SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Abstract: A substrate processing apparatus, in which a substrate is conveyed in a first direction and a surface to be processed of the substrate is processed, is provided with: a first guide member that guides the substrate in the first direction; a second guide member that guides the substrate guided thereto by the first guide member; a tension imparting mechanism that applies a tension to the substrate between the first guide member and the second guide member and reduces the dimension of the substrate in a second direction that intersects with the first direction; and a processing device that processes a surface to be processed of the substrate between the first guide member and the second guide member.

要約: 基板を第一方向に搬送し、基板の被処理面を処理する基板処理装置において、第一方向に設置された第一案内部材から案内された基板を案内する第二案内部材と、第一案内部材および第二案内部材を含む第二案内部材と、第一案内部材と第二案内部材との間で基板に張力に応じて第一方向に交差する第二方向の基板の寸法を縮小させる張力付与部と第一案内部材と第二案内部材との間で基板の被処理面を処理する処理装置を備える。
添付公開書類：
- 国際調査報告（条約第21条(3)）
明細書
発明の名称：基板処理装置、及び基板処理方法

技術分野
[0001] 本発明は、フィルムやシート等のウェブ基板にパターンニング等の高精度な加工を施すための基板処理装置、並びにウェブ基板の搬送装置に関する。また、本発明は、高精度な加工を施すための基板処理方法を提供することを目的とする。

本願は、2011年11月4日に出願された日本国特願2011-242788号に基づき優先権を主張し、その内容をここに援用する。

背景技術
[0002] ディスプレイ装置などの表示装置を構成する表示素子として、例えば液晶表示素子、有機EL素子、電子ペーパに用いられる電気泳動素子などが知られている。これらの素子を作製する手法の1つとして、例えばロール・トウ・ロール方式（以下、単に「ロール方式」と表記する）と呼ばれる手法が知られている（例えば、特許文献1参照）。

[0003] ロール方式は、基板供給側のローラーに巻かれた1枚のシート状の基板（ウェブ）を送り出すと共に、送り出された基板を基板回収側のローラーで巻き取りながら基板を搬送し、基板が送り出されてから巻き取られるまでの間に、表示回路やドライバ回路などのパターンを基板上に順次形成する手法である。近年では、高精度のパターンを形成する処理装置が提案されている。

先行技術文献

特許文献
[0004] 特許文献1：国際公開第2006/100868号

発明の概要
発明が解決しようとする課題
[0005] しかしながら、更なる高精度化に対応する場合、処理装置のパターンニング
精度（高解像化、転写パターンの低歪み化等）を求めるだけでは不十分となる場合がある。

本発明の様態は、高精度の処理が可能な基板処理装置、またはウェブ基板を精密に搬送する装置を提供することを目的とする。また、本発明の別の様態は、高精度の処理が可能な基板処理方法を提供することを目的とする。

課題を解決するための手段

本発明の第一の様態に従えば、帯状に形成された基板を第一方向に搬送し、基板の被処理面を処理する基板処理装置において、基板を第一方向に案内する第一案内材と、前記第一案内材から案内された基板を案内する第二案内材と、第一案内材と二案内材との間で基板に張力を保与し、第一方向に交差する第二方向の基板の寸法を縮小させる張力保与機構と、第一案内材と第二案内材との間で、基板の被処理面を処理する処理装置とを備える基板処理装置が提供される。

本発明の第二の様態に従えば、シート状の長尺な基板を長尺方向に搬送して、その基板の上に所定のパターンを順次に形成する基板処理方法であって、前記パターンが形成される前記基板の部分領域を前記長尺方向と直交する幅方向に収縮させる際の収縮の度合いに関する情報を取得する工程と、前記長尺方向において前記基板の部分領域を挟む特定の２ヶ所の位置の間で、前記収縮の度合いに関する情報に基づいて前記基板に長尺方向の張力を保与する工程と、を備える基板処理方法が提供される。

発明の効果

本発明の様態によれば、高精度の処理が可能な基板処理装置を提供できる。また、本発明の別の様態によれば、高精度の処理が可能な基板処理方法を提供できる。

図面の簡単な説明

図1 本実施形態に係る基板処理装置の全体構成を示す模式図である。
図2 本実施形態に係る処理装置の第1の構成を示す正面図である。
図3 図2の第1の構成を上から見た平面図である。
図4] 本実施形態による基板の伸縮の状態を示す図である。
[図5] 第1のシミュレーションによる基板収縮の変化を示すグラフである。
[図6] 第2のシミュレーションによる基板収縮の変化を示すグラフである。
[図7] 第3のシミュレーションによる基板収縮の変化を示すグラフである。
[図8] シミュレーション結果から求まる基板収縮の条件を表すグラフである。
[図9] 本実施形態に係る処理装置の第2の構成を示す平面図である。
[図10] 本実施形態に係る処理装置の第3の構成を示す正面図である。
[図11] 図10の第3の構成を上から見た平面図である。
[図12] 本実施形態に係る処理装置の第4の構成を示す図である。
[図13] 図12の第4の構成により処理される基板の様子を示す図である。
[図14] 本実施形態に係る処理装置の第5の構成を示す平面図である。
[図15] 本実施形態に係る処理装置の第6の構成を示す平面図である。
[図16] 図15の第6の構成を横から見た正面図である。

発明を実施するための形態

以下、図面を参照して、本実施形態の説明をする。

図1は、本実施形態に係る基板処理装置100の構成を示す模式図である。

図1に示すように、基板処理装置100は、帯状の基板（例えば、帯状のフィルム部材）Sを供給する基板供給部2と、基板Sの表面（被処理面）Saに対して処理を行う基板処理部（パターン形成装置）3と、基板Sを回収する基板回収部4と、これらの各部を制御する制御部CONTと、を有している。基板処理部3は、基板供給部2から基板Sが送り出されてから、基板回収部4によって基板Sが回収されるまでの間に、基板Sの表面に各種処理を実行する。

この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子（電子デバイス）を形成する場合に用いることができる。

なお、本実施形態では、図1に示すようにXYZ座標系を設定し、以下では適宜このXYZ座標系を用いて説明を行う。XYZ座標系は、例えば、水
平面に沿って X 軸及び Y 軸が設定され、鉛直方向に沿って上向きに ζ 軸が設定される。また、基板処理装置 100 は、全体として X 軸に沿って、そのマáイナス側 （X 軸側）からプラス側 （+ X 軸側）へ基板 S を搬送する。その際、帯状の基板 S の幅方向（短尺方向）は、Y 軸方向に設定される。

基板処理装置 100 において処理対象となる基板 S としては、例えば樹脂フィルムやステンレス鋼などの箔（フィオイル）を用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエチル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアンモネート樹脂、ポリステレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。

基板 S は、例えば 200℃程度の熱を受けても寸法が変わらないように熱膨張係数が小さい方が好ましい。例えば、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくできる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。また、基板 S はフロー等で製造された厚さ 100 μ m 程度の極薄ガラスの単体、或いはその極薄ガラスに上記樹脂フィルムやアルミ箔を貼り合わせた積層体であっても良い。

基板 S の幅方向（短尺方向）の寸法は例えば 1 m 〜 2 m 程度に形成されており、長さ方向（長尺方向）の寸法は例えば 10 m 以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えば、基板 S の Y 軸方向の寸法が 1 m 以下又は 50 cm 以下であっても構わないし、2 m 以上であっても構わないと、基板 S の X 軸方向の寸法が 10 m 以下であっても構わないと、基板 S の X 軸方向の寸法が 10 m 以下であっても構わないと、基板 S の X 軸方向の寸法が 10 m 以下であっても構わない。

基板 S は、可撓性を有するように形成されている。ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることなく、前記基板を撓めることができる可能性をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、前記基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板 S としては、1
枚の帯状の基板を用いても構わないと、複数の単位基板を接続して帯状に形成される構成としても構わないと。

