
(86) Date de dépôt PCT/PCT Filing Date: 2014/07/10
(87) Date publication PCT/PCT Publication Date: 2015/01/15
(45) Date de délivrance/Issue Date: 2021/10/26
(85) Entrée phase nationale/National Entry: 2016/01/05
(86) N° demande PCT/PCT Application No.: CN 2014/081957
(87) N° publication PCT/PCT Publication No.: 2015/003640
(30) Priorité/Priority: 2013/07/11 (CN PCT/CN2013/079200)

(51) Cl.Int./Int.Cl. C07D 251/18(2006.01),
A61K 31/395 (2006.01), A61P 35/00 (2006.01),
C07D 401/04 (2006.01), C07D 403/04 (2006.01),
C07D 405/14 (2006.01), C07D 409/04 (2006.01),
C07D 417/04 (2006.01)

(72) Inventeurs/Inventors:
KONTEATIS, ZENON D., US;
POPOVICI-MULLER, JANETA, US;
TRAVINS, JEREMY M., US;
ZAHLER, ROBERT, US;
CAI, ZHENWEI, US;
ZHOU, DING, CN

(73) Propriétaire/Owner:

(54) Titre : COMPOSES THERAPEUTIQUEMENT ACTIFS ET LEURS METHODES D'UTILISATION
(54) Title: THERAPEUTICALLY ACTIVE COMPOUNDS AND THEIR METHODS OF USE

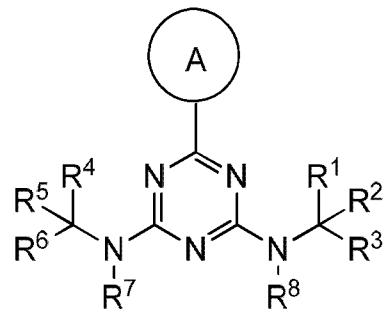
Formular (Ia)

(57) Abrégé/Abstract:

Compounds having Formula (Ia) and pharmaceutically acceptable salts and hydrates thereof are provided. The compounds and pharmaceutically acceptable salts and hydrates thereof are for use in the treatment of a cancer in a patient, the cancer

(73) Propriétaires(suite)/Owners(continued):LES LABORATOIRES SERVIER SAS, FR

(74) Agent: GOWLING WLG (CANADA) LLP


(57) Abrégé(suite)/Abstract(continued):

characterized by the presence of an IDH1 mutation. Methods of preparing these compounds are also provided.

(see formula 1a)

ABSTRACT

Compounds having Formula (Ia) and pharmaceutically acceptable salts and hydrates thereof are provided. The compounds and pharmaceutically acceptable salts and hydrates thereof are for use in the treatment of a cancer in a patient, the cancer characterized by the presence of an IDH1 mutation. Methods of preparing these compounds are also provided.

Formular (Ia)

DEMANDES OU BREVETS VOLUMINEUX

**LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS
COMPREND PLUS D'UN TOME.**

CECI EST LE TOME 1 DE 2

NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS

**THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE
THAN ONE VOLUME.**

THIS IS VOLUME 1 OF 2

NOTE: For additional volumes please contact the Canadian Patent Office.

THERAPEUTICALLY ACTIVE COMPOUNDS AND THEIR METHODS OF USE

CLAIM OF PRIORITY

This application claims priority from International Application Serial No. PCT/CN2013/079200 filed July 11, 2013.

BACKGROUND OF INVENTION

Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to 2-oxoglutarate (*i.e.*, α -ketoglutarate). These enzymes belong to two distinct subclasses, one of which utilizes NAD(+) as the electron acceptor and the other NADP(+). Five isocitrate dehydrogenases have been reported: three NAD(+) -dependent isocitrate dehydrogenases, which localize to the mitochondrial matrix, and two NADP(+) -dependent isocitrate dehydrogenases, one of which is mitochondrial and the other predominantly cytosolic. Each NADP(+) -dependent isozyme is a homodimer.

IDH1 (isocitrate dehydrogenase 1 (NADP+), cytosolic) is also known as IDH; IDP; IDCD; IDPC or PICD. The protein encoded by this gene is the NADP(+) -dependent isocitrate dehydrogenase found in the cytoplasm and peroxisomes. It contains the PTS-1 peroxisomal targeting signal sequence. The presence of this enzyme in peroxisomes suggests roles in the regeneration of NADPH for intraperoxisomal reductions, such as the conversion of 2, 4-dienoyl-CoAs to 3-enoyl-CoAs, as well as in peroxisomal reactions that consume 2-oxoglutarate, namely the alpha-hydroxylation of phytanic acid. The cytoplasmic enzyme serves a significant role in cytoplasmic NADPH production.

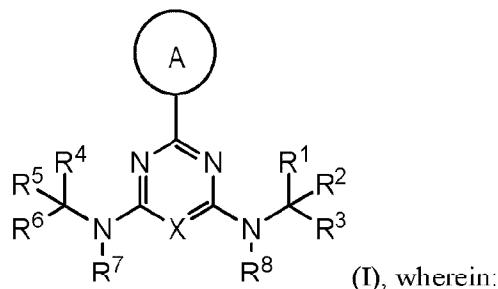
The human IDH1 gene encodes a protein of 414 amino acids. The nucleotide and amino acid sequences for human IDH1 can be found as GenBank entries NM_005896.2 and NP_005887.2 respectively. The nucleotide and amino acid sequences for IDH1 are also described in, *e.g.*, Nekrutenko *et al.*, Mol. Biol. Evol. 15:1674-1684(1998); Geisbrecht *et al.*, J. Biol. Chem. 274:30527-30533(1999); Wiemann *et al.*, Genome Res. 11:422-435(2001); The MGC Project Team, Genome Res. 14:2121-2127(2004); Lubec *et al.*, Submitted (DEC-2008) to UniProtKB; Kullmann *et al.*, Submitted (JUN-1996) to the EMBL/GenBank/DDBJ databases; and Sjoebloem *et al.*, Science 314:268-274(2006).

Non-mutant, *e.g.*, wild type, IDH1 catalyzes the oxidative decarboxylation of isocitrate to α -ketoglutarate thereby reducing NAD^+ (NADP^+) to NADH (NADPH), *e.g.*, in the forward reaction:

It has been discovered that mutations of IDH1 present in certain cancer cells result in a new ability of the enzyme to catalyze the NADPH -dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate (2HG). The production of 2HG is believed to contribute to the formation and progression of cancer (Dang, L *et al.*, *Nature* 2009, 462:739-44).

IDH2 (isocitrate dehydrogenase 2 (NADP^+), mitochondrial) is also known as IDH; IDP; IDHM; IDPM; ICD-M; or mNADP-IDH. The protein encoded by this gene is the $\text{NADP}(+)$ -dependent isocitrate dehydrogenase found in the mitochondria. It plays a role in intermediary metabolism and energy production. This protein may tightly associate or interact with the pyruvate dehydrogenase complex. Human IDH2 gene encodes a protein of 452 amino acids. The nucleotide and amino acid sequences for IDH2 can be found as GenBank entries NM_002168.2 and NP_002159.2 respectively. The nucleotide and amino acid sequence for human IDH2 are also described in, *e.g.*, Huh *et al.*, Submitted (NOV-1992) to the EMBL/GenBank/DDBJ databases; and The MGC Project Team, *Genome Res.* 14:2121-2127(2004).

Non-mutant, *e.g.*, wild type, IDH2 catalyzes the oxidative decarboxylation of isocitrate to α -ketoglutarate (α -KG) thereby reducing NAD^+ (NADP^+) to NADH (NADPH), *e.g.*, in the forward reaction:



It has been discovered that mutations of IDH2 present in certain cancer cells result in a new ability of the enzyme to catalyze the NADPH -dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate (2HG). 2HG is not formed by wild-type IDH2. The production of 2HG is believed to contribute to the formation and progression of cancer (Dang, L *et al.*, *Nature* 2009, 462:739-44).

The inhibition of mutant IDH1 and/or mutant IDH2 and their neoactivity is therefore a potential therapeutic treatment for cancer. Accordingly, there is an ongoing need for inhibitors of IDH1 and/or IDH2 mutants having alpha hydroxyl neoactivity.

SUMMARY OF INVENTION

Described herein are compounds of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

X is N, CH or C-halo;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-C(O)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆

alkylene)-C(O)-(C₀-C₆alkylene)-O-(C₁-C₆alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:

(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂CH₂OCH₂CH₂OCH₂CH₂NH₂, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecyll), NH-[(4-methoxyphenyl)methyl], NHCH₂CH₂CHO, NHCH₂CH₂OCH₃, NHCH₂CH₂OH, NHCH₂CH(OH)CH₃, NHCH₂CH₂OC(O)phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂N(CH₃)phenyl, NHCH₂C(O)OCH₃, NHCH₂C(O)OCH₂CH₃, NHCH₂phenyl, NHCH(CH₃)CH₂CH₃, or

NHCH₂CH₂OC(O)CH₃;

(ii) when X is CH or C-Cl and A is phenyl optionally substituted with F, Cl or SO₂CH₃, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₃)CH₂C(O)NH-i-propyl, NHCH(CH₃)(CH₂)₃N(CH₂CH₃)₂, NHCH₂CH₂OH, NHCH₂CH₂OCH₃, NHCH₂CH₂OSO₃H, NHCH₂CH₂CH₂OCH₂CH₂O-phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂OCH₃, NHCH₂CH(OH)CH₃, N(CH₂CH₃)₂, NH-i-propyl, NHCH₂CH₂NHC(O)OCH₃, NHCH₂CH₂NHC(O)CH₃, NHCH₂CH₂NH₂, or NHCH₂-phenyl;

(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂-phenyl, NHCH₂-(2,4-difluorophenyl), N(CH₃)CH₂CH₂C(O)OH, NHCH₂CH₂C(O)OH, NHCH₂CH₂C(O)OCH₂CH₃, NHCH₂CH₂C(O)O-t-butyl, NHCH₂CH₂C(O)NH₂, NHCH₂CH₂-phenyl, NHCH₂CH₂OH, NHCH₂CH₂NH₂, NHCH₂CH₂N(CH₃)₂, or NHCH₂CH₂CH₃;

(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NH(CH₂)₇CH₃, NHCH₂-(o-chloro-phenyl), or NHCH₂CH₂OH;

(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH₃)₂, NHCH₂CH₂CH₂SO₂CH₂CH₂Cl, NHCH₂CH₂OCH₂CH₂SO₂CH₂CH₂Cl, or NHCH₂CH₂SO₂CH₂CH₂Cl, (B) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHC(O)C(CH₃)₃, NHC(O)CH=CH₂, NHC(O)C(CH₃)=CH₂, NHCH₂CH₂OH, NH-cyclohexyl, NHCH₂-phenyl, NHC(O)phenyl, NHC(O)(CH₂)₅NH₂, NHC(O)OCH₃, NHC(O)CH₃, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R⁷)C(R⁴)(R⁵)(R⁶) is NHC(CH₃)₃, then N(R⁸)C(R¹)(R²)(R³) is not NHCH₂-phenyl or NH-CH₂CH₃;

(vi) when X is N and A is an optionally substituted heteroaryl, then N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both N(CH₂CH₃)₂, NHCH₂CH₂-i-propyl, NHCH₂CH(CH₃)₂, and NHC(O)CH₃;

(vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R⁴ and R⁵ is not 5-methyl-1H-pyrazol-3-yl;

(viii) when A is optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₃)₂, NHCH₃, NHAc, NH-isopropyl, NHCH₂CH₃, NHCH₂CH₂SO₃H

or $N(CH_2CH_3)_2$;

(ix) when X is N and A is optionally substituted phenyl,thienyl, or pyridinyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHCyclohexylC(O)NHCH_2R$, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF_3 , OCH_3 , chloro, or CF_3 ;

(x) when X is N, A is an optionally substituted phenyl and R^4 and R^5 form an optionally substituted phenyl, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2(4\text{-fluorophenyl})$, $NHCH_2CO_2H$, $NHCH_2C(O)Cl$, $NHCH(CO_2H)(CH_2SCH_2\text{phenyl})$, $NHCH_2C(O)NHC(O)NHR$ or $NHCH_2C(O)NHC(S)NHR$, wherein R is optionally substituted phenyl or naphthyl;

(xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R^4 and R^5 do not form an optionally substituted phenyl;

(xii) when A is substituted 1-pyrazolyl, then (A) then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(CH_3)_3$, and (B) A is not substituted with $N=N-R$, wherein R is a ring;

(xiii) ring A is not an optionally substituted triazolyl, 3,5 dimethyl 1H pyrazol 1 yl;

(xiv) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and

(xx) the compound is not selected from the group:

(1) $N\text{-}(2\text{-aminophenyl})\text{-}4\text{-}[[[4\text{-}[(2,3\text{-dihydro-1H-inden-2-yl})\text{amino}]\text{-}6\text{-phenyl-}1,3,5\text{-triazin-2-yl}]\text{amino}]\text{methyl}]\text{-benzamide}$;

(2) $2\text{-chloro-}N\text{-}[4\text{-}(cyclopropylamino)\text{-}6\text{-}(2\text{-pyridinyl)}\text{-}1,3,5\text{-triazin-2-yl}]\text{-}4\text{-}(methylsulfonyl)\text{-benzamide}$;

(3) $2\text{-}[[1\text{-}[4\text{-}(cyclopropylamino)\text{-}6\text{-}(ethylamino)\text{-}1,3,5\text{-triazin-2-yl}]\text{-}1H\text{-}1,2,4\text{-triazol-3-yl}]\text{thio}]\text{-acetamide}$;

(4) $N^2\text{-cyclopropyl-}N^4\text{-ethyl-}6\text{-}[3\text{-}[(phenylmethyl)thio]\text{-}1H\text{-}1,2,4\text{-triazol-1-yl}]\text{-}1,3,5\text{-triazine-2,4-diamine}$;

(5) $2\text{-}[[1\text{-}[4\text{-}(cyclopropylamino)\text{-}6\text{-}(ethylamino)\text{-}1,3,5\text{-triazin-2-yl}]\text{-}1H\text{-}1,2,4\text{-triazol-3-yl}]\text{thio}]\text{- acetic acid methyl ester}$;

(6) $N\text{-}[[4\text{-}[[4\text{-}(cyclopropylamino)\text{-}6\text{-}(2\text{-pyridinyl)}\text{-}1,3,5\text{-triazin-2-yl}]\text{amino}]\text{methyl}]\text{cyclohexyl}]\text{ methyl}]\text{-}4\text{-fluoro-benzenesulfonamide}$;

