47012106 A1 |0 O 0 0 YOO O

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

S February 2004 (05.02.2004)

(10) International Publication Number

WO 2004/012106 A1l

(51) International Patent Classification’: GO6F 17/30
(21) International Application Number:
PCT/US2003/024010

(22) International Filing Date: 31 July 2003 (31.07.2003)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/400,143 31 July 2002 (31.07.2002) US
60/400,213 31 July 2002 (31.07.2002) US
10/630,525 30 July 2003 (30.07.2003) US

(71) Applicant: BEA SYSTEMS, INC. [US/US]; 2315 North
First Street, San Jose, CA 95131 (US).

(72) Inventor: ANDREASSON, Eva; * (#%),
(74) Agent: MEYER, Sheldon, R.; Fliesler Dubb Meyer &

Lovejoy LLP, Four Embarcadero Center, Suite 400, San
Francisco, CA 94111-4156 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP,KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC,
SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, 7ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
EBuropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR REINFORCEMENT LEARNING AND MEMORY MANAGEMENT

Decision process |2

v

1. Environment - State + Reward > Decision process
2. Decision process = Action = Environment

3. Environment = new State + new Reward - Decision process

.

Environment

(57) Abstract: A system and method for use with a virtual machine, including an adaptive, automated memory management process
& that takes decisions regarding which garbage collector technique should be used, based on information extracted from the currently
active applications (Figure 6). Reinforcement learning is used to decide under which circumstances to invoke the garbage collecting
processing. The learning task is specified by rewards and penalties that indirectly tell the RLS agent what it is supposed to do
instead of telling it how to accomplish the task. The decision (182) is based on information about the memory allocation behavior
of currently running applications. Embodiments of the system (180) can be applied to the task of intelligent memory management

in virtual machines, such as the Java Virtual Machine (JVM).



10

15

20

25

30

WO 2004/012106 PCT/US2003/024010

SYSTEM AND METHOD FOR REINFORCEMENT LEARNING AND
MEMORY MANAGEMENT

Inventor: Eva Andreasson

COPYRIGHT NOTICE
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Claim of Priority:

[0001] This application claims the benefit of U.S. Provisional
Application No. 60/400,143, filed July 31, 2002, and claims the benefit of
U.S. Provisional Application No. 60/400,213, filed July 31, 2002, both of
which are incorporated herein by reference.

Field of the Invention:

[0002] The present invention is generally related to memory
management in computer systems, and particularly to a system and
method of using reinforcement learning for memory management in

computer systems and in virtual machines.

Background:

[0003] In a computer system, the ability to control the allocation of
memory resources is vital to the successful operation and scalability of the

computer system as a whole. Software applications run more efficiently in
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environments in which steps are taken to proactively manage available
memory resources to ensure that only those entities that are currently
being used are stored in memory, while little-used entities are cleanly
removed. In some systems, including for example the Java Virtual
Machine, the system or virtual machine performs a garbage collection from
time to time, meaning in principle that the virtual machine scans the entire
memory and finds which objects have been stored in the memory and
which objects the program can no longer address. These parts of the
memory are returned for later use.

[0004] However, current systems of garbage collection are limited
in their abilities to clean the memory, and do not adequately respond to
variations in the underlying system. What is heeded is a more dynamic
process that can take into account variations in the system, and which may
be incorporated into existing computer system and virtual machine

environments.

Summary of the invention:

[0005] In accordance with one embodiment, the invention uses
machine learning methods to enhance garbage collection in a computer
system or virtual machine environment such as a Java™ Virtual Machine
(JVM). The invention can also be used to increase performance of a
conventional garbage collector such as in the BEA Systems, Inc. JVM
product JRockit™, or in other virtual machine environments. Other
embodiments that utilize variations and improvements may be developed
within the spirit and scope of the invention.

[0006] Reinforcement learning uses a function to describe the

expected future discounted rewards in a particular state or for a particular
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state action pair. This function is referred to as the Q-function or the
Q-value function. It will also be referred to as the state-action value
function or the value function. The usage of the two latter terms depends
on the specific meaning that is intended.

[0007] The invention addresses the question of how to design and
implement an automatic and learning decision process for more dynamic
garbage collection in a modern JVM. A primary goal is to enhance the
design of modern JVMs by means of learning techniques in order to make
them more efficient, dynamic and flexible. A more adaptive JVM is
desirable since it will result in improved performance and faster execution
of applications based on Java™.

[0008] A JVM renders possible for Java byte code (the compiled
code for Java applications) to be translated and executed on any platform.
Another important function of the JVM is to handle the automatic memory
management, i.e. the garbage collector. Depending on the application
environment the garbage collector affects the performance of the JVM
significantly.

[0009] The present invention can be used to enhance the current
garbage collection process in a system or JVM such as JRockit™. Instead
of letting static variables decide which garbage collector technique to use
and how to apply it, the system utilizes an automatic, learning decision
process that takes the decision while the application is running.

[0010] In accordance with one embodiment a reinforcement learning
method called on-policy SARSA is used. In order to approximate the value
function for continuous states, a gradient-descent function approximation
has been explored. These include both a linear approximation and a

non-linear approximation function.
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[0011] SARSA was chosen because it is an on-policy
temporal-difference method. On-policy evaluation, namely following and
improving the behavior policy simultaneously, is desirable insofar as the
system for solving the concrete problem needs to improve its performance
during runtime. Tile coding has been chosen for extracting state
representations of continuous state feature values. There are other
possible approaches for achieving a proper function.

[0012] In accordance with one embodiment, the invention comprises
a system for memory management comprising: a computer system or
virtual machine having a memory or storage space; and, wherein
reinforcement learning logic is used to control the management of the
memory or storage space. Other embodiments and implementations may

be developed within the spirit and scope of the invention.

Brief Description of the Drawings:

[0013] Figure 1 shows an illustration of a memory including
allocations.

[0014] Figure 2 shows an illustration of a garbage collection
technique. '

[0015] Figure 3 shows an illustration of a generational garbage
collector,

[0016] Figure 4 shows a diagram of a system in accordance with an

embodiment of the invention, and illustrates how an RLS garbage collector
can be used in an application server environment or system to optimize the
application server and the applications running thereon.

[0017] Figure 5 shows an illustration of various methods of

extracting generalized representation of states.
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[0018] Figure 6 shows an illustration of a model of a reinforcement
learning system.
[0019] Figure 7 shows an illustration of a memory showing a good

situation with a high freeing rate and much memory left in the unallocated
part of the heap is illustrated to the left (1). A worse situation is illustrated
to the right (2).

[0020] Figure 8 shows an illustration of various memory allocation
situations.
[0021] Figure 9 shows a code listing in accordance with an

embodiment of the invention, including pseudo code used to address the
garbage collection problem.

[0022] Figure 10 shows performance graphs of an RLS-based
system in accordance with an embodiment if the invention compared to a
regular JVM for short intervals.

[0023] Figure 11 shows penalty graphs of an RLS system compared
to a regular JVM.

[0024] Figure 12 shows performance graphs of an RLS-based
system in accordance with an embodiment of the invention compared to
a regular JVM, for long intervals.

[0025] Figure 13 shows penalty graphs of an RLS system compared
to a regular JVM.

[0026] Figure 14 shows performance graphs of an RLS-based
system in accordance with an embodiment of the invention compared to
a regular JVM, for random intervals.

[0027] Figure 15 shows penalty graphs of an RLS system compared
to a regular JVM.

[0028] Figure 16 shows a graph of Q-function over time in
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accordance with an embodiment of the invention.

[0029] Figure 17 shows a graph of accumulated penalty for two
states in accordance with an embodiment of the invention.

[0030] Figure 18 shows a contour-plot of the Q-function at time step
2500, when the system has not yet run out of memory.

[0031] Figure 19 shows a contour-plot of the Q-function at time
step 10000, when the system has started to occasionally run out of
memory.

[0032] Figure 20 shows a contour-plot of the Q-function attime step
50000, when the system has stopped learning.

[0033] Figure 21 shows an enlarged contour-plot of the Q-function
at time step 50000, to be able to see the detailed decision boundary when
s1 and s2 < 15%.

Detailed Description:

[0034] In accordance with one embodiment, the invention uses
machine learning methods to enhance garbage collection in a computer
system or virtual machine environment such as a Java™ Virtual Machine
(JVM). The invention can also be used to increase performance of a
conventional garbage collector such as in the BEA Systems, Inc. JVM
product JRockit™, or in other virtual machine environments. Other
embodiments that utilize variations and improvements may be developed
within the spirit and scope of the invention.

[0035] As used herein, the terms approach, method, algorithm and
function are used for different meanings. Approach is a way of addressing
a problem. A method is a general notion for a way of solving a special kind
of problems, while an algorithm is a concrete, specified recipe for solving
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a specific problem. A function is specific code performing a well-defined
task or computation.

[0036] Reinforcement learning uses a function to describe the
expected future discounted rewards in a particular state or for a particular
state action pair. This function is referred to as the Q-function or the
Q-value function. It will also be referred to as the state-action value
function or the value function. The usage of the two latter terms depends
on the specific meaning that is intended.

[0037] The invention addresses the question of how to design and
implement an automatic and learning decision process for more dynamic
garbage collection in a modern JVM. A primary goal is to enhance the
design of modern JVMs by means of learning techniques in order to make
them more efficient, dynamic and flexible. A more adaptive JVM is
desirable since it will result in improved performance and faster execution
of applications based on Java™.

[0038] A JVM renders possible for Java byte code (the compiled
code for Java applications) to be translated and executed on any platform.
Another important function of the JVM is to handle the automatic memory
management, i.e. the garbage collector. Depending on the application
environment the garbage collector affects the performance of the JVM
significantly.

[0039] The JVM JRockit™, by BEA Systems, Inc./Appeal Virtual
Machines, was designed recognizing that all applications are different and
have different needs. Thus, a garbage collection technique and a garbage
collection strategy that works well for one particular application may work
poorly for another. To provide good performance across many applications,

various garbage collection techniques with different characteristics have
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been implemented. However, a particular garbage collection technique can
never achieve its optimal performance if one lacks a strategy of how and
when to apply it. This observation motivates the investigation of better and
more adaptive strategies.

[0040] The present invention can be used to enhance the current
garbage collection process in a system or JVM such as JRockit™. Instead
of letting static variables decide which garbage collector technique to use
and how to apply it, the system utilizes an automatic, learning decision
process that takes the decision while the application is running.