基板供給部2は、例えばロール状に巻かれた基板Sを基板処理部3へ送り出す供給する。この場合、基板供給部2には、基板Sを巻きつける軸部や前記軸部を回転させる回転駆動装置などが設けられる。他の条件、例えばロール状に巻かれた状態の基板Sを覆うカバー部などが設けられた構成であっても構わない。

なお、基板供給部2は、ロール状に巻かれた基板Sを送り出す機構に限定されず、帯状の基板Sをその長さ方向に順次送り出す機構（例えばニップ方式の駆動ローラ等）を含むものでであればよい。

基板回収部4は、基板処理装置100を通してした基板Sを、例えばロール状に巻きつつて回収する。基板回収部4には、基板供給部2と同様に、基板Sを巻きつけるための軸部や前記軸部を回転させる回転駆動源、回収した基板Sを覆うカバー部などが設けられている。なお、基板処理部3において基板Sがパネル状に切断される場合などには、例えば基板Sを重ねた状態で回収するなど、ロール状に巻いた状態とは異なる状態で基板Sを回収する構成であっても構わない。

基板処理部3は、基板供給部2から供給される基板Sを基板回収部4へ搬送すると共に、搬送の過程で基板Sの被処理面Saに対して処理を行う。基板処理部3は、基板Sの被処理面Saに対して加工処理を行なう加工処理装置（パターン形成装置）10と、加工処理の形態に対応した条件で基板Sを送る駆動ローラーR等を含む搬送装置（基板搬送部）20とを有している。

加工処理装置10は、基板Sの被処理面Saに対して、例えば有機EL素子を形成するための各種装置を有している。このような装置としては、例えば被処理面Sa上に隔壁を形成するためのインプリント方式等の隔壁形成装置、電極を形成するための電極形成装置、発光層を形成するための発光層形成装置などが挙げられる。

より具体的には、液滴塗布装置（例えばインクジェット型塗布装置など）
、成膜装置（例えば鍍金装置、蒸着装置、スパッタリング装置など）、露光装置、現像装置、表面改質装置、洗浄装置などが挙げられる。これらの各装置は、基板Sの搬送経路に沿って適宜設けられ、フレキシブル・ディスプレイのパネル等が、軸列ロール・ツー・ロール方式で生産可能となっている。

本実施形態では、加工処理装置10として、露光装置が設けられるものとし、その前後の工程（感光層形成工程、感光層現像工程等）を担う装置も必要に応じてインライン化して設けられる。

基板処理部3には、露光装置としての加工処理装置10と協働するアライメントカメラ5が設けられている。アライメントカメラ5は、例えば基板Sの—Y軸側端辺及び+ Y軸側端辺のそれぞれに沿って形成されたアライメントマークA L M（図3参照）を個別に検出する。アライメントカメラ5による検出結果は、制御部C O N Tに送信される。

図2及び図3は、本実施形態の第1の構成による基板処理部3の一部の構成を示す図である。図2は、第1の構成による基板処理部3の構成の正面図である。図3は、第1の構成による基板処理部3の構成の平面図である。

図2及び図3に示すように、基板処理部3は、第1ローラー11（回転ローラー）、ニップローラー11a（回転ローラー）、第2ローラー12（回転ローラー）、ニップローラー12a（回転ローラー）、筐体13及び加工処理装置10としての露光装置EXを有している。

第1ローラー11は、筐体13側へ向かって+ X軸方向に基板Sを案内する第1案内部材（基板案内部材）である。第1ローラー11は、筐体13に対して基板Sの搬送方向の上流側（X軸側）においてY軸に平行に設けており、Y軸と平行な回転軸を中心としてモータ等によって回転可能に設けられている。基板Sは、第1ローラー11とニップローラー11aとによって挟持され、+ X軸方向に向かって矢印DXのように搬送されるように支持される。

第2ローラー12は、筐体13からの基板Sを+ X軸側に案内する第2案内部材（基板案内部材）である。
第2ローラー12は、筐体13に対して基板Sの搬送方向の下流側（+X軸側）においてY軸に平行に配置され、Y軸と平行な回転軸を中心としてモータ等によって回転可能に設けられている。基板Sは、第2ローラー12とニップローラー12aによって挟持され、+X軸方向に向かって矢印Dxのように搬送されるように支持される。

筐体13は、第1ローラー11と第2ローラー12との間に配置されてい る。筐体13は、例えば直方体状に形成されている。筐体13は、底部13B、壁部13Wを有している。底部13Bは、筐体13の+Z軸側の端面を構成する。壁部13Wは、+X軸側の端面13Wa、+X軸側の端面13Wb、+Y軸側の端面13Wc及び+Z軸側の端面13Wdによって構成される。

なお、筐体13の+Z軸側には、投影露光方式の場面には投影光学系PLが配置され、プロキシミティ露光方式の場合には、マスクステージ部MSTが配置される。

壁部13Wa～13Wd及び底部13Bに囲まれた収容室13Rの内部には、基板Sに対する加工処理（ここでは露光）が施される基板ステージ機構（基板支持部）14が設けられる。その為、筐体13の+X軸側の端面13Waには、第1ローラー11から搬入される基板Sを通す開口部13mが形成される。また、筐体13の+X軸側の端面13Wbには、収容室13R（基板ステージ機構14）から第2ローラー12へ基板Sを搬出する開口部13nが形成されている。

底部13Bの+Z軸側には、移動ローラー17が形成されている。移動ローラー17は、ガイドドレーリ16に載置されている。ガイドドレーリ16は、基板処理部3の不図示の支持部、例えば工場の床等、に支持されている。ガイドドレーリ16は、X軸方向（又はY軸方向）に沿って形成されている。筐体13は、不図示の駆動機構によりガイドドレーリ16に沿ってX軸方向（又はY軸方向）に移動可能に設けられている。この移動ローラー17とガイドドレーリ16による筐体13の移動は必ずしも必要ではない。
収容部１３Ｒ内には、基板ステージ機構１４、アライメントカメラ１８（図１中のアライメントカメラ５に相当）が設けられる。基板ステージ機構１４は、基板Ｓのうち、第１ローラー１１と第２ローラー１２との間（以下、「ローラー間部分Ｓ門」と表記する）の一部分を非接触支持する為に、例えば円筒面状に形成された外周面１４ａを有し、その外周面１４ａは、基板Ｓとの間に流体ベアリング層を形成する為のバッド部材（多孔質エア・バッド等）で構成される。

基板ステージ機構１４には、外周面１４ａを構成するバッド部材から流体（空気、窒素等）を噴出させつつ、その噴出した流体を吸引するための流体制御部１１５が設けられている。

複数のモータ等の駆動源を含む駆動部１１５は、基板ステージ機構１４（外周面１４ａ）の位置や姿勢を微少量変化させるものであり、主に三軸、Ｘ軸、γ軸の各方向への傾動と、εZ方向（Z軸回り）とεX（X軸回り）の各回転微動を行う。駆動部１１５は、図１中の制御部ＣＯＮＴの制御によって、第１ローラー１１、第２ローラー１２による基板Ｓの搬送制御とも同期して、駆動量やタイミングなどを調整される。

２つのアライメントカメラ１８は、図３に示すように基板ＳのＹ軸方向（幅方向）の両端部に形成されたアライメントマークＡＬＭを各々検出する。アライメントマークＡＬＭは、基板Ｓのうち＋Ｙ軸側の端辺及び－Ｙ軸側の端辺に沿うように複数形成されている。複数のアライメントマークＡＬＭは、Ｘ軸方向に等ピッチで配置されている。アライメントカメラ１８は、基板Ｓのうち基板ステージ機構１４に支持された部分に向けてであり、露光装置ＥＸによるスリット状の投影領域ＥＡ（図３参照）の手前（Ｘ軸方向）の位置でアライメントマークＡＬＭを個別に検出する。すなわち、アライメントカメラ１８は、基板Ｓの搬送方向に関して投影領域ＥＡの位置よりも上流位置で、アライメントマークＡＬＭを個別に検出する。アライメントカメラ１８による検出結果は、制御部ＣＯＮＴに送信される。

