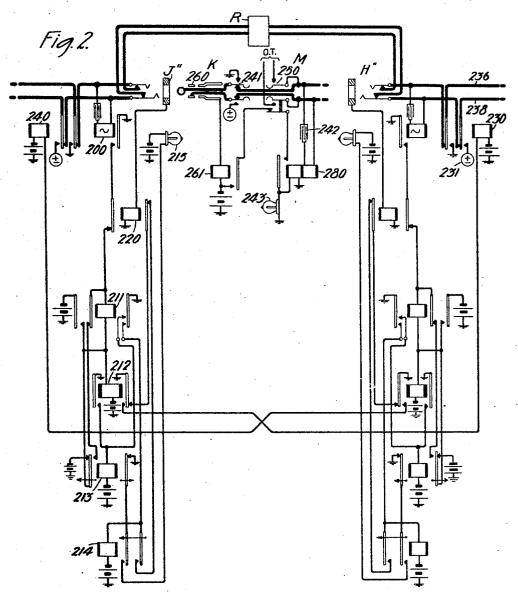

L. J. BOWNE

TELEPHONE EXCHANGE SYSTEM

Filed July 26, 1922

3 Sheets-Sheet 1

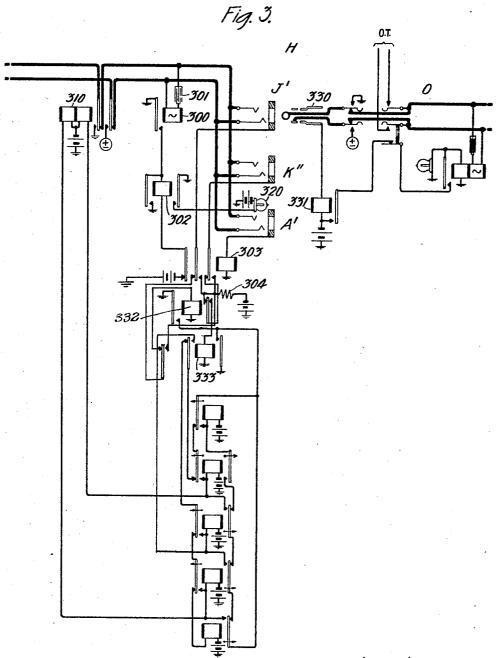

Invertor: Langford J. Bowne. WEButty Atty.

L. J. BOWNE

TELEPHONE EXCHANGE SYSTEM

Filed July 26, 1922

3 Sheets-Sheet 2


Invertor: Langford J. Bowne. by W.E.Beatty. Atty.

L. J. BOWNE

TELEPHONE EXCHANGE SYSTEM

Filed July 26, 1922

3 Sheets-Sheet 3

Inventor: Langtord J. Bowne,

by

WaBeatty Atty

UNITED STATES PATENT OFFICE.

LANGFORD J. BOWNE, OF HOWARD BEACH, NEW YORK, ASSIGNOR TO WESTERN ELEC-TRIC COMPANY, INCORPORATED, OF NEW YORK, N. Y., A CORPORATION OF NEW

TELEPHONE-EXCHANGE SYSTEM.

Application filed July 26, 1922. Serial No. 577,501.

To all whom it may concern:

Be it known that I, LANGFORD J. BOWNE, a citizen of the United States, residing at Howard Beach, in the county of Queens, State of New York, have invented certain new and useful Improvements in Telephone-Exchange Systems, of which the following is a full, clear, concise, and exact description.

This invention relates to telephone ex-10 change systems, and more particularly to circuit arrangements for signaling over toll

lines.

One of the objects of the invention is to reduce the number of conductors between 15 telephone exchanges widely separated.

Another object of the invention is to provide an improved circuit arrangement for selectively signalling any one of a plurality of exchanges having access to a toll line.

These objects are accomplished by the use the exchanges to transmit current over the scription of such equipment is deemed untoll line to selectively signal another of the necessary.

The invention may now be fully understood from the following description when read in connection with the accompanying drawings, Figs. 1 to 3, inclusive, which when taken together, constitute a circuit diagram of one embodiment of the invention. In order that the drawings may be more clearly read, the sheets should be arranged with Fig. 2 placed to the right of Fig. 1 and Fig. 3 to

the right of Fig. 2.

