

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2022/0054927 A1 THERIAULT et al.

Feb. 24, 2022 (43) **Pub. Date:**

(54) ADVANCED SYSTEM FOR PHYSICAL CONDITIONING AND SPORTS TRAINING

(71) Applicant: HockeyShot Inc., Scoudouc (CA)

Inventors: Jonathan THERIAULT, Shediac River

(CA); Paul BRUN, Grand-Barachois (CA); Aaron BIDDINGTON,

Boudreau-Ouest (CA)

Assignee: HockeyShot Inc., Scoudouc (CA)

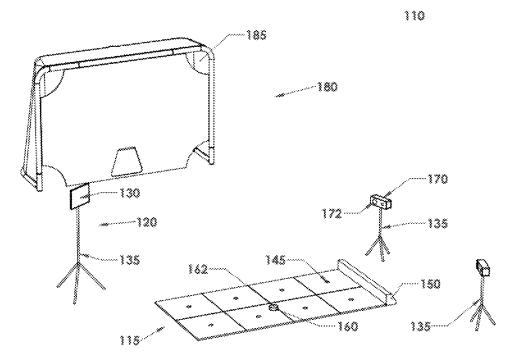
Appl. No.: 17/409,389

(22) Filed: Aug. 23, 2021

Related U.S. Application Data

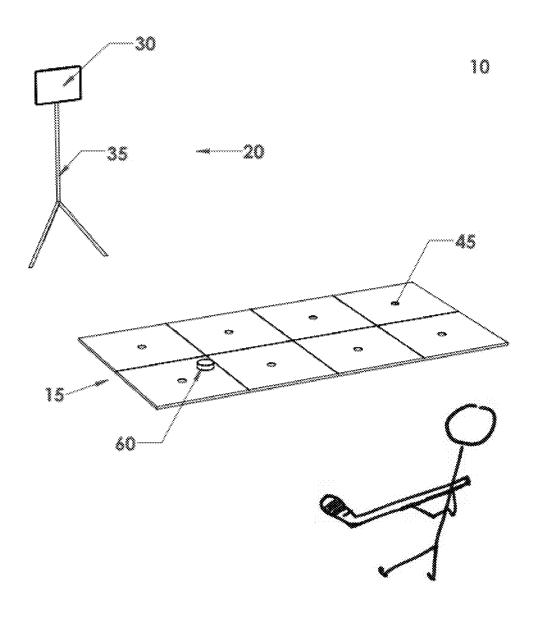
Provisional application No. 63/068,699, filed on Aug. 21, 2020.

Publication Classification

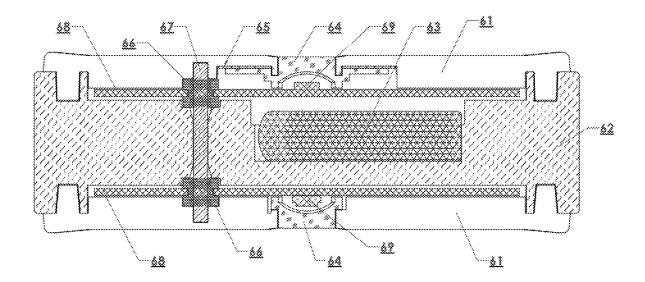

(51) Int. Cl. A63B 71/06 (2006.01)A63B 67/14 (2006.01) A63B 69/00 (2006.01)(2006.01)A63B 24/00

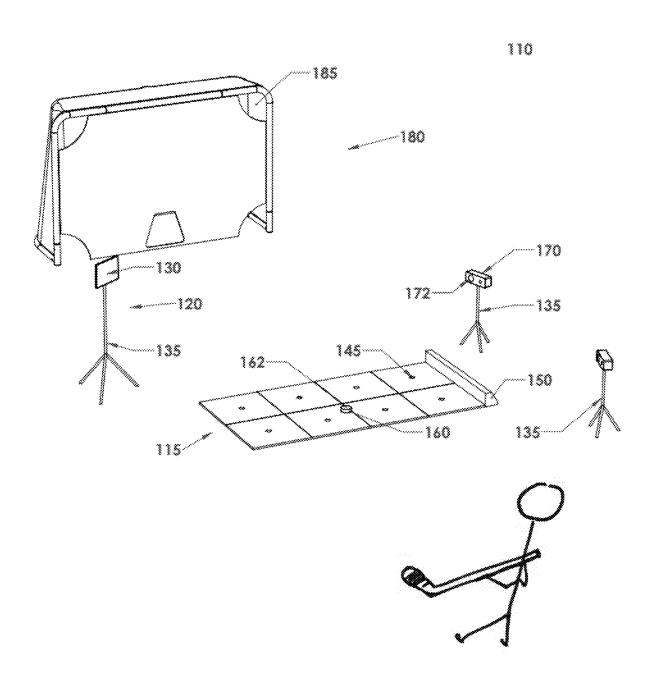
U.S. Cl.