[0041] The following description also details how an automatic,
learning decision process can be designed to improve the garbage
collecting system in a product such as JRockit™ such that currently
existing garbage collectors operate more dynamically and effectively.
[0042] In accordance with one embodiment a reinforcement learning
method called on-policy SARSA is used. In order to approximate the value
function for continuous states, a gradient-descent function approximation
has been explored. These include both a linear approximation and a
non-linear approximation function.

[0043] SARSA was chosen because it is an on-policy
temporal-difference method. On-policy evaluation, namely following and
improving the behavior policy simultaneously, is desirable insofar as the
system for solving the concrete problem needs to improve its performance
during runtime. Tile coding has been chosen for extracting state
representations of continuous state feature values. There are other
possible approaches for achieving a proper function.

[0044] The following glossary describes terms that are used

throughout the text:
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Actions: actions interact with the environment and are chosen based on a
behavior policy from each state according to a state-action value function.
Beliefs: see model.

Conservative: the word exact is used for the approach where pointers to
objects do not need exact identification.

Concurrent: garbage collection performed "little at a time", where "little at
a time" means one garbage collection step at a time, is called concurrent
garbage collection.

Dead: an object is dead if it cannot be reached from a running program.
Dirty: an object that has been changed during a concurrent phase of a
"mostly-concurrent” garbage collector is said to be dirty and must hence be
traced again before sweeping.

Exact: the word exact is used for the approach where pointers to objects
need exact identification.

Flip: to flip is to change the semi-space to be scanned of a copying
garbage collector from the one recently scanned to the non-recently
scanned semi-space.

Fragmentation: scattered memory pieces that cannot satisfy a certain
memory need although the free memory in the heap in total would.
Free-list: the free-list is a linked list of all free blocks of memory available
in the heap.

Garbage collection: an automatic memory-deallocating process is called
a garbage collection.

Garbage: from a running program non-reachable objects

Gene: each element of an input string or array to a genetic method is
called a gene.

Goals: see model.
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Heap: memory is allocated in the heap.

Hypothesis: see model.

Incremental: garbage collection performed "little at a time", where "little at
a time" means one area of the heap at a time, is called incremental
garbage collection.

Individual: the input of a genetic method is called an individual.

Live: an object is live if it can be reached from a running program.
Mark-and-compact: a garbage collection approach that uses the
mark-and-sweep approach, but tries to move objects close together to
prevent fragmentation.

Mark-and-sweep: a garbage collection approach that marks all live objects
and then collects the non-marked objects.

Markov Decision Process: a reinforcement learning task that fulfils the
Markov property is called a Markov Decision Process (an MDP).

Markov property: an input signal succeeding in providing all relevant
information for making a correct decision has the Markov property.
Model: a model is the beliefs about the environment of a learning system.
Off-policy: when following one policy and updating another an off-policy
approach is used.

On-policy: when following and updating the same policy an on-policy
approach is used.

Parallel: garbage collection performed in parallel, performed in a
multi-processor environment, is called parallel garbage collection.

Policy: a policy (or behavior policy) defines the behavior of the system at
a given time.

Pre-cleaning: step three of a "mostly-concurrent" garbage collector
includes checking objects that are marked dirty, this is called pre-cleaning.
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Q-value function: see State-action value function.

Reward: a reward is calculated by a reward function and corresponds to an
evaluation of the feedback from the environment after a certain action is
performed.

Roots: objects that the running program stores in registers or on the stack
are known to be live. Objects that are known to be live are called roots.
State-action value function: the state-action value function is the function
that calculates the value of taking a certain action from a certain state.
States: states are representations of the environment, the input of a
reinforcement learning system.

Stop-and-copy: a garbage collection approach that divides the heap into
two semi-spaces and collect one semi-space at a time by moving all live
objects in one semi-space into the other and then flip.

Supervised learning: supervised learning is learning from examples
provided by a knowledgeable external supervisor.

Unsupervised learning: unsupervised learning is learning through "trial and
error" and improves behavior through a reward function (feedback from the
environment).

Update: a learning system can evaluate and improve the policy based on
the reward and thereby make better decisions further on.

Value function: see State-action value function

Introduction

[0045] A key feature of human intelligence is the ability to learn from
experience. Humans and animals interact with their environment and adapt
their behavior. Therefore a basic requirement of any artificial intelligent
systems is the ability to learn - especially through interaction with the
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surrounding environment.

[0046] A common definition of machine learning is a process
wherein a change in the system allows it to perform better the second time
on repetition of the same task, or on another task drawn from the same
population.

[0047] Another definition of machine learning is a method that learns
within its domain, by searching domain specific concepts to reach more
general concepts. The generalization contributes to the ability to handle
new concepts within the domain.

[0048] Machine learning methods can generally be classified
according to three different categories: supervised learning, learning with

a critic and unsupervised learning.

Supervised Learning Method

[0049] Supervised learning can be defined as earning from
examples provided by a knowledgeable external expert. Therefore, a
supervised learning method needs a set of training examples. It also needs
a model that represents its knowledge about the domain that is updated
during training. In the machine learning literature this model is also referred
to as a hypothesis.

[0050] Training patterns for supervised learning methods are
composed of two parts, an input vector and an associated output. Training
consists of presenting a set of inputs together with a set of desired
responses as output. The method processes the input information and
updates the model according to the error that is defined as the difference
between the desired response and the actual output. These errors used to
determine changes in the hypothesis of the method according to a learning
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rule.
[0051] Representative examples of supervised learning methods

include decision trees and neural networks.

Decision Trees

[0052] The hypothesis in systems using decision trees consists of
nodes forming a tree structure. The input set contains features that
describe an object or a situation. The output consists of yes and no
answers (or any other binary decision). Due to the binary nature of inputs
and outputs decision trees form Boolean functions. The task of a decision
tree is to decide to which class the object or situation belongs to according
to its observable features. To train a tree, known examples with known
outcomes are needed to learn which features are associated with which

class.

Neural Networks

[0053] Neural networks consist of a set of computational units,
connected via weighted links. The hypothesis is represented by the
weights, which strengths are adapted during training. The network-units
operate in a distributed and parallel fashion. The hypothesis is
represented by the current values of the weights in the network. An input
is presented to the network and the difference between the desired output
and the actual network output is observed. By making small adjustments
to the weights, the network output becomes more similar to the training
data. The goal of these adjustments is to minimize the summed squared
error over the training set.

[0054] Supervised learning methods are very efficient when the
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desired behavior is known in form of input-output training examples. If the
set of training examples is large enough and representative for the domain
the networks can be trained efficiently and are able to successfully
generalize correctly to previously unseen exampies.

[0055] If training examples are difficult or costly to obtain or not
available at all supervised learning methods cannot be applied. Still it
would be possible for a supervised learner to imitate the behavior of an
existing garbage collector, but this will not result in any improvement of its
performance. Therefore, the primary goal herein of optimizing the decision
process cannot satisfactorily be achieved with a supervised learning
approach alone.

[0056] Often it is necessary for the system to learn online, in case
training examples become available as the system is running, rather than
in batch mode in which case the entire data set is available prior to training.
Backpropagation is an example of a learning method that in principle is
capable of online learning, whereas other supervised methods such as

decision trees can only be trained in batch mode.

Learning with a Critic Method

[0057] Learning with a critic means that no explicit examples of
correct input output pairs are needed for training, but merely that a "critic"
tells the system whether it performs well or poorly.

[0058] A "learn with a critic"-system uses "trial and error"-search to
learn the best action to take in a given situation. This is realized through a
reward system constituting the critic. The objective is to choose those
actions that maximize the future rewards. The rewards for actions are not
necessarily immediate but might be delayed. Therefore, the system has to
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address the temporal credit assignment problem, namely to identify those
states and actions that in the long run will result in optimal rewards.
[0059] In contrast to the earlier described supervised learning
methods which learn based on the error, learning with a critic involves
interacting with an initially unknown environment and observing the
consequences of the actions.

[0060] Two examples of methods that learn with a critic include

genetic algorithms and reinforcement learning methods.

Genetic Algorithms

[0061] Genetic algorithms are search and optimization methods that
mimic the processes that occur in natural evolution. They operate with a
population of candidate solutions to which random modifications are
applied. Individuals are represented as bit strings, which encode
parameters of a possible solution. By selecting better individuals for
reproduction to the next generation the quality of the individuals in the
population improves over time. Although based on the same principle as
genetic algorithms other evolutionary algorithms employ different
representations and genetic operator. In the case of genetic algorithms the
fitness function plays the role of the critic. Individuals of the same
generation are evaluated according to the fitness function. The best-suited
individuals of a generation are selected to generate offspring to the next
generation.

[0062] Genetic algorithms are usually slow and require a large
number of fitness evaluations. They only indirectly use the information
provided by the critic to update their behavior. If the learning takes place
in the real environment, poorly adapted individuals might significantly
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deteriorate the overall performance of the system for unacceptable long
periods of time. The fitness function only considers the accumulated
reward over time, but does not relate the reward to particular states and
actions. The genetic algorithm maintains no explicit model of states and
therefore information available for direct learning of good actions and
states cannot be utilized. In the type of decision problems relevant for this
project, genetic algorithms learn much slower than for example
reinforcement learning algorithms presented in the next section.

[0063] Reinforcement learning methods solve a class of problems
known as Markov Decision Processes (MDP) or reinforcement problems.
If it is possible to formulate the problem at hand as an MDP, reinforcement
learning provides a suitable approach to its solution.

[0064] A reinforcement learner observes a state (situation) and
decides what action to take in that particular situation. The choice of action
depends on a state-action value function, Q(s, a) that calculates the value
of taking an action a in state s. The g-value reflects the expected future
discounted rewards of taking\; action a in state s and following an optimal
policy afterwards. The action chosen is the one with the highest Q-value
within the current state. As a result of the action taken by the reinforcement
learner the environment transitions to a new state provides a reward value
as feedback. Based on the observed reward and the state-action value of
the new state the reinforcement learning method updates its beliefs about
the state-action value of the previous situation. The reward function
constitutes the critic.