Referring to the drawings, a toll line comprising two talking conductors is shown extending from a first exchange J, through jacks J" and H" at a second exchange K, to a third exchange H. Repeater equipment, represented by the rectangle R, of any well known type, as for example as that shown in Patent No. 1,216,136 to B. as H' and K', one jack for each exchange and front contact of relay 131 to ground. having access to the toll line, for completing Relay 132, in operating, causes the operation calls over the toll line, and a jack tion of relays 137 and 133 over a path exa number of impulses over the toll line for allel, one path extending through the wind-

signaling the succeeding exchanges, the num- 55 ber of impulses being determined by the jack selected by the operator. The train of relays is set in operation by the insertion of an operator's cord circuit C (a portion only of which is shown in the drawing). At ex- 60 change H, equipment which is a duplicate of the equipment at exchange J is provided. At the second exchange K, a cord circuit M (a portion only of which is shown) is provided for enabling the operator to call 65 and talk with the operator at either of the exchanges J or H. Associated with the jack J" is a lamp signal 215, for indicating the arrival of a call from exchange J, and a train of relays which either operate to light 70 the signal 215 or to relay a call to the exchange H, depending upon the number of impulses transmitted from the first exchange. The equipment associated with the of impulse transmitting means which responds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the toll line at one of sociated with the jack J' and a further desponds to the seizure of the

Further details of the apparatus may be best understood from a description of the 80 operation of the circuit, which is as follows:

Assuming that the operator at exchange J desires to communicate with the operator at exchange H, she will insert plug 130 of the cord circuit C into the jack H' of the toll line 85 extending between the exchanges J and H, whereupon relays 129 and 131 are energized over a circuit extending from grounded battery, through the winding of relay 129, sleeves of plug 130 and jack H', contacts 90 151 of relay 150, outer right-hand normal contacts of relay 152, and winding of relay 131 to ground. The energization of relay 129 is without effect at this time. Relay 131, in operating, causes the energization of relay 95 132 over a path extending from grounded battery, through the winding of relay 132, W. Kendall of February 13, 1917, may be right-hand normal contacts of relays 133 and connected in the toll line between the jacks 134, inner right-hand normal contacts of reJ" and H". The toll line terminates at lay 152, right-hand normal contacts of re100 the J exchange in a plurality of jacks, such lays 135 and 136, and right-hand armature A for answering incoming calls over the toll line. Associated with the jacks H', K' and A is a train of relays which operate to send front contact of relay 131, armature and front contact of relay 132 and thence in par-

battery and the other path extending through the right-hand winding of relay 137 to grounded battery. Relay 137 in operating applies signaling current to the toll line as long as relay 133 is operated as will be described hereafter. Relay 133, in operating, locks up over a path extending from grounded battery, winding and right-hand alternate 10 contacts of relay 133, right-hand normal contacts of relay 134, inner right-hand normal contacts of relay 152, right-hand normal contacts of relays 135 and 136, and rightand armature and front contact of relay 131 15 to ground. An obvious path for maintaining relay 137 energized is provided through the alternate contacts of relay 133. Relay 133, in attracting its right-hand armature, opens the energizing circuit for slow-to-20 release relay 132, which relay, after an interval, retracts its armature. When relay 132 retracts its armature, a circuit for the energization of relay 134 is completed, over a path extending from grounded battery, 25 through the winding of relay 134, left-hand alternate contacts of relay 133, normal contacts of relay 132, and the right-hand armature and front contact of relay 131 to ground. Relay 134, in operating, locks up over a path extending from grounded battery, through the winding and right-hand alternate contacts of relay 134, right-hand normal contacts of relay 152, and the right-hand normal contacts of relays 135 and 136 35 to ground at the right-hand armature and front contact of relay 131. Relay 134, in attracting its right-hand armature, opens the holding and locking circuits for relays 137 and 133, whereupon said relays 137 and 133 40 release. Relay 137, in releasing, disconnects signaling current from the toll line.