アライメントカメラ１８は、顕微鏡で拡大されたアライメントマークＡＬ
Mの像をCCDやCMOS等の固体撮像素子で受光する顕微鏡撮像システムである。その顕微鏡撮像システムの基板S上での観察領域は、縦横で数十〜数百μm程度の範囲になる。従って、フィーチャーマークを設けて第1ローラー11と第2ローラー12の回転速度（周速度）が僅かに速くなるように、各モータを制御する。この構成では、第1ローラー11と第2ローラー12、それらローラーの周速度（又はトルク）を精密に制御する為の駆動モータを設けている。
タ、及びそのモータの電気的な制御系（プログラム含む）が張力付与機構に相当する。

[0038] このように、基板 S に X 軸方向のテシジョン（張力）F を与えると、図 3 に示すように、第 1 ローラー 1 1 に進入する前の基板 S の Y 軸方向寸法（幅）を T D O とすると、第 1 ローラー 1 1 と第 2 ローラー 1 2 との間では、その Y 軸方向寸法（幅）が収縮して T D 1 になる。即ち、X 軸方向に距離 L（基板 S の実長）だけ離した第 1 ローラー 1 1 と第 2 ローラー 1 2 の間で、基板 S をテシジョン F で引っ張ると、基板 S は X 軸方向に伸び、Y 軸方向に縮む傾向がある。

[0039] 基板 S の初期の幅 T D 0 に対して距離 L が充分に大きい場合、図 3 に示すように、第 1 ローラー 1 1 から X 軸方向へ距離 A s までの範囲と、第 2 ローラー 1 2 の手前（X 軸方向）の距離 A e までの範囲とでは、収縮変化率（X 軸方向の単位長当りの Y 軸方向収縮率（収縮の度合い））が大きいが、第 1 ローラー 1 1 から X 軸方向へ距離 A s までの範囲と第 2 ローラー 1 2 から X 軸方向へ距離 A e までの範囲との間の範囲には、収縮変化率（収縮の度合い）がほとんど変わらず安定している範囲が得られることがシミュレーションにより判った。そこで本実施形態では、基板 S の Y 軸方向の収縮変化率がほぼ一定（ほぼゼロ）になる安定領域を作り出し、その安定領域に投影領域 E A を設定して露光を行うようにした。

[0040] 図 4 は、そのシミュレーションの為に、基板の伸縮の状態を誇張して説明する図であり、ニップされる第 1 ローラー 1 1 と第 2 ローラー 1 2 の間の基板 S の距離 L が、基板 S の初期幅 T D O に対して大きい場合の様子を示す。基板 S を X 軸方向にテシジョン F で引っ張ると、第 1 ローラー 1 1 から X 軸方向へ距離 A s の範囲では、基板 S のエッジ E s 1 、E s 2 が基板 S の初期幅 T D O から内側にすぼむように変形し、第 2 ローラー 1 2 から X 軸方向へ距離 A e までの範囲では、基板 S のエッジ E e 1 、E e 2 は基板 S の初期幅 T D 0 に戻るように変形する。

[0041] そして、第 1 ローラー 1 1 から X 軸方向へ距離 A s の範囲と第 2 ローラ
— 1 2 から—X 軸方向へ距離 A e の範囲の間の距離 W x の範囲では、基板 S がほぼ一定の幅 T D 1 に収縮した安定領域が得られる。

安定領域とは、投影領域 E A におけるパターン転写精度（相対的な倍率誤差や重ね合わせ誤差の許容範囲）に応じて決められるものである。本実施形態ではシミュレーションの一例として、投影領域 E A の Y 軸方向寸法が基板 S の初期幅 T D 0 の 8 0 ～ 9 0 % 程度で、数 µ m 以下の寸法の微細パターンを転写する精密露光を前提にするものとして説明する。

例えば、初期幅 T D 0 が 3 0 0 m m 、投影領域 E A の設計上の Y 軸方向寸法が 2 6 0 m m の場合、前工程のウエット処理や乾燥処理によって基板 S が全体的に 5 0 p p m 程度伸びると、基板 S 上の投影領域 E A 対応した Y 軸方向寸法は、1 3 、 0 µ m だけ伸びたものとなる。この値は、数 µ m サイズのパターンを高精度に位置決めして重ね合わせ露光する際に、最大で 1 3 、 0 µ m の位置誤差（合わせ誤差）を招くことを意味し、そのままでは精密な露光処理が困難なものとなる。

典型的なウェブ基板である P E T フィルムの場合、プロセスによっては 1 0 0 p p m 程度も伸びることがある。大型ディスプレイ製造の為に基板 S の初期幅 T D 0 と投影領域 E A の大きさとして、投影領域 E A の設計上の Y 軸方向寸法を 5 2 0 m m （T D 0 = 6 0 0 m m ） とし、基板 S が全体的に 1 0 0 p p m 延びたとすると、Y 軸方向の最大の延び量は 5 0 µ m を越える。

また、一般に、露光装置としての重ね誤差や位置誤差の許容範囲は、転写すべきパターンサイズ（或いは線幅）の数分の一度と言われる。よって、一例として転写すべきパターンの最少寸法（線幅）が 3 µ m だとすると、その重ね誤差や位置誤差の許容範囲は 0 、 6 µ m となる。即ち、実際に露光時には、投影領域 E A 内の Y 軸方向のどの点においても、重ね誤差や位置誤差を 0 、 6 µ m 以下にする必要がある。

そこで、本実施形態においては、2 つのローラー 1 1 、 1 2 間の基板 S の距離し、基板 S の初期幅 T D 0 、基板の厚み t 、テンション F 、ポアソン比、ヤング率を変えた各種シミュレーションを行い、以下の2 つの条件を満
たす範囲を安定領域とした。

（1）2つのローラー (11, 12) から基板 S の中央に向けて、X 軸方向に 30 mm ピッチ毎に Y 軸方向収縮量を求め、その変化分が 0.3 µm 以下収縮変化率がほぼゼロ）。

（2）変化分が 0.3 µm 以下になっている範囲全体のうち、収縮した基板 S の幅 T D 1 の絶対値の変化幅が 1.5 µm 内。

これらの数値条件は、シミュレーション上の一例であり、実際の数値はプロセスによる基板 S の延び、転写すべきパターンの最少寸法、重ね誤差や位置誤差の許容範囲等によって適宜決定される。

図 5 は、2つのローラー 11、12 間の基板 S の距離 L を 100 cm、初期幅 T D 0 を 30 cm、基板 S の厚み t が 100 µm のPETフィルム (ポアソン比 0.35、ヤング率 4 GPa と設定) を対象にして、テンション F を 20N、50N、100N、150N と変えた場合の収縮変形の様子（収縮量、収縮の度合い）をシミュレーションしたグラフである。横軸の位置 0 cm と 100 cm が、各々第 1 ローラー 11 と第 2 ローラー 12 によるニップ位置である。

図 5 のように、テンション F の大きさにほぼ比例して最大の収縮量が変化する。また、収縮量がほぼ一定になっている範囲、即ち安定領域の幅は、テンション F が大きくなるに従って狭くなっている。テンション F が 20N 程度では、両端から 10cm 程度までが非線形な収縮となっており、安定領域の幅は 80cm 程度が得られる。テンション F が 150N の場合は、両端から 20cm 程度までが非線形な収縮となっており、安定領域の幅は 60cm 程度になっている。

図 6 は、図 5 の場合と比べて、2つのローラー 11、12 間の基板 S の距離 L を 40 cm に狭めた点のみが異なり、その他の条件を同じにしてシミュレーションした結果を示すグラフである。図 5 の場合と比べて距離 L が 40 % に減少した分、テンション F 毎に得られる安定領域の幅も相応に狭くなる。また、シミュレーション上では、距離 L の減少に伴って両側の非線形な収
縮の範囲が大きくなる傾向があった。