(7) N²-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N⁴-phenyl-1,3,5-triazine-2,4-diamine;

(8) N^{2,N}⁴-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;

(9) N^{2,N}⁴-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;

(10) N^{2,N}⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine;

(11) N^{2,N}⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine;

(12) 1,1'-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone];

(13) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol];

(14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine;

(15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol;

(16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol;

(17) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine;

(18) N^{2,N}⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine;

(19) 4,4'-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol];

(20) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol];

(21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-βalanine;

(22) N⁴-cyclopentyl-2-phenyl-N⁶-(phenylmethyl)-4,6-pyrimidinediamine;

(23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol;

(24) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine;

(25) 2-chloro-4-(methylsulfonyl)-*N*-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide;

(26) *N*-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide;

(27) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol;

(28) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol;

(29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2*H*-tetrazole-2-acetic acid ethyl ester;

(30) *N²,N²,N⁴,N⁴*-tetraethyl-6-(2*H*-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine;

(31) *N,N*'-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide;

(32) *N*-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide;

(33) *N*4-(5-methyl-1*H*-pyrazol-3-yl)-2-(2-pyridinyl)-*N*6-(tetrahydro-2*H*-pyran-4-yl)-4,6-Pyrimidinediamine;

(34) 6-(4-chlorophenyl)-*N*2-[4-chloro-3-(trifluoromethyl)phenyl]-*N*4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine;

(35) 6-(4-chlorophenyl)-*N*2-[4-chloro-3-(trifluoromethyl)phenyl]-*N*4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine;

(36) *N*2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-*N*4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine;

(37) *N*2,*N*4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine;

(38) *N,N*"-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[*N*'-(2-chloroethyl)-Urea;

(39) *N*-[4-chloro-3-(trifluoromethyl)phenyl]-*N*'-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea;

(40) *N*-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine;

(41) *N*-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-

methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine;

(42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-;

(43) α,α' -[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω -[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]]];

(44) α -[[4-[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (α R)-Cyclohexanepropanamide;

(45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine; and

(46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

The compounds of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, and IIId, or as described in any one of the embodiments herein inhibits mutant IDH1 or mutant IDH2. Also described herein are pharmaceutical compositions comprising a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, and IIId, and methods of using such compositions to treat cancers characterized by the presence of a mutant IDH1 or mutant IDH2.

DETAILED DESCRIPTION

The details of construction and the arrangement of components set forth in the following description or illustrated in the drawings are not meant to be limiting. Other embodiments and different ways to practice the invention are expressly included. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing”, “involving”, and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

Definitions:

The term “halo” or “halogen” refers to any radical of fluorine, chlorine, bromine or iodine.

The term “alkyl” refers to a fully saturated or unsaturated hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, C₁-C₁₂ alkyl indicates that the group may have from 1 to 12 (inclusive) carbon atoms in it. The term “haloalkyl” refers to an alkyl in which one or more hydrogen atoms are replaced by halo, and includes alkyl moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkyl). The terms “arylalkyl” or “aralkyl” refer to an alkyl moiety in which an alkyl hydrogen atom is replaced by an aryl group. Aralkyl includes groups in which more than one hydrogen atom has been replaced by an aryl group. Examples of “arylalkyl” or “aralkyl” include benzyl, 2-phenylethyl, 3-phenylpropyl, 9-fluorenyl, benzhydryl, and trityl groups. The term “alkyl” includes “alkenyl” and “alkynyl”.

The term “alkylene” refers to a divalent alkyl, e.g., -CH₂-, -CH₂CH₂-, -CH₂CH₂CH₂- and -CH₂CH(CH₃)CH₂-.

The term “alkenyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and having one or more double bonds. Examples of alkenyl groups include, but are not limited to, allyl, propenyl, 2-butenyl, 3-hexenyl and 3-octenyl groups. One of the double bond carbons may optionally be the point of attachment of the alkenyl substituent.

The term “alkynyl” refers to a straight or branched hydrocarbon chain containing 2-12 carbon atoms and characterized in having one or more triple bonds. Examples of alkynyl groups include, but are not limited to, ethynyl, propargyl, and 3-hexynyl. One of the triple bond carbons may optionally be the point of attachment of the alkynyl substituent.

The term “alkoxy” refers to an -O-alkyl radical. The term “haloalkoxy” refers to an alkoxy in which one or more hydrogen atoms are replaced by halo, and includes alkoxy moieties in which all hydrogens have been replaced by halo (e.g., perfluoroalkoxy).

Unless otherwise specified, the term “aryl” refers to a fully aromatic monocyclic, bicyclic, or tricyclic hydrocarbon ring system. Examples of aryl moieties are phenyl, naphthyl, and anthracenyl. Unless otherwise specified, any ring atom in an aryl can be substituted by one or more substituents. The term “monocyclic aryl” means a monocyclic fully aromatic hydrocarbon ring system, optionally substituted by one or more substituents which can not form a fused bicyclic or tricyclic ring.

The term “carbocyclyl” refers to a non-aromatic, monocyclic, bicyclic, or tricyclic hydrocarbon ring system. Carbocyclyl groups include fully saturated ring systems (e.g., cycloalkyls), and partially saturated ring systems. Carbocyclyl groups also include spirocyclic moieties. Examples of spirocyclic moieties include, but are not limited to, bicyclo[3.1.0]hexanyl, spiro[2.2]pentanyl, spiro[3.3]heptyl, spiro[2.5]octanyl, spiro[3.5]nonanyl, spiro[4.5]decanyl, and spiro[3.6]decanyl. Unless otherwise specified, any ring atom in a carbocyclyl can be substituted by one or more substituents.

Bicyclic or tricyclic ring systems where an aryl is fused to a carbocyclyl and the point of attachment from the ring system to the rest of the molecule is through the non-aromatic ring are considered to be carbocyclyl (e.g., cycloalkyl). Examples of such carbocyclyl moieties include, but are not limited to, 2,3-dihydro-1H-indene and 1,2,3,4-tetrahydronaphthalene.

The term “cycloalkyl” as employed herein includes saturated cyclic, bicyclic, tricyclic, or polycyclic hydrocarbon groups having 3 to 12 carbons. Any ring atom can be substituted (e.g., by one or more substituents). Examples of cycloalkyl moieties include, but are not limited to, cyclopropyl, cyclohexyl, methylcyclohexyl, adamantlyl, and norbornyl.

Unless otherwise specified, the term “heteroaryl” refers to a fully aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (or the oxidized formssuch as N^+-O^- , $\text{S}(\text{O})$ and $\text{S}(\text{O})_2$). The term “monocyclic heteroaryl” means a monocyclic fully aromatic ring systemhaving 1-3 heteroatoms, optionally substituted by one or more substituents which can not form a fused bicyclic or tricyclic ring.

The term “heterocyclyl” refers to a nonaromatic, 3-10 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S(or the oxidized formssuch as N^+-O^- , $\text{S}(\text{O})$ and $\text{S}(\text{O})_2$). The heteroatom may optionally be the point of attachment of the heterocyclyl substituent. Examples of heterocyclyl include, but are not limited to, tetrahydrofuryl, tetrahydropyranyl, piperidinyl, morpholino, pyrrolinyl, pyrimidinyl, and pyrrolidinyl. Heterocyclyl groups include fully saturated ring systems, and partially saturated ring systems.

Bicyclic and tricyclic ring systems containing one or more heteroatoms and both aromatic and non-aromatic rings are considered to be heterocycl or heteroaryl groups. Bicyclic or tricyclic ring systems where an aryl or a heteroaryl is fused to a carbocycl or heterocycl and the point of attachment from the ring system to the rest of the molecule is through an aromatic ring are considered to be aryl or heteroaryl groups, respectively. Bicyclic or tricyclic ring systems where an aryl or a heteroaryl is fused to a carbocycl or heterocycl and the point of attachment from the ring system to the rest of the molecule is through the non-aromatic ring are considered to be carbocycl (e.g., cycloalkyl) or heterocycl groups, respectively.

Aryl, heteroaryl, carbocycl (including cycloalkyl), and heterocycl groups, either alone or a part of a group (e.g., the aryl portion of an aralkyl group), are optionally substituted at one or more substitutable atoms with, unless specified otherwise, substituents independently selected from: halo, $-C\equiv N$, $C_1\text{-}C_4$ alkyl,

$=O$, $-OR^b$, $-OR^{b'}$, $-SR^b$, $-SR^{b'}$, $-(C_1\text{-}C_4\text{alkyl})\text{-}N(R^b)(R^b)$, $-(C_1\text{-}C_4\text{alkyl})\text{-}N(R^b)(R^{b'})$, $-N(R^b)(R^b)$, $-N(R^b)(R^{b'})$, $O(C_1\text{-}C_4\text{alkyl})N(R^b)(R^b)$, $O(C_1\text{-}C_4\text{alkyl})N(R^b)(R^{b'})$, $(C_1\text{-}C_4\text{alkyl})O(C_1\text{-}C_4\text{alkyl})N(R^b)(R^b)$, $-(C_1\text{-}C_4\text{alkyl})\text{-}O\text{-}(C_1\text{-}C_4\text{alkyl})\text{-}N(R^b)(R^{b'})$, $-C(O)\text{-}N(R^b)(R^b)$, $-(C_1\text{-}C_4\text{alkyl})\text{-}C(O)\text{-}N(R^b)(R^{b'})$, $-(C_1\text{-}C_4\text{alkyl})\text{-}C(O)\text{-}N(R^b)(R^{b'})$, $-OR^{b'}$, $R^{b'}$, $-C(O)(C_1\text{-}C_4\text{alkyl})$, $-C(O)R^{b'}$, $-C(O)N(R^b)(R^{b'})$, $-N(R^b)C(O)(R^b)$, $-N(R^b)C(O)(R^{b'})$, $-N(R^b)SO_2(R^b)$, $-SO_2N(R^b)(R^b)$, $-N(R^b)SO_2(R^{b'})$, and $-SO_2N(R^b)(R^{b'})$, wherein any alkyl substituent is optionally further substituted with one or more of $-OH$, $-O(C_1\text{-}C_4\text{alkyl})$, halo, $-NH_2$, $-NH(C_1\text{-}C_4\text{alkyl})$, or $-N(C_1\text{-}C_4\text{alkyl})_2$;

each R^b is independently selected from hydrogen, and $-C_1\text{-}C_4$ alkyl; or

two R^b 's are taken together with the nitrogen atom to which they are bound to form a 4- to 8-membered heterocycl optionally comprising one additional heteroatom selected from N, S, and O; and

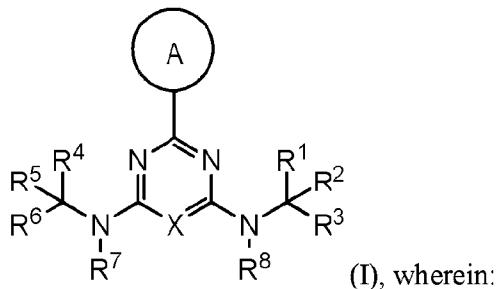
each $R^{b'}$ is independently selected from $C_3\text{-}C_7$ carbocycl, phenyl, heteroaryl, and heterocycl, wherein one or more substitutable positions on said phenyl, cycloalkyl, heteroaryl or heterocycle substituent is optionally further substituted with one or more of $-(C_1\text{-}C_4\text{alkyl})$, $-(C_1\text{-}C_4\text{fluoroalkyl})$, $-OH$, $-O(C_1\text{-}C_4\text{alkyl})$, $-O(C_1\text{-}C_4\text{fluoroalkyl})$, halo, $-NH_2$, $-NH(C_1\text{-}C_4\text{alkyl})$, or $-N(C_1\text{-}C_4\text{alkyl})_2$.

Heterocyclyl groups, either alone or as part of a group, are optionally substituted on one or more any substitutable nitrogen atom with oxo, -C₁-C₄ alkyl, or fluoro-substituted C₁-C₄ alkyl.

The term “substituted” refers to the replacement of a hydrogen atom by another group. The term “bodily fluid” includes one or more of amniotic fluid surrounding a fetus, aqueous humour, blood (e.g., blood plasma), serum, Cerebrospinal fluid, cerumen, chyme, Cowper's fluid, female ejaculate, interstitial fluid, lymph, breast milk, mucus (e.g., nasal drainage or phlegm), pleural fluid, pus, saliva, sebum, semen, serum, sweat, tears, urine, vaginal secretion, or vomit.

As used herein, the terms “inhibit” or “prevent” include both complete and partial inhibition and prevention. An inhibitor may completely or partially inhibit the intended target.

The term “treat” means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease/disorder (e.g., a cancer), lessen the severity of the disease/disorder (e.g., a cancer) or improve the symptoms associated with the disease/disorder (e.g., a cancer).


As used herein, an amount of a compound effective to treat a disorder, or a “therapeutically effective amount” refers to an amount of the compound which is effective, upon single or multiple dose administration to a subject, in treating a cell, or in curing, alleviating, relieving or improving a subject with a disorder beyond that expected in the absence of such treatment.

As used herein, the term “subject” is intended to include human and non-human animals.

Exemplary human subjects include a human patient (referred to as a patient) having a disorder, e.g., a disorder described herein or a normal subject. The term “non-human animals” of one aspect of the invention includes all vertebrates, e.g., non-mammals (such as chickens, amphibians, reptiles) and mammals, such as non-human primates, domesticated and/or agriculturally useful animals, e.g., sheep, dog, cat, cow, pig, etc.