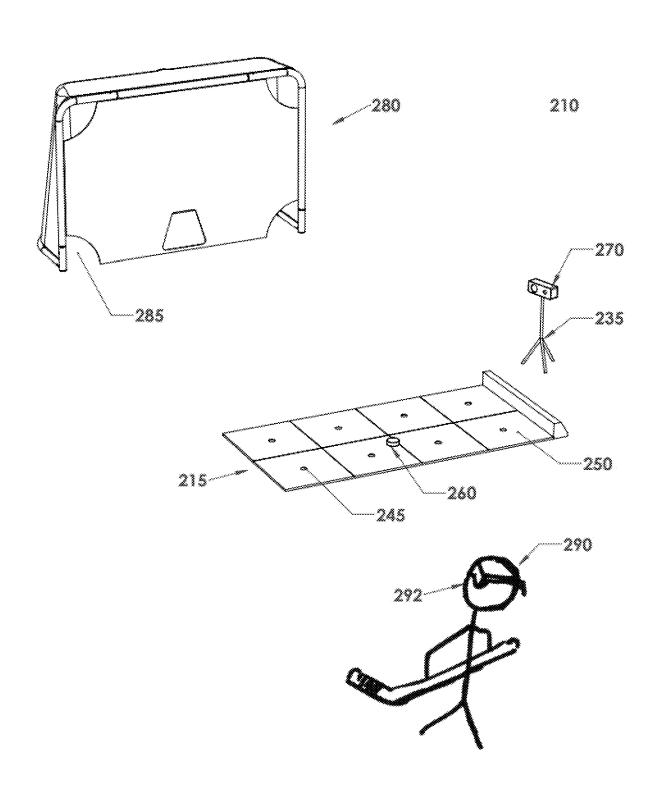
CPC A63B 71/0622 (2013.01); A63B 67/14 (2013.01); A63B 69/0024 (2013.01); A63B 24/0021 (2013.01); A63B 2024/0028 (2013.01); A63B 2220/806 (2013.01); A63B 2220/05 (2013.01); A63B 2071/0666 (2013.01); A63B 2071/063 (2013.01); A63B 2225/54 (2013.01)

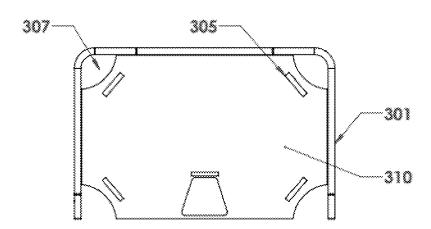

(57)ABSTRACT

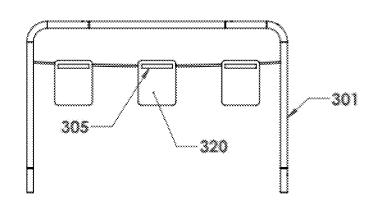
The present disclosure provides a system for conditioning and training, generally comprising a floor portion and at least one guide within a line of sight of the floor portion. The guide is configured to display training programs for a user to use to improve sports skills, such as hockey skills for example. In an embodiment, the floor portion has RFID tags to determine where a puck or other object is located. In another embodiment, the system has an apparatus to determine, verify or display a puck location. The apparatus can be either a camera or an AR unit such as glasses. Based on information provided and received, the system can tailor exercises for a user and provide enhanced statistics to improve skills.