[0051] 例えば、テンションFが20Nの場合、図5の条件では両端から10cm程度までが非線形であったが、図6の場合は両端から14～15cm程度までが非線形であった。

[0052] 図7は、2つのローラー11、12間の基板Sの距離Lを100cm、基板Sの厚みtが100μmのPETフィルム（ポアソン比0.35、ヤング率4GPaと設定）を対象とし、テンションFを100Nにして、初期幅TD0を40cm、60cm、100cmに変えた場合の収縮変形の様子（収縮量、収縮の度合い）をシミュレーションしたグラフである。

[0053] 初期幅100cmの場合（即ち、L=TD0）、条件に合う安定領域は得られず、距離Lの全体に渡って非線形な収縮を呈した。そして初期幅TD0が60cm、40cmと減少していくに従って安定領域が現れた。TD0=60cmでの安定領域の幅W×1は30cm弱、TD0=40cmでの安定領域の幅W×2は約60cmとなった。

[0054] また、基板Sのポアソン比、ヤング率、厚みtの各違いによるシミュレーションも行なったが、安定領域の出現傾向に大きな差は無く、図5～7に示したシミュレーション結果から考察して、安定領域の出現に寄与する主な要因が距離Lと初期幅TD0の比であることが分かった。

[0055] 図8は、基板SとしてPETフィルムを対象として、ニップ間の距離Lに対する初期幅TD0の比率（TD0/L）を縦軸に、その距離Lに対する安定領域の幅W×1の比率（W×1/L）を横軸にとって、シミュレーション結果の幾つかをプロットしたグラフである。

[0056] プロットしたシミュレーション結果は、全てテンションFを100Nとした場合であり、縦軸の1.0と横軸の1.0を結ぶ線BSは理論上の境界を表し、PETフィルム等の樹脂性ウェブの場合、その傾向は線BSよりも左下に出現し、右上には出現しない。

[0057] 図8中の線SIMLは、厚みtが200μm、ポアソン比が0.3、ヤング率が6GPaの場合に得られたシミュレーション結果の平均を表し、線S
i m 2 は、厚み t が 1 0 0 μm 、ポアソン比が 0.4 、ヤング率が 4 GPa の場合に得られたシミュレーション結果の平均を表したものである。代表的な PET フィルムの場合、シミュレーション上では概ね線 S i m 1 と線 S i m 2 の間に結果が分布する。

しかしながら、厚み t が極端に薄かったり、表面に何らかの薄膜を積層したりしている場合は、線 S i m 2 よりも左下に結果が出現することもあり得るが、境界線 B S の右上に出現することはない。

以上のようないくシミュレーション結果による傾向から、上述の図 2 、図 3 で示した装置構成上的諸元、例えば、投影領域 EA において必要とされる基板 S の Y 軸方向の収縮量（収縮率、収縮の度合い）と、その為に必要な텐ション F の大きさが判ると、そのテンション F によっても確保されるべき最低限の安定領域の幅、距離し、初期幅 T D O の三者の関係が予め求まるので、第 1 ローラー 1 1 から第 2 ローラー 1 2 までの基板搬送路長さ（距離 L ）を最適化できる。

次に、上記のように構成された基板処理装置 1 0 0 を用いて有機 EL 素子、液晶表示素子などの表示素子（電子デバイス）を製造する工程を説明する。基板処理装置 1 0 0 は、制御部 C O N T に設定されるレシピ（加工条件、タイミング、駆動パラメータ等）の制御に従って、前記表示素子を製造する。

まず、不図示のローラーに巻き付けられた基板 S を基板供給部 2 に取り付ける。制御部 C O N T は、この状態から基板供給部 2 から前記基板 S が送り出されるように、不図示のローラーを回転させる。そして、基板処理部 3 を通過した前記基板 S を基板回収部 4 に設けられた不図示のローラーで巻き取りさせる。

制御部 C O N T は、基板 S が基板供給部 2 から送り出されてから基板回収部 4 で巻き取られるまでの間に、基板処理部 3 の搬送装置 2 0 によって基板 S を前記基板処理部 3 内で適宜搬送させる。

基板処理部 3 内を搬送される基板 S に対して、露光装置 E X を用いて露光
処理を行う場合、まず、制御部 CONT は、第 1 ローラー 1 1 とニップローラー 1 1 a とで基板 S を挟持した状態で、基板 S のうち第 1 ローラー 1 1 よりも — X 軸側の部分を弛ませる。また、制御部 CONT は、第 2 ローラー 1 2 とニップローラー 1 2 a とで基板 S を挟持した状態で、基板 S のうち第 2 ローラー 1 2 よりも + X 軸側の部分を弛ませる。この動作により、ローラー間部分 S r の張力（テンション F）を基板 S の他の部分に対して独立して調整可能となる。

その後、制御部 CONT は、第 1 ローラー 1 1 、ニップローラー 1 1 a 、第 2 ローラー 1 2 及びニップローラー 1 2 a により、ローラー間部分 S r に所定の張力を付加させつつ、基板 S を所定の搬送速度で + X 軸方向に搬送させる。

制御部 CONT は、基板 S を搬送させた状態で、照明部 II から露光光を照射すると共に、マスクステージ M S T を + X 軸方向に移動させる。このとき、制御部 CONT は、マスクステージ M S T の移動速度と基板 S の搬送速度を同期させる。

この動作により、+ X 軸方向に移動する基板 S の被処理面 S a に対して、マスク M を介した露光光が投影領域 E A （図 3 参照）に投影され、前記被処理面 S a にマスク M のパターン P の像が走査露光方式にて形成される。

このような露光動作を行うにあたり、制御部 CONT は、第 1 ローラー 1 1 と第 2 ローラー 1 2 に僅かな回転速度差を与えることで、基板 S に必要な X 軸方向のテンション F を与えて基板 S の初期幅 T D O を収縮させ、マスク M 上のパターン領域の Y 軸方向の寸法と、基板 S の被処理面 S a 上に転写すべきパターン領域（基板の部分領域）の Y 軸方向の寸法との相対誤差（相対倍率誤差）を調整する。

尚、本実施形態では、投影領域 E A を Y 軸方向に延びた細長いスリット状にして、X 軸方向に走査露光する方式を用いるため、その投影領域 E A が基板 S 上の実質的な被露光領域となる。その為、基板 S の Y 軸方向の寸法調整（収縮補正）は、少なくともその被露光領域（基板の部分領域）に対して実
施されれば良く、必ずしも、基板S上の1つのパターン領域全体に渡って、基板SのY軸方向の寸法調整（収縮補正）を施す必要はない。

[0068] 本実施形態では、図3に示すように、ローラー間部分Sの下側は基板ステージ機構14の外周面14aの流体ベアリング層によって支持される為、そこでの実質的な摩擦は殆ど無い。従って基板Sのローラー間部分Sは、加重方向であるX軸方向について伸長し、加重方向と交差するY軸方向については初期幅TD0がTD1に収縮する。

[0069] 図3では、基板Sのローラー間部分SのY軸方向の収縮を誇張して示したものであるが、基板ステージ機構14の外周面14aは、収縮した幅TD1が一様に得られる安定領域の幅内に収まるように設定される。

[0070] なお、第2ローラー12を通過した後では、基板Sに作用していたテンションFが解消されることから、基板Sは弾性によって張力付与前の形状に戻る。すなわち、基板Sは、図3の状態からY軸方向に伸長すると共にX軸方向に収縮する。このため、図3に示すようなY軸方向に収縮された状態の基板SにマスクMのパターンPを転写した後、テンションFを解消すると、被処理面Sのパターン領域（基板の部分領域）は基板Sと同一の比率でY軸方向に伸長し、X軸方向には収縮することになる。