[0065] More formally stated, a policy is a mapping from states to
actions m: S x A= [0,1], in which (s, a) denotes the probability with which
the reinforcement system chooses action a in state s. As a result of the
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action taken by the agent in the previous state, the environment transitions
to a new state s,,,. Depending on the new state and the previous action the
environment might pay a reward to the agent. The scalar reward signal
indicates how well the agent is doing with respect to the task at hand.
However, reward for desirable actions might be delayed, leaving the agent
with the temporal credit assignment problem, of figuring out which actions
lead to desirable states of high rewards. The objective for the agent is to

choose those actions that maximize the sum of future discounted rewards:
R=T+Y Mgy ¥V g oo

[0066] The discount factor ye[0,1] favors immediate rewards over
equally large payoffs to be obtained in the future, similar to the notion of an
interest rate in economics.

[0067] Usually neither the state transition nor the reward function are
known to the reinforcement system, neither do these functions need to be
deterministic. In the general case the system behavior is determined by the
transition probabilities P(s..| s, &) for ending up in state s,,, if the agent
takes action a, in state s,and the reward probabilities P(r|s,, a,) for obtaining
reward r for the state action pair s, a;.

[0068] Whereas for instance dynamic programming requires a
model of the environment for computing the optimal actions, reinforcement
learning methods are model free and the reinforcement system obtain
knowledge about the environment through interaction. The agent explores
the environment in a trial and error fashion, observing the rewards obtained
of taking various actions in different states. Based on this information the

agent updates its beliefs about the environment and refines its policy that
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decides what action to take next.

[0069] To maximize the reward over time, a learning system must
choose the most valuable action. The problem is that the best action may
be an action not yet tried and evaluated. Finding a balance between
making decisions on experience by choosing the best evaluated action so
far and finding new alternatives that might be better than the known ones,
is a difficult problem when designing and using reinforcement learning
systems. The "exploration vs. exploitation"-issue is discussed below.
[0070] Another important issue to consider is the choice of reward
function, since it affects the behavior of the system. The proper definition
of the reward function therefore plays an important role in the design of

reinforcement learning systems.

Unsupervised Learning Method

[0071] In contrast to the supervised learning and learning with a
critic methods described above, which is applicable only when the outcome
is known or if information is available about what constitutes good or bad
behavior, an unsupervised learning method needs no hint at all of what the
correct outcome should be. Instead they cluster the input data according
to the similarity of features and thereby identify the underlying structure of
the input domain. Often unsupervised learning methods are used to
preprocess the data before a supervised learning algorithm is applied.
[0072] These kinds of methods are not of particular interest in the
present case since there is a need of control in a JVM system. For instance
the system should never run out of memory, or at least learn quickly not to
run out of memory, hence a system handling the problem must be

controlled in some way.
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Garbage Collection

[0073] Some programming languages use explicit memory allocation
and deallocation, for instance C and C++. This demands that programmers
using such languages have a lot of knowledge of how a computer is built
and how it works. If the programmer would lack this knowledge when
constructing a computer program it could result in a computer program with
memory leaks and dangling references.

[0074] Figure 1 shows an illustration of a memory 100 including
allocations. At the top an allocated list 102 is shown. In the middle a
memory leak 104 is illustrated. At the bottom a memory leak and a
dangling reference 106 are iliustrated. Memory leaks are memory that is
referenced by deallocated memory. A dangling reference is a reference
to memory that has been deallocated. These problems cause the
computer program to eventually crash, or even worse, to keep running but
calculating wrong values.

[0075] To simplify for programmers, program languages were
developed that did not use explicit memory allocation. The first high-level,
compiler-using language was Fortran (1957). Other programming
languages based on the same idea developed later, for instance Lisp,
Small Talk and Java.

[0076] Implicit memory allocating languages need a system that
handles the freeing of objects that are no longer used by the running
program. A system that handles this is called a garbage collector, since it
takes care of garbage caused by the running program.

[0077] One purpose of garbage collection is to relieve the
programmer from the burden of discovering memory management errors

by ensuring that these errors cannot arise, i.e. garbage collection frees the
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programmer from having to keep track of when to free allocated memory,
thereby preventing many potential bugs and headaches.

[0078] One difficulty with garbage collecting is to decide which
objects are no longer alive (dead). An object is dead if no references to that
object exist. If there still are references to an object it is said to be live. For
instance, an object-oriented program uses the stack and registers for
storing class variables (among other things). The objects that the running
program stores are certain to be live. Objects known {o be live are referred
to as roots. By following the references from the roots all other live objects
can be found.

[0079] Another difficulty with garbage collection is to prevent heap
fragmentation. That is, preventing the free memory spaces of the heap of
becoming too small and too scattered so that new objects cannot be

allocated, although the total amount of free memory may be sufficient.

[0080] There are mainly two basic different techniques that a
garbage collector can rely on: reference counting collectors and tracing

collectors.

Garbage Collection Using Reference Counting Collectors

[0081] Reference counting collectors perform the garbage collection
by counting and storing the amount of references to an object. When an
object is initiated the reference number is set to one. For each new change
in the amount of references to an object, the reference count is increased
or decreased. If the amount of references to an object becomes zero, the
object is freed and all the objects that the garbage collected object refers

to have their reference counts decreased. These decreases may, in turn,
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lead to garbage collection of other objects.

[0082] The advantage with this method is that there is no need for
scanning the heap for live objects. On the other hand this approach has
difficulties handling cyclic structures and the updating of references must
be synchronous.

Garbage Collection Using Tracing Collectors

[0083] A typical tracing collector is the mark-and-sweep collector.
Figure 2 shows an illustration of a garbage collection technique 120
including mark-and-sweep 122, and stop-and-copy 124. Mark-and-sweep
collectors mark all reachable objects to be live and the remaining objects
are assumed to be garbage. Stop-and-copy collectors divide the heap into
two semi-spaces and copy all live objects from one semi-space to the other
before sweeping the recently scanned semi-space. It uses a technique that
comprises finding all from the running program reachable objects, i.e. all
live objects. When a live object is found it is marked. The marking can be
performed in several ways, for example by setting a certain bit in the
header of the object. When the collector has found all live objects in the
heap and marked them it is time for the next step, which is sweeping alll
unmarked objects away - freeing their memory.

[0084] A problem using mark-and-sweep is that it causes
fragmentation of the heap. That is, scattered memory pieces that cannot
satisfy a certain memory need, although the free memory in the heap in
total would. To deal with the problem of a fragmented heap, a compacting
mark-and-sweep has been developed. This type of collector is called
mark-and-compact. During sweeping, the mark-and-compact collector tries

to move all remaining, live objects towards one end of the heap to get rid
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of small free memory spaces that causes fragmentation.

[0085] Another kind of tracing collector is the copying garbage
collector, stop-and-copy 124. Copying collectors divide the heap into two
semi-spaces, X and Y. The scanning for garbage begins e.g. in X. If an
object is alive, i.e. can be reached from the program, the garbage collector
will copy it into Y and then start scanning for the next live object in X. When
the garbage collector is through scanning X, it may start scanning Y for live
objects, copying them into X. It follows that objects may be allocated in only
one semi-space at a time. To change from scanning X to scanning Y is
referred to as flip.

[0086] The mark-and-compact technique is in many situations more
time consuming than stop-and-copy. However, when it comes to large
objects or few non-living objects in the heap the stop-and-copy collector is
worse than the mark-and-compact collector, since copying takes a lot of
effort in those situations. Another disadvantage using stop-and-copy is that
the heap uses only half its capacity, since it has to be divided into two
equal semi-spaces and use only one of them at a time for allocation.
[0087] The above described, different techniques can be varied in
many ways. Unfortunately there is no "best solution". One solution works
better for certain application areas and others work better under different
circumstances. The problem is that existing applications using JVMs and
garbage collectors are different such that it is hard to design and
implement a garbage collector that works perfectly in all situations.
[0088] Below are some features that have been developed for
fulfilling different needs in garbage coliecting that can be varied to some
extent. A briefing of some important features is given, as well as the effects

a change in these features have on the performance of the garbage
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collector.

Handle Based Pointers and Direct Pointers

[0089] Direct pointers are pointers that point directly at the objects.
A reference to the object contains the explicit address of the object.
[0090] ~ Handle based pointers, on the other hand, are pointers that
point at a table handle. The contents of the table space of that handle are
a reference to an object. Handle based pointers point indirectly at the
object. \
[0091] The use of this kind of look-up table simplifies the updating
of object pointers. It is easier since only the table needs updating, not the
pointers to the objects. One problem is that the table uses much more
memory than direct pointers. Another problem is that it takes more time to
run the program since using the look-up table increases the time for

locating an object.

Identification of Pointers

[0092] Pointers need exact identification if objects are relocated, as
in the case of copying. This approach is thus referred to as exact.

[0093] When objects are not moved, pointers do not need exact
identification. A non-exact approach can be used, the so-called
conservative approach. All live objects are found anyway, along with a few
non-living objects. This approach is important, since it allows programs that

were written without garbage collection in mind to use garbage collection

anyway.
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Moving Objects

[0094] In systems where copying collectors or compacting collectors
are used objects may be moved.

[0095] Small objects are easy to move, and when moving them
closer together in the heap fragmentation is prevented. By moving objects,
the cache locality is also improved, which means referring objects are
situated closer to each other.

[0096] Disadvantages appear when the moving concerns large
objects. To move large objects is very ineffective since the process of
moving them affects the total garbage collecting process time considerably.
Another disadvantage with moving large objects is that all objects pointing
at an object to be moved need to be found. In the worst case this means

a scan of the entire heap.

Generated Garbage Collection

[0097] Most objects are considered to die young. The solution of not
having to continue scanning long-living objects is to divide the heap into
generations. Old objects are stored in a certain part of the heap and young
in another. Figure 3 shows an illustration of a generational garbage
collector 140. The generational garbage collector divides the heap into an
older and a younger generation. During garbage collection of the younger
generation all live objects are promoted to the older generation. When the
older generation is full a complete garbage collection is invoked. In this
case the old generation uses a compacting technique.

[0098] The region of the heap where the young objects are stored
is small and hence garbage collected more frequently, while the region of

the heap, where older objects are stored, is garbage collected more
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seldom. Objects that survive a certain number of garbage collections in a
younger generation are promoted to an older generation. This approach
enhances the interruption time of the running program and the garbage
collection in total.

[0099] To be able to garbage collect a younger generation without
collecting older generations as well, all objects in older generations are
considered to be alive. Another important issue is to keep track of which
old objects that are pointing at younger objects, so that the referenced
younger, live objects will not be garbage collected.