The release of relay 133 causes the energization of relays 137 and 135 over a path extending from ground, through the front contact and right-hand armature of relay 131, left-hand normal contacts of relays 132 and 133, left-hand alternate contacts of relay 134 and thence in parallel, one path extending through the winding of relay 135 to grounded battery, and the other path extending through the left-hand winding of relay 137 to grounded battery. Relay 137, in operating, applies signaling current to the toll line a second time. Relay 135, in operating, locks up over a path including grounded battery, winding and right-hand alternate contacts of relay 135, normal contacts of relay 136 and right contacts of relay 131 to ground. Relay 137 is held operated as long as relay 135 is operated by ground at the right-hand alternate contacts of relay 135. When relay 135 operated, it opened at its right-hand normal contacts the locking circuit for slow-to-release relay 134 which re- also opens the locking circuit for and causes

ing of slow-to-release relay 133 to grounded a circuit for the energization of relay 136. The circuit for the energization of relay 136 may be traced as follows: grounded battery winding of relay 136, left-hand contacts of relay 135, left-hand normal contacts of relays 70 134, 133 and 132, and right-hand armature and front contact of relay 131 to ground. Relay 136, in attracting its right-hand armature, opens the circuit for relays 135 and 137, whereupon said relays release. Relay 75 137 in releasing disconnects signaling current from the toll line conductors 140 and

At the intermediate station K, relay 200,

operates in response to each impulse of sig- 80 naling current applied to the toll line conductors 149 and 141. In response to the first impulse of signal current, relay 200 operates and completes a circuit for energizing relay 211, said circuit including ground at the 85 contacts of relay 200, contacts of relay 220, winding of relay 211, and grounded battery at the left-hand normal contacts of relay 213. Relay 211 in attracting its right-hand armature completes obvious circuits for 90 operating relays 213 and 214. Relay 211 in attracting its outer left-hand armature short circuits relay 212. Relay 214 is of the slow to operate type and its inner contacts are not closed until the right-hand contacts of relay 95 213 are opened thereby preventing the lighting of the lamp 215 at the intermediate station, on a through call. Upon disconnection of the signaling current from the toll line at the end of the first impulse, line relay 200 100 releases, releasing in turn relay 211. Relay 211 in retracting its right-hand armature, opens the energizing circuits for relays 214 and 213. Relay 214 does not release at this time, however, because it locks over a path 105 extending from grounded battery, through the winding and outer contacts of relay 214, right-hand contacts of relay 220, and normal contacts of relay 212 to ground. Relay 213, being of the slow-to-release type, remains 110 operated for the interval between impulses of signaling current so as to prevent the lighting of lamp 215 when the next impulse is transmitted over the line. When the next impulse of signaling current is supplied to 115 the toll line, conductors 140 and 141, relays 200 and 212 operate. The circuit for operating relay 212 includes ground at the contacts of relay 200, left-hand contacts of relay 220, inner left-hand contacts of relay 211, left- 120 hand alternate contacts of relay 213, and winding of relay 212 to grounded battery. Relay 211 is short-circuited at this time by the inner left-hand contacts of relay 211 and the left-hand alternate contacts of relay 213, 125 The closing of the left-hand contacts of relay 212 completes a circuit for relay 213 and prevents its release. Relay 212 in operating lay, after an interval, releases and completes the release of relay 214 and completes a cir- 130

1,567,231

cuit for the energization of relay 230 over a path extending from ground, through the alternate contacts of relay 212 and the winding of relay 230 to grounded battery. Relay 230, in operating, connects signaling current from the source 231 to the conductors 236 and 238 of the toll line circuit. Relay 300 at the terminating end of the toll line operates over a path extending from ground, through 10 the outer alternate contacts of relay 230, conductor 236, inner normal contacts of relay 310, condenser 301, winding of relay 300, outer normal contacts of relay 310 and inner alternate contacts of relay 230 to the source of signaling current 231. Relay 300, in operating, completes a circuit for relay 302 over a path extending from ground, through the contacts of relay 300, winding of relay 302 and outer armature and back contact of relay 303 to grounded battery. Relay 302, in operating, locks through its left-hand contacts and through its right-hand contacts completes an obvious circuit for the lamp 320 causing said lamp to light, indicating to 25 the operator at the terminating station H that a call has arrived.