[0071] 本実施形態では、投影領域EをY軸方向に延びた細長いスリット状にして、X軸方向に走査露光する方式を用いる。そのため、X軸方向の相対倍率誤差（スケーリング誤差）については、投影領域Eにおける基板Sの送り速度SVとマスクMの移動速度MVとの本来の同期関係、SV = k'MV（kは近接露光方式なら1、投影露光方式なら投影系の倍率）に対して僅かな速度差（基板SのX軸方向の伸張率に対応）を与えることで調整できる。

[0072] また、基板Sの被処理面Sの下地層となるパターン領域（基板の部分領域）が湿式プロセス（メタル工程やエッチング工程等）等で形成され、それに対してマスクMのパターン領域を重ね合わせ露光する場合、湿式プロセスにて基板Sが比較的大きく延びることもあり得る。

[0073] このような場合、特に従来の近接露光方式では、マスクM上のパターン領域
域と基板Sに既に形成されたパターン領域（基板の部分領域）とを、少なくともY軸方向（走査露光の方向と直交した方向）に関して良好に重ね合わせること、即ちY軸方向のスケーリング誤差の補正が難しかった。

本実施形態では、第1ローラー11と第2ローラー12により基板Sに送り方向（X軸方向）のテンションを与えることで、基板Sのローラー間部分SrのY軸方向寸法を弾性変形の範囲で収縮させることが可能となり、難しいとされてきたY軸方向のスケーリング誤差の補正を簡単な構成で実現できる。

従って、制御部CONは、安定領域を確保しつつ、基板Sに与えるテンションFの大きさを変えて、基板SのY軸方向の収縮量を調整させることにより、露光パターンのY軸方向の寸法と、基板Sの被処理面SaのY軸方向の寸法との相対比率を調整できる。このため、基板Sに転写されるマスクパターン像のY軸方向の相対倍率を実質的に調整できる。

基板SのY軸方向への収縮量は、基板Sに対するX軸方向のテンションFに応じた値となる。このため、基板SのY軸方向への収縮量を制御する場合には、上述の図5～図8のようなシミュレーションや実験等によって基板Sに対するX軸方向のテンションFとY軸方向の収縮量との関係をデータとして求めておき、必要な収縮量に対応するテンションFが基板Sに加えられるように、第1ローラー11、第2ローラー12の動作を制御する。

上記の動作を行うに当たり、制御部CONは、以下のように基板Sの収縮量（又は収縮率、収縮の度合い）を求める。まず、制御部CONは、アライメントカメラ18を用いて、基板Sの一Y軸端端辺に形成されたアライメントマークALMと、+Y軸端端辺に形成されたアライメントマークALMとを検出させる。制御部CONは、アライメントカメラ18の検出結果に基づいて、アライメントマークALMのY軸方向の距離を算出し、前記距離に基づいてローラー間部分SrのY軸方向の寸法（収縮後の幅TD1）を算出する。その後、制御部CONは、算出結果と、予め記録されていたアライメントマークALMのY軸方向の間隔寸法を用いて、基板Sの収縮量
（又は収縮率、収縮の度合い）を算出する。

また、上記の実験やシミュレーションなどにおいて、基板 S の Y 軸方向の収縮量に対応する X 軸方向の伸長量をデータとして求めておき、X 軸方向の伸長量に応じてマスクステージ M S T の移動速度及び基板 S の搬送速度を調整することで、マスクパターン像の X 軸方向の相対倍率（スケーリング誤差）も実質的に調整できる。

制御部 C O N T は、マスクステージ M S T の移動速度及び基板 S の搬送速度を調整する場合には、前記マスクステージ M S T の + X 軸方向への移動速度を M v とし、前記基板 S の搬送速度（基板ステージ 14 の外周面 14 a の周方向の速度）を S v とし、X 軸方向のスケーリング誤差（伸張率）を A（ppm）とすると、以下の数式（1）を満たすようにする。

\[S_v = k \cdot M_v \cdot (1 + A) \]

又は \(S_v \cdot (1 - A) = k \cdot M_v \ldots (1) \)

但し、k は、近接露光方式なら 1、投影露光方式なら投影系の倍率である。

なお、制御部 C O N T は、プロキシミティ露光方式であれば、基板 S 上の投影領域 E A とマスク M とのギャップの平行度が一定の範囲内に設定されるように、図 2 中の駆動部 15 により、基板ステージ構造 14（外周面 14 a）の姿勢や位置を適宜調整する。

以上のように、本実施形態によれば、基板 S の被処理面 S a を处理する基板処理部 3 において、基板 S を X 軸方向に搬送する第 1 ローラー 11 と第 2 ローラー 12 との間で、基板 S の Y 軸方向の寸法を安定的に収縮させた状態で露光処理が可能なので、相対倍率（スケーリング誤差）を簡単に調整でき、高精度なパターンニングが可能となる。

また、処理装置 10 として露光装置 E X とは異なる他の装置を用いた場合においても、基板 S を搬送する搬送側において基板 S のローラー間部分 S r と、処理装置 10 によって処理される範囲との間の相対的な寸法を調整できる。

マスクを使った露光装置 E X 以外の処理装置 10 としては、例えばインク
ジェットプリンタ、DMD等を使ったマスクレス露光機、レーザスポットを走査してパターン描画するレーザビームプリンタ等であっても同様に本実施様を適用可能である。

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。

例えば、上述の図２、図３の構成では、アライメントカメラ１８は投影領域ＥＡの—X軸方向の位置に一組しか設けられていなかった。しかし、図９に示すように、投影領域ＥＡの—X軸方向の位置に配置した一組のアライメントカメラ１８ａ，１８ｄ、投影領域ＥＡとほぼ同じX軸方向位置に配置した一組のアライメントカメラ１８ｂ，１８ｅ、そして投影領域ＥＡの後方の位置（＋X軸方向の位置、又は、基板Ｓの搬送方向に関して投影領域ＥＡの下流位置）に配置した一組のアライメントカメラ１８ｃ，１８ｆ、の計６個のアライメントカメラ（顕微鏡撮像システム）を設けても良い。

この図９のように複数のアライメントカメラ１８ａ～１８ｆを配置すると、投影領域ＥＡを含む基板Ｓの局所的な面形状歪み（XY面内での微少変形）を、アライメントマークＡＬＭのX軸方向のピッチ毎にリアルタイムに継続的に計測可能となる。そのため、投影領域ＥＡ内での基板Ｓの僅かな歪み誤差や倍率誤差を高精度に特定して、その誤差を緩和するように、基板Ｓに与えるテンションＦの大きさや、基板ステージ機構１４の位置や姿勢をリアルタイムに微調整することも可能である。

このように、複数のアライメントカメラ１８ａ～１８ｆを配置する場合も、各カメラによるマーク検出位置は、基板Ｓの安定領域WX内に含まれていることが望ましい。

また、露光装置ＥＸのマスクステージＭＳＴを駆動する駆動機構としては、図１０、図１１に示すようなリニアモータ機構LMを用いても構わない。

図１０、図１１は、プロキシミティ方式による走査露光装置の構成を示し、マスクステージＭＳＴは、固定子ＬＭａと可動子ＬＭｂを有するリニアモータ機構LMによって精密に駆動される。
固定子 L M a は、X 軸方向に沿って延在している。固定子 L M a には、X
軸方向に沿って不図示の複数のコイルが並んで配置されている。固定子 L M
a は、Y 軸方向にマスクステージ M S T を挟んで一対設けられている。一対
の固定子 L M a は、マスクステージ M S T 側に溝部を有している。この溝部
は、X 軸方向に沿って形成されている。