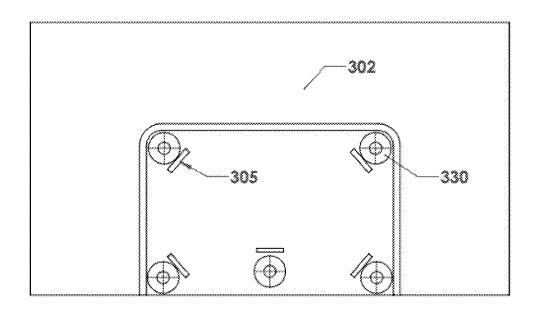


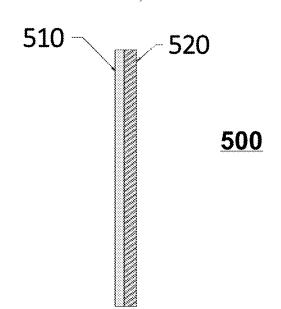

FIGURE 1

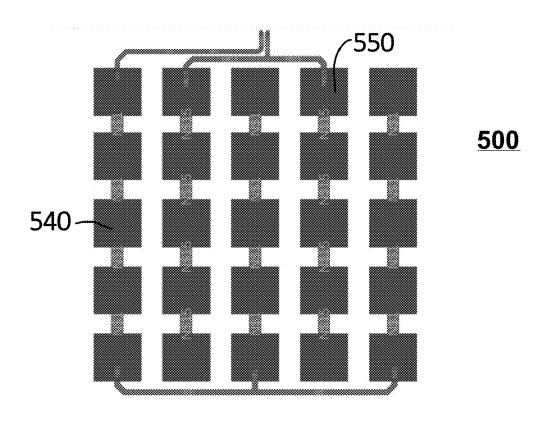

FIGURE 1A

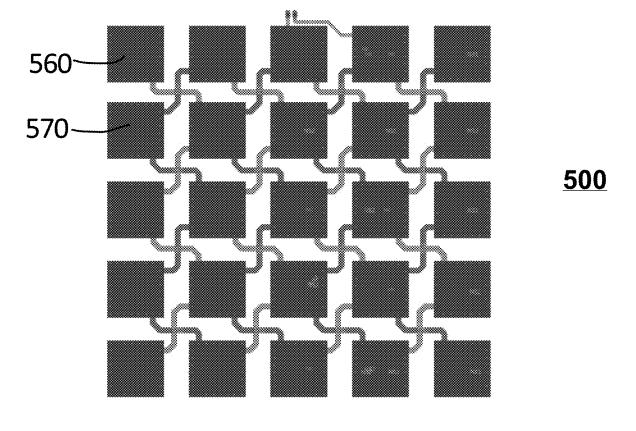


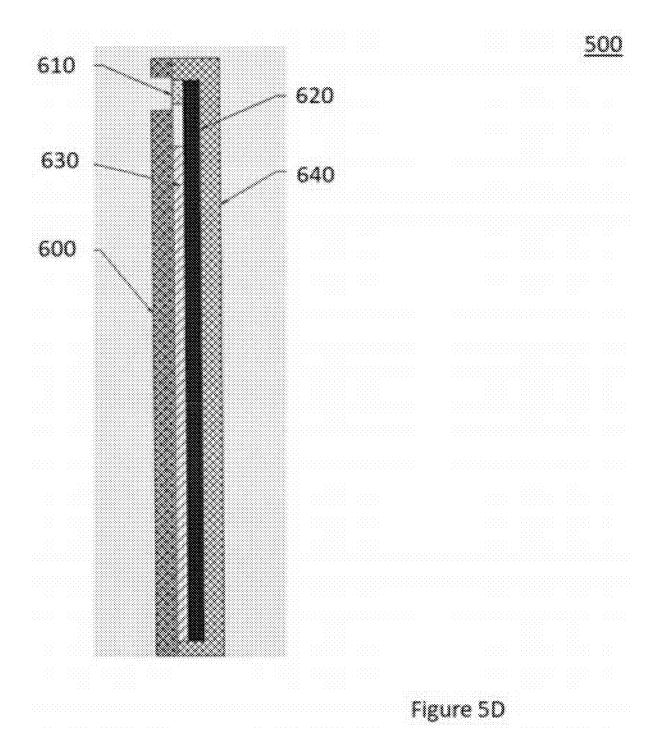

EIGURE 2

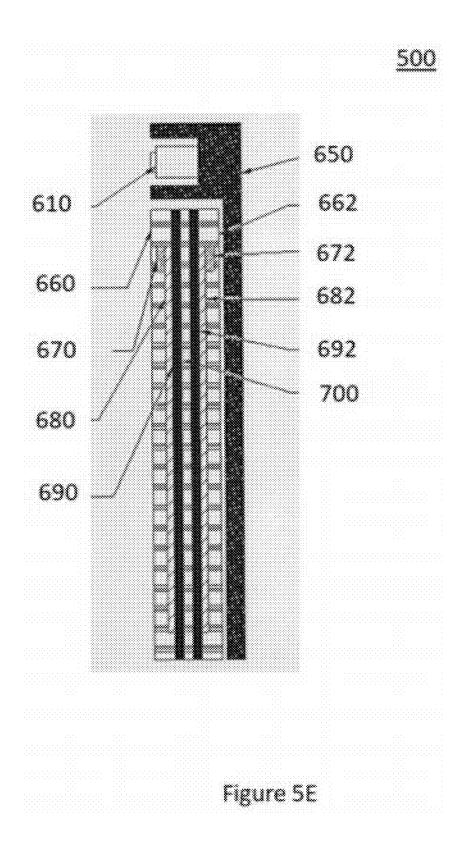


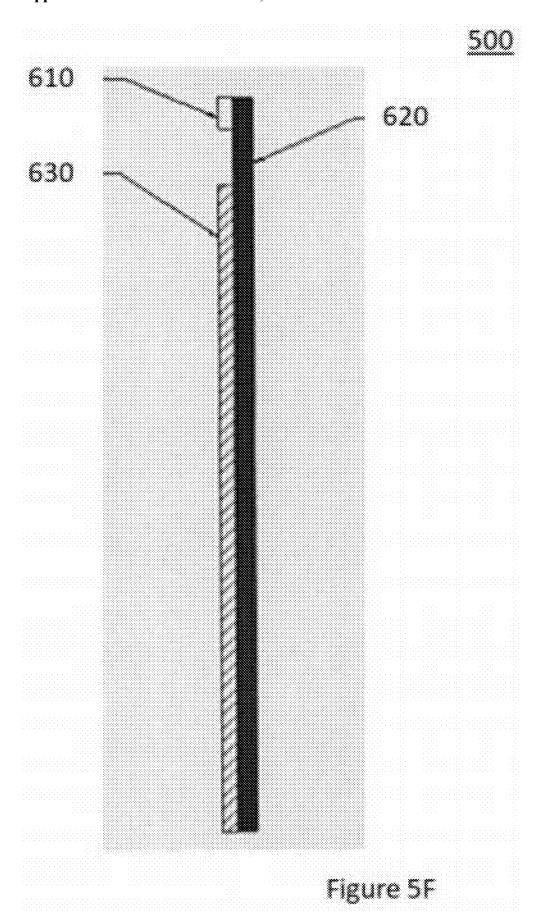

FIGURE 3






FIGURE 5A




FIGURE 5B

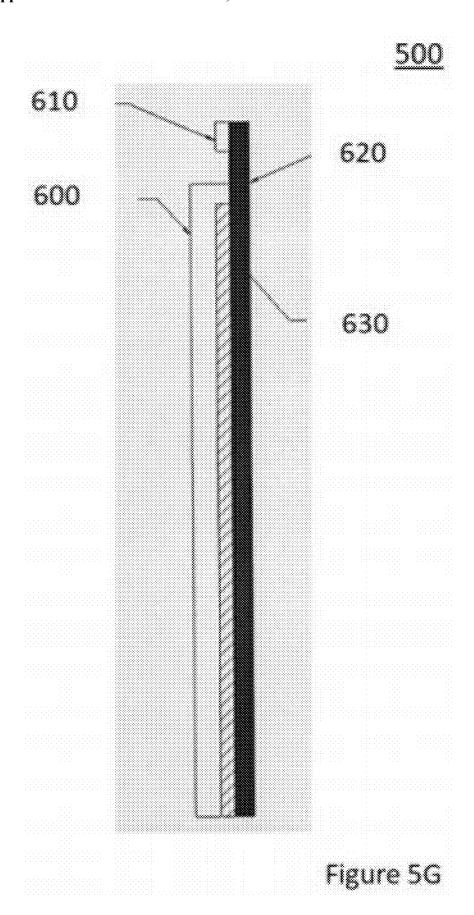


FIGURE 5C

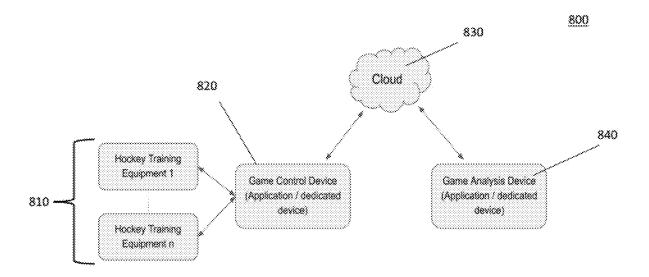


Figure 6

ADVANCED SYSTEM FOR PHYSICAL CONDITIONING AND SPORTS TRAINING

CROSS REFERENCE TO RELATED APPLICATION

[0001] The present application claims priority to U.S. Provisional Application No. 63/068,699, entitled "Advanced System for Physical Conditioning and Sports Training" filed on Aug. 21, 2020, the contents of which are incorporated herein by reference in their entirety.

FIELD

[0002] The disclosure relates to the field of training, and more specifically to an advanced interactive system for physical conditioning and sports training.

SUMMARY

[0003] In an aspect, the present disclosure provides a system for conditioning and training comprising: a floor portion further comprised of a plurality of radio-frequency identification (RFID) tags; and, at least one guide in within a line of sight from the floor portion, wherein the system displays instructions on the at least one guide and determines a correct position of an object on the floor portion, and wherein data is generated to improve conditioning and training an operator.

[0004] In another aspect, the present disclosure provides a system for conditioning and training comprising: at least one guide in within a line of sight from a surface area; and, at least one apparatus, wherein the system displays instructions on the at least one guide and the at least one apparatus determines a correct position of at least one object on the surface area, and wherein data is generated to improve conditioning and training an operator.