[0100] One issue to consider, when it comes to generational
garbage collection, is how fast an object ages, i.e. is promoted to the next
generation. The promotion rate has to be decided. A low rate makes the
garbage collection sessions faster, but may also cause promotion of
comparatively young objects and accordingly a lot of garbage in older
generations, which is undesirable. A high promotion rate gives more stable
old generations, but also longer breaks for collecting the youngest
generation. The trade-off problem with the promotion rate is often called
the "pig in the python"-problem in which the python attempts to swallow a
pig as its prey. Collection effort will be wasted as a large and long-living
object survives and is promoted from generation to generation. The
similarity with the "pig in the python" is the immobilization of the snake as
it digests a much too large prey - the pig.

[0101] There is no obligation for the different generations to use the
same garbage collection technique. By using different techniques to
garbage collect different parts of the heap, process time may be shortened

and other desired goals may be achieved.
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Incremental Collection

[0102] An incremental collector divides the heap into sections and
collects one section at a time. One consequence of this is that only a small
amount of the garbage - the garbage of one section of the heap - is
collected at a time and that it may not be enough to satisfy the allocation
needs of the program. A resulting positive feature is that an incremental
garbage collection does not cause such a large break in the running
program as a complete garbage collection of the heap might do. This

technique is seldom used because it is very hard to implement.

Concurrent Collection

[0103] Another effective, but also hard to implement garbage
collector technique is the concurrent approach. A concurrent garbage
collector works in a certain thread by itself, at the same time as the
program. To work "at the same time as the program" means that the
program and the collector take turns executing instructions.

[0104] Both the incremental and the concurrent collectors collect
little garbage at a time. The difference between the two approaches is that
incremental "little at a time"-approach means little garbage is collected at
a time, where little refers to a small area of the heap. Concurrent "little at
a time"-approach, on the other hand, means little garbage collection at a
time, i.e. the garbage collection is divided into steps and only one step at
a time is performed. In other words little, but not necessarily complete,
garbage collection is performed at a time. Garbage collection steps of a
mostly-concurrent garbage collector are described below. Consequently
concurrent collectors need to consider allocations made by the program in

between the step executions of the collector. Another importantissue is to
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keep track of the changes made by the running program in order to be able
to update all pointers correcitly.

[0105] This technique is hard to implement, but is very effective
according to total interruption time of the running program. The alternative
is to stop the program and complete the garbage collection and then return

to the program, which would cause a much more noticeable interruption.

Parallel Collection ‘

[0106] The parallel collection technique may be used when the
system where the collector is being used has more than one processor.
Only in this case would it be possible for several threads to really work at
the same time, i.e. in parallel.

[0107] Advantages with this technique are that the garbage collector
may work concurrently and incrementally on each processor and thereby
shorten the total time of the garbage collection, i.e. shorten the interruption
time iﬁ the running program.

[0108] An important factor to consider when it comes to parallel
garbage collection is the need of synchronization of the garbage collecting
threads. It is also important to distribute the work to the separate

processors in an efficient and fair way.

“Mostly-concurrent” Garbage Collection

[0109] The JRockit™virtual machine from BEA Systems, Inc. is one
example of a Java Virtual Machine (JVM) that has a "mostly-concurrent”
garbage collector that is based on five steps. The first step includes
stopping the running program and finding all objects directly reachable

from the roots.
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[0110] After the first step, the running program is allowed to run
again, while the garbage collector marks all reachable objects from the
found roots. At the same time the garbage collector keeps track of all
changes made by the running program during this concurrent phase. The
changed objects are marked dirty, which means that those objects must be
checked again before sweeping.

[0111] The third step contains pre-cleaning. Pre-cleaning involves
concurrently checking dirty objects and also keeping track of new changes.
Hopefully the checking of dirty objects will take less time than it will take for
the running program to allocate many new objects (change the heap). The
purpose of pre-cleaning is to remove some work pressure from step four,
which causes a second stop of the running program.

[0112] Step four is the final marking pause and includes checking all
remaining, dirty objects as well as the roots once again. If any live object
is found, it is marked as the earlier found living objects.

[0113] The fifth and last step is the sweeping phase. In the sweeping
phase all non-marked objects are freed and returned to the free-list. The

free-list is a linked list of free memory sections in the heap.

Optimization Through Minimization

[0114] The following sections describe desired goals regarding the
performance of a garbage collector.

[0115] Each of the earlier described techniques and features can be
combined and varied in many ways to accomplish these goals in various
environments. A major challenge for programmers is to design and
implement a garbage collector that is able to achieve the goals in a very

dynamic and sometimes unknown environment.
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Memory Biocking

[0116] The garbage collector has to make sure that the running
program never runs out of memory. The goal is to free enough memory
and to compact the blocked memory in order to satisfy the allocation needs
of the running program. The desire is to keep the memory blocking as low

and as compact as possible.

Breaks

[0117] A major issue is to have as few and as short interruptions
(breaks) as possible in the running program. A break is when the program
running is stopped completely.

Total Process Time

[0118] In a broader perspective the total occupied process time is
a factor for minimization, just as the other factors described above. Total
process time does not need to be an issue in the case with a parallel

garbage collector if the throughput is satisfying enough.

[0119] Thus, the reinforcement learning methods are able to learn
from interaction with the environment and time-delayed feedback. As it is
difficult, if not impossible, to obtain direct examples of the "best possible”
garbage collection decisions, supervised learning methods are not suitable
for the optimization problem at hand. Since the objective is to optimize the
garbage collecting process based on the observed memory states and
performance during runtime, reinforcement learning methods can be used.
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System Design And Implementation

[0120] An embodiment of the present invention provides a system
that implements a learning decision process for more dynamic garbage
collection in a modern JVM. In the following sections the system is
described more concretely in terms of more specific objectives of dynamic
garbage collection, the type of reinforcement learning algorithm that is
used to achieve those objectives, and the information that it processes.
[0121] Concretizing the problem leads to a more understandable
justification of why reinforcement learning is a suitable solution method.
This also contributes to a less abstract explanation of how to solve the
problemin practice. The performance of the adaptive decision process with
respect to the concrete problem can be measured and compared to current
state of the art garbage collecting heuristics. In order to concretize the
problem we can look at one particular decision in a garbage collector,
namely the decision of when to garbage collect.

[0122] This is an important decision in a JVM as it affects the
run-time performance of the application. If garbage collection is invoked too
late the running program runs out of memory. Neither must it start too
early, as this causes unnecessary garbage colléctions“, which consumes
computational resources otherwise available to the running program.
[0123] The solution to this concretized problem provides valuable
insights to the general problem of more dynamic garbage collection. In
accordance with one embodiment of the invention the concrete problem
that is solved refers to the above specified, concrete task, namely to design
a learning decision process for deciding when to garbage collect.

[0124] As discussed above, reinforcement learning methods are a

standard way to solve Markov Decision Processes (MDP). Therefore, by
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formulating the problem of garbage collection as an MDP, reinforcement
learning can be applied to solve it.

[0125] A system has the Markov property if its future evolution only
depends on the current state but not its history. A reinforcement learning
task that satisfies the Markov property is called an MDP. More formally: if
tindicates the time step, sis a state signal, a is an action and ris a reward,
then the system has the Markov property if and only if for all states:

Pr{Siy = 8", fpyy =18, a, 1, Sy B(t1)yr-++» M2 Sor 8o}

is equal to

Pr{s, =8, . =r]|s, a}

Which means that the probabilities of the next state s,,, and reward r,,, only

depend on the current state s, and action a..

[0126] By representing states such that relevant information for
making a decision is retained in the current state the garbage collection
problem can be formulated as an MDP. Therefore, a prerequisite for being
able to use reinforcement learning methods successfully is to select a good

state representation. This step is described in further detail below.

[0127] In theory it is required that the agent (the reinforcement
learning system - RLS) has complete knowledge about the state of the
environment in order to guarantee that the learning algorithm
asymptotically converges to the optimal solution. However, in practical
applications fast learning is often more important than the guarantee of

asymptotic optimal performance. In practice, many reinforcement learning
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schemes are still able to learn proper decision making in a reasonable
amount of time even if the Markov property is violated.

[0128] The above described properties of reinforcement methods
make them a suitable candidate for solving the concrete problem of
garbage collection. The environment and various features of the garbage
collection problem (e.g. the need for online-learning; lack of initial
knowledge about the dynamics of the environment; delayed consequences
of actions) make it a suitable candidate for the use of reinforcement

learning methods.

Implementation Within An Application Server Environment

[0129] The following sections discuss reinforcement learning
methods in detail, together with features and implementation details of
such methods. The following sections also address the issue of which
reinforcement method is most suitable for solving the problem of garbage

collection in a computer system or virtual machine environment.

[0130] Figure 4 illustrates how the invention can be used in an
application server environment or system to optimize the performance of
the application server and the applications running thereon. As shown in
Figure 4, the computer system 150 typically includes an operating system
151 upon which a virtual machine 152 (such as a JVM or run time
environment) operates. The application server 153 sits upon this JVM run
time environment 152. Applications 156, 157, 158 execute within the
memory 155 of the system, where they may be accessed by clients. An

RLS-based garbage collector 154 in accordance with an embodiment of
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the invention is used in conjunction with the virtual machine 152 to garbage
collect the memory 155 in accordance with the reinforcement learning

techniques described herein.

[0131] Several kinds of reinforcement learning methods may be
used. The most common methods are Monte Carlo, temporal-difference,
actor-critic and R-learning. Short descriptions of the above mentioned
methods are presented below. Pros and cons for why a certain method is

more or less suitable for use in garbage collection:

Monte Carlo methods, like all reinforcement learning methods,
require no model of the environment, but have the disadvantage that the
policy is not updated before the end of an episode. In the case of garbage
collection an episode either corresponds to a complete execution of the
running program or at least the period until the program runs out of
memory. Waiting until the end of an episode before updating the policy
makes Monte Carlo methods effectively impractical.

Temporal-difference methods update their policy immediately after
a new state and reward are observed. This approach is the most suitable

approach.

Actor-critic methods use separate memory structures for action
selection and state evaluation. The memory usage is almost as crucial as
the time performance for a JVM. Hence actor-critic methods are not of

great interest in this environment.

R-learning is primarily a method for undiscounted, continuing tasks.
Anundiscounted task makes no difference between rewards accomplished
earlier or later. This is not used since the concrete problem of garbage
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collection is a discounted task, i.e. rewards achieved later are less worth

than earlier achieved rewards.