The operator at the terminating exchange H, noting the lamp signal 320, may insert the plug 330 of the cord circuit O into the jack A' whereupon relays 303 and 331 are energized over a path extending from grounded battery, through the winding of relay 331, sleeves of plug 330 and jack A' and winding of relay 303 to ground. Relay 303 upon energizing connects grounded battery through the resistance 304 and through the inner and intermediate alternate contacts of relay 303 to the sleeves of jacks J' and K'' for the purpose of placing a busy test on these jacks. Relay 303 in operating, also disconnects battery from the relay 302 and disconnects the relays 332 and 333 from the outgoing jacks J' and K'', respectively, thereby rendering the signaling circuit ineffective during the time that the plug 330 is inserted in the jack A'. Relay 303 in operating also opens the locking circuit for relay 302 causing the release of said relay 302 and releases. the extinguishing of the lamp 320.

A talking circuit between the originating exchange J and the terminating exchange H now exists over a path including the tips of plug 130 and jack H', inner normal contacts of relay 137, conductor 140, outer normal contacts of relay 240, tip contacts of jack J" through the repeater R, tip contacts of jack H", outer normal contacts of relay 230, conductor 236, inner normal contacts of relay 310, tip contacts of jack A' and plug 330, ring contacts of plug 330 and jack A', outer normal contacts of relay 310, conductor 238, inner normal contacts of relay contacts of relay 212. When the signaling 230, ring contacts of jack H", through the current is disconnected from the conductors

outer normal contacts of relay 137, and ring contacts of jack H', and plug 130.

8

It will next be assumed that the operator at the originating exchange J desires to signal the operator at the intermediate ex- 70 change K. The operator will thereupon insert the plug 130 of the cord circuit C into the jack K' corresponding to the intermediate station K, whereupon relay 152 will be energized over a path extending from 75 grounded battery, through the winding of relay 129, sleeves of plug 130 and jack K', inner normal contacts of relay 150, left-hand normal contacts of relay 131, and winding of relay 152 to ground. Relay 152, in operat- 80 ing, completes a circuit for the energization of relay 134 over a path extending from ground, through the left-hand contacts of relay 152, right-hand normal contacts of relays 136 and 135, inner right-hand alternate 85 contacts of relay 152, and winding of relay 134 to grounded battery.

Relay 134 in attracting its left-hand armature, completes a circuit for the energization of relays 135 and 137 over a path ex- 90 tending from ground, through the left-hand contacts of relay 152, left-hand normal contacts of relays 132 and 133, left-hand alternate contacts of relay 134 and thence in parallel, one path extending through the 95 winding of relay 135 to grounded battery, and the other path extending through the left-hand winding of relay 137 to grounded battery. Relay 135, in operating, locks to ground at the contacts of relay 152 and 100 opens the energizing circuit for relay 134 whereupon said relay 134 releases. Relay 136 then operates over a path extending from grounded battery, through the winding of relay 136, left-hand contacts of relay 105 135 and left-hand normal contacts of relays 134, 133 and 132, to ground at the left-hand contacts of relay 152. Relay 136, in operating, locks through its right-hand alternate contacts to ground at the left-hand contacts 110 of relay 152, and opens the locking circuit for relay 135 whereupon said relay 135

Relay 137, in operating, connects signaling current from the source 139 to the con- 115 ductors 140 and 141 of the toll line circuit, causing the energization of relay 200 at the intermediate office K. Relay 200, in operating, completes a circuit for the energization of relay 211 as previously described. Relay 120 212, being short circuited, does not operate. Relay 211, in attracting its right-hand armature, completes circuits for relays 213 and 214. Relay 214 locks over a path including grounded battery, winding and outer con- 125 tacts of relay 214, contacts of relay 220, and repeater R, ring contacts of jack J", inner 140 and 141, relay 200 releases, releasing in normal contacts of relay 240, conductor 141, turn relays 211 and 213. Relay 213 in re- 130

contacts 213 to ground.

The operator at the intermediate station K noting the lighting of lamp 215 inserts the answering plug 260 of the cord circuit M into the jack J' whereupon relays 220 10 and 261 operate over a path extending from ture disconnects the signaling circuit from the toll line circuit, and in attracting its right-hand armature opens the locking circuit for relay 214 whereupon said relay 214. 215. The operator at the originating exchange J may now converse with the operator at the intermediate exchange K. During this time the toll line circuit extend-25 ing from the intermediate exchange K to the terminating exchange H is in condition for signaling and the operator at exchange K may either signal the operator at the terminating exchange H or the operator at ex-30 change H may signal the operator at exchange K.