[0005] From a very broad point of view this system works as follow: first, an instruction is given to the player via screen such as a tablet, mobile or via voice command and the user then tries to recreate/follow the said instruction as quickly as possible and/or as accurately as possible. The system is then able to track the movement and location of the puck (or other) and analyze the users' performance. Scoring and points can be recorded to gamify the training and to enable the user to see an improvement in performance. On top of being able to record the user performance, the system is using AI technology to further recommend or adjust the training routines of the user based on the data patterns available so as to target training to areas of improvement. There is also means for the system to share the scoring with other users via an online platform. With the online platform, the user has a means to compare their performance with other individuals from the same age group but also can provide those numbers to trainers that can further help the user in developing specific skills. There are two different categories of training that are available to choose from. The first type of training is game-like, where precision is not necessarily required but it will help the player to build up his speed, stickhandling, heads up capability and his confidence overall. In the other type of training, puck placement precision is important, as well as the speed at which the puck is being moved. In this case, the training is meant to be less of a game and more geared towards actual performance from the athlete. Here, the data analytics will help players and coach to improve specific skill and also, in some extent, be able to compare various players in different skill area of the game. Over time, the player will be able to track their improvements, which, with some help of statistical analysis, could even help forecast what performance can be expected in the future.

[0006] Stickhandling, puck control, speed and precision of puck placement are the three main aspects the systems described herein are recording and analyzing. In shooting, the puck speed and the accuracy are the main components recorded. Here, the systems record the amount of shots taken, the amount of target hit and the time spent between the moment the signal was given and the target being hit to evaluate what the reaction time of the user is. Passing is another aspect that may be recorded, where the puck placement and speed would be analyzed.