[0132] Derived from above presented information about different
reinforcement learning methods, a temporal-difference method is best
suited for address the garbage collection problem. There are mainly two
different approaches when it comes to temporal-difference methods:
Q-learning and SARSA.

Exploration vs. Exploitation

[0133] Systems solving reinforcement learning problems are
confronted with a trade-off between exploration and exploitation. On the
one hand they should maximize their reward by always choosing the action
a = max, Q(s, a) that has the highest Q-value in the current state s.
However, there is also a need to explore alternative actions in order to
learn more about the environment. Each time the agent (i.e. the
reinforcement learning system) takes an action it faces two possible
alternatives. One is to execute the action that according to the current
beliefs has the highest Q-value. The other possibility is to explore a
non-optimal action with a lower expected Q-value of higher uncertainty.
Due to the probabilistic nature of the environment, an uncertain action of
lower expected Q-value might ultimately turn out to be superior to the
cur-rent best-known action. Obviously there is a risk that taking the
sub-optimal action diminishes the overall reward. However, it still
contributes to the knowledge about the environment, and therefore allows

the learning program to take better actions with more certainty in the future.
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[0134] It is said that a learning program needs to explore in the
beginning and needs to rely on knowledge later on. Based on that
assumption, a way of solving the "exploration versus exploitation"-problem
is to use on-policy methods or off-policy methods. As explained above, a
policy is representing the behavior of the system: the action selection and

the update of Q-values.

[0135] The off-policy method follows one policy while updating
another. The policy followed in the beginning takes a large number of
explorative actions. The off-policy approach satisfies the exploration need
as long as the exploring policy is followed. At the same time the experience
of the exploration is used to update the non-exploring, non-followed policy.
As time progresses, the need for exploration decreases while the need for
exploiting increases and therefore the exploring policy is applied less and
less frequently in favor of the non-exploring policy.

[0136] The on-policy methods, on the other hand, use the same
policy for action selection and update. In other words, the on-policy
approach evaluates and improves the very same policy that takes the
decisions. This approach is used in systems that need to improve while

running.

[0137] Regardless of what policy approach is being used (off-policy

or on-policy), there are three different algorithms for choosing action:

The greedy algorithm chooses the action that is optimal according
to the current state-action value function. Whatever action has the
calculated, best state-action value in the present state is chosen. This
algorithm emphasizes the need for exploitation.
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The € - greedy algorithm chooses the calculated, best action most
of the times, but with small probability ¢ a random action is selected
instead. This algorithm satisfies both needs for exploration and

exploitation.

The soft-max algorithm works similar to the € - greedy algorithm
but does not choose alternative actions completely at random but
according to a weighted probability. The probability of an action is weighted
with respect to the estimated Q-value of the current state and that action.
The main difference between € - greedy and the soft-max algorithm is that
in the latter case, when a non-optimal action is chosen, it is more likely that
the system chooses the next-best action rather than an arbitrary action.

The highest probability is always given to the estimated current best action.

[0138] The greedy algorithm works best in deterministic
environments, while the € - greedy algorithm works best in stochastic
environments. The soft-max algorithm is the most secure algorithm since
it has a low probability of choosing inferior actions. The uncertainty about
the application environment, the run-time context and the incomplete state
information introduces a stochastic component into garbage collection
problem. Hence, in accordance with one embodiment the ¢ - greedy

algorithm is chosen.

[0139] Since the system should ideally improve while running and
explore a lot in the beginning and less over time, the on-policy method
SARSA is preferred over the off-policy scheme of Q-learning.
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Continuous States and Actions

[0140] Another common but not always occurring problem are
environments that have continuous, and consequently infinitely many
states. In these environments it is not possible to store state-action values
in a simple look-up table. Such a representation is only feasible for a small
number of discrete states and actions. Generalization of states, or rather
function approximation of the Q-value function, provides a solution to this
kind of problem.

[0141] The two main variants of function approximation are:
gradient-descent methods and linear methods. The linear methods are a
special case of gradient-descent methods, where the approximated
Q-value is a weighted linear sum of present state features values. A way
to represent continuous states is the use of conjunctions of feature values.
In this case the Q-function becomes linear in the binary feature vector and
is parameterized by the weights associated to the individual feature. There
are many approaches for extracting generalized representation of statés.
Figure 5 shows an illustration of four such methods. Coarse coding 162
is illustrated to the upper left (1) and tile coding 164 to the upper right (2).
To the lower left (3) a radial basis function 166 is presented and to the

lower right (4) Kanerva coding 168 is illustrated:

Coarse coding 162 is a generalization method using a binary
vector, where each index of the vector represents a feature of the state,
either present (1) or absent (0). In Figure 5, the circles are state features
and state X has the features A and C present. Since state X has only one
feature in common with Z, only partly generalization among them occurs.

State X, on the other hand, is completely generalized from Z, since both
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features are present in both states.

Tile coding 164 is a form of coarse coding where the state feature
areas are grouped together in partitions of the state space. These
partitions are called tilings, and each element of a partition is called a tile.
This approach approximates the state more accurately. The more tilings
there are the more accurate approximation is achieved, but at the cost of
higher complexity. In Figure 5 a tiling is shown, divided into four tiles (the
stripes). The state X generalizes from state Z, but not from state Y.

Radial basis functions 166 generalize continuous state features
in a more accurate way than coarse coding. A feature is represented by a
continuous value in the interval [0, 1] rather than a binary value. This value
denotes the similarity between the state and the cluster represented by the
radial basis function. In Figure 5, state X resembles more to state Z than
state Y as X and Z more belong to the radial basis function B than A.

Kanerva coding 168 is an alternative representation form of states
if the state space has very high dimensionality. Kanerva coding uses an
example based representation typical for nearest neighbor methods. A
state is then genera-lized to one of these example states based on how
close the state is to the example state. The distance may for instance be
measured by counting the number of bits the two states have in common.
In Figure 5 the state X is generalized to the example state Z, since this is

the closest example state.

[0142] In accordance with one embodiment the approaches that are
easiest to implement are coarse coding and tile coding. In some instances,

the radial basis functions may also be used.
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[0143] The generalized state representation, the action value and an
approximation parameter vector constitute the input-parameters of the
function that calculates an approximated state-action value. A generalized
state is represented by a vector s and an action a. These values are
combined linearly by weighting them with the parameter vector ©:

Q(s,a,0)=0;,8,+...+0,8,%+6,,,,a

Q(s, a, 8) is the approximated Q-value for being in state s, taking action a.
Since the elements of s are equal to one or zero in tile coding, the Q-value
approximations are just a summation of those weight parameters 6, that
correspond to present features (s=1).

[0144] According to the considerations in the above sections, in
accordance with one embodiment the method used for solving the problem
is on-policy SARSA with tile coding for generalization of continuous state

feature values.

[0145] One motivation for using SARSA is the fact that it is an
on-policy temporal-difference method. On-policy evaluation is desirable
since the system for solving the concrete problem needs to improve while
running. Tile coding is a commonly used approach for generalization of

continuous values.

System Specifications

[0146] The following sections describe in further detail the design of

the system for solving the concrete problem of garbage collection, followed
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by results of some system performance tests. The reinforcement learning
scheme is implemented as a concrete algorithm, and the identification of
state features, actions and rewards in accordance with an embodiment of

the invention are presented.

[0147] There are some issues that must be addresses when defining
the system specification. The initial question is how to formulate the
concrete problem of garbage collection as a reinforcement problem. This
is possible if the states are represented in a way that they contain relevant
information about the environment. Factors which must be addressed

include:

. How the states are represented such that they provide all relevant
information about the environment.

. Which actions are available to the agent to interact with the
environment.
. What rewards are given and how can they be quantified in order to

achieve the desired behavior of the garbage collector.

These factors are discussed in the following sections.

[0148] Figure 6 shows an illustration of a general model of a
reinforcement learning system. First the decision process 182 observes the
current state and reward 184. Then the decision process performs an
action 186 that effects the environment 188. Finally the environment
returns a reward and the new state. The reinforcement learning algorithm
obtains the information about the current state and the reward from the

environment. The reinforcement learning algorithm decides what action to
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take next and updates its prior belief about the world based on the
observed reward and the new state. The process either terminates when
a final goal state is reached, (or in the case of an infinite horizon problem

continues forever).

State Features

[0149] The choice of state features and penalty/reward function play
a crucial role for the ultimate behavior of the reinforcement system. The
system can only optimize its behavior according to the objectives specified

through the reward function.

[0150] In accordance with one embodiment a fragmentation factor
is used to keep track of how much of the heap is fragmented. If the heap
is very fragmented garbage collection should be performed more
frequently. This is desired in order 1o collect dead nearby objects of
"fragmentations” as fast as possible. By doing this larger blocks of free
memory may appear that can be reused. Garbage collection should be
performed when a lot of non-useful, small blocks of free memory

(fragments) occur.

[0151] Itis important to keep track of how much memory is available
in the heap. Based on this information the reinforcement learning system
is able to learn at which "allocated memory"-percentage it is most
rewarding to perform a certain action, for instance the action of garbage
collecting.

[0152] In accordance with one embodiment, the speed at which the

running program allocates memory is measured. This makes it possible
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to keep track of when, at the latest, the garbage collector must start
garbage collecting for a certain application running. During closer
consideration this measurement corresponds to keeping track of the

amount of available memory the last time a decision was made.

[0153] In accordance with another embodiment the time that s really
spent on executing instructions of the running program is measured. This
allows some evaluation of what extra features that may be added to the
default garbage collector can be made. For instance, the longer an
application runs the more fragmentation will occur. If fragmentation
becomes a problem, compacting becomes useful. If the application runs
for a long time, the choices regarding compaction or not are useful

additions.

[0154] In other embodiments the average size of new allocated
objects can provide valuable information about the application running that
might affect the performance of the garbage collector. Other features
include average age of new allocated objects, and number of new

allocated objects.

State Representation

[0155] Each possible measurable value as described above
constitutes a possible feature of a state. Since the values are continuous
they need to be translated into discrete values. [n accordance with one
embodiment Tilings are used for achieving the translation. One tiling can
for example represent a feature combination or feature-action combination.
Each tiling is divided into tiles, where each tile corresponds to an interval
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of one continuous feature or combinations of feature intervals.