Compounds

Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

X is N, CH or C-halo;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R^7 and R^8 are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:

(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R^7)C(R^4)(R^5)(R^6) nor N(R^8)C(R^1)(R^2)(R^3) is NHCH₂CH₂OCH₂CH₂OCH₂CH₂NH₂, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R^7)C(R^4)(R^5)(R^6) and N(R^8)C(R^1)(R^2)(R^3) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-doceyl), NH-[(4-methoxyphenyl)methyl], NHCH₂CH₂CHO, NHCH₂CH₂OCH₃, NHCH₂CH₂OH, NHCH₂CH(OH)CH₃, NHCH₂CH₂OC(O)phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂N(CH₃)phenyl, NHCH₂C(O)OCH₃, NHCH₂C(O)OCH₂CH₃, NHCH₂phenyl, NHCH(CH₃)CH₂CH₃, or NHCH₂CH₂OC(O)CH₃;

(ii) when X is CH or C-Cl and A is phenyl optionally substituted with F, Cl or SO₂CH₃, then neither N(R^7)C(R^4)(R^5)(R^6) nor N(R^8)C(R^1)(R^2)(R^3) is N(CH₃)CH₂C(O)NH-i-propyl, NHCH(CH₃)(CH₂)₃N(CH₂CH₃)₂, NHCH₂CH₂OH, NHCH₂CH₂OCH₃, NHCH₂CH₂OSO₃H, NHCH₂CH₂CH₂OCH₂CH₂O-phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂OCH₃, NHCH₂CH(OH)CH₃, N(CH₂CH₃)₂, NH-i-propyl, NHCH₂CH₂NHC(O)OCH₃, NHCH₂CH₂NHC(O)CH₃, NHCH₂CH₂NH₂, or NHCH₂-phenyl;

(iii) when X is CH and A is optionally substituted pyridyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHCH_2$ -phenyl, $NHCH_2$ -(2,4-difluorophenyl), $N(CH_3)CH_2CH_2C(O)OH$, $NHCH_2CH_2C(O)OH$, $NHCH_2CH_2C(O)OCH_2CH_3$, $NHCH_2CH_2C(O)O$ -t-butyl, $NHCH_2CH_2C(O)NH_2$, $NHCH_2CH_2$ -phenyl, $NHCH_2CH_2OH$, $NHCH_2CH_2NH_2$, $NHCH_2CH_2N(CH_3)_2$, or $NHCH_2CH_2CH_3$;

(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NH(CH_2)CH_3$, $NHCH_2$ -(o-chloro-phenyl), or $NHCH_2CH_2OH$;

(v) when X is N and A is an optionally substituted pyridyl, then (A) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHC(O)$ -[2-chloro-4-(methylsulfonyl)], $N(CH_3)_2$, $NHCH_2CH_2CH_2SO_2CH_2CH_2Cl$, $NHCH_2CH_2OCH_2CH_2SO_2CH_2CH_2Cl$, or $NHCH_2CH_2SO_2CH_2CH_2Cl$, (B) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(O)C(CH_3)_3$, $NHC(O)CH=CH_2$, $NHC(O)C(CH_3)=CH_2$, $NHCH_2CH_2OH$, NH -cyclohexyl, $NHCH_2$ phenyl, $NHC(O)phenyl$, $NHC(O)(CH_2)_3NH_2$, $NHC(O)OCH_3$, $NHC(O)CH_3$, and $NHC(O)NH$ -optionally substituted phenyl, and (C) when $N(R^7)C(R^4)(R^5)(R^6)$ is $NHC(CH_3)_3$, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2$ -phenyl or NH - CH_2CH_3 ;

(vi) when X is N and A is an optionally substituted heteroaryl, then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $N(CH_2CH_3)_2$, $NHCH_2CH_2$ -i-propyl, $NHCH_2CH(CH_3)_2$, and $NHC(O)CH_3$;

(vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R^4 and R^5 is not 5-methyl-1H-pyrazol-3-yl,

(viii) when A is optionally substituted 1-pyrazolyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $N(CH_3)_2$, $NHCH_3$, $NHAc$, NH isopropyl, $NHCH_2CH_3$, $NHCH_2CH_2SO_3H$ or $N(CH_2CH_3)_2$,

(ix) when X is N and A is optionally substituted phenyl, thiienyl, or pyridinyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is NH cyclohexylC(O) $NHCH_2R$, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF_3 , OCH_3 , chloro, or CF_3 ,

(x) when X is N, A is an optionally substituted phenyl and R^4 and R^5 form an optionally substituted phenyl, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2$ (4-fluorophenyl), $NHCH_2CO_2H$, $NHCH_2C(O)Cl$, $NHCH(CO_2H)(CH_2SCH_2phenyl)$, or $NHCH_2C(O)NHC(O)NHR$ or

$\text{NHCH}_2\text{C(O)NHC(S)NHR}$, wherein R is optionally substituted phenyl or naphthyl,

(xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R^4 and R^5 do not form an optionally substituted phenyl,

(xii) when A is substituted 1-pyrazolyl, then (A) then $\text{N}(\text{R}^7)\text{C}(\text{R}^4)(\text{R}^5)(\text{R}^6)$ and $\text{N}(\text{R}^8)\text{C}(\text{R}^1)(\text{R}^2)(\text{R}^3)$ are not both $\text{NHC(CH}_3)_3$, and (B) A is not substituted with $\text{N}=\text{N}-\text{R}$, wherein R is a ring,

(xiii) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,

(xix) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and

(xx) the compound is not selected from the group:

- (1) $\text{N}-(2\text{-aminophenyl})-4-[[4-[(2,3\text{-dihydro-1H-inden-2-yl})\text{amino}]-6\text{-phenyl-1,3,5-triazin-2-yl}]\text{amino}]\text{methyl}\text{-benzamide}$,
- (2) 2 chloro $\text{N} [4\text{ (cyclopropylamino) 6 (2 pyridinyl) 1,3,5 triazin 2 yl] 4 (\text{methylsulfonyl})}$ benzamide,
- (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
- (4) $\text{N}^2\text{-cyclopropyl-N}^4\text{-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine}$,
- (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
- (6) $\text{N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]\text{methyl}]\text{cyclohexyl}]\text{methyl-4-fluoro-benzenesulfonamide}$,
- (7) $\text{N}^2\text{-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N}^4\text{-phenyl-1,3,5-triazine-2,4-diamine}$,
- (8) $\text{N}^2,\text{N}^4\text{-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine}$,
- (9) $\text{N}^2,\text{N}^4\text{-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine}$,
- (10) $\text{N}^2,\text{N}^4\text{-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine}$,

triazine-2,4-diamine,

- (11) N²,N⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
- (12) 1,1'-(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
- (13) 4,4'-(6-phenyl-1,3,5-triazine-2,4- diyl)bis(iminomethylene)]bis[2,6-bis(1,1- dimethylethyl)-phenol,
- (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
- (15) 4-[2-[4-[(5-aminopentyl)amino]-6-(3- fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (16) 4-[2-[4-[(5-aminopentyl)amino]-6-(4- fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (17) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,
- (18) N²,N⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
- (19) 4,4'-[6-[3,5-bis(1,1-dimethylethyl)-4- hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (20) 4,4'-(6-phenyl-1,3,5-triazine-2,4- diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-βalanine,
- (22) N⁴-cyclopentyl-2-phenyl-N⁶-(phenylmethyl)-4,6-pyrimidinediamine,
- (23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
- (24) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
- (25) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
- (26) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
- (27) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
- (28) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]- 2*H*-tetrazole-2-acetic acid ethyl ester,

(30) *N²,N²,N⁴,N⁴*-tetraethyl-6-(2*H*-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,

(31) *N,N*-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,

(32) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,

(33) N4-(5-methyl-1*H*-pyrazol-3-yl)-2-(2-pyridinyl)-N6-(tetrahydro-2*H*-pyran-4-yl)-4,6-Pyrimidinediamine,

(34) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(35) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(36) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(37) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,

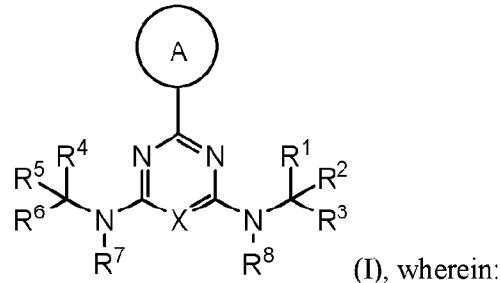
(38) N,N^{''}-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N[']-(2-chloroethyl)-Urea,

(39) N-[4-chloro-3-(trifluoromethyl)phenyl]-N[']-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,

(40) N-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,

(41) N-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,

(42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,


(43) α, α' -[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω -[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]]],

(44) α -[[4-[(3-chlorophenyl)methyl]amino]-6-(1*H*-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (α R)-Cyclohexanepropanamide,

(45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and

(46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

X is N, CH or C-halo;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein any alkyl portion of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆

alkyl), -(C₀-C₆alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(-O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;

wherein:

(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-decetyl), NH-[(4-methoxyphenyl)methyl], NHCH₂CH₂CHO, NHCH₂CH₂OCH₃, NHCH₂CH₂OH, NHCH₂CH(OH)CH₃, NHCH₂CH₂OC(O)phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂N(CH₃)phenyl, NHCH₂C(O)OCH₃, NHCH₂C(O)OCH₂CH₃, NHCH₂phenyl, NHCH(CH₃)CH₂CH₃, or NHCH₂CH₂OC(O)CH₃;

(ii) when X is CH or C-Cl and A is phenyl optionally substituted with F, Cl or SO₂CH₃, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₃)CH₂C(O)NH-i-propyl,

NHCH(CH₃)(CH₂)₃N(CH₂CH₃)₂, NHCH₂CH₂OH, NHCH₂CH₂OCH₃, NHCH₂CH₂OSO₃H, NHCH₂CH₂CH₂OCH₂CH₂O-phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂OCH₃, NHCH₂CH(OH)CH₃, N(CH₂CH₃)₂, NH-i-propyl, NHCH₂CH₂NHC(O)OCH₃, NHCH₂CH₂NHC(O)CH₃, NHCH₂CH₂NH₂, or NHCH₂-phenyl;

(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂-phenyl, NHCH₂-(2,4-difluorophenyl), N(CH₃)CH₂CH₂C(O)OH, NHCH₂CH₂C(O)OH, NHCH₂CH₂C(O)OCH₂CH₃, NHCH₂CH₂C(O)O-t-butyl, NHCH₂CH₂C(O)NH₂, NHCH₂CH₂-phenyl, NHCH₂CH₂OH, NHCH₂CH₂NH₂, NHCH₂CH₂N(CH₃)₂, or NHCH₂CH₂CH₃;

(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NH(CH₂)₇CH₃, NHCH₂-(o-chloro-phenyl), or NHCH₂CH₂OH;

(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHC(O)-[2-chloro-4-(methylsulfonyl)], (B) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHC(O)C(CH₃)₃, NHC(O)CH=CH₂, NHC(O)C(CH₃)=CH₂, NHCH₂CH₂OH, NH-cyclohexyl, NHCH₂-phenyl, NHC(O)phenyl, NHC(O)(CH₂)₅NH₂, NHC(O)OCH₃, NHC(O)CH₃, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R⁷)C(R⁴)(R⁵)(R⁶) is NHC(CH₃)₃, then N(R⁸)C(R¹)(R²)(R³) is not NHCH₂-phenyl or NH-CH₂CH₃;

(vi) when X is N and A is an optionally substituted heteroaryl, then N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both N(CH₂CH₃)₂, NHCH₂CH₂-i-propyl, NHCH₂CH(CH₃)₂, and NHC(O)CH₃;

(vii) the compound is not selected from the group:

- (1) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine,
- (2) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
- (3) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine,
- (4) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(4-fluorophenyl)-1,3,5-

triazine-2,4-diamine,

- (5) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine,
- (6) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine,
- (7) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine,
- (8) N-(2-aminophenyl)-4-[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
- (9) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
- (10) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,
- (11) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
- (12) N²-cyclopropyl-N⁴-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,
- (13) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]- acetic acid methyl ester,
- (14) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,
- (15) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,
- (16) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,
- (17) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,
- (18) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,

(19) N²-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N⁴-phenyl-1,3,5-triazine-2,4-diamine,

(20) N²,N⁴-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(21) N²,N⁴-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(22) N²,N⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(23) N²,N⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,

(24) 1,1'-[6-phenyl-s-triazine-2,4-diyl]diimino]bis[dodecahydro-anthraquinone],

(25) 4,4'-[6-phenyl-1,3,5-triazine-2,4-diyl]bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol,

(26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,

(27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,

(28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,

(29) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,

(30) N²,N⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,

(31) 4,4'-[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,

(32) 4,4'-[6-phenyl-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,

(33) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-βalanine,

(34) N⁴-cyclopentyl-2-phenyl-N⁶-(phenylmethyl)-4,6-pyrimidinediamine,

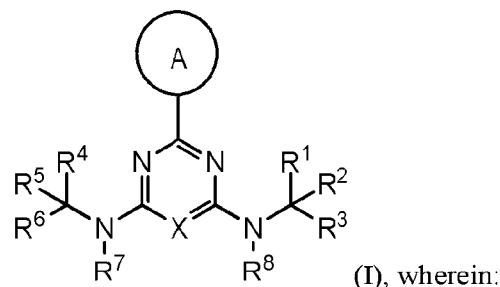
(35) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,

(36) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,

(37) 2-chloro-4-(methylsulfonyl)-*N*-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,

(38) *N*-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,

(39) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,


(40) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(41) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2*H*-tetrazole-2-acetic acid ethyl ester,

(42) *N²,N²,N⁴,N⁴*-tetraethyl-6-(2*H*-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and

(43) *N,N*-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diy]bis-acetamide.

Provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

X is N or CH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein any alkyl portion of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆

alkylene)-Q, -(C₁-C₆alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)- (C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₀-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;

wherein:

(i) when X is N and A is optionally substituted phenyl, then (a) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHEt$, $NH(n\text{-propyl})$, $NH(n\text{-butyl})$, $NH(n\text{-docearyl})$, $NH\text{-}[(4\text{-methoxyphenyl)methyl}]$, $NHCH_2CH_2CHO$, $NHCH_2CH_2OCH_3$, $NHCH_2CH_2OH$, $NHCH_2CH(OH)CH_3$, $NHCH_2CH_2OC(O)phenyl$, $NHCH_2CH_2CH_2OH$, $NHCH_2CH_2CH_2N(CH_3)phenyl$, $NHCH_2C(O)OCH_3$, $NHCH_2C(O)OCH_2CH_3$, $NHCH_2phenyl$, $NHCH(CH_3)CH_2CH_3$, or $NHCH_2CH_2OC(O)CH_3$;

(ii) when X is CH or C-Cl and A is phenyl optionally substituted with F, Cl or SO_2CH_3 , then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $N(CH_3)CH_2C(O)NH\text{-}i\text{-propyl}$, $NHCH(CH_3)(CH_2)_3N(CH_2CH_3)_2$, $NHCH_2CH_2OH$, $NHCH_2CH_2OCH_3$, $NHCH_2CH_2OSO_3H$, $NHCH_2CH_2CH_2OCH_2CH_2O\text{-phenyl}$, $NHCH_2CH_2CH_2OH$, $NHCH_2CH_2CH_2OCH_3$, $NHCH_2CH(OH)CH_3$, $N(CH_2CH_3)_2$, $NH\text{-}i\text{-propyl}$, $NHCH_2CH_2NHC(O)OCH_3$, $NHCH_2CH_2NHC(O)CH_3$, $NHCH_2CH_2NH_2$, or $NHCH_2\text{-phenyl}$;

(iii) when X is CH and A is optionally substituted pyridyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHCH_2\text{-phenyl}$, $NHCH_2\text{-}(2,4\text{-difluorophenyl})$, $N(CH_3)CH_2CH_2C(O)OH$, $NHCH_2CH_2C(O)OH$, $NHCH_2CH_2C(O)OCH_2CH_3$, $NHCH_2CH_2C(O)O\text{-}t\text{-butyl}$, $NHCH_2CH_2C(O)NH_2$, $NHCH_2CH_2\text{-phenyl}$, $NHCH_2CH_2OH$, $NHCH_2CH_2NH_2$, $NHCH_2CH_2N(CH_3)_2$, or $NHCH_2CH_2CH_3$;

(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NH(CH_2)_7CH_3$, $NHCH_2\text{-}(o\text{-chlorophenyl})$, or $NHCH_2CH_2OH$;

(v) when X is N and A is an optionally substituted pyridyl, then (A) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHC(O)\text{-}[2\text{-chloro-4-(methylsulfonyl)}]$, (B) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(O)C(CH_3)_3$, $NHC(O)CH=CH_2$, $NHC(O)C(CH_3)=CH_2$, $NHCH_2CH_2OH$, $NH\text{-cyclohexyl}$, $NHCH_2\text{-phenyl}$, $NHC(O)phenyl$, $NHC(O)(CH_2)_5NH_2$, $NHC(O)OCH_3$, $NHC(O)CH_3$, and $NHC(O)NH\text{-}optionally substituted phenyl}$, and (C) when $N(R^7)C(R^4)(R^5)(R^6)$ is $NHC(CH_3)_3$, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2\text{-phenyl}$ or $NH\text{-}CH_2CH_3$;

(vi) when X is N and A is an optionally substituted heteroaryl, then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $N(CH_2CH_3)_2$, $NHCH_2CH_2$ -i-propyl, $NHCH_2CH(CH_3)_2$, and $NHC(O)CH_3$;

(vii) the compound is not selected from the group:

(1) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine,}$

(2) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,}$

(3) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine,}$

(4) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(4-fluorophenyl)-1,3,5-triazine-2,4-diamine,}$

(5) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine,}$

(6) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine,}$

(7) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine,}$

(8) $N-(2\text{-aminophenyl})-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,$

(9) $2\text{-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,}$

(10) $N^2-[2-[2-(2\text{-aminoethoxy)ethoxy]ethyl]-N^4\text{-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,}$

(11) $2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,$

(12) $N^2\text{-cyclopropyl-N}^4\text{-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,}$

(13) $2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-$

yl]thio]- acetic acid methyl ester,

(14) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,

(15) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,

(16) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,

(17) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,

(18) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,

(19) N²-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N⁴-phenyl-1,3,5-triazine-2,4-diamine,

(20) N²,N⁴-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

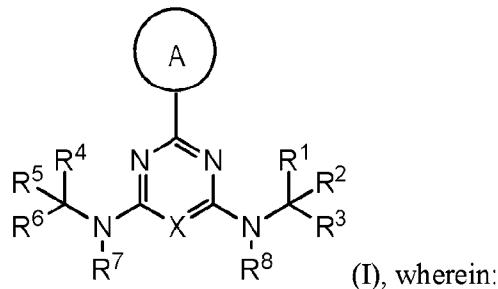
(21) N²,N⁴-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(22) N²,N⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(23) N²,N⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,

(24) 1,1'-(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],

(25) 4,4'-(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol],


(26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,

(27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,

(28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,

- (29) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,
- (30) N²,N⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
- (31) 4,4'-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (32) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (33) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-β-alanine,
- (34) N⁴-cyclopentyl-2-phenyl-N⁶-(phenylmethyl)-4,6-pyrimidinediamine,
- (35) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
- (36) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
- (37) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
- (38) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-1-fluoro-benzenesulfonamide,
- (39) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
- (40) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
- (41) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
- (42) N²,N²,N⁴,N⁴-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and
- (43) N,N-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide.

Also provided is a compound of Formula I, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

X is N or CH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶)-(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl)

alkyl), -(C₀-C₆alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:

(i) when X is N and A is optionally substituted phenyl, then (a) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂CH₂OCH₂CH₂OCH₂CH₂NH₂, 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHEt, NH(n-propyl), NH(n-butyl), NH(n-docecy1), NH-[(4- methoxyphenyl)methyl], NHCH₂CH₂CHO, NHCH₂CH₂OCH₃, NHCH₂CH₂OH, NHCH₂CH(OH)CH₃, NHCH₂CH₂OC(O)phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂N(CH₃)phenyl, NHCH₂C(O)OCH₃, NHCH₂C(O)OCH₂CH₃, NHCH₂phenyl, NHCH(CH₃)CH₂CH₃, or NHCH₂CH₂OC(O)CH₃;

(ii) when X is CH or C-Cl and A is phenyl optionally substituted with F, Cl or SO₂CH₃, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₃)CH₂C(O)NH-i-propyl, NHCH(CH₃)(CH₂)₃N(CH₂CH₃)₂, NHCH₂CH₂OH, NHCH₂CH₂OCH₃, NHCH₂CH₂OSO₃H, NHCH₂CH₂CH₂OCH₂CH₂O-phenyl, NHCH₂CH₂CH₂OH, NHCH₂CH₂CH₂OCH₃,

NHCH₂CH(OH)CH₃, N(CH₂CH₃)₂, NH-i-propyl, NHCH₂CH₂NHC(O)OCH₃, NHCH₂CH₂NHC(O)CH₃, NHCH₂CH₂NH₂, or NHCH₂-phenyl;

(iii) when X is CH and A is optionally substituted pyridyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂-phenyl, NHCH₂-(2,4-difluorophenyl), N(CH₃)CH₂CH₂C(O)OH, NHCH₂CH₂C(O)OH, NHCH₂CH₂C(O)OCH₂CH₃, NHCH₂CH₂C(O)O-t-butyl, NHCH₂CH₂C(O)NH₂, NHCH₂CH₂-phenyl, NHCH₂CH₂OH, NHCH₂CH₂NH₂, NHCH₂CH₂N(CH₃)₂, or NHCH₂CH₂CH₃;

(iv) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NH(CH₂)₇CH₃, NHCH₂-(o-chloro-phenyl), or NHCH₂CH₂OH;

(v) when X is N and A is an optionally substituted pyridyl, then (A) neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHC(O)-[2-chloro-4-(methylsulfonyl)], N(CH₃)₂, NHCH₂CH₂CH₂SO₂CH₂CH₂Cl, NHCH₂CH₂OCH₂CH₂SO₂CH₂CH₂Cl, or NHCH₂CH₂SO₂CH₂CH₂Cl, (B) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHC(O)C(CH₃)₃, NHC(O)CH=CH₂, NHC(O)C(CH₃)=CH₂, NHCH₂CH₂OH, NH-cyclohexyl, NHCH₂-phenyl, NHC(O)phenyl, NHC(O)(CH₂)₅NH₂, NHC(O)OCH₃, NHC(O)CH₃, and NHC(O)NH-optionally substituted phenyl, and (C) when N(R⁷)C(R⁴)(R⁵)(R⁶) is NHC(CH₃)₃, then N(R⁸)C(R¹)(R²)(R³) is not NHCH₂-phenyl or NH-CH₂CH₃;

(vi) when X is N and A is an optionally substituted heteroaryl, then N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both N(CH₂CH₃)₂, NHCH₂CH₂-i-propyl, NHCH₂CH(CH₃)₂, and NHC(O)CH₃;

(vii) when X is CH and A is unsubstituted 2-pyridinyl, then the ring formed by R⁴ and R⁵ is not 5-methyl-1H-pyrazol-3-yl,

(viii) when A is optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₃)₂, NHCH₃, NHAc, NHisopropyl, NHCH₂CH₃, NHCH₂CH₂SO₃H or N(CH₂CH₃)₂,

(ix) when X is N and A is optionally substituted phenyl,thienyl, or pyridinyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHcyclohexylC(O)NHCH₂R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF₃, OCH₃, chloro, or CF₃,

(x) when X is N, A is an optionally substituted phenyl and R⁴ and R⁵ form an optionally

substituted phenyl, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2(4\text{-fluorophenyl})$, $NHCH_2CO_2H$, $NHCH_2C(O)Cl$, $NHCH(CO_2H)(CH_2SCH_2\text{phenyl})$, or $NHCH_2C(O)NHC(O)NHR$ or $NHCH_2C(O)NHC(S)NHR$, wherein R is optionally substituted phenyl or naphthyl,

(xi) when X is N, A is an oxadiazole substituted with an optionally substituted pyridinyl, then R^4 and R^5 do not form an optionally substituted phenyl,

(xii) when A is substituted 1-pyrazolyl, then (A) then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(CH_3)_3$, and (B) A is not substituted with $N=N\text{-}R$, wherein R is a ring,

(xiii) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,

(xix) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and

(xx) the compound is not selected from the group:

- (1) $N(2\text{ aminophenyl})4[[[4[(2,3\text{ dihydro 1H inden 2 yl})amino]6 phenyl 1,3,5 triazin 2 yl]amino]methyl]-benzamide$,
- (2) $2\text{-chloro-}N\text{-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide}$,
- (3) $2\text{-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide}$,
- (4) $N^2\text{-cyclopropyl-}N^4\text{-ethyl-}6\text{-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine}$,
- (5) $2\text{-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester}$,
- (6) $N\text{-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]-methyl}-4\text{-fluoro-benzenesulfonamide}$,
- (7) $N^2\text{-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-}N^4\text{-phenyl-1,3,5-triazine-2,4-diamine}$,
- (8) $N^2,N^4\text{-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine}$,
- (9) $N^2,N^4\text{-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine}$,

triazine-2,4-diamine,

- (10) N²,N⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
- (11) N²,N⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
- (12) 1,1'-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
- (13) 4,4'-[(6-phenyl-1,3,5-triazine-2,4- diyl)bis(iminomethylene)]bis[2,6-bis(1,1- dimethylethyl)-phenol,
- (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
- (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3- fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4- fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (17) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,
- (18) N²,N⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
- (19) 4,4'-[[6-[3,5-bis(1,1-dimethylethyl)-4- hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (20) 4,4'-[(6-phenyl-1,3,5-triazine-2,4- diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (21) N-[6-[(2,3-dihydro-1H-inden-2-yl)amino]-2-(2-pyridinyl)-4-pyrimidinyl]-βalanine,
- (22) N⁴-cyclopentyl-2-phenyl-N⁶-(phenylmethyl)-4,6-pyrimidinediamine,
- (23) 2-[[6-(bicyclo[2.2.1]hept-2-ylamino)-2-phenyl-4-pyrimidinyl]amino]-ethanol,
- (24) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
- (25) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
- (26) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
- (27) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(28) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(29) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,

(30) N^2,N^2,N^4,N^4 -tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,

(31) N,N' -[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,

(32) N-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,

(33) N4-(5-methyl-1H-pyrazol-3-yl)-2-(2-pyridinyl)-N6-(tetrahydro-2H-pyran-4-yl)-4,6-Pyrimidinediamine,

(34) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(35) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(36) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(37) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,

(38) N,N''-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N'-(2-chloroethyl)-Urea,

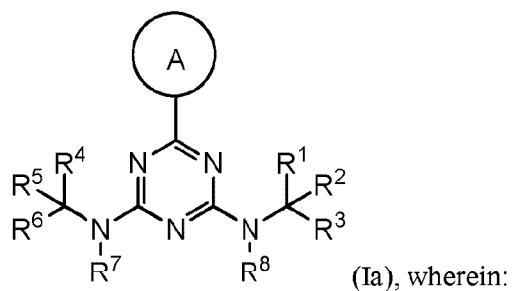
(39) N-[4-chloro-3-(trifluoromethyl)phenyl]-N'-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,

(40) N-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,

(41) N-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,

(42) s-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,

(43) α,α' -[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-propanediyl)]]bis[ω -[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-


1,2-ethanediyl]],

(44) α -[[4-[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (α R)-Cyclohexanepropanamide,

(45) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and

(46) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein any alkyl portion of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R^2 and R^5 are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-Q, -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl)

alkyl), $-(C_1-C_6\text{alkylene})-O-C(O)-(C_0-C_6\text{ alkylene})-Q$, $-(C_0-C_6\text{ alkylene})-C(O)N(R^6)-(C_1-C_6\text{ alkyl})$, $-(C_0-C_6\text{ alkylene})-C(O)N(R^6)-(C_0-C_6\text{ alkylene})-Q$, $-(C_1-C_6\text{ alkylene})-N(R^6)C(O)-(C_1-C_6\text{ alkyl})$, $-(C_1-C_6\text{ alkylene})-N(R^6)C(O)-(C_0-C_6\text{ alkylene})-Q$, $-(C_0-C_6\text{ alkylene})-S(O)_{0-2}-(C_1-C_6\text{ alkyl})$, $-(C_0-C_6\text{ alkylene})-S(O)_{0-2}-(C_0-C_6\text{ alkylene})-Q$, $-(C_1-C_6\text{ alkylene})-N(R^6)-C(O)-N(R^6)-(C_1-C_6\text{ alkyl})$, $-(C_0-C_6\text{ alkylene})-Q$, $-(C_0-C_6\text{ alkylene})-C(O)-(C_1-C_6\text{ alkyl})$, $-(C_0-C_6\text{ alkylene})-C(O)-(C_0-C_6\text{ alkylene})-Q$, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, $-O(C_1-C_4\text{ alkyl})$, $-CO_2H$, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-CH_2OH$, CF_3 , $-CH_2F$, $-CH_2Cl$, $C(O)CH_3$, $C(O)CF_3$, CN , or CO_2H ;

R^7 and R^8 are each independently selected from hydrogen and C_1-C_6 alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;

wherein:

(i) when A is optionally substituted phenyl, then (a) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino] and (b) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHEt$, $NH(n\text{-propyl})$, $NH(n\text{-butyl})$, $NH(n\text{-docecy})$, $NH\text{-}[(4\text{- methoxyphenyl)methyl}]$, $NHCH_2CH_2CHO$, $NHCH_2CH_2OCH_3$, $NHCH_2CH_2OH$, $NHCH_2CH(OH)CH_3$, $NHCH_2CH_2OC(O)phenyl$, $NHCH_2CH_2CH_2OH$, $NHCH_2CH_2CH_2N(CH_3)phenyl$, $NHCH_2C(O)OCH_3$, $NHCH_2C(O)OCH_2CH_3$, $NHCH_2phenyl$, $NHCH(CH_3)CH_2CH_3$, or $NHCH_2CH_2OC(O)CH_3$;

(ii) when X is N and A is an optionally substituted pyridyl, then (A) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHC(O)-[2\text{-chloro-4-(methylsulfonyl)}]$, (B) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(O)C(CH_3)_3$, $NHC(O)CH=CH_2$, $NHC(O)C(CH_3)=CH_2$, $NHCH_2CH_2OH$, $NH\text{-cyclohexyl}$, $NHCH_2\text{-phenyl}$, $NHC(O)\text{phenyl}$, $NHC(O)(CH_2)_5NH_2$, $NHC(O)OCH_3$, $NHC(O)CH_3$, and $NHC(O)NH\text{-optionally substituted phenyl}$, and (C) when $N(R^7)C(R^4)(R^5)(R^6)$ is $NHC(CH_3)_3$, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2\text{-phenyl}$ or $NH\text{-CH}_2CH_3$;

(iii) when X is N and A is an optionally substituted heteroaryl, then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $N(CH_2CH_3)_2$, $NHCH_2CH_2\text{-i-propyl}$, $NHCH_2CH(CH_3)_2$, and $NHC(O)CH_3$; and

(iv) the compound is not selected from the group:

(1) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-phenyl-1,3,5-triazine-2,4-diamine}$,

(2) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine}$,

(3) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(3-nitrophenyl)-1,3,5-triazine-2,4-diamine}$,

(4) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(4-fluorophenyl)-1,3,5-triazine-2,4-diamine}$,

(5) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(4-trifluoromethoxy-phenyl)-1,3,5-triazine-2,4-diamine}$,

(6) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(4-t-butyl-phenyl)-1,3,5-triazine-2,4-diamine}$,

(7) $N^2\text{-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N}^4\text{-cyclopentyl-6-(2-thienyl)-1,3,5-triazine-2,4-diamine}$,

(8) $N\text{-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide}$,

(9) $2\text{-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide}$,

(10) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-methoxyphenyl)-1,3,5-triazine-2,4-diamine,

(11) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,

(12) N²-cyclopropyl-N⁴-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-diamine,

(13) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]- acetic acid methyl ester,

(14) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(2,4,6-trimethylphenyl)-1,3,5-triazine-2,4-diamine,

(15) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-phenyl-1,3,5-triazine-2,4-diamine,

(16) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-methylphenyl)-1,3,5-triazine-2,4-diamine,

(17) N²-[2-[2-(2-aminoethoxy)ethoxy]ethyl]-N⁴-cyclopropyl-6-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine,

(18) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl] methyl]-4-fluoro-benzenesulfonamide,

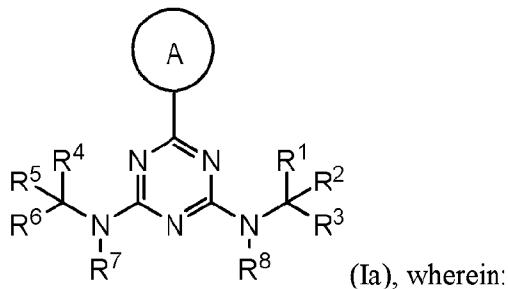
(19) N²-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N⁴-phenyl-1,3,5-triazine-2,4-diamine,

(20) N²,N⁴-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(21) N²,N⁴-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(22) N²,N⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,

(23) N²,N⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,


(24) 1,1'-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],

(25) 4,4'-[(6-phenyl-1,3,5-triazine-2,4- diyl)bis(iminomethylene)]bis[2,6-bis(1,1-

dimethylethyl)-phenol,

- (26) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl] amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
- (27) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (28) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]-phenol,
- (29) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,
- (30) N²,N⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
- (31) 4,4'-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (32) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol,
- (33) N²-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
- (34) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,
- (35) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
- (36) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
- (37) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl][hydroxymethyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,
- (38) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2H-tetrazole-2-acetic acid ethyl ester,
- (39) N²,N²,N⁴,N⁴-tetraethyl-6-(2H-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine, and
- (40) N,N-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide.

Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl; R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-(C₁-C₆ alkylene)-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-CH_2OH$, CF_3 , $-CH_2F$, $-CH_2Cl$, $C(O)CH_3$, $C(O)CF_3$, CN , or CO_2H ;

R^7 and R^8 are each independently selected from hydrogen and C_1-C_6 alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl; wherein:

(i) when A is optionally substituted phenyl, then (a) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHCH_2CH_2OCH_2CH_2OCH_2CH_2NH_2$ or $4-[[2-[2-(2-$ aminoethoxy)ethoxy]ethyl]amino] and (b) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHET$, $NH(n\text{-}propyl)$, $NH(n\text{-}butyl)$, $NH(n\text{-}docearyl)$, $NH\text{-}[(4\text{-}methoxyphenyl)methyl]$, $NHCH_2CH_2CHO$, $NHCH_2CH_2OCH_3$, $NHCH_2CH_2OH$, $NHCH_2CH(OH)CH_3$, $NHCH_2CH_2OC(O)phenyl$, $NHCH_2CH_2CH_2OH$, $NHCH_2CH_2CH_2N(CH_3)phenyl$, $NHCH_2C(O)OCH_3$, $NHCH_2C(O)OCH_2CH_3$, $NHCH_2phenyl$, $NHCH(CH_3)CH_2CH_3$, or $NHCH_2CH_2OC(O)CH_3$;

(ii) when A is an optionally substituted pyridyl, then (A) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHC(O)\text{-}[2\text{-}chloro-4\text{-}(methylsulfonyl)]$, $N(CH_3)_2$, $NHCH_2CH_2CH_2SO_2CH_2CH_2Cl$, $NHCH_2CH_2OCH_2CH_2SO_2CH_2CH_2Cl$, or $NHCH_2CH_2SO_2CH_2CH_2Cl$, (B) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(O)C(CH_3)_3$, $NHC(O)CH=CH_2$, $NHC(O)C(CH_3)=CH_2$, $NHCH_2CH_2OH$, $NH\text{-}cyclohexyl$, $NHCH_2\text{-}phenyl$, $NHC(O)phenyl$, $NHC(O)(CH_2)_5NH_2$, $NHC(O)OCH_3$, $NHC(O)CH_3$, and $NHC(O)NH\text{-}optionally substituted phenyl$, and (C) when $N(R^7)C(R^4)(R^5)(R^6)$ is $NHC(CH_3)_3$, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2\text{-}phenyl$ or $NH\text{-}CH_2CH_3$;

(iii) when A is an optionally substituted heteroaryl, then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $N(CH_2CH_3)_2$, $NHCH_2CH_2$ -i-propyl, $NHCH_2CH(CH_3)_2$, and $NHC(O)CH_3$;

(iv) when A is optionally substituted 1-pyrazolyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $N(CH_3)_2$, $NHCH_3$, $NHAc$, NH isopropyl, $NHCH_2CH_3$, $NHCH_2CH_2SO_3H$ or $N(CH_2CH_3)_2$,

(v) when A is optionally substituted phenyl,thienyl, or pyridinyl, then neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is NH cyclohexylC(O)NHCH₂R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF_3 , OCH_3 , chloro, or CF_3 ,

(vi) when A is an optionally substituted phenyl and R^4 and R^5 form an optionally substituted phenyl, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2$ (4-fluorophenyl), $NHCH_2CO_2H$, $NHCH_2C(O)Cl$, $NHCH(CO_2H)(CH_2SCH_2$ phenyl), or $NHCH_2C(O)NHC(O)NHR$ or $NHCH_2C(O)NHC(S)NHR$, wherein R is optionally substituted phenyl or naphthyl,

(vii) when A is an oxadiazole substituted with an optionally substituted pyridinyl, then R^4 and R^5 do not form an optionally substituted phenyl,

(viii) when A is substituted 1-pyrazolyl, then (A) then $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(CH_3)_3$, and (B) A is not substituted with $N=N-R$, wherein R is a ring,

(ix) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,

(x) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl;

(xi) the compound is not selected from the group:

- (1) N-(2-aminophenyl)-4-[[[4-[(2,3-dihydro-1H-inden-2-yl)amino]-6-phenyl-1,3,5-triazin-2-yl]amino]methyl]-benzamide,
- (2) 2-chloro-N-[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,
- (3) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetamide,
- (4) N²-cyclopropyl-N⁴-ethyl-6-[3-[(phenylmethyl)thio]-1H-1,2,4-triazol-1-yl]-1,3,5-triazine-2,4-

diamine,

- (5) 2-[[1-[4-(cyclopropylamino)-6-(ethylamino)-1,3,5-triazin-2-yl]-1H-1,2,4-triazol-3-yl]thio]-acetic acid methyl ester,
- (6) N-[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,
- (7) N²-cyclopropyl-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N⁴-phenyl-1,3,5-triazine-2,4-diamine,
- (8) N^{2,N}⁴-dicyclohexyl-6-[3-(4-methoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
- (9) N^{2,N}⁴-dicyclohexyl-6-[3-(3,4-dimethoxyphenyl)-5-(methylthio)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
- (10) N^{2,N}⁴-dicyclohexyl-6-[5-(methylthio)-3-(3,4,5-trimethoxyphenyl)-1H-pyrazol-1-yl]-1,3,5-triazine-2,4-diamine,
- (11) N^{2,N}⁴-dicyclohexyl-6-phenyl-1,3,5-triazine-2,4-diamine,
- (12) 1,1'-[(6-phenyl-s-triazine-2,4-diyl)diimino]bis[dodecahydro-anthraquinone],
- (13) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(iminomethylene)]bis[2,6-bis(1,1-dimethylethyl)-phenol],
- (14) N-[4-[(4-aminobutyl)amino]-6-[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]-1,3,5-triazin-2-yl]-glycine,
- (15) 4-[2-[[4-[(5-aminopentyl)amino]-6-(3-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,
- (16) 4-[2-[[4-[(5-aminopentyl)amino]-6-(4-fluorophenyl)-1,3,5-triazin-2-yl]amino]ethyl]- phenol,
- (17) 6-(4-aminopyridin-3-yl)-N²-benzyl-N⁴-(tert-butyl)-1,3,5-triazine-2,4-diamine,
- (18) N^{2,N}⁴-bis(cyclohexylmethyl)-6-phenyl-1,3,5-triazine-2,4-diamine,
- (19) 4,4'-[[6-[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]-1,3,5-triazine-2,4-diyl]bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol],
- (20) 4,4'-[(6-phenyl-1,3,5-triazine-2,4-diyl)bis(imino-3,1-propanediyl)]bis[2,6-bis(1,1-dimethylethyl)-phenol],
- (21) N²-isopropyl-6-phenyl-N⁴-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine,
- (22) 2-chloro-4-(methylsulfonyl)-N-[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide,

(23) *N*-[[4-[[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,

(24) [[4-[[[[4-amino-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(25) [[4-[[[[4-[bis(hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]amino]methoxy]methyl](hydroxymethyl)amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]imino]bis-methanol,

(26) 5-[4,6-bis(diethylamino)-1,3,5-triazin-2-yl]-2*H*-tetrazole-2-acetic acid ethyl ester,

(27) *N*²,*N*²,*N*⁴,*N*⁴-tetraethyl-6-(2*H*-tetrazol-5-yl)-1,3,5-triazine-2,4-diamine,

(28) *N,N*-[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diyl]bis-acetamide,

(29) *N*-(2-chloro-6-methylphenyl)-5-[[4-(dimethylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]-1,3,4-Oxadiazole-2-carboxamide,

(30) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(31) 6-(4-chlorophenyl)-N2-[4-chloro-3-(trifluoromethyl)phenyl]-N4-[3-(dimethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(32) N2-[3,5-bis(trifluoromethyl)phenyl]-6-(4-chlorophenyl)-N4-[3-(diethylamino)propyl]-1,3,5-Triazine-2,4-diamine,

(33) N2,N4-bis[(4-methoxyphenyl)methyl]-6-[4-(trifluoromethoxy)phenyl]-1,3,5-Triazine-2,4-diamine,

(34) *N,N*''-(6-phenyl-1,3,5-triazine-2,4-diyl)bis[N'-(2-chloroethyl)-Urea,

(35) *N*-[4-chloro-3-(trifluoromethyl)phenyl]-*N'*-[4-methyl-3-[[4-phenyl-6-(propylamino)-1,3,5-triazin-2-yl]amino]phenyl]-urea,

(36) *N*-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(4-pyridinyl)-1,3,5-triazin-2-yl]-glycine,

(37) *N*-[4-[[5-[[[4-chloro-3-(trifluoromethyl)phenyl]amino]carbonyl]amino]-2-methylphenyl]amino]-6-(5-thiazolyl)-1,3,5-triazin-2-yl]-L-Valine,

(38) *s*-Triazine, 2-phenyl-4,6-bis[[6-[[4-phenyl-6-[[6-[[4-phenyl-6-(trichloromethyl)-s-triazin-2-yl]amino]hexyl]amino]-s-triazin-2-yl]amino]hexyl]amino]-,

(39) α,α' -[(6-phenyl-1,3,5-triazine-2,4-diyl)bis[imino(1,1,2,2-tetrafluoro-3-oxo-3,1-

propanediyl)]]bis[ω -[tetrafluoro(trifluoromethyl)ethoxy]-Poly[oxy[trifluoro(trifluoromethyl)-1,2-ethanediyl]]],

(40) α -[[4-[(3-chlorophenyl)methyl]amino]-6-(1H-imidazol-1-yl)-1,3,5-triazin-2-yl]amino]-N-[[4-(trifluoromethyl)phenyl]methyl]-, (α R)-Cyclohexanepropanamide,

(41) N,N' -[6-[4-(acetylamino)-1,2,5-oxadiazol-3-yl]-1,3,5-triazine-2,4-diy]bis-acetamide,

(42)6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and

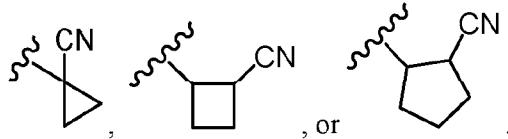
(43) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

In some embodiments, R^1 and R^4 are each independently selected from hydrogen, $-CH_3$, $-CH_2CH_3$, $-CH_2OH$, $-CH(CH_3)OH$, $-C(CH_3)_2OH$, CF_3 , CN , or R^1 and R^3 are taken together to form $=O$; or R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$.