可動子 L M b は、マスクステージ M S T の+Y 軸側の側面及び—Y 軸側の
側面にそれぞれ設けられている。各可動子 L M b は、それぞれ磁石を有して
いる。可動子 L M b は、それぞれ対応する固定子 L M a の溝部に挿入されて
いる。可動子 L M b は、前記溝部に沿ってX 軸方向に移動可能である。可動
子 L M b がX 軸方向に移動することにより、マスクステージ M S T がX 軸方
向に移動するように、筐体 13 の上部にはマスクステージ M S T を支持する
一対のガイド面 13 g が設けられている。

本実施形態の構成では、基板 S が第 1 ローラー 1 1 から第 2 ローラー 1 2
の間をほぼ水平に搬送されるように設定され、回転 ドラムとして構成された
基板ステージ機構 14 の外周面 1 4 a は、基板 S の裏面と極めて僅かな領域
で接触している。即ち、投影領域 E A のX 軸方向の幅を極力小さくし、外周
面 1 4 a と基板 S との接触領域のX 軸方向の幅をスリット状の投影領域 E A
のX 軸方向の幅と同程度に小さくする。

さらに本実施形態では、基板ステージ機構 1 4 （回転円筒体）の外周面の
周速度が、第 1 ローラー 1 1 と第 2 ローラー 1 2 による基板 S のX 軸方向搬
送速度と同期するように、駆動部 1 5 により制御される。

この場合、基板ステージ機構 1 4 の外周面 1 4 a と基板 S との接触領域が
Y 軸方向に細長く延びたスリット状で、X 軸方向の幅が充分に狭いもので
あり、同時に基板ステージ機構 1 4 （回転円筒体）が基板 S の搬送速度と同
期して回転していることから、第 1 ローラー 1 1 と第 2 ローラー 1 2 の間で
基板 S にX 軸方向のテンション F を与えると、上述の図 4 のように、基板 S
はY 軸方向に収縮する。

勿論、基板 S と基板ステージ機構 1 4 の外周面 1 4 a とが接触しているス
リット状の領域では摩擦が発生する。しかし、その領域のX 軸方向の幅が充分に小さければ、その摩擦による影響を余り受けることなく、基板S は概ね図4 のように収縮する。

この図10、図11のような構成でも、基板S の搬送時のテンションF (X 軸方向) を制御することで、基板S の幅 (Y 軸方向) を収縮させることが可能であり、パターンニング時の相対的な寸法誤差 (特にY 軸方向の相対的なスケーリング誤差) を調整できる。

また、本構成では、投影領域E A のX 軸方向の幅を充分に小さくすることになるので、図4、図5～図8 で説明した安定領域W x の幅を狭くでき、第1ローラー11と第2ローラー12の間隔 (距離L) も短くできることから、装置全体を小型にすることができる。

また、図12に示すように、X 軸方向に複数の処理装置を設けられた構成であっても構わない。図12では、上記の実施形態に記載の露光装置E X (図2、3 の装置、或いは図10、11の装置) と同一の構成を有する処理装置10A 及び10B がX 軸方向に2つ配置されている。マスクM 1 を備えた処理装置10A と、マスクM 2 を備えた処理装置10B との間には、基板S の張力を遮断する張力遮断機構 (縦切り部) 60 が設けられている。

2つの処理装置10A 及び10B を用いて基板S に対して露光処理を行う場合、例えば図13に示すように、処理装置10A のマスクM 1 によって露光されるパターン領域 (基板の部分領域) PA と、処理装置10B のマスクM 2 によって露光されるパターン領域 (基板の部分領域) PB がX 軸方向に交互に並ぶように、各処理装置10A 及び10B において一定の間隔をあけて露光処理を行うようにできる。

この場合、例えばX 軸方向に往復移動するマスクステージM S T が露光処理時に+ X 軸方向に移動した後、− X 軸方向に戻るまでの時間を確保できる。

さらに、このような構成では、処理装置10A、10B の各々に装着されるマスクM 1、M 2 の各パターンP は、必ずしも同一である必要は無い。例
例えば処理装置 1OA では 3.6 インチの表示パネル用パターンの露光を行い、処理装置 1OB では 4.0 インチの表示パネル用パターンの露光を行うようにしても良い。

[0099] また、上記実施形態では、投影領域 EA が 1 本のスリット形状である場合を例に挙げて説明したが、これに限られることは無い。例えばスリット状の露光領域が Y 軸方向に複数並んで形成されると共に、それらの露光領域が交互に X 軸方向にずれた状態で配置される、いわゆる千鳥状に配置された構成であっても構わない。

[0100] この場合、千鳥状に配置される複数の露光領域の全体（基板の部分領域に相当）が、想定される最大のテンション F に応じて単なる安定領域 Wx 内に入るように設定される。

[0101] ところで、前に説明したように、上記の各実施態様に示した基板 S の Y 軸方向収縮の為の基板搬送の構成は、光露光、インクジェット印刷、レーザ描画、静電転写等の精密なパターンニングを必要とする各種の処理装置の搬送機構として適用可能である。しかし、量産性の観点からは、円筒マスクを使った光露光が有望視されている。

[0102] 図 14 は、透過型の円筒マスク MD を上述の図 2、図 3 の実施形態による基板搬送機構と組み合わせたプロキシミティ露光装置の一例である。

[0103] 図 14 において、円筒マスク MD は肉厚が数ミリ以上の石英製の中空円筒であり、その円筒表面にパターン P が形成される。円筒マスク MD はエアベアリング支持のパッド CR 等により装置内に保持され、Y 軸方向に延びた軸 CC を中心にして XZ 面内で回転する。その回転速度は、基板 S の搬送速度と円筒マスク MD の外周面（パターン P の形成面）の周速度とが同期するように設定される。円筒マスク MD の内部には、パターン P に Y 軸方向に細長く延びたスリット状照明光を投射する照明系 LL が配置される。

[0104] 基板 S は、図 2 と同様の基板ステージ機構 14 により、気体層（エアベアリング）116 を介して支持面 14 a（凸シリンドリカル面）にならって支持され、円筒マスク MD の外周面の一番下の部分と支持面 14 a 上の基板 S
の被処理面S a とが、所定のプロキシシミティギャップ（数十μ m〜数百μ m）に保たれるように、基板ステージ機構（支持パッド部）14、或いは円筒マスクMDのZ軸方向位置が微調される。

本実施形態において、基板ステージ機構14は、気体層形成部として、気体供給装置、気体供給路、及び複数の供給口等を含む。

基板Sの搬送機構は、非接触式のエア・ターンバータービン1、第1ローラー11、ニップローラー11a、第2ローラー12、ニップローラー12aで構成され、本実施形態でも第1ローラー11から第2ローラー12の間で基板SにX軸方向のテンションを与えることで、基板SをY軸方向に収縮させる。その為に、第1ローラー11の周速度（トルク）よりも第2ローラー12の周速度（トルク）の方が所定量だけ大きくなるように、各ローラーの駆動モータを制御する。

なお、図14のような構成において、円筒マスクMDの外周面の曲率（半径）と、基板ステージ機構14のシリンドリカル状の支持面14aの曲率とは必ずしも一致させておく必要はなく、支持面14aの曲率は基板Sの安定な支持と搬送が達成されるように決められ、円筒マスクMDの径は露光すべきディスプレイ用パネルのサイズに応じて決められる。

これまで説明してきた各実施形態では、処理装置10として、平面マスクM、又は円筒マスクMDを使った走査型露光装置を例にした。しかし、ディスプレイ用パネルが形成される基板S上の全体領域を平面ホルダに一時的に吸着して露光するような装置においても、本実施形態による搬送機構を適用できる。

図15、図16は、基板Sを平面ホルダに吸着して露光処理を行なう装置の一例を示し、図15の平面図に示すように、基板S上にはX軸方向に複数のパネル領域（基板の部分領域）PDが一定間隔で形成される。本実施形態では、1つのパネル領域PDのX軸方向の幅が基板SのY軸方向収縮の安定領域Wx内に収まるように、第1ローラー11と第2ローラー12とのX軸方向の間隔（距離）が設定されている。
また、基板 S の第 1 ローラー 1 1 から後方 (+ X 軸方向）の距離 A s までの非線形領域と、第 2 ローラー 1 2 から—X 軸方向へ距離 A e までの非線形領域には、パネル領域 P D が配置されないように、パネル領域 P D は X 軸方向に間隔 N p (N p > A s, A e) をもって配列される。