[0007] In accordance with the present embodiment, there is a puck comprising of an RFID antenna used to detect passive RFID tags placed throughout the training area on top of the tiles used to confirm the position of the puck on the surface. The puck may also have a microprocessor and wireless transmitter to allow the puck to send data from the RFID reader and/or other sensors on the device wirelessly. A software application running on a device with computing capabilities, such as a tablet, mobile phone or even dedicated computer, receives the data from the puck analyses it and further incorporates it in an advanced training application. It should also be noted that the opposite is also possible, where the RFID readers are located within or under the surface and the RFID tag is moving with the puck.

[0008] This application can display to the user where to locate the puck on the training surface. Furthermore, the application can recognize the user's weaknesses in implementing a training pattern that will help overcome the said weakness. This application may also analyze which stick-handling patterns the players have difficulty with and suggests certain patterns and other advice to help the player improve their skills.

[0009] In another embodiment, there is a device that includes a camera or multiple cameras that oversee the training surface and are able to send the data via wireless means to a software running on an electronic device that can follow the movement of the puck. This application can compare the movement of the puck with the training instructions given to the user and adjust the training instructions according to weaknesses detected during the said training. This system is particularly advantageous, as it does not require the user to use a puck filled with electronics, allowing the user to practice shooting skills using multiple pucks, as they would normally do. It is noted that an infrared camera could be used to help track the puck movement if the puck is equipped with a small infrared light or reflector on both sides

[0010] In another embodiment, not only there is a camera used to track the movement of the puck but the user is also wearing glasses that are equipped with augmented reality (AR) technology that allows the user to see, in real time, training instructions without having to look at a screen. Those glasses are connected to a computer that analyzes the data from the camera and the software then provide up-to-date score and tips to help further the player.

[0011] In another embodiment where the player is training for shooting accuracy, some targets are placed in front of a net or another surface and lights are used to indicate which target the player should aim for. Using video technology or

other type of technology, the system can detect if an attempt was made to hit the target and if the target was indeed hit. This allows for the software to then analyze not only how long it took for the player to hit certain target but how many attempts it took and adjust the training in the future in a way that help the user to improve in the areas where those weaknesses were detected.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The following figures serve to illustrate various embodiments of features of the disclosure. These figures are illustrative and are not intended to be limiting.

[0013] FIG. 1 is a perspective view of a system for physical conditioning and sports training using RFID technology to confirm puck location on a training surface, according to an embodiment of the present disclosure;

[0014] FIG. 1A is a cross-section view of a puck for use in the present system, according to an embodiment of the present disclosure.

[0015] FIG. 2 is a perspective view of a system for physical conditioning and sports training using machine vision technology to confirm puck location on a training surface, according to an embodiment of the present disclosure:

[0016] FIG. 3 is a perspective view of a system for physical conditioning and sports training using machine vision technology to confirm puck location on a training surface and provide instructions to a user using AR technology-equipped glasses, according to an embodiment of the present disclosure;

[0017] FIG. 4A is a front view of a goal covered with a training tarp where the targets are openings, according to another embodiment of the present disclosure;

[0018] FIG. 4B is a front view of a goal having three strung up targets, according to another embodiment of the present disclosure; and,

[0019] FIG. 4C is a front view of a training tarp having illustrated goals and targets, according to yet another embodiment of the present disclosure;

[0020] FIG. 5A is a cross sectional view of a target for use in the present system according to one embodiment of the present invention;

[0021] FIG. 5B is a single layer printed circuit board (PCB) used in a target according to one embodiment of the present invention;

[0022] FIG. 5C is two-layer printed circuit board (PCB) layout used in a target according to one embodiment of the present invention;

[0023] FIG. 5D is a cross-section of a target for use in the present system according to one embodiment of the present invention:

[0024] FIG. 5E is a cross-section of another target for use in the present system according to one embodiment of the present invention;

[0025] FIG. 5F is a cross-section of another target for use in the present system according to one embodiment of the present invention;

[0026] FIG. 5G is a cross-section of another target for use in the present system according to one embodiment of the present invention; and

[0027] FIG. 6 is a flow chart showing data being transmitted over a network.

DETAILED DESCRIPTION

[0028] The following embodiments are merely illustrative and are not intended to be limiting. It will be appreciated that various modifications and/or alterations to the embodiments described herein may be made without departing from the disclosure and any modifications and/or alterations are within the scope of the contemplated disclosure.