[0156] One approach for representing a state in the general case is
to let an array of all tiles constitute the state of the system. Each tile may
have the value 1 (the continuous value of the state feature lies within this

interval (tile) of the feature tiling) or O (it lies not within this interval):

. Current state feature value lies within the corresponding tile =» 1

. Current state feature value lies not within the corresponding tile =
0

[0157] So for example a state can be represented ass =[1, 1, 0, ...,

1, 0, 1], where each index of the vector corresponds to one single tile.

Rewards

[0158] To evaluate the current situation or status within the system,
measurable values of the goals of the garbage collector are desired. The
goals of the garbage collector include maximization of the end-to-end
performance and minimization of the long pause times caused by garbage
collection. The goal values constitute a basis for rewards and penalties.
The reward is always represented as a real-value. The reward function
should accordingly consist of a function assigning real-valued rewards to

different situations.

[0159] A problem when deciding the reward function is to decide
what is good and what is bad. There are a lot of states that are neither bad

nor good themselves, but might lead to bad situations. This is only one
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aspect of the complexity of the environment. Another is that good states
hardly exist, while garbage collection always intrudes on the process time
of the running program and always constitutes extra costs. This indicates
that the reward should only consist of penalties when things go wrong. In
accordance with an embodiment of the invention, the situations in which

a penalty should possibly be imposed are presented below.

[0160] A severe penalty is imposed if the program running runs out

of memory, since this is the worst situation that might occur.

[0161] To impose a higher penalty in proportion to the higher
quantity of occupied memory would maybe at first sight seem like a good
idea, but it is not. Even if the memory is occupied up to 99% it is not a
problem, since the running program might complete within the given
memory. This is the most desirable case, i.e. to have the program finishiné
with no garbage collection required. The conclusion is that imposing high

penalties for high occupation of memory would not be a good idea.

[0162] The freed memory after completed garbage collection can be
compared to the occupied memory of the heap before that garbage
collection. This measurement gives an estimate of how large percentage
of the memory of the allocated heap that has been freed. This freeing rate
together with the size of the still unallocated heap would be of interest. If
the percentage is high there is nothing to worry about. Figure 7 shows an
illustration of a memory 200 including a good situation with a high freeing
rate and much memory left in the unallocated part of the heap 202. A
worse situation is illustrated to the right 204, where there is little memory
left in the unallocated heap and the garbage collection has a low freeing
rate. This last situation may cause problems. If the percentage is low and
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the size of the free memory in the heap is low as well, then problems may
occur and penalty may be imposed. The latter situation might occur if a
running program has a lot of long-living objects and runs for a long time, so

that most of the heap will be occupied.

[0163] In conventional systems the heap is not garbage collected
until the heap is full, but with the reinforcement learning system connected

it can be adapted to collect earlier.

[0164] In accordance with one embodiment the success rate of
allocated memory in the fragmented area of the heap may be observed.
The fragmented area of the heap means the area of the heap that is most
fragmented. The amount of new memory allocated in the fragmented area
of the heap can be compared to the amount of the new memory that
theoretically could be allocated in the fragmented area of the heap. Figure
8 shows an illustration of various memory allocation situations 220. To the
upper right 224 haif of the new allocated memory was successfully
allocated in the fragmented heap. To the lower left 226 the same percent
was successfully allocated in the fragmented heap although space for all
new allocated objects exists in the fragmented area. To the lower right 228
all new allocated objects could be successfully allocated in the fragmented
heap. It is desirable that 100% of the new allocated memory is allocated
in the fragmented area of the heap, to decrease fragmentation. A

proportional penalty can be imposed for a bad percentage.

[0165] To be forced to take a heap lock, i.e. to lock the free memory

of the heap so that no changes can be made to it, should be punished.

[0166] The longer a compacting garbage collector iterates over the
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free-list the higher penalty should be distributed. The longer the system
needs to iterate, the more fragmentation exists in the heap. Much
fragmentation is not necessarily bad, but the iteration steals time from the
program running, which should be punished.

[0167] When it comes to compacting garbage collectors a
measurement of the effectiveness of a compaction can be a base for
assigning a reward or a penalty. If there was no need for compacting, the
section in question must have been non-fragmented. Accordingly a

situation like this should be assigned a reward.

[0168] A fundamental rule for imposing penalty should be to punish
all activities that steal time from the running program. For instance a
punishment might be imposed every time the system performs a garbage
collection. An alternative can be to impose a penalty proportional to how
much time of the total run time of the program that is spent on garbage

collection.

[0169] Another penalty situation is when the average time of the
breaks approaches the maximum allowed break time. It is also important
to ensure that the number of breaks does not exceed a maximum allowed
number of breaks. If the average break time is high and the number of
breaks is low, the situation may be balanced through actions taken. If they
both are high, not only a more drastic action has to be taken, but also a

penalty might be in order.

[0170] Another view of the break issue is to impose a higher penality
the longer a break of the running program is. This coincides with the
previous consideration that every interruption of the running program be

punished.
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[0171] A penalty may also be imposed for not achieving good
behavior. For example, when it is not possible to allocate new objects
because of a too fragmented heap, a penalty may be given.

[0172] A good situation to which a reward, not a penalty, should be
assigned may include that in which a compacting collector frees large,
connected chunks with memory, a reward would be appropriate. The
opposite, if the garbage collector frees a small amount of memory and the
running program is still allocating objects can possibly be punished in a

linear way, as some of the other reward situations described above.

Action Features

[0173] Whether to garbage collect or not is an important issue. This
is the decision that is made by the system in accordance with
embodiments of the invention. Other actions that can be taken include the

following.

[0174] When the memory is not large enough and the garbage
collection did not successfully to free a satisfactorily large amount of
memory, the heap can be extended. The decision of extending the heap
or not ( or in the future, if a functionality of decreasing the heap size is
implemented, to decrease it or not) is one possible decision or action to
take. A subsequent decision would be to which extent the heap should be

increased or decreased.

[0175] To save heap space, or rather to use it more effectively, a
decision can be made of compacting the heap or not. And if the heap is
compacted, how large of area of the heap should then be compacted.
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Another subsequent decision may be what section of the heap to compact.

[0176] To handle synchronization between allocating threads of the
running program, the heap is divided into Thread Local Areas (TLA). Each
allocating thread is allowed to allocate memory within only one TLA at a
time and there is only one thread permitted to allocate in a certain TLA. A

decision can be made as to the size of each TLA.

[0177] When allocating large objects a Large Object Space (LOS)
can be used, especially in generational garbage collectors, to prevent large
objects to be moved. A decision can be made as to the size of the LOS

and how large an object has to be, to be treated as a large object.

[0178] Memory Block Size (MBS) is the minimum size of a free
memory block for being added to the free list. Different applications may

cause different needs when it comes to this size value.

[0179] In accordance with some embodiments the MBS and the TLA
metrics are dependent of each other. In other embodiments it may be

preferable to choose different sizes for them.

[0180] Depending on the particular embodiment either one or
several generations of garbage collecting may be used. It may be possible,
to change from two generations into one, but not the other way around. In
some embodiments the system can vary the size of the different
generations. If there is a promotion rate available, this is a factor that the

system can vary.

[0181] Another factor to consider is if the garbage collector should
use an incremental approach and, in that case, decide the size of the heap

area that should be collected at a time. The same goes for using the
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concurrent approach or not, together with the factors of how many garbage
collection steps at a time and how long time the system should pre-clean.

[0182] When parallel garbage collection is implemented the system
can choose between parallel garbage collection or not. Typically there are
only advantages with using parallel collectors where several processors are

available.

Action Representation

[0183] Actions may be represented as positive, discrete values: 1,
2, ..., N; where N is the total number of actions. Each representation value
corresponds to a specific action. The representations in the binary choice
cases suggested above look like:

. Perform = 1

. Do not perform = 0

Comparative Measurements between the RLS and Conventional

Garbage Collection Techniques

[0184] When evaluating the performance of the system there are
two values of interest for comparison with the existing garbage collecting
system. One is the measurement of the performance of the current
garbage collector compared to the garbage collector integrated with the
reinforcement learning system. The performance may either be measured
based on the accumulated reward over time, since the reward function
should reflect achieved good behavior, or by measuring time for completing



10

15

20

25

WO 2004/012106 PCT/US2003/024010

50

certain tasks. The time measurements reflect how many times each
system has performed a garbage collection, which is the most interesting

factor to measure.

[0185] On the other hand, it must not take too long for the system
to learn. This metric must also be taken under consideration when
evaluating the comparison between a conventional JVM (for example
JRockit), and a JVM or other type of system that incorporates a
reinforcement learning system in accordance with the present invention.
Performance may be measured through observation of the average reward
obtained, and also according to the goals of the garbage collector (i.e. the

features underlying the reward system).

[0186] In accordance with one embodiment the system is designed
to make only one decision, namely the decision of when to garbage collect.
In the results presented below the comparison with a "mostly-concurrent”
garbage collector is performed in similar environments. Only one
application running at a time is considered. The state features constituting
a state representation are those concerned with the concrete problem of
garbage collection. The embodiment discussed below uses tile coding

only, although other approaches can be used.

[0187] In accordance with one embodiment, necessary
measurements for creating a state for the solution system include:

. The amount of allocated memory per time unit
. The amount of allocated memory the last time a decision was made

. How much of the heap is fragmented
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Application-specific state features can also be added

including:

[0189]

Average size of new allocated objects
Average age of allocated objects

Average amount of new allocated objects

Itis also important to observe events underlying the rewards

and penalties. These are not state features, but are of interest for deciding

rewards and penalties. The features underlying the reward system are:

[0190]

A variable representing if a garbage collection was made during the

last time step

A variable representing if the system ran out of memory during the
last time step

The amount of occupied memory before the garbage collection

The amount of occupied memory left after completed garbage

collection

The break length of phase one of a "mostly-concurrent" garbage

collector

The break length of phase four of a "mostly-concurrent" garbage
collector

The number of situations where a heap lock needed to be taken

The action to take consists of one choice only: the choice of



10

15

20

WO 2004/012106 PCT/US2003/024010

52

performing a garbage collection or not at a certain time step. The action
representation is in this case binary (1 = perform, 0 = do not perform). This

means that the action value does not need to be re-calculated in any way.

Adapting the SARSA Algorithm

[0191] If s and a are the vectors representing states and actions,
then the estimated state-action value of that state and action is Q(s, a).
The linear gradient-descent approximation of the action-value function Q(s,

a) will then be Q(s, a, 8), where 0 is a vector containing the weight

coefficients (8,-8,.  below).