本実施形態では、基板 S を X 軸方向に送って図 1 5 のような状態、即ち、露光または描画処理すべき 1 つのパネル領域 P D が安定領域 W x 内に基板 S が位置した、第 1 ローラー 1 1 と第 2 ローラー 1 2 による駆動を停止し、基板 S の搬送を一時的に止める。

図 1 6 に示すように、第 1 ローラー 1 1 と第 2 ローラー 1 2 の間で、基板 S は平面ホルダ 1 2 0 の上面の平坦な吸着面とほぼ平行に X 軸方向に搬送される。

その状態で、図 1 6 に示すように、平面ホルダ 1 2 0 (吸着面) の X 軸方向の幅は安定領域 W x に含まれるように設定されると共に、パネル領域 P D の全体が吸着されるように設定されている。

パネル領域 P D が平面ホルダ 1 2 0 的上方に位置決めされると、平面ホルダ 1 2 0 を支持しているベース部材 1 1 3 が、Z 軸方向の駆動機構 1 2 2 によって上方（+ Z 軸方向）に移動し、基板 S の裏面が平面ホルダ 1 2 0 の吸着面に一様に接触したところで、Z 軸方向の駆動が停止される。

そして、基板 S のパネル領域 P D に対応する裏面部分が、平面ホルダ 1 2 0 に真空吸着または電解吸着により一時的に保持される。この吸着保持の直前まで、基板 S には X 軸方向のテンション F が与えられ、基板 S の安定領域 W x が予め決められた量だけ Y 軸方向に収縮した状態が維持される。

基板 S のパネル領域 P D の全体が平面ホルダ 1 2 0 に一様に吸着されると、ベース部材 1 1 3 の Y 軸方向の両端部に設けられたガイドレール 1 1 3 g に支持されて X 軸方向（又は Y 軸方向）に移動可能な加工ヘッド H D が、パネル領域 P D 上を 1 次元又は 2 次元に移動して、必要な露光処理や描画印刷処理を行う。

加工ヘッド H D としては、D M D によるマスクレッスの光パターンジェネレ
ータ、インクジェットプリンタ用のヘッド、マイクロレンズアレイによる小マスクパターン投影器、レーザスポットによる走査描画器等が利用できる。

また加工ヘッドHDをベース部材113から支持する脚部126には、ヘッド面と基板Sの表面とのZ軸方向の間隔や相対傾斜を最適に設定する為に、ミクロンオーダーでZ軸方向に上下動するアクチュエータ（ピエゾモータやポリスコイルモータ等）が組み込まれ、加工ヘッドHDのX軸、Y軸方向の位置は測長用レーザ干渉計1FM、或いはリニアエンコーダによって精密に計測される。

この加工ヘッドHD内には、基板S上のアライメントマークAALMやパネル領域PD内の特定のパターン形状を光学的に検出するアライメントカメラ18や、他のアライメントセンサーを設けることができる。

本実施形態の場合、図15に示すように、基板S上のパネル領域PDはX軸方向に間隔（余白）npを伴って配列されるが、第1ローラー11によるニップ位置と第2ローラー12によるニップ位置との距離をし、パネル領域PDのX軸方向幅Xpdをとすると、以下の式（2）の関係に設定しておくと、加工処理の為に基板Sの搬送を一時的に停止したときに、第1ローラー11、第2ローラー12の各々が、隣のパネル領域PD上にかかって静止しないので、パネル領域PDに不要な傷等を付ける可能性が低減できる。

\[Xpd < L < (Xpd + 2np) \ldots (2) \]

なお、図15、図16のよう、基板S上のパネル領域PDの全体を精度良く平面に吸着できる場合は、パネル領域PD全体を覆う大型マスクを用意し、プロキシミティ方式による一括静止露光を行なっても良い。

以上、各実施形態では、図4（又は図9、図15）に示した安定領域WXにおいて、露光処理を行なうことを想定したが、Y軸方向に延びるスリット状の露光領域（投影領域EA）のX軸方向の幅を充分に狭くできるのであれば、図4中の距離Asや距離Aeの非線形な領域で露光を行なうことも可能である。

また、図2、図10、図12、図14、図15の各々に示した処理装置（
露光装置）では、第一案内部材（基板案内部材）としての第1ローラー11（及びニップローラー11a）と第二案内部材（基板案内部材）としての第2ローラー12（及びニップローラー12a）との各周速度に僅かな差を与える方法で張力付与機構を構成した。しかし、図15に示した静止型の基板処理装置（露光装置）の場合は、第1ローラー11と第2ローラー12の周速度の差を利用しない張力付与機構も適用できる。

[01 23]具体的には、図15、図16において、基板Sを搬送する際は、第1ローラー11と第2ローラー12により、基板Sが緩いテンション（例えば10～20N程度）で送られるように制御し、基板Sのパネル領域PDが平面ホルダ200の上方空間に位置決めして静止した後、ニップ状態は保たやすいに、第1ローラー11とニップローラー11aの組と、第2ローラー12とニップローラー12aの組とのX軸方向の間隔が広がるように、それぞれの組を移動させる駆動系を設けても良い。

[01 24]或いは、図15において、基板Sの搬送方向（+X軸方向）に関して、第1ローラー11の直後の位置と第2ローラー12の直接の位置の各々に、基板SのY軸方向の幅全体に渡って基板Sを強固に挟持する棒状のニップ部材を設け、基板Sが位置決めされて静止した後、その2ケ所のニップ部材で基板Sの間隔（余白）Np部分を挟持し、その後、両ニップ部材のX軸方向の間隔が広がるように、それぞれのニップ部材をX軸方向に微動させる構成にしても良い。

[01 25]この場合、2ケ所のニップ部材と、両ニップ部材間のX軸方向の間隔を変える駆動機構とが張力付与機構を構成する。

[01 26]上記の各実施形態では、マーク検出システムとして、顕微鏡撮像システム（アライメントカメラ5、18等）を用いて、基板S上のアライメントマークA L M（例えば、クロスバー形状）を画像計測した。その為、基板Sが一定の速度で搬送されている状態で、マークA L Mの画像を検出する場合は、撮像したマークA L Mの像のブレが問題になる。そこで、CCDやCMOS等の撮像素子（カメラ）を用いないマーク検出システムを利用しても良い。
そのひとつの例は、基板 S の光感応層が感度を持たない波長域のレーザービームを、細長いスリット状、又は干渉縞状に整形して基板 S 上に投射し、基板 S 上に形成された回折格子状のアライメントマークが、そのスリット状、又は干渉縞状のビームを横切ったときに発生する回折光を光電検出する方式である。その回折光が発生した位置は、基板 S を搬送するローラ 11、12、又は図 10 中のローラ 14 に設けられたロータリーエンコーダによって求められる。図 16 のような実施形態の場合は、ヘッド H D に、回折光を光電検出するマーク検出システムを組み込み、測長用の干渉計 1 F M によって回折光が発生した位置を求めることができる。

符号の説明

S …基板 C O N T …制御部 S a …被処理面 A L M …アライメントマーク E X …露光装置 E A …投影領域 S r …ローラー間部分 M S …マスクステージ P …パターン M …マスク M D …円筒マスク M H …マスク保持部 P A 、 P B …パターン領域 5 …アライメントカメラ 1 0 、 1 O A 、 1 O B …処理装置 1 1 …第 1 ローラー 1 2 …第 2 ローラー 1 4 …基板ステージ機構 1 4 a …外周面 1 5 …駆動部 1 8 …アライメントカメラ W x …安定領域
請求の範囲

