 A1 (SOUTER PHILIP FRANK 1 - 14γ [GB] ET AL) 3 September 2009 (2009-09-03) paragraph [0086]; claim 6; tables 1,4; 15,16 sequence 14 WO 2008/079685 A2 (NOVOZYMES AS [DK]; χ 15,16 NOVOZYMES INC [US]; SOLVAY PHARM GMBH [DE]; SVENDSE) 3 July 2008 (2008-07-03) abstract; claims 6,32; sequence 2 γ 1 - 14WO 2009/083607 A1 (SOLVAY PHARM GMBH [DE]; 15,16 SHLIEOUT GEORGE [DE]; UNGER FLORIAN [DE]; KOER) 9 July 2009 (2009-07-09) 1-14 abstract page 15, line 34 - page 16, line 17 page 1, paragraph 2 X See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 29 August 2014 08/09/2014 Name and mailing address of the ISA/ Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Gurdjian, Didier

International application No. PCT/EP2014/059701

INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-16(partially)
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-16(partially)

A detergent composition comprising a variant of a Thermomyces lanuginosus lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and at least D96E of SEQ ID NO: 2 ,methods of producing the compositions, and the corresponding parent lipase .

2-7. claims: 1-16(partially)

A detergent composition comprising a variant of a Thermomyces lanuginosus lipase which variant has lipase activity, has at least 60% but less than 100% sequence identity with SEQ ID NO: 2, and comprises substitutions at positions corresponding to T231R+N233R and respectively for each separate invention at least one or more D111A, D254S, G163K, P256T, G91T, G38A of SEQ ID NO: 2 ,methods of producing the compositions, and the corresponding parent lipase , as long as not provide in the previous invention .

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2014/059701

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2009217464 A1	03-09-2009	AR 070498 A1 CN 102112602 A EP 2247721 A2 JP 2011513539 A US 2009217464 A1 WO 2009111258 A2	07-04-2010 29-06-2011 10-11-2010 28-04-2011 03-09-2009 11-09-2009
WO 2008079685 A2	03-07-2008	AR 064494 A1 AU 2007337150 A1 BR PI0721103 A2 CA 2670643 A1 CN 101743308 A EP 2099907 A2 EP 2261328 A1 EP 2455459 A2 EP 2455460 A2 EP 2455461 A2 EP 2455462 A2 JP 5406040 B2 JP 2010512795 A KR 20090101930 A RU 2009128067 A TW 200829698 A US 2010034797 A1 US 2012308543 A1 WO 2008079685 A2 ZA 200903598 A	08-04-2009 03-07-2008 04-03-2014 03-07-2008 16-06-2010 16-09-2009 15-12-2010 23-05-2012 23-05-2012 23-05-2012 23-05-2012 05-02-2014 30-04-2010 29-09-2009 27-01-2011 16-07-2008 11-02-2010 06-12-2012 03-07-2008 28-04-2010
WO 2009083607 A1	09-07-2009	AU 2009203123 A1 CA 2711187 A1 CN 101951893 A EA 201001085 A1 EP 2237771 A1 JP 2011508755 A KR 20100101106 A US 2011008423 A1 WO 2009083607 A1	09-07-2009 09-07-2009 19-01-2011 28-02-2011 13-10-2010 17-03-2011 16-09-2010 13-01-2011 09-07-2009