[0029] With reference to FIG. 1 and according to an embodiment of the present disclosure, a system for physical conditioning and sports training 10 is shown, preferably comprised of a floor portion 15 and at least one guide 20 positioned within a line of sight of the floor portion 15. A worker skilled in the art would appreciate that the system 10 is preferably used to practice hockey stickhandling. Indeed, the system 10 helps a user develop excellent stickhandling skills by practicing heads-up, peripheral view feel of an object such as a puck 60 on stick blade, sensing of puck 60 location/movement during stickhandling, memory recall of locations for stickhandling and quick eye drop to adjust the puck on stick blade. The guides 20 are generally comprised of a front display unit 30 that is mounted on a stand such as a tripod 35. The instructing devices are preferably equipped to transmit and receive data over a WiFi or other wireless network, such that the guide 20 may receive training modules to properly display specific training exercises from an operator, or send training data to the operator. In a preferred embodiment, the front display unit 30 is a screen such as an LED or LCD screen, capable of displaying a variety of graphics, lights, sounds to assist an operator when using the system 10. In this particular embodiment, the display unit 30 is a mobile tablet. The display unit 30 is also running a software (app) to send and receive the aforementioned data from an operator and puck 60 and actuate the screen to provide instructions to move the puck 60 on the floor portion 15 and over the markers 45 in specific sequences. In a preferred embodiment, the markers 45 are RFID passive labels or IR reflective stickers. The puck 60 is equipped with a RFID reader or an IR receiver that would detect if the puck 60 went to the correct location and transmit back the data to the unit 30 for scoring purposes. The puck would also have the following components (Microcontroller, Battery, BLE and/or wifi modules) to make it a "SMART PUCK" that can then be used for training with multiple products.

[0030] With reference to FIG. 1A and according to one embodiment of the present invention, a cross-section of a puck 60 used in the present invention is shown. The components of puck 60 are comprised of two gliding surfaces 61 which are located on the top and bottom surfaces of puck 60. Puck 60 has a core 62 made of an energy-absorbing elastomer and a battery 63 secured within core 62. Puck 60 further comprises printed circuit boards PCB 68, each sandwiched between core 62 and surfaces 61. Here, the PCBs 68 have a small light (LED) 69 that can be used to verify the various status of the device. Both surfaces 61 have a transparent opening 64 allowing a user to view light 69. The PCBs 68, core 62 and surfaces 61 are assembled through the use of axial pins 67. It is also preferred to use a grommet 66 to further prevent damage to the PCBs 68 during use. A worker skilled in the relevant art would be familiar with the use of components allowing to secure PCB 68 within a puck and such knowledge would not be limited to a grommet.

[0031] With further reference to FIG. 1A and according to one embodiment of the present invention, a first PCB 68 incorporates the main locating sensor (whether it be IR,

RFID, or other), processing and communication antenna and the second PCB **68** provides the power management aspect for puck **60**. In another embodiment, puck **60** could consist of a single PCB **68** which provides all functions of puck **60** for example, power management, puck location, processing and communicating with unit **30** as described in FIG. **1**.

[0032] With further reference to FIG. 1 and according to one embodiment of the present invention, guides 20 must also remain within line of sight of the floor portion 15, as a user needs to see them to know which exercise to perform. Although eight markers 45 are shown per floor portion 15, a preferred range is between four and twelve markers 45. Having a variety of markers 45 in different sizes and colors to provide a user with the ability to perform complex shooting and stickhandling moves is an advantage of the system 10. In another embodiment where the floor portion 15 is much larger, the markers 45 could also be located on cones, rebounding apparatus, dummies, etc, without departing from the scope of the disclosure.

[0033] With reference to FIG. 2 and according to another embodiment of the present disclosure, a system for physical conditioning and sports training 110 is shown, preferably comprised of a floor portion 115, at least one guide 130 positioned within a line of sight of the floor portion 115, at least one camera apparatus 170 and optionally, a targeting portion 180 with targets 185. A worker skilled in the art would appreciate that in another embodiment, the floor portion 115 is not required and an existing surface area could be used. The guides 120 have a front display unit 130 mounted on a stand 135; however, the tracking of the puck 160 would be done using the camera apparatus 170 that includes a microcontroller and the ability to transfer data via a wired or wireless connection in conjunction with machine vision technology. Furthermore, an infrared camera 172 on module 170 and an infrared light 162 or led on each side of the puck 160 will assist in tracking the puck 160. It is advantageous to have an infrared light 162 (or reflector) on each side of the puck so that if the puck 160 is flipped, the training can continue uninterrupted. The infrared camera helps simplify the image processing as it is only processing the infrared spectrum versus the full light spectrum visible by the human eye. Multiple camera modules 170 can be used to have a better view of the floor portion 115 and avoid losing track of the puck 160 during training session if the view is obstructed. Predictive trajectory calculation can also be used in an attempt to know where the puck 160 is located based on previous trajectory and speed if something or someone momentarily obstructs the camera's field of vision. For example, in a preferred embodiment, predictive trajectory calculation may use frames of video footage as individual, discreet photographs. Based on these photographs, a speed and trajectory can be calculated to determine where, within a certain error margin, where the puck 160 will end up on the targeting portion 180 or another receiving surface. [0034] Another embodiment for the vision technology (camera 170) will be in its use to determine a player's proper form while performing training and allow for a feedback loop to the player so as to improve their stance amongst various training activities.

[0035] The floor portion 115 is further comprised of markers 145 to assist a user with stickhandling drills. Indeed, the markers 145 are preferably illuminated under the floor portion 115; however, a worker skilled in the art would appreciate that the markers 145 could be painted dots,

stickers, friction rubber dots either on the top surface or underneath a transparent floor portion 115.