[0192] For a fixed O, the approximated Q-function value only

depends on s and a:

Q(s,a)=6,8,+...+0,8,+0 .8+ ... ¥ O Ay

[0193] If s is a vector of size m and a is a vector of size n, then 6
must be a vector of size m + n. Remember that each index of s
corresponds to either a single state feature inter-val, a combined interval

of two or more state features or combinations of actions and state feature

intervals, while the indexes of a corresponds to different actions.

[0194] The gradient of the function approximation Q(s, a, 8) is
needed for using gradient-descent function approximation. The gradient of
Q(s, a, 8) with regard to 6, is:

Vg(s, a,0):[dQ(s,a,0)/d6 dQ(s,a,8)/do]
where in the linear case:

dQ(s,a,08)/dg=s, forO<i<n
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dQ(s,a,08)/d6=a,, forn<i<n+m

[0195] Figure 9 shows a code listing 240 in accordance with an
embodiment of the invention, showing pseudo code modified to suit the
concrete problem of garbage collection. The pseudo code concerns
SARSA with linear, gradient-descent function approximation using a

soft-max policy.

[0196] Problems may occur applying the linear approximqtion. This
isacommon problem in neural networks systems: the Exclusive-Or (XOR)
problem. The XOR problem concerns how a learning system may arrive at
identical output when the input data has nothing in common and is based

on XOR reasoning.

[0197] Another problem that may occur is that the exploring
decreases too fast. This problem is solved through changing the random
action choice function to a non-linear function:

Probability to choose a random action P = P, * g {Tmesterz/€)

[0198] Where C is between 2000-5000 and P, =0.5. C corresponds
to the square number of steps at which the original probability P, of chosen

a random action decreased by a factor ™.

[0199] A third problem that may occur is that the JVM may be
optimized in a way that makes it difficult to measure the fragmentation
percentage without redesigning the garbage collector. If fragmentation is
measured in the traditional system it would result in a very high uncertainty
of the measured value. To address this and to be able to achieve reliable

results no consideration may be taken as to the fragmentation percentage.
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The assumption is that the amount of available memory is of more
importance to the decision of when to garbage collect than the
fragmentation percentage and accordingly will give enough information

about a situation for being able to achieve a satisfying behavior.

[0200] In accordance with once embodiment the state features s,
and s, used in the prototype are the current amount of available memory,

and the amount of memory available at the previous time step.

[0201] There is only one binary decision to make, namely whether
to garbage collect or not. Hence, the action set contains only two actions
{0, 1}, where 1 represents performing a garbage collection and 0

represents not performing a garbage collection.

[0202] The reward function of the prototype imposes a penalty (-10)
for performing a garbage collection. The penalty for running out of memory
is set to -500. It will be evident that these figures may be adjusted
depending on the particular implementation. It is difficult to specify the
quantitative trade-off between using time for garbage collection and
running out of memory. In principle the later situation should be avoided at
all costs, but a too large penalty in that case might bias the decision
process towards too frequent garbage collection. Running out of memory
is not desirable since a concurrent garbage collector is used. A concurrent
garbage collector must stop all threads if the system runs out of memory
and that is to prevent the purpose of using a concurrent garbage collector.

[0203] The random probability function that determines whether to
pick the action with the highest Q-value or a random action for exploration
is implemented according to the formula stated before values given one for
a particular embodiment. Other values may be used within the spirit and
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scope of the invention):

Probability to choose a random action = 0.5 * g "(TimeSter/C)

Where in one embodiment C is set to 5000, which means that random
actions are taken until 25000 time steps elapsed. A time step corresponds
to a time point where the RLS makes a decision. Between each time step
a time interval of about 50ms elapses, after which RLS makes a new

decision.

[0204] The learning rate a is set to decrease over time. The function
that determines the learning rate is implemented according to the formuia

stated below:

Learningrate =0.1%e ~(TimeStep / D)

Where D is set o 20000. The discount factor gamma is set to 0.9.

[0205] The tile coding representation of the state in the prototype is
chosen to be one 10x10x2-tiling for the two possible actions combined with
each combination of both state features in the case where both state
features were used, and one 10x2-tiling in the case of when only s, was

used.

[0206] A non-uniform tiling was chosen, in which the tile resolution
is increased for states of low available memory, and a coarser resolution

for states in which memory occupancy is still low. The tiles for feature s,
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correspond to the intervals [0, 4], [4, 8], [8, 10], [10, 12], [12, 14], [14, 16],
[16, 18], [18, 20], [22, 26] and [30, 100]. The tiles for feature s, are the

same as for feature s,.

[0207] The test applications used for evaluation are designed to
behave in three different ways. All test applications alternate between two
different memory allocation behaviors, one with a high allocation rate and
one with a low allocation rate. Each behavior lasts for a certain time
interval, which duration is measured in terms of the number of iterations.
The first test application has intervals that are 10000 iterations long. The
seéond test application has intervals that consist of 20000 iterations. The
third test application alternates randomly between intervals consisting of
10000 iterations and 20000 iterations as weli as between the two different
allocation behaviors.

Comparative Results

[0208] The system can also be used in the identification of suitable
state features, underlying reward features and action features for use in

dynamic garbage collection learning.

[0209] This section compares the performance of a conventional
JVM and a JVM using reinforcement learning for making the decision of
when to garbage collect. As further described herein, the JVM using
reinforcement learning is referred to as the RLS (the Reinforcement
Learning System) and the conventional JVM as JRockit.

[0210] Since JRockit is optimized for environments in which the

allocation behavior changes slowly, environments where the allocation
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behavior changes more rapidly might cause a degraded performance of
JRockit. In these types of environments an RLS, as used in embodiments
of the invention, may be particularly useful. As described herein, both
systems are tested and compared only with respect to applications that

exhibit different memory allocation rates.

[0211] Figure 10 shows performance graphs 260 of an RLS-based
system in accordance with an embodiment of the invention compared to
a regular JVM for short intervals. To the left 262,266 the interval
performance of the RLS is compared to the interval performance of JRockit
when running the application with short intervals. To the right 264, 268 the
accumulated time performance is illustrated. The upper charts 262, 264
show the performances during the first 20 intervals and the lower charts
266, 268 show the performances during 20 intervals after ca 50000 time
steps. In the beginning the RLS performs a lot worse than the converted
JVM (JRockit) due to the random choices of actions and the fact that the
RLS is still learning about the environment. After about 50000 time steps
the performance of the RLS compared to JRockit is about the same. This
shows the tendency of a decreasing need of time, i.e. decreasing
frequency of garbage collections, for the RLS system as it learns.

[0212] Figure 11 shows penalty graphs 280 of an RLS system
compared to a regular JVM. The upper chart 282 shows the accumulated
penalty forthe RLS compared to the accumulated reward for JRockit when
running the application with short intervals. The lower chart 284 shows the
average penalty as a function of time. The accumulated penalty for
running out of memory becomes constant over time, which demonstrates
that the RLS actually learns to avoid running out of memory. After 13000
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time steps all future penalties imposed on the RLS are due to garbage
collection only. After about 20000 time steps the rate at which JRockit and

the RLS are penalized for invoking garbage collections becomes similar.

[0213] Figure 12 shows performance graphs 300 of an RL.S-based
system in accordance with an embodiment of the invention compared to
a regular JVM, for long intervals. To the left 302, 306 the interval
performance of the RLS is compared to the interval performance of JRockit
when running the application with long intervals. To the right 304, 308 the
accumulated time performance is illustrated. The upper charts 302, 304
show the performances during the first 20 intervals and the lower charts
306, 308 show the performances during 20 intervals after ca 50000 time
steps. As may be seen, the RLS performs slightly worse in the beginning
than in the short interval application case. This application environment
seems to be more difficult for the RLS to learn, due to the fact that it runs
out of memory more times than in the previous case during the learning
phase (nine times instead of five times).

[0214] Figure 13 shows penalty graphs 320 of an RLS system
compared to a regular JVM. The upper chart 322 shows the accumulated
penalty for the RLS compared to the accumulated reward for JRockit when
running the application with long intervals. The lower chart 324 shows the
average penalty as a function of time. The results are almost the same as
for the application with the short intervals, as mentioned above. The
accumulated penalty for running out of memory becomes constant over
time in this case too and the accumulated penalty for invoking garbage
collections develops in the same way as in the previous case.

[0215] Figure 14 shows performance graphs 340 of an RLS-based
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system in accordance with an embodiment of the invention compared to
a regular JVM, for random intervals. To the left 342, 346 the interval
performance of the RLS is compared to the interval performance of JRockit
when running the application with randomly appearing intervals. To the
right 344, 348 the accumulated time performance is illustrated. The upper
charts 342, 344 show the performances during the first 20 intervals and the
lower charts 346, 348 show the performances during 20 intervals after ca
50000 time steps. Due to the random distribution of intervals an
interval-to-interval performance comparison of these two different runs is
not meaningful. Instead, the accumulated time performances illustrated to
the right in Figure 14 are used for comparison. As can be seen in the lower
chart to the right the RLS performs slightly better than JRockit in this
dynamic environment. This confirms that the RLS is able to outperform an

ordinary JVM in a dynamic environment.

[0216] Figure 15 shows penalty graphs 340 of an RLS system
compared to a regular JVM. The upper chart 362 illustrates the
accumulated penalty for the RLS compared to JRockit during a test
session with the application with randomly appearing intervals. The lower
chart 364 illustrates the average penalty as a function of time. The results
show that the RLS runs out of memory a few times more than in the other

cases, but learns to avoid it over time, even in this more dynamic case.

[0217] In Table 1 the accumulated penalty during a time period
where the RLS has completed its learning is shown. As may be seen, the
results of the RLS are comparable to the results of JRockit. In the case of
the test application with random appearing intervals the value in the table
verifies the results presented above: that the RLS performs better than
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JRockit in the environment that was constructed to be more dynamic. The
table illustrates the accumulated penalty from time step 30000 to time step
50000. This corresponds to the performance of the RLS after completed

learning.
Test application Accumulated Accumulated
type penalty for the RLS | penalty for JRockit
Short intervals -8640 -7910
Long intervals -8970 -8520
Random intervals -8400 -8550
Table 1
[0218] Figure 16 shows a graph 380 of Q-function over time in

accordance with an embodiment of the invention. The figure shows the
development of the state-action value function, the Q-function, over time.
The upper chart 382 shows the Q-function after ca 2500 time steps. The
middle chart 384 shows the Q-function after ca 10000 time steps and the
lower chart 386 shows the Q-function after ca 50000 time steps and is then
constant. Initially, the probability of choosing a random action is still very
high and the frequency of choosing the action to garbage collect is high
enough to prevent the system from running out of memory. On the other
hand the high frequency of random actions during the first 5000 time steps
does not require the system to pick a garbage collection action, which
means that it will always favor not to garbage collect in order to avoid the

penalty. Running out of memory never occurs due to the high value of p,
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(0.5) in the probability function for choosing a random action. This can
easily be adjusted by choosing a lower value of p,. The only thing the
system has learned so far is that it is better to not garbage collect than to
garbage collect with a Q-value difference of -10, which is the penalty of

invoking a garbage collection.