Upon termination of conversation the operator at the exchange J may apply signaling current to the toll line conductors 35 140 and 141 by actuating the key 160 where- hand contacts of relay 150 to grounded bat- 100

mal contacts of key 241, condenser 242, right-hand winding of relay 280, lower nor-

jack J", inner normal contacts of relay 240, outer normal contacts of relay 137, rings of jack K' and plug 130, and lower alternate contacts of key 160 to the source of signaling current 169. Relay 280, in operating locks and causes the lighting of lamp 243

over a path extending from ground, through lamp 243, and the left-hand winding of relay 280 in parallel, contacts of relay 280,

lowermost contacts of key 250 and contacts of relay 261 to grounded battery. The lighting of lamp 243 indicates to the operator at the intermediate exchange K that conversation has ceased whereupon she may remove ratus on the cord circuits and on the toll plug K from the jack J" causing the restora- line circuit is restored to normal position. 125

tion of all apparatus at the intermediate ex During the time that the operator at the inchange to normal. If the operator at the termediate exchange K is using the toll line exchange K applies signaling current to the extending between her position and the extoll line, relay 158 of the cord circuit at the change J, a signaling circuit exists between

originating operator's position will be ener- the intermediate exchange and the terminal 130

leasing completes a circuit of the lighting gized and locked over an obvious circuit of lamp 215 over a path extending from causing thereby the lighting of lamp 151 grounded battery, through the lamp 215, in-ner contacts of relay 214, and right-hand sation has ceased. The operator at the originating exchange will then remove the plug 70 130 from jack K' whereupon all apparatus associated with the cord circuit C and the toll line circuit will be restored to normal position.

It will next be assumed that the operator 75 ground, through the winding of relay 220, at the intermediate exchange desires to comsleeves of jack J", and plug 260, and the municate with the operator at one of the terwinding of relay 261 to grounded battery.

Relay 220 in attracting its left-hand armaciated with jacks J" and H" is identical and the equipment associated with the toll 80 line at the terminating exchanges J and H is also identical, so that it is immaterial in which direction the call is traced. Assumreleases and opens the circuit for lamp 215, ing, however, that the operator at the intercausing the extinguishment of said lamp mediate station K desires to communicate 85 with the operator at the terminating exchange J, she will insert the plug 260 into the jack J" whereupon relays 261 and 220 are energized over a circuit previously traced. Relay 220 in operating, renders the 90 signaling current for receiving incoming signals, ineffective. The operator will thereupon actuate ringing key 241 to apply signaling current to the toll line conductors 140 and 141. Relay 168 is then energized over 95 an obvious circuit causing in turn the energization of relay 161 over a path extending from ground, through the contacts of relay 168, winding of relay 161, and outer rightupon relay 280 of the cord circuit M will be tery. Relay 161 in operating locks up over energized over a path extending from a path extending from grounded battery, ground, through the upper alternate contacts of through the outer right-hand contacts of tacts of key 160, tips of plug 130 and jack relay 150, winding and right-hand contacts of K', inner normal contacts of relay 137, conductor 140, outer normal contacts of relay 161 to ground. Relay 161 in at 105 ductor 140, outer normal contacts of relay tracting its left-hand armature completes an 240, tips of lack J'' and plug K, upper normal contacts of relay 161 to ground. The obvious circuit for lighting lamp 165.

The operator at exchange J, noting the lighting of the lamp 165, will insert the plug 45 mal contacts of key 241, rings of plug K and 130 of the cord circuit C into the jack A 110 whereupon relays 150 and 129 are energized over a path previously traced. Relay 150 in operating, opens the locking circuit for relay 161 causing the extinguishment of lamp 165. Relay 150 in attracting its inner 115 and intermediate armatures, disconnects the signaling circuit from the toll line circuit. Conversation may now proceed between the two operators and upon completion of conversation either of the operators may signal 120 the other in the manner previously described.

Upon the conclusion of conversation and removal of the plugs 130 and 260, all apparatus on the cord circuits and on the toll

1,567,231 5

exchange and is ready for use in either di-

cuit R are such that when the signaling cur-5 rent is applied to the toll line, it will not

What is claimed is:

1. In a telephone exchange system, a plurality of exchanges, a continuous line circuit 10 connecting said exchanges, a switching means whereby said line may be seized, impulse transmitting means associated with the line and responsive solely to the seizure of the line at one of said exchanges by said 15 switching means for transmitting current over the line to selectively signal another of said exchanges, and a signal responsive means at each of said exchanges.