In some embodiments, R^1 and R^2 are taken together to form carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $=O$, $-OH$, and $-C(O)C_1-C_4$ alkyl. In some embodiments, R^1 and R^2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $=O$, $-OH$, aryl, heteroaryl- $SO_2C_1-C_4$ alkyl, $-CO_2C_1-C_4$ alkyl, $-C(O)aryl$, and $-C(O)C_1-C_4$ alkyl. In some embodiments R^1 and R^2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with aryl or heteroaryl, which is optionally substituted with up to 2 substituents independently selected from halo, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, and $-OH$. In some embodiments R^1 and R^2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with phenyl, pyridinyl or pyrimidinyl, which is optionally substituted with up to 2 substituents independently selected from halo, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, and $-OH$.

In some embodiments, R^4 and R^5 are taken together to form carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C_1-C_4 alkyl, C_1-C_4 haloalkyl, C_1-C_4 alkoxy, $-CN$, $=O$, $-OH$, and $-C(O)C_1-C_4$

alkyl. In some embodiments, R^4 and R^5 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with up to 3 substituents independently selected from halo, e.g., fluoro, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, =O, -OH, aryl, heteroaryl - SO_2C_1 - C_4 alkyl, - CO_2C_1 - C_4 alkyl, -C(O)aryl, and -C(O)C $_1$ - C_4 alkyl. In some embodiments R^1 and R^2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with aryl or heteroaryl, which is optionally substituted with up to 2 substituents independently selected from halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, and -OH. In some embodiments R^1 and R^2 are taken together to form a carbocyclyl or heterocyclyl, either of which is optionally substituted with phenyl, pyridinyl or pyrimidinyl, which is optionally substituted with up to 2 substituents independently selected from halo, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, -CN, and -OH.


In some embodiments, R^2 and R^5 are each independently selected from: -(C_1 - C_6 alkyl), -(C_1 C_6 alkyl) C(O) NH₂, (C_1 C_6 alkyl) CO₂H, (C_2 C_6 alkenyl or alkynyl), (C_1 C_6 alkylene)-O-(C_1 - C_6 alkyl), -(C_0 - C_6 alkylene)-C(O)N(R^6)-(C_1 - C_6 alkyl), -(C_0 - C_6 alkylene)-Q, -(C_0 - C_6 alkylene)-C(O)-(C $_1$ - C_6 alkyl), and -(C_0 - C_6 alkylene)-C(O)-(C $_0$ - C_6 alkylene)-Q, wherein Q is optionally substituted with up to 3 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, =O, -C(O)-C $_1$ - C_4 alkyl, -CN, and halo.

In some embodiments, R^2 and R^5 are each independently selected from: -(C_1 - C_4 alkyl) optionally substituted with halo, e.g., fluoro or -OH; -(C_0 - C_4 alkylene)-O-(C_1 - C_4 alkyl), -(C_0 - C_2 alkylene)-N(R^6)-(C $_1$ - C_6 alkyl), -(C $_1$ - C_6 alkyl)-C(O)-NH₂, -(C_0 - C_2 alkylene)-Q, -(C $_0$ - C_6 alkylene)-C(O)-(C $_1$ - C_6 alkyl), and -O-(C_0 - C_2 alkylene)-Q, wherein Q is optionally substituted with up to 3 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, =O, -C(O)-C $_1$ - C_4 alkyl, -CN, and halo. In one aspect of these embodiments, Q is selected from pyridinyl, tetrahydrofuranyl, cyclobutyl, cyclopropyl, phenyl, pyrazolyl, morpholinyl and oxetanyl, wherein Q is optionally substituted with up to 2 substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, =O, fluoro, chloro, and bromo. In another aspect of these embodiments, Q is selected from pyridinyl, tetrahydrofuranyl, cyclobutyl, cyclopropyl, phenyl, pyrazolyl, morpholinyl and oxetanyl, wherein Q is optionally substituted with up to 2 substituents independently selected from -CH₃ and =O.

In some embodiments, R¹ and R² are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, azetidinyl, any of which is optionally substituted with up to 2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, -OH, -C(O)CH₃, fluoro, and chloro.

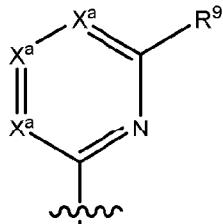
In some embodiments, R⁴ and R⁵ are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, or azetidinyl, any of which is optionally substituted with up to 2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, -OH, -C(O)CH₃, fluoro, and chloro. In some embodiments, R⁴ and R⁵ are taken together to form phenyl, pyrazolyl, imidazolyl, pyrrolidinyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, thiazolyl, thiadiazolyl or isothiazolyl, any of which is optionally substituted with up to 2 substituents independently selected from halo, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, phenyl, OH, C(O)CH₃, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, -OH, -NH₂, or -CN. In some

embodiments the C₃-C₆cycloalkyl is

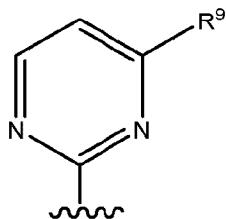
In some embodiments, R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂; and R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), wherein any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo; and any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H; or R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O);

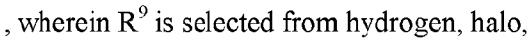
or R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl; or R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, wherein, when A is an optionally substituted phenyl, 2-pyrrolyl, or 1-imidazolyl, then N(R⁷)C(R⁴)(R⁵)(R⁶) is not the same as N(R⁸)C(R¹)(R²)(R³), and the compound is not 2-(1,2-dibromoethyl)-4-phenyl-6-(1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluorohexyl)-1,3,5-Triazine.

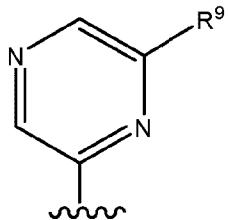
In some embodiments, ring A is an optionally substituted 6-membered monocyclic aryl. In some embodiments, ring A is an optionally substituted 5-6 membered heteroaryl. In some embodiments, ring A is an optionally substituted 5-membered heteroaryl.


In some embodiments, ring A is a substituted 5-6 member monocyclic aryl or monocyclic heteroaryl, which is substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), azetidinyl, phenyl, and cyclopropyl optionally substituted with OH. In some embodiments, ring A is a substituted 5-6 member monocyclic aryl or monocyclic heteroaryl, which is substituted with up to two substituents independently selected from fluoro, chloro, CF₃, CF₂, -OH, -OCH₃, -OCF₃, -CN, -NH₂. In some embodiments, ring A is a substituted 6-membered monocyclic aryl. In some embodiments, ring A is a substituted 5-6 membered heteroaryl. In some embodiments, ring A is a substituted 5-membered heteroaryl.

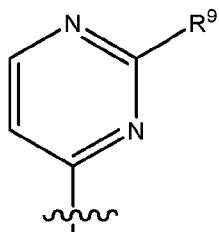
In some embodiments, ring A is selected from phenyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, and cyclopropyl optionally substituted with OH.


In some embodiments, ring A is selected from phenyl, pyrazolyl, imidazolyl, pyrrolidinyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, thiazolyl, thiadiazolyl and isothiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -CN, and -NH₂.


In some embodiments, ring A is monocyclic heteroaryl optionally substituted with halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -O-C₁-C₄ haloalkyl, -OH, -CN, and -NH₂; R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen and C₁-C₄ alkyl; and R² and R⁵ are each independently -(C₀-C₆ alkylene)-Q; or R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl; or R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl.

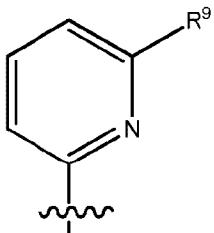

In some embodiments, ring A is monocyclic heteroaryl optionally substituted with halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -O-C₁-C₄ haloalkyl, -OH, -CN, and -NH₂; R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen and C₁-C₄ alkyl; and R² and R⁵ are each independently -(C₀-C₆ alkylene)-Q; or R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl; or R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, an optionally substituted heterocyclyl or an optionally substituted heteroaryl.



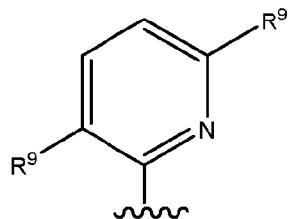

In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl; each X^a is independently N or C-R^{9a}, provided that when one X^a is N, then the other two X^a are both C-R^{9a}, and R^{9a} is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

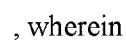
In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo,

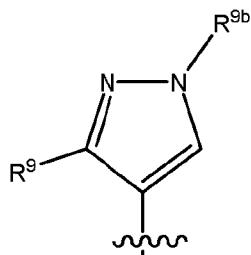
and -C₁-C₄ haloalkyl. In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl. In some embodiments, ring A is:

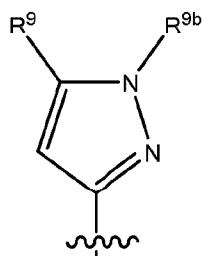


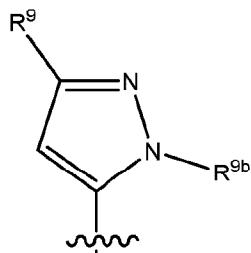
, wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

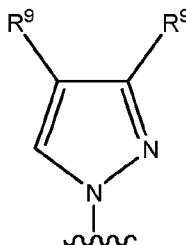

In some embodiments, ring A is pyridinyl optionally substituted with halo or -C₁-C₄ haloalkyl.

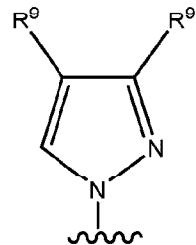

In some embodiments, ring A is pyridinyl optionally substituted with halo, e.g., chloro or fluoro.

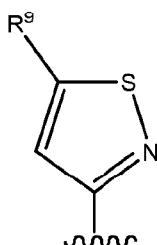

In some embodiments, ring A is pyridin-2-yl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and

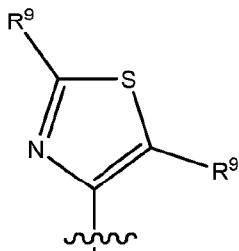

CF₃. In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen,

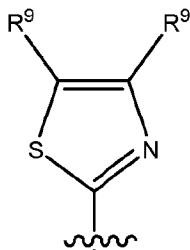

halo, and -C₁-C₄ haloalkyl. In some embodiments, ring A is: , wherein each R⁹ is independently selected from hydrogen, halo, and -C₁-C₄ haloalkyl. In some embodiments, R⁹ is chloro or fluoro. In some embodiments, R⁹ is -CHF₂ or CF₃. In some embodiments, R⁹ is CF₃ or chloro. In some embodiments, R⁹ is CF₃.

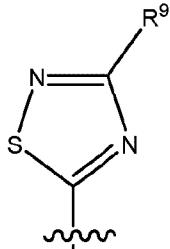

In some embodiments, ring A is: , wherein R^{9b} is selected from hydrogen and -C₁-C₄ alkyl, and wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

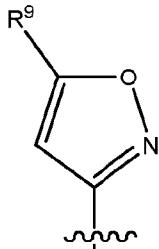

In some embodiments, ring A is: , wherein R^{9b} is selected from hydrogen and -C₁-C₄ alkyl, and wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

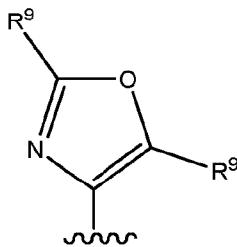

In some embodiments, ring A is: , wherein R^{9b} is selected from hydrogen and -C₁-C₄ alkyl, and wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

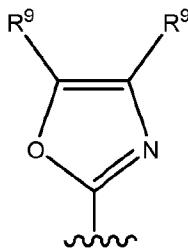

In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazolyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazolyl optionally substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is 1H-pyrazol-1-yl substituted with -C₁-C₄


haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl. In some embodiments, R⁹ is chloro or fluoro. In some embodiments, R⁹ is -CHF₂ or CF₃. In some embodiments, R⁹ is CF₃ or chloro. In some embodiments, R⁹ is CF₃.


In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.


In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.


In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.


In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

In some embodiments, ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

In some embodiments, ring A is pyridinyl optionally substituted with halo or -C₁-C₄ haloalkyl.

In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃.

In some embodiments, ring A is pyrazinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro.

In some embodiments, ring A is pyrazinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃.

In some embodiments, ring A is pyrimidinyl optionally substituted with halo or -C₁-C₄ haloalkyl.

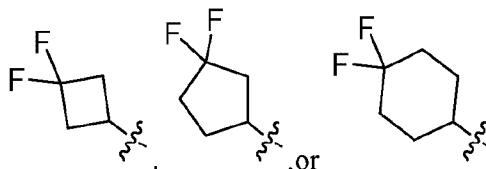
In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some

embodiments, ring A is pyrimidinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃.

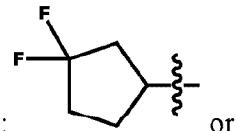
In some embodiments, ring A is pyrazolyl optionally substituted with halo or -C₁-C₄ haloalkyl.

In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃.