[請求項1] 基板を第一方向に搬送し、前記基板の被処理面を処理する基板処理装置において、
前記基板を前記第一方向に案内する第一案内部材と、
前記第一案内部材から離間して配置され、前記第一案内部材により案内される前記基板を案内する第二案内部材と、
前記第一案内部材と前記第二案内部材との間で前記基板に張力を付与し、前記第一方向に交差する第二方向の前記基板の寸法を縮小させる張力付与機構と、
前記第一案内部材と前記第二案内部材との間で、前記基板の被処理面を処理する処理装置と
を備える基板処理装置。

[請求項2] 前記第一案内部材から前記第二案内部材の間で搬送される前記基板の一部を支持する基板支持部を更に備える請求項1に記載の基板処理装置。

[請求項3] 前記基板支持部は、円筒面又は凸面を有する形状に形成されている請求項2に記載の基板処理装置。

[請求項4] 前記基板支持部は、回転円筒体で構成される請求項3に記載の基板処理装置。

[請求項5] 前記回転円筒体を、前記基板の搬送速度に対応する周速度で回転させる駆動部を更に備える請求項4に記載の基板処理装置。

[請求項6] 前記基板支持部は、前記基板との間に前記基板を支持する気体層を形成する気体層形成部を有する請求項2から請求項5のうちいずれか一項に記載の基板処理装置。

[請求項7] 所定の基準パターンを検出する検出部を更に備える請求項1から請求項6のうちいずれか一項に記載の基板処理装置。

[請求項8] 前記所定の基準/パターンは前記基板に設けられる請求項1から請求項7のうちいずれか一項に記載の基板処理装置。
[請求項9] 前記張力付与機構は、前記検出部による検出結果に応じて、前記基板に付与する張力の大きさを制御する請求項7又は請求項8に記載の基板処理装置。

[請求項10] 前記処理装置は、マスクを介した露光光を前記基板に照射する露光装置を有し、
前記露光装置は、前記マスクを移動させるマスクステージを有し、
前記検出結果に応じて前記マスクステージを移動させるステージ駆動部を更に備える
請求項7から請求項9のうちいずれか一項に記載の基板処理装置。

[請求項11] 前記検出部は、複数ヶ所に設けられた基準パターンを検出可能である
請求項7から請求項10のうちいずれか一項に記載の基板処理装置。

[請求項12] 前記処理装置は、マスクを介した露光光を前記基板に照射する露光装置を有し、
前記露光装置は、前記マスクを移動させるマスクステージを有し、
前記マスクステージは、形状又は寸法が異なる複数種類のマスクを保持可能なマスク保持部を有する
請求項1から請求項11のうちいずれか一項に記載の基板処理装置。

[請求項13] 前記第一案内部材と前記第二案内部材は、前記基板の搬送方向に関し
て距離しだけでなく配置され、前記基板と摩擦接触して案内する駆動ローラーを各々含み、前記張力付与機構は、前記駆動ローラーによっ
て前記第一方向の張力を付与する請求項1から請求項12のうちいずれか一項に記載の基板処理装置。

[請求項14] 前記処理装置は、前記第一方向上に複数設けられている
請求項1から請求項13のうちいずれか一項に記載の基板処理装置。
[請求項15] シート状の長尺な基板を長尺方向に搬送して、その基板の上に所定のパターンを順次に形成する基板処理方法であって、
前記パターンが形成される前記基板の部分領域を前記長尺方向と直交する幅方向に収縮させる際の収縮の度合いに関する情報を取得する工程と、
前記長尺方向において前記基板の部分領域を挟む特定の2ケ所の位置の間で、前記収縮の度合いに関する情報に基づいて前記基板に長尺方向の張力を付与する工程と、
を備える基板処理方法。

[請求項16] 前記基板処理方法は、前記基板上に前記パターンを形成するパターン形成部と、前記基板をパターン形成部に対して前記長尺方向に移送する基板搬送部とを備えるパターン形成装置で実行され、
前記パターン形成部は、前記張力を付与する工程における前記基板の部分領域において前記パターンを形成する請求項15に記載の基板処理方法。

[請求項17] 前記基板搬送部は、前記基板の部分領域を前記長尺方向に挟む特定の2ケ所の位置の各々に配置されて、前記基板を接触保持する基板案内部材を備え、
前記張力を付与する工程は、前記2ケ所の基板案内部材の間で前記基板に長尺方向の張力を与える請求項16に記載の基板処理方法。

[請求項18] 前記2ケ所の基板案内部材の各々は、摩擦接触により前記基板を長尺方向に送る一対の回転ローラーで構成され、前記張力を付与する工程は、前記一対の回転ローラーの回転トルクの差によって付与される請求項17に記載の基板処理方法。
[図3]
[図5]

長さL＝100cm
（幅TDc＝30cm, 厚みt＝100μm, ポアソン比0.35, ヤング率4GPa）

[図6]

長さL＝40cm
（幅TDc＝30cm, 厚みt＝100μm, ポアソン比0.35, ヤング率4GPa）
長いL=100cm F=100N

（厚みt=100μm, ポアソン比0.35, ヤング率4GPa）

[図7]

[図8]
[図14]
INTERNATIONAL SEARCH REPORT

International application No. PCT / JP2 012 / 07 4 83 0

A. CLASSIFICATION OF SUBJECT MATTER

B 65K23/1, 92 (2 0 6 . 0 1) i , G 0 2 F 1 / 1 3 (2 0 6 . 0 1) i , G 0 2 F 1 / 1 3 3 (2 0 6 . 0 1) i , G 0 3 F 7 / 2 0 (2 0 6 . 0 1) i , H 0 1 L 5 1 / 5 0 (2 0 6 . 0 1) i , H 0 5 B 3 3 / 1 0 (2 0 6 . 0 1) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

B 65 H 2 3 / 1 9 2 , G 0 2 F 1 / 1 3 , G 0 2 F 1 / 1 3 3 3 , G 0 3 F 7 / 2 0 , H 0 1 L 5 1 / 5 0 , H 0 5 B 3 3 / 1 0

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2012

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2008-76949 A (Toppan Printing Co., Ltd.), 03 April 2008 (03.04.2008), entire text : all drawings (Family : none)</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>JP 2003-312911 A (NSK Ltd.), 06 November 2003 (06.11.2003), entire text : all drawings (Family : none)</td>
<td>1-18</td>
</tr>
<tr>
<td>A</td>
<td>JP 2005-53615 A (Canon Sales Co., Inc.), 03 March 2005 (03.03.2005), entire text : all drawings (Family : none)</td>
<td>1-18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means of public dissemination prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&" document member of the same patent family

Date of the actual completion of the international search 16 October 2012 (16.10.12)
Date of mailing of the international search report 30 October 2012 (30.10.12)

Name and mailing address of the ISA

Japane se Patent Off icer

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. B65H23/192 (2006.01), G02F1/13 (2006.01), G02F1/1333 (2006.01), G03F7/20 (2006.01), H01L51/50 (2006.01), H05B33/10 (2006.01)

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. B65H23/192, G02F1/13, G02F1/1333, G03F7/20, H01L51/50, H05B33/10

C. 関連する文書

番号	文書名	関連する文書の表示
A	JP 2008-76494 A（凸版印刷株式会社）2008.04.03，全文，全図 (ファミリーなし) 1 - 18
A	JP 2003-312911 A（日本精工株式会社）2003.11.06，全文，全図 (ファミリーなし) 1 - 18
A	JP 2005-53615 A（キャノン販売株式会社）2005.03.03，全文，全図 (ファミリーなし) 1 - 18

国際調査報告の発送日：30.10.2012
国際調査を完了した日：16.10.2012

特許庁審査会：松原 陽介
電話番号：03-3581-1101 内線：3320

様式PCT/ISA/210（第2ページ）（2009年7月）