2. In a telephone system, a first exchange, 20 a plurality of other exchanges, a continuous line circuit connecting the plurality of other exchanges with said first exchange, and a train of relays associated with the line and responsive to the seizure of the line at the 25 first exchange for transmitting a number of impulses over the line to selectively signal any desired one of said other exchanges.

3. In a telephone system, a first exchange, a plurality of other exchanges, a continuous two-conductor line circuit connecting the plurality of other exchanges with said first exchange, a switching means whereby said line may be seized, and means associated with said lines and responsive solely to the 35 seizure of the line at the first exchange by said switching means for transmitting a number of impulses over the two conductors, the toll line, an operator's position intermeof said line circuit to selectively signal any desired one of said other exchanges.

4. In a telephone exchange system, a first exchange, a plurality of other exchanges, a continuous line circuit normally connecting all of said exchanges, a switching means whereby said line may be seized, means associated with said line and responsive solely to the seizure of the line at the first exchange by said switching means for transmitting a number of impulses over the line to the exchange desired to signal said exchange.

5. In a telephone exchange system, a line circuit extending between an originating and a terminating office and terminating at each end in a plurality of connecting terminals, a signaling device associated with the connecting terminals at each office, an intermediate office into which said line is led, a signal at said intermediate office, a signal operating and signal repeating device at said intermediate office, and means operative over said line in response to the seizure of the line at the originating office for operating at will the device at the intermediate office to to cause a signal to be repeated to the ter- cord circuit is connected. minating office.

6. In a telephone exchange system, a twoconductor line circuit extending between an The characteristics of the repeating cir- originating and a terminating office, and terminating at each end in a plurality of connecting terminals, a switching means where- 70 affect the apparatus of the repeating circuit. by said terminals may be seized, a signaling device associated with the connecting terminals at each office, an intermediate office into which said line is led, a signaling device at said intermediate office, and means 75 operating over the two conductors of said line in series solely in response to the seizure of the connected terminals of the line at the originating office by said switching means for operating at will the signaling device at the 80 intermediate or at the terminating office.

7. In a telephone exchange system, a line circuit terminating at each end in a plurality of jacks, a signaling device at each end of the line circuit, an operator's position 85 intermediate the ends of said line to which said line is carried, signal operating devices thereat responsive to a call from either end of the line, a cord circuit at each end of the line, and means operating in response to the 90 connection of the cord circuit with a jack at either end for operating one of said devices at the intermediate station to cause the operation of a signal at the opposite end or for operating said device to cause a signal 95 at the intermediate position to operate determined by the jack to which the cord circuit is connected.

8. In a telephone exchange system, a line circuit terminating at each end in a plural- 100 ity of jacks, a signaling device at each end of diate the ends of said toll line to which said line is carried, signaling devices thereat for indicating the arrival of a call from either 105 end of the toll line, a cord circuit at each end of the toll line, and means operating upon connection of the cord with one of the jacks at either end for sending a number of impulses over the line circuit to operate 110 the signal at the opposite end or a signal at the intermediate position determined by the jack to which the cord is connected.

9. In a telephone system, a toll line normally connecting more than two offices, said 115 toll line having a plurality of connecting terminals at each of said offices, an operator's signal at each of said offices, a signal operating and signal repeating device at an intermediate office, a cord circuit at one of said 120 offices, and means operating in response to the connection of the cord with the toll line for actuating said device to cause the signal at the intermediate office to operate or for actuating said device to repeat a signal 125 through said intermediate office to another office, the action of said device depending cause this signal at said office to operate or upon the connecting terminal to which the

10. In a telephone exchange system, a plu- 130

rality of exchanges, a continuous line circuit connected to all of said exchanges, an impulse transmitting means at one of said exchanges associated with said line and responsive to the seizure of the line at said.

In witness whereof, I hereunto subscribe exchange for transmitting current over the my name this 24th day of July A. D., 1922. line to signal an exchange, and means at said second exchange associated with said line to

6

LANGFORD J. BOWNE.