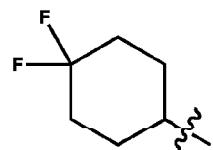
In some embodiments, R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen and

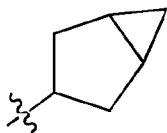

C₁-C₄ alkyl; and R² and R⁵ are each independently -(C₀-C₆ alkylene)-Q. In some embodiments,

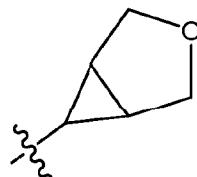
R¹ and R⁴ are each hydrogen. In some embodiments, R³ and R⁶ are each C₁-C₄ alkyl. In some

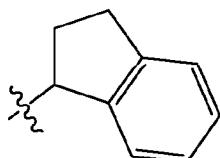

embodiments, R^3 and R^6 are each C_1 - C_4 haloalkyl. In some embodiments, Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted. In some embodiments, Q is optionally substituted carbocyclyl. In some embodiments, Q is optionally substituted cyclopropyl. In some embodiments, Q is unsubstituted cyclopropyl. In some embodiments, R^2 and R^5 are each independently unsubstituted cyclopropyl. In some embodiments, R^1 and R^4 are each hydrogen, R^3 and R^6 are each $-CH_3$, and R^2 and R^5 are each unsubstituted cyclopropyl. In some embodiments, R^2 is $-(C_0$ - C_6 alkylene)-cyclopropyl and R^5 is $-(C_0$ - C_6 alkylene)-aryl, e.g., optionally substituted phenyl. In some embodiments, R^2 is cyclopropyl and R^5 is phenyl substituted with halo, e.g., fluoro.

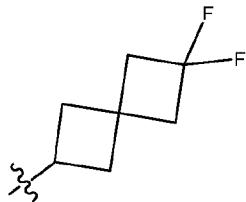
In some embodiments, ring A is pyridinyl optionally substituted with halo or $-C_1$ - C_4 haloalkyl. In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with $-C_1$ - C_4 haloalkyl, e.g., $-CHF_2$ and CF_3 . In some embodiments, ring A is pyrazinyl optionally substituted with halo or $-C_1$ - C_4 haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with $-C_1$ - C_4 haloalkyl, e.g., $-CHF_2$ and CF_3 . In some embodiments, ring A is pyrimidinyl optionally substituted with halo or $-C_1$ - C_4 haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with $-C_1$ - C_4 haloalkyl, e.g., $-CHF_2$ and CF_3 . In some embodiments, ring A is pyrazolyl optionally substituted with halo or $-C_1$ - C_4 haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with $-C_1$ - C_4 haloalkyl, e.g., $-CHF_2$ and CF_3 . In some embodiments, R^3 and R^6 are each independently selected from hydrogen and C_1 - C_4 alkyl; R^1 and R^2 are taken together to form an optionally substituted carbocyclyl; and R^4 and R^5 are taken together to form an optionally substituted carbocyclyl. In some embodiments, R^1 and R^2 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R^1 and R^2 are taken together to form a cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R^4 and R^5 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R^4 and R^5 are taken together to form a cyclopentyl or cyclohexyl, each optionally substituted. In some embodiments, R^1 and R^2 are taken together to form a cyclopentyl or cyclohexyl, each substituted.


by one or more halo, e.g., fluoro; and R⁴ and R⁵ are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more halo, e.g., fluoro. In some embodiments, R¹ and R² are taken together to form a bicyclo[3.1.0]hexanyl; and R⁴ and R⁵ are taken together to form a bicyclo[3.1.0]hexanyl. In some embodiments, R¹ and R² taken together,


and R⁴ and R⁵ taken together form:

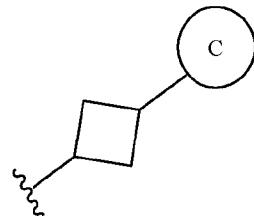

embodiments, R¹ and R² taken together, and R⁴ and R⁵ taken together form:


. In some embodiments, R¹ and R² taken together, and R⁴ and R⁵ taken

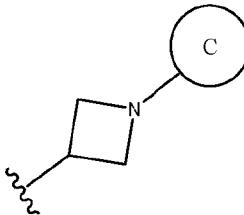

together form: . In some embodiments, R¹ and R² taken together, and R⁴ and R⁵

taken together form: . In some embodiments, R¹ and R² taken together, and R⁴

and R⁵ taken together form: , which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In some embodiments, R¹ and R² taken together, and R⁴ and


R^5 taken together form:

In some embodiments, R^1 and R^2 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more 6-member monocyclic aryl, e.g., phenyl, which is optionally substituted with halo, e.g. fluoro, chloro, or bromo; and R^4 and R^5 are taken together to form a cyclobutyl, cyclopentyl or cyclohexyl, each substituted by one or more 6-member monocyclic aryl, e.g., phenyl, which is optionally substituted with halo, e.g. fluoro, chloro, or bromo. In some embodiments, R^1 and R^2 or R^4 and


R^5 are taken together form:

, wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In

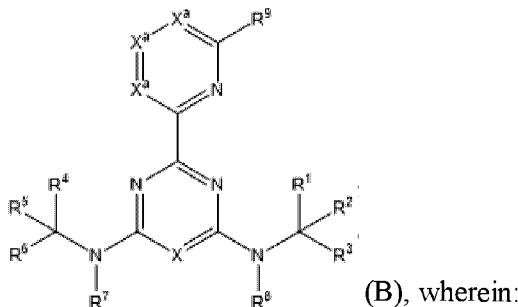
some embodiments, R^1 and R^2 or R^4 and R^5 are taken together form:

wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo. In some embodiments, R^1 and R^2 or R^4 and R^5 are taken

together form:

, wherein Ring C is phenyl, pyridyl, or pyrimidinyl, which is optionally substituted with cyano or halo, e.g. fluoro, chloro, or bromo.

In some embodiments, ring A is pyridinyl optionally substituted with halo or $-C_1-C_4$ haloalkyl. In some embodiments, ring A is pyridinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyridinyl substituted with $-C_1-C_4$ haloalkyl, e.g., $-CHF_2$ and CF_3 . In


some embodiments, ring A is pyrazinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is pyrazolyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, and -CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl; and R² and R⁵ are each independently selected from -(C₁-C₆ alkyl) and -(C₀-C₆ alkylene)-Q. In some embodiments, R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, and -CN; and R² and R⁵ are each independently -(C₁-C₆ alkyl) and -(C₀-C₆ alkylene)-Q. In some embodiments, R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, and -CN; R² is -(C₁-C₆ alkyl); and R⁵ is -(C₀-C₆ alkylene)-Q, wherein Q is optionally substituted carbocyclyl. In some embodiments, Q is unsubstituted carbocyclyl. In some embodiments, Q is cyclopropyl. In some embodiments, ring A is pyridinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyridinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is pyrazinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is pyrimidinyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrimidinyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrimidinyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃. In some embodiments, ring A is pyrazolyl optionally substituted with halo or -C₁-C₄ haloalkyl. In some embodiments, ring A is pyrazolyl substituted with halo, e.g., chloro or fluoro. In some embodiments, ring A is pyrazolyl substituted with -C₁-C₄ haloalkyl, e.g., -CHF₂ and CF₃.

In some embodiments, R^1 , R^3 , and R^6 are each independently selected from hydrogen and C_1 - C_4 alkyl, wherein each said alkyl moiety of R^1 , R^3 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O- C_1 - C_4 alkyl, -NH(C_1 - C_4 alkyl), or -N(C_1 - C_4 alkyl)₂; R^2 is -(C_0 - C_6 alkylene)-Q; and R^4 and R^5 taken together form an optionally substituted carbocyclyl, optionally substituted heterocyclyl or optionally substituted heteroaryl. In some embodiments, R^4 and R^5 taken together form an optionally substituted carbocyclyl. In some embodiments, the carbocyclyl is selected from cyclopentyl and cyclohexyl optionally substituted with -OH, -O(C_1 - C_4 alkyl), -CO₂H, or halo. In some embodiments, R^4 and R^5 taken together form an optionally substituted heterocyclyl optionally substituted with -OH, -O(C_1 - C_4 alkyl), -CO₂H, or halo. In some embodiments, R^4 and R^5 taken together form an optionally substituted tetrahydrofuran. In some embodiments, R^1 , R^3 , and R^6 are each independently selected from hydrogen and C_1 - C_4 alkyl, wherein each said alkyl moiety of R^1 , R^3 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O- C_1 - C_4 alkyl; R^2 is -(C_0 - C_6 alkylene)-Q; and R^5 is C_1 - C_4 alkyl. In some embodiments, R^1 , R^3 , and R^6 are each independently selected from hydrogen, C_1 - C_4 alkyl, or carbocyclyl, wherein any alkyl or carbocyclyl portion of R^1 , R^3 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O- C_1 - C_4 alkyl, -SO₂- C_1 - C_4 alkyl, -C(O)NH₂, -O-R¹², -CO₂R¹² or -C(O)R¹², wherein R¹² is morpholino, piperidinyl, phenyl, pyridyl, or pyrimidinyl. In some embodiments, R^1 , R^3 , and R^6 are each independently selected from hydrogen and C_1 - C_4 alkyl, wherein each said alkyl moiety of R^1 , R^3 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O- C_1 - C_4 alkyl, -O-R¹², wherein R¹² is phenyl, pyridyl, or pyrimidinyl; R^2 is -(C_0 - C_6 alkylene)-Q; and R^5 is C_1 - C_4 alkyl.

In some embodiments, R^7 is H. In some embodiments, R^8 is H. In some embodiments, both R^7 and R^8 are H.

In some embodiments, ring A, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 are selected from any one of the preceding embodiments.

Also provided is a compound of Formula B, or pharmaceutically acceptable salt or hydrate thereof:

X is N, CH or C-halo;

X^a is N or C-R^{9a}, provided that when one X^a is N, then the other two X^a are both C-R^{9a};

R⁹ is halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, and cyclopropyl optionally substituted with OH; each R^{9a} is independently selected from hydrogen, halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, and cyclopropyl optionally substituted with OH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl),

-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-CH_2OH$, CF_3 , $-CH_2F$, $-CH_2Cl$, $C(O)CH_3$, $C(O)CF_3$, CN , or CO_2H ;

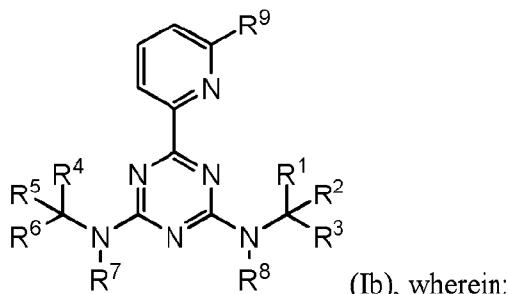
R^7 and R^8 are each independently selected from hydrogen and C_1-C_6 alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or


R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl, an optionally substituted 5-6 member monocyclic aryl, or an optionally substituted 5-6 member monocyclic heteroaryl;

wherein the compound is not selected from the group:

- (1) 4,6-Pyrimidinediamine, 2-(6-methyl-2-pyridinyl)-N4,N6-dipropyl-;
- (2) 4,6-Pyrimidinediamine, N4-ethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-;
- (3) 4,6-Pyrimidinediamine, N4,N4-diethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-;
- (4) [2,4'-Bipyrimidine]-2',4,6-triamine, N6-[2-(dimethylamino)ethyl]-N2',N2',N4,N4-tetramethyl-; or
- (5) [2,4'-Bipyrimidine]-2',4,6-triamine, N6-[2-(dimethylamino)ethyl]-N2',N2',N4,N4-tetramethyl-, phosphate.

In some embodiments, X is N and R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.

Also provided is a compound of Formula Ib, or pharmaceutically acceptable salt or hydrate thereof:

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, $-O-C_1$ - C_4 alkyl, and CN, wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, $-O-C_1$ - C_4 alkyl, -NH(C_1 - C_4 alkyl), or -N(C_1 - C_4 alkyl)₂;

R^2 and R^5 are each independently selected from: $-(C_1$ - C_6 alkyl), $-(C_1$ - C_6 alkyl)-C(O)-NH₂, $-(C_1$ - C_6 alkyl)-CO₂H, $-(C_0$ - C_6 alkylene)-Q, $-(C_0$ - C_6 alkylene)-C(O)-(C₁-C₆ alkyl), $-(C_0$ - C_6 alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, $-O(C_1$ - C_4 alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R^7 and R^8 are each independently selected from hydrogen and C_1 - C_6 alkyl;

R^9 is selected from hydrogen, halo, and $-C_1$ - C_4 haloalkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl;

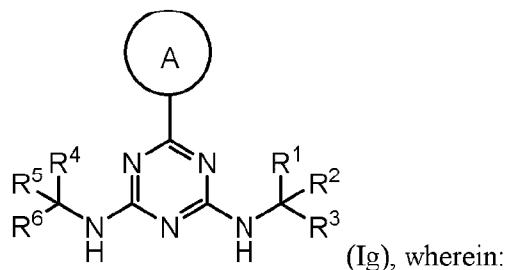
wherein:

(i) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHC(O)-[2\text{-chloro-4-(methylsulfonyl)}]$ or $N(CH_3)_2$,

(ii) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both $NHC(O)C(CH_3)_3$, $NHC(O)CH=CH_2$, $NHC(O)C(CH_3)=CH_2$, $NHCH_2CH_2OH$, $NH\text{-cyclohexyl}$, $NHCH_2\text{-phenyl}$, $NHC(O)\text{phenyl}$, $NHC(O)(CH_2)_5NH_2$, $NHC(O)OCH_3$, $NHC(O)CH_3$, and $NHC(O)NH\text{-optionally substituted phenyl}$, and

(iii) when $N(R^7)C(R^4)(R^5)(R^6)$ is $NHC(CH_3)_3$, then $N(R^8)C(R^1)(R^2)(R^3)$ is not $NHCH_2\text{-phenyl}$ or $NH\text{-CH}_2\text{CH}_3$; and

wherein the compound is not:


(1) 2-chloro- N -[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-4-(methylsulfonyl)-benzamide,

(2) N -[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide,

(3) 2-chloro-4-(methylsulfonyl)- N -[4-[(phenylmethyl)amino]-6-(2-pyridinyl)-1,3,5-triazin-2-yl]-benzamide, or

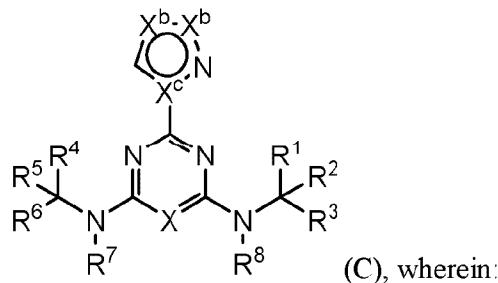
(4) N -[[4-[[4-(cyclopropylamino)-6-(2-pyridinyl)-1,3,5-triazin-2-yl]amino]methyl]cyclohexyl]methyl]-4-fluoro-benzenesulfonamide.