[0036] With reference to FIG. 3 and according to another embodiment of the present disclosure, a system for physical conditioning and sports training 210 is shown, preferably comprised of a floor portion 215, at least one puck 260, glasses embedded with augmented reality (AR) technology 290 and, optionally, a passing apparatus 250, and optionally a targeting portion 280 with targets 285. A worker skilled in the art would appreciate that in another embodiment, the floor portion 215 is not required and an existing surface area could be used. As shown, the targeting portion 280 is a hockey net with targets 285. The glasses 290 would have a camera 292 to register what the user sees and display instructions and information on the lens of the glasses 290 in a way that it overlays the training devices used in the vision field of the user. For example, a certain routine could have the player stickhandle by displaying flashing circles over the markers 245, which the user would see with glasses 290. The user would understand having to bring the puck 260 over the flashing circles. The glasses 290 may then highlight a certain target 285 on the targeting portion 280, at which the user would understand having to shoot the puck 260 at that particular target 285. To help locate the user's position in relation to the floor portion 215, a camera module 270 can also be used. The floor portion 215 is further comprised of markers 245 to assist a user with stickhandling drills and help the system 210 locate itself and the objects being used. A worker skilled in the art would appreciate that the markers 245 could be painted dots, stickers, friction rubber dots either on the top surface or underneath a transparent floor portion 215.

[0037] An advantageous feature of the systems 110 and 210 shown in FIGS. 2 and 3, respectively, is that the systems 110, 210 provide both stickhandling and shooting functions. The floor portion 215 provides a means to increase stickhandling skills, while the guides 120 (or glasses 290) light up in sequences to be followed by the user to increase shooting skills without the need for a special puck and with the possibility of using a multitude of pucks 260 to further increase the efficiency of the training session. With specific reference to FIG. 2, it is also an advantage of the system 110 for the user to look up at the guides 120, the guides 120 indicating to the user where to shoot the puck 160. Therefore, the user or player is only looking at a single location, and the guide 120 lights up random target location patterns forcing the player to work on reaction time.

[0038] With reference to FIGS. 4A, 4B and 4C and according to an embodiment of the present disclosure, various targeting portions are shown. A tutor 310 is shown in FIG. 4A, the tutor 310 being a material that only allows the puck (not shown) to go through apertures 307 having specific shapes and positions on the tutor 310. Various targets 320 are shown in FIG. 4B, the targets (which include accelerometer sensors and have the ability to communicate over wired or wireless channels to a microcontroller) 320 hung in a goal 301. Meanwhile, a wall portion 302 is shown in FIG. 4C, the wall portion 302 having a plurality of target areas 330 printed on the wall portion 302 or cut out of the wall portion 302 to create apertures.

[0039] With further reference to FIGS. 4A, 4B and 4C and according to one embodiment of the present invention, each one of the apertures 307, targets 320 and targets areas 330 have an optional indicator light 305. During shooting prac-

tice, indicator lights 305 are activated, showing the user where to aim at and will be turned off once the task is accomplished, allowing the sequence to continue. Such apertures 307, targets 320 and targets areas 330 can also be equipped with sensors being able to detect not only if the active target was hit, but also detect incoming puck, an important feature required to track progression of the user's accuracy. A worker skilled in the art would appreciate that the target areas 330 could be apertures, flaps, or simply markings or other targeting means on the wall portion 302. This is also valid for the tutor 310. An ideal range of targets quantity is between five and nine.

[0040] With reference to FIG. 5A and in another embodiment of the present invention, a target 500 for use in the present system is shown. The target 500 is made of semiconductive material 510 layered with a FR4 PCB 520 for puck impact detection and to communicate over a wired or wireless channel to a microcontroller. A semi conductive material such as VelostatTM or LingstatTM can be used as the semiconductive material for this target. Other materials such as conductive or semi conductive rubber, conductive or semi conductive foam, conductive or semi conductive felt, conductive or semi conductive ink can also be used.

[0041] A conductive material such as copper, silver, gold, or any other conductive material can be used as the positive and negative terminal of the sensor. Conductive fiber imbedded fabrics, conductive foam, or conductive tape can also be used as the positive and negative terminal of the sensor. The semiconductive material has an internal volumetric resistance that changes when pressure is applied to the material. Combining these properties with electrical connections allows to detect a change in voltage throughout the target using a voltage divider or a microcontroller throughout the target. The different layering method of conductive, semiconductive, and non-conductive materials are used to provide a target with either or both mechanical and electrical pressure sensing abilities allowing to vary the intensity of any routines from the present system.

[0042] With further reference to FIG. 5A and according to one embodiment of the present invention, target 500 is made of a semi-conductive carbon-infused PE 510 layered in front of a FR4 PCB 520 for puck impact detection.

[0043] With reference to FIGS. 5B and 5C and according to one embodiment of the present invention, there are 2 methods available for the target 500 to detect impacts. FIG. 5B shows the two different terminals, 540 and 550, in consecutive rows and connected using a single layer PCB. A crisscross pattern, such as depicted in FIG. 5C, is preferred. In this configuration, 560 and 570 terminals are in a checkered configuration via a routing of the connections on a dual-layer PCB (not shown). A PCB with a conductive pad can also be used as the positive and negative terminal of the sensor.