[0219] The middle chart 384 in Figure 16 shows the Q-function after
ca 10000 time steps. The probability of choosing a random action has now
decreased. The frequency of invoking a garbage collection has led to a
situation where the system actually runs out of memory and RLS incurs a
large penalty, and thereby improves its knowledge about when it is

preferable to garbage collect.

[0220] The lower chart 386 in Figure 16 illustrates the Q-function
after ca 50000 time steps. At this point of time the Q-values for the different
states converged and RLS follows a policy that is optimal with respect to

the particular test application and the reward function.

[0221] The overall behavior of the RLS is quite similar for the three
test cases presented above. However, there is a slight difference regarding
the number of times the system runs out of memory during learning. In
testing, during the first test application, the system runs out of memory five
times, while during the second and third test application the system runs
out of memory nine and ten times respectively. This indicates that the later
two scenarios are a bit more difficult to learn due to the dynamic memory

allocation rate.

[0222] The RLS may take additional state features into
consideration, in order to achieve even better performance.
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[0223] In some instances, the results from using both the state
features s, and s, (the current amount of available memory and the
previous amount of available memory) may be worse than in the case of
only one state feature. One reason for the inferior behavior is that the new
feature increases the number of states and that therefore converging to the
correct Q-values requires more time. Another reason is that the state
feature s, does not contain the right information as a lot of states that are
never visited, e.g. s, = 10% and s, = 70%. Methods to address this include
using the change in available memory s, - s, as an additional feature at a
resolution: [0-2], [3-4], [5-6], [7-8], [9-10]. In any case the probability for
choosing a random action and the learning rate can be adjusted such that
all states at which the system potentially could run out of memory are
visited frequently enough. Figure 17 shows a graph 400 of accumulated
penalty for two states in accordance with an embodiment of the invention.
The upper chart 402 shows the accumulated penalty for JRockit compared
to the accumulated penalty for the RLS using two state features when
running the test application with randomly appearing intervals. The lower
chart 404 shows that the system still runs out of memory after ca 50000
time steps and hence has not learned all states that lead to running out of
memory due to the increased amount of states and to the additional state
feature not giving enough information, i.e. has not yet converged to a

proper Q-function and policy.

[0224] Plots of the Q-function at different stages during the test
session are illustrated in Figures 18, 19 and 20. In Figure 18 the
Q-function at time step 2500 is illustrated. At time step 2500 the system
has not yet run out of memory and hence has not yet learned any state that
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leads to a penalty of -500. The Q-value for not performing a garbage
collection is always better than the alternative action to perform a garbage
collection. After about 10000 decisions (i.e. at time step 10000) the system
encounters states in which it runs out of memory. This can be seen in
Figure 19 as in states of littte memory available the Q-values for
performing garbage collections are higher than those for not performing
garbage collections. Whereas Figure 19 illustrates the contour plots of the
Q-function after 10000 time steps, Figure 20 shows the same information
after 50000 time steps. At this stage the Q-values did converge. It is
interesting to observe that the part of the state space for which garbage
collection is preferred is much smaller than in the case of only one state

feature, where the decision boundary for s1 was about 12-14%.

[0225] Figure 21 is an enlarged region to show the details from the
contour plots in Figure 20, where s, and s, < 15%. As may be observed,
s, plays some role, otherwise the decision boundary would be a line
parallel to the y-axis. For example, the additional state feature seem to
matter in the state s, = 10% and s, = 15%. This situation represents a high
memory allocation rate (about 5%) and the Q-value for performing a
garbage collection is higher than for not performing one. On the other
hand, in the state s, = 10% and s, = 12% for which the memory'allocation
rate is low (about 2%), the action not to garbage collect has higher Q-value
than the action garbage collect. Such a behavior is intuitively
comprehensible, even though the entire decision boundary for even lower
values of s, and s, cannot be explained satisfactorily. It might be that these
states of very low memory (s,, S, < 5%) are not visited at all once garbage

collection is invoked for their successor states. Therefore, the Q-values for
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this part of the state space are not correct.

[0226] In all the plots above it can be observed that for high memory
available the difference between the Q-values for performing a garbage
collection and not performing a garbage collection is about 10, which
matches exactly the penalty for performing a garbage collection. This
makes sense insofar as the state after performing a garbage collection
when the amount of memory available is high is also one of high memory
available. It can also be seen that states for which s, is much smaller than
s, never occur as the memory allocation rate is limited. This observation
indicates that the memory allocation rate s,-s, is a better state feature to

use than s, in some instances.

[0227] The decision boundary in the case where two state features
were used is more complex than in the case when only one state feature
was used. Basically there are more states in the former case, for which the
RLS has to learn that it runs out of memory if it does not perform a garbage
collection. A way of handling this problem can be to use more tilings, e.g.
one for each state feature separately and one separate for the combination

of the two state features.

[0228] Another problem to consider is that learning in those cases
where two state features are considered seems to be more difficult, as the
state space is more complex. The complexity depends on the increased
number of states, which leads to the increased time it takes for the system
to explore the state space. The system also runs out of memory more often
due to the increased number of states to visit before learning an optimized
behavior. Q-function approximation (i.e. tile coding, function approximation)

can be used to provide a remedy to this problem.
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Design Variations

[0229] Depending on the particular embodiment or implementation,
several variations can be included in the system. The most important

variation is to use additional state features for the decision process.

[0230] A second important aspect s to use more complex scenarios
of memory allocation, in which the memory allocation behavior switches
more rapidly. Other dimensions of the garbage collecting problem such as
object size, levels of references between objects, among others can also

be considered.

[0231] The issue of selecting proper test application environments
also relates to the problem of generalization, i.e., how much does training
on one particular application or a set of multiple applications help to

perform well on unseen applications.

[0232] One technique for improving the system is to decrease the
learning rate more slowly. The same suggestion applies to the probability
for choosing a random action in order to achieve a better balance between
exploitation and exploration. The optimal parameters are best determined

by cross-validation.

[0233] An approach for achieving better results when more state
features are taken into account is to represent the state features differently.
For instance, as mentioned above, radial basis functions may be used for
generalization of continuous state features. A better approach is to
represent the state features with continuous values and instead use a

gradient-descent method for approximating the Q-function.

[0234] A significant factor to consider is the amount of state
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features. A conventional JVM such as JRockit considers only one
parameter for the decision of when to garbage collect. The performance of
the RLS may be improved if additional state information is available. The
potential strength of the RLS reveals itself better if the decision is based on
more state features. The choice of what parameters to include is crucial to

the performance.

[0235] Another important aspect to consider is online vs. offline
performance.
[0236] The present invention may be conveniently implemented

using a conventional general purpose or a specialized digital computer or
microprocessor programmed according to the teachings of the present
disclosure. Appropriate software coding can readily be prepared by skilled
programmers based on the teachings of the present disclosure, as will be

apparent to those skilled in the software art.

[0237] In some embodiments, the present invention includes a
computer program product which is a storage medium (media) having
instructions stored thereon/in which can be used to program a computer to
perform any of the processes of the present invention. The storage
medium can include, but is not limited to, any type of disk including floppy
disks, optical discs, DVD, CD-ROMSs, microdrive, and magneto-optical
disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash
memory devices, magnetic or optical cards, nanosystems (including
molecular memory ICs), or any type of media or device suitable for storing

instructions and/or data.
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[0238] The foregoing description of the present invention has been
provided for the purposes of illustration and description. It is not intended
to be exhaustive or to limit the invention to the precise forms disclosed.
Many modifications and variations will be apparent to the practitioner
skilled in the art. Particularly, it will be evident that while embodiments of
the invention have been described herein with respect to implementation
within or in comparison with a WeblL.ogic or JRockit environment, that
various embodiments and other implementations may also be used with
other application servers, virtual machines, and environments. The
embodiments were chosen and described in order to best explain the
principles of the invention and its practical application, thereby enabling
others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited to the
particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalence.
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What is claimed is:
1 A system for memory management comprising:

a computer system or virtual machine having a memory space; and,

wherein reinforcement learning is used to control the management

of the memory space.

2. The system of claim 1 wherein the management of the memory or

storage space includes a garbage collection process.

3. The system of claim 1 wherein the virtual machine is a Java Virtual
Machine.
4. The system of claim 1 wherein the reinforcement learning uses a

temporal différence method.

5. The system of claim 4 wherein the temporal difference method uses
on-line SARSA.
6. The system of claim 5 wherein the temporal difference method using

SARSA uses tile coding.
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7. A system for memory management comprising:
a computer system including a virtual machine operating thereon;

amemory space within said computer system and accessible by the

virtual machine for the runtime storage and execution of applications; and,

a garbage collector that uses reinforcement learning to control the

allocation of memory to applications within said memory space.

8. The system of claim 7 wherein the virtual machine is a Java Virtual
Machine.
9. The system of claim 7 wherein the reinforcement learning uses a

temporal difference method.

10.  The system of claim 9 wherein the temporal difference method uses
on-line SARSA.

11.  The system of claim 10 wherein the temporal difference method
using SARSA uses tile coding.

12. A method for memory management comprising the steps of:

analyzing the memory or storage space of a computer system or

virtual machine; and,
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using a reinforcement learning technique to control the management

of the memory or storage space.

13.  The method of claim 12 wherein the management of the memory or

storage space includes a garbage collection process.

14. The method of claim 12 wherein the virtual machine is a Java Virtual

Machine.

15.  The method of claim 12 wherein the reinforcement learning uses a

temporal difference method.

16. The method of claim 15 wherein the temporal difference method
uses on-line SARSA.

17. The method of claim16 wherein the temporal difference method

using SARSA uses tile coding.
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