[0044] With reference to FIGS. 5D to 5H and according to other embodiments of the present invention, various targets are shown for use in the present system. These various configurations allow the present system to provide different results either in measurement or in display. With reference to FIG. 5D and according to one embodiment of the present invention, target 500 is shown having a protective front layer 600 and an LED 610. PCB 620 is present in the central portion of the target 500 allowing for various functions of the target as described in the present disclosure. A semi-

conductive layer 630 is positioned between protective front layer 610 and PCB 620. An enclosure 640 provides further rigidity to target 500.

[0045] With reference to FIG. 5E and according to another embodiment of the present invention, a target 500 is shown having a number of layers providing for different functions and protection from the environment and puck impact for example. Target 500 has LED 610 within a nylon frame 650. Non-conductive PE polyethylene layers 660 and 662 are present to seal against weather effects such as rain or snow. Target 500 has conductive copper strips 670 and 672 which act as ground terminals. Further layers of carbon embedded material 680,682 and carbon embedded polyethylene (PE) 690, 692 are also present allowing specific functions to the target. A final middle layer 700 is present as a non-conductive layer to separate the carbon imbedded PE layers 690 and 692

[0046] With reference to FIGS. 5F and 5G and according to one embodiment of the present invention, a target 500 is shown having a LED 610 and a semi-conductive layer 630 wherein the LED 610 is installed on PCB 620. A protective membrane 600 can also be present.

[0047] With reference to FIG. 6 and according to one embodiment of the present disclosure, an interactive hockey training software application 800 is shown. The interactive hockey training application 800 consist of connecting N-number of training systems 810 from the present disclosure to a game control device 820. Game Control Device 820 is responsible for connecting 'n' number of training systems 810 via bluetooth/wifi connections. Once the connection is established the game control device 820 lets players send commands to start training, end training and other training configurations and modes to the connected training systems 810.

[0048] Each connected training system 810 sends training data to game control device 820 in real time. The data is saved locally using a local database for further processing. After completing a training session the data is further cleaned and sent to a cloud system 830 to be accessed on a game analytics device.

[0049] The cloud system 830 is responsible for maintaining all historical data for players' training, analyze their progress using AI and machine learning methods. A recommendation engine is used to propose new training patterns and schedules to the players which can be displayed on a Game analysis device 840. Game Analysis Device 840 is a display device/application that collects historic training and analyses data from the cloud and presents it to a user.

[0050] The Game Control Device 820 and the Game Analysis Device 840 allow players to connect with other players, and the ability to train together physically and remotely. The system 800 lets users to challenge other user or allows them to participate in a training challenge.

[0051] The Game Control Device 820 and the Game Analysis Device 840 also allows users to share their training stats, challenge performance, training pattern and training progress with other players.

[0052] The game control device 820 and game analysis device 840 can be different devices or can be on a single device allowing for both functions of the control and analysis devices. A worker skilled in the relevant art would be familiar with the implementation of available software architecture to combine both features into a single device.

- [0053] A worker skilled in the art would appreciate that although the present embodiments are directed to hockey training specifically, the systems 10, 110, 210 could be used for other sports, including but not limited to soccer, baseball, football, racket ball, etc or simply general conditioning and fitness. A worker skilled in the art would also appreciate that each of the systems 10, 110, 210 will analyze the training and conditioning to generate data that is used to improve the ability of the operator of the systems 10, 110, 210.
 - 1. A system for conditioning and training comprising:
 - a floor portion further comprising a plurality of radiofrequency identification (RFID) tags; and,
 - at least one guide within a line of sight from the floor portion,
 - wherein the system displays instructions on the at least one guide and determines a correct position of an object on the floor portion,
 - and wherein data is generated to improve conditioning and training an operator.
- 2. The system of claim 1 wherein the at least one guide is a display unit.
- 3. The system of claim 2 wherein the object is a puck having at least one printed circuit board.
- **4**. The system of claim **3** wherein the puck communicates with the display unit.
- **5**. The system of claim **1** further comprising the display of past results and results from other systems for conditioning and training.

- **6.** A system for conditioning and training comprising: at least one guide within a line of sight from a surface
- area; and, at least one apparatus.
- wherein the system displays instructions on the at least one guide and the at least one apparatus determines a correct position of at least one object on the surface area.
- and wherein data is generated to improve conditioning and training an operator.
- 7. The system of claim 6 wherein the object is a puck.
- 8. The system of claim 7 further comprising targets for use with the puck.
- 9. The system of claim 8 further comprising a printed circuit board in the targets for communicating with the at least one guide.
- 10. The system of claim 7 further comprising a wall portion with target areas for use with the puck.
- 11. The system of claim 9 wherein the at least one guide is a display unit.
- 12. The system of claim 11 further comprising a game control device and game analysis device.
- 13. The system of claim 12 wherein the game control device connects an n-number of systems for conditioning and training to the game analysis device.
- 14. The system of claim 6 wherein the apparatus is a camera.
- 15. The system of claim 6 wherein the apparatus is an AR unit in the form of glasses.

* * * * *