Also provided is a compound of Formula Ia, or a pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

R^3 and R^6 are both hydrogen;

R^1 and R^4 are each independently selected from C_1 - C_4 alkyl and C_1 - C_4 haloalkyl; and
 R^2 and R^5 are each $-(C_1$ - C_6 alkyl); or


R^1 and R^2 are optionally taken together to form an optionally substituted monocyclic carbocyclic; or

R^4 and R^5 are optionally taken together to form an optionally substituted monocyclic carbocyclic; or

wherein:

- (i) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,
- (ii) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and
- (iii) the compound is not selected from the group:
 - (1) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, or
 - (2) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

Also provided is a compound of Formula C, or pharmaceutically acceptable salt or hydrate thereof:

X is N, CH or C-halo;

each X^b is independently $N-R^{9b}$, O, S, C-H, or $C-R^{9c}$, provided that at least one X^b is $C-R^{9c}$, and when one X^b is C-H or $C-R^{9c}$ and the other is $C-R^{9c}$ then X^c is N, and when one X^b is $N-R^{9b}$, O, or S, then X^c is C;

R^{9b} is hydrogen or $-C_1$ - C_4 alkyl;

R^{9c} is halo, $-C_1$ - C_4 alkyl, $-C_1$ - C_4 haloalkyl, $-C_1$ - C_4 hydroxyalkyl, $-NH-S(O)_2-(C_1$ - C_4 alkyl), $-S(O)_2-NH(C_1$ - C_4 alkyl), $-CN$, $-S(O)_2-(C_1$ - C_4 alkyl), C_1 - C_4 alkoxy, $-NH(C_1$ - C_4 alkyl), $-$

$N(C_1\text{-}C_4\text{ alkyl})_2$, $-\text{OH}$, $-\text{OCF}_3$, $-\text{CN}$, $-\text{NH}_2$, $-\text{C(O)NH}_2$, $-\text{C(O)NH(C}_1\text{-C}_4\text{ alkyl)}$, $-\text{C(O)-N(C}_1\text{-C}_4\text{ alkyl})_2$, $-(C_1\text{-}C_6\text{ alkylene)-O-(C}_1\text{-C}_6\text{ alkyl)}$, aryl, and cyclopropyl optionally substituted with OH ; R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $-\text{O-C}_1\text{-C}_4\text{ alkyl}$, and CN , wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with $-\text{OH}$, $-\text{NH}_2$, $-\text{CN}$, $-\text{O-C}_1\text{-C}_4\text{ alkyl}$, $-\text{NH(C}_1\text{-C}_4\text{ alkyl)}$, or $-\text{N(C}_1\text{-C}_4\text{ alkyl})_2$;

R^2 and R^5 are each independently selected from: $-(C_1\text{-}C_6\text{ alkyl})$, $-(C_1\text{-}C_6\text{ alkyl})\text{-C(O)-NH}_2$, $-(C_1\text{-}C_6\text{ alkyl})\text{-CO}_2\text{H}$, $-(C_0\text{-}C_6\text{ alkylene)-Q}$, $-(C_0\text{-}C_6\text{ alkylene})\text{-C(O)-(C}_1\text{-C}_6\text{ alkyl)}$, $-(C_0\text{-}C_6\text{ alkylene})\text{-C(O)-(C}_0\text{-}C_6\text{ alkylene)-Q}$, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more $-\text{OH}$, $-\text{O(C}_1\text{-C}_4\text{ alkyl)}$, $-\text{CO}_2\text{H}$, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-\text{CH}_2\text{OH}$, CF_3 , $-\text{CH}_2\text{F}$, $-\text{CH}_2\text{Cl}$, C(O)CH_3 , C(O)CF_3 , CN , or CO_2H ;

R^7 and R^8 are each independently selected from hydrogen and $C_1\text{-}C_6$ alkyl; and

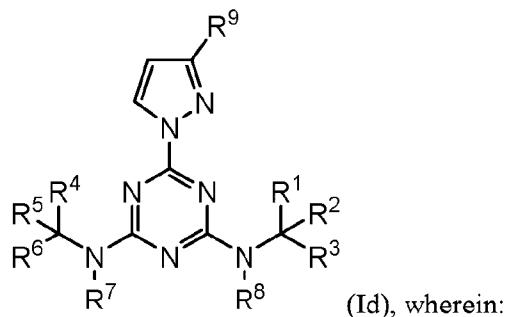
Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $\text{C}(=\text{O})$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $\text{C}(=\text{O})$; or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl, an optionally substituted 5-6 member monocyclic aryl, or an optionally substituted heteroaryl;


wherein:

(i) when X is CH and A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither $N(R^7)\text{C}(R^4)(R^5)(R^6)$ nor $N(R^8)\text{C}(R^1)(R^2)(R^3)$ is $\text{NH(CH}_2)_7\text{CH}_3$, $\text{NHCH}_2\text{-(o-chloro-phenyl)}$, or $\text{NHCH}_2\text{CH}_2\text{OH}$; and

(ii) when X and X^c are both N , then neither $N(R^7)\text{C}(R^4)(R^5)(R^6)$ nor $N(R^8)\text{C}(R^1)(R^2)(R^3)$ is

$\text{N}(\text{CH}_3)_2$, NHCH_3 , or $\text{N}(\text{CH}_2\text{CH}_3)_2$.

Also provided is a compound having Formula Id, or pharmaceutically acceptable salt or hydrate thereof:

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_1\text{-C}_4$ haloalkyl, $-\text{O}\text{-C}_1\text{-C}_4$ alkyl, and CN , wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with $-\text{OH}$, $-\text{NH}_2$, $-\text{CN}$, $-\text{O}\text{-C}_1\text{-C}_4$ alkyl, $-\text{NH}(\text{C}_1\text{-C}_4$ alkyl), or $-\text{N}(\text{C}_1\text{-C}_4$ alkyl) $_2$;

R^2 and R^5 are each independently selected from: $-(\text{C}_1\text{-C}_6$ alkyl), $-(\text{C}_1\text{-C}_6$ alkyl)- $\text{C}(\text{O})\text{-NH}_2$, $-(\text{C}_1\text{-C}_6$ alkyl)- CO_2H , $-(\text{C}_0\text{-C}_6$ alkylene)- Q , $-(\text{C}_0\text{-C}_6$ alkylene)- $\text{C}(\text{O})$ - $(\text{C}_1\text{-C}_6$ alkyl), $-(\text{C}_0\text{-C}_6$ alkylene)- $\text{C}(\text{O})$ - $(\text{C}_0\text{-C}_6$ alkylene)- Q , wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more $-\text{OH}$, $-\text{O}(\text{C}_1\text{-C}_4$ alkyl), $-\text{CO}_2\text{H}$, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-\text{CH}_2\text{OH}$, CF_3 , $-\text{CH}_2\text{F}$, $-\text{CH}_2\text{Cl}$, $\text{C}(\text{O})\text{CH}_3$, $\text{C}(\text{O})\text{CF}_3$, CN , or CO_2H ;

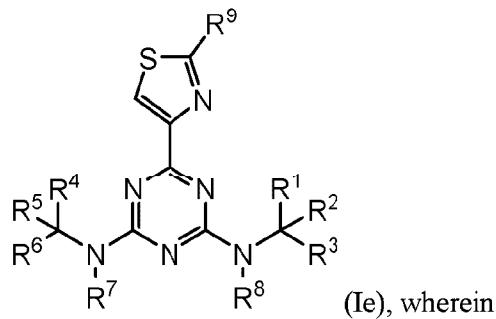
R^7 and R^8 are each independently selected from hydrogen and $\text{C}_1\text{-C}_6$ alkyl;

R^9 is halo or $\text{C}_1\text{-C}_4$ haloalkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $\text{C}(\text{=O})$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $\text{C}(\text{=O})$;


R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

wherein the compound is not:

- (1) N2,N2,N4-trimethyl-6-[3-(trifluoromethyl)-1H-pyrazol-1-yl]-1,3,5-Triazine-2,4-diamine, or
- (2) N4-ethyl-N2,N2-dimethyl-6-[3-(trifluoromethyl-1H-pyrazol-1-yl]-1,3,5-Triazine-2,4-diamine.

A compound having Formula Ie, or pharmaceutically acceptable salt or hydrate thereof:

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, $-O-C_1$ - C_4 alkyl, and CN , wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with $-OH$, $-NH_2$, $-CN$, $-O-C_1$ - C_4 alkyl, $-NH(C_1$ - C_4 alkyl), or $-N(C_1$ - C_4 alkyl) $_2$;

R^2 and R^5 are each independently selected from: $-(C_1$ - C_6 alkyl), $-(C_1$ - C_6 alkyl)- $C(O)-NH_2$, $-(C_1$ - C_6 alkyl)- CO_2H , $-(C_0$ - C_6 alkylene)- Q , $-(C_0$ - C_6 alkylene)- $C(O)-(C_1$ - C_6 alkyl), $-(C_0$ - C_6 alkylene)- $C(O)-(C_0$ - C_6 alkylene)- Q , wherein:

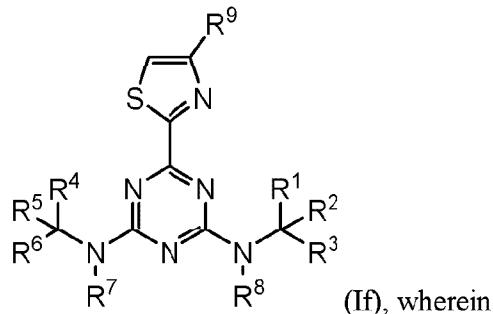
any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more $-OH$, $-O(C_1$ - C_4 alkyl), $-CO_2H$, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with $-CH_2OH$, CF_3 , $-CH_2F$, $-CH_2Cl$, $C(O)CH_3$, $C(O)CF_3$, CN , or CO_2H ;

R^7 and R^8 are each independently selected from hydrogen and C_1 - C_6 alkyl;

R^9 is selected from hydrogen, halo, and $-C_1$ - C_4 haloalkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O);

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.

A compound having Formula If, or pharmaceutically acceptable salt or hydrate thereof:

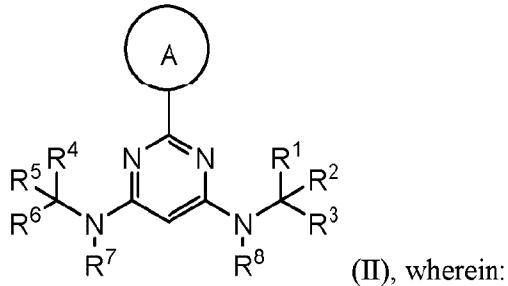
R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R^7 and R^8 are each independently selected from hydrogen and C_1 - C_6 alkyl;
 R^9 is selected from hydrogen, halo, and $-C_1$ - C_4 haloalkyl; and
 Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$;

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl.

Also provided is a compound of Formula II, or pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, $-O-C_1$ - C_4 alkyl, and CN, wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with $-OH$, $-NH_2$, $-CN$, $-O-C_1$ - C_4 alkyl, $-NH(C_1$ - C_4 alkyl), or $-N(C_1$ - C_4 alkyl)₂;

R^2 and R^5 are each independently selected from: $-(C_1$ - C_6 alkyl), $-(C_1$ - C_6 alkyl)- $C(O)-NH_2$, $-(C_1$ - C_6 alkyl)- CO_2H , $-(C_2$ - C_6 alkenyl or alkynyl), $-(C_1$ - C_6 alkylene)- $N(R^6)$ - $(C_1$ - C_6 alkylene)- $O-(C_1$ - C_6 alkyl), $-(C_1$ - C_6 alkylene)- $N(R^6)$ - $(C_0$ - C_6 alkylene)- Q , $-(C_1$ - C_6 alkylene)- $N(R^6)(R^6)$, $-(C_1$ - C_6 alkylene)- $N(R^6)-S(O)_{1-2}-(C_1$ - C_6 alkyl), $-(C_1$ - C_6

alkylene)-N(R⁶)-S(O)₁₋₂-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-S(O)₁₋₂-N(R⁶)(R⁶), -(C₁-C₄ alkylene)-S(O)₁₋₂-N(R⁶)-(C₁-C₆ alkylene)-Q, -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)- (C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -C(O)N(R⁶)-(C₁-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-O-C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-C(O)-(C₀-C₆ alkyl)-Q, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-O-C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₁-C₆ alkyl), -(C₁-C₆ alkylene)-N(R⁶)C(O)-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-S(O)₀₋₂-(C₀-C₆ alkylene)-Q, -(C₁-C₆ alkylene)-N(R⁶)-C(O)-N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R⁴ and R⁶ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl, optionally substituted heterocyclyl, an optionally substituted aryl, or an optionally substituted heteroaryl;

wherein:

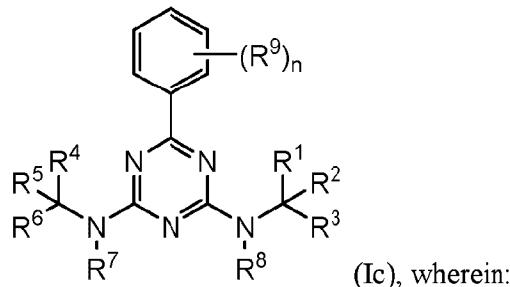
(i) when A is phenyl optionally substituted with F, Cl or SO_2CH_3 , then neither $\text{N}(\text{R}^7)\text{C}(\text{R}^4)(\text{R}^5)(\text{R}^6)$ nor $\text{N}(\text{R}^8)\text{C}(\text{R}^1)(\text{R}^2)(\text{R}^3)$ is $\text{N}(\text{CH}_3)\text{CH}_2\text{C}(\text{O})\text{NH-}i\text{-propyl}$, $\text{NHCH}(\text{CH}_3)(\text{CH}_2)_3\text{N}(\text{CH}_2\text{CH}_3)_2$, $\text{NHCH}_2\text{CH}_2\text{OH}$, $\text{NHCH}_2\text{CH}_2\text{OCH}_3$, $\text{NHCH}_2\text{CH}_2\text{OSO}_3\text{H}$, $\text{NHCH}_2\text{CH}_2\text{CH}_2\text{OCH}_2\text{CH}_2\text{O-phenyl}$, $\text{NHCH}_2\text{CH}_2\text{CH}_2\text{OH}$, $\text{NHCH}_2\text{CH}_2\text{CH}_2\text{OCH}_3$, $\text{NHCH}_2\text{CH}(\text{OH})\text{CH}_3$, $\text{N}(\text{CH}_2\text{CH}_3)_2$, $\text{NH-}i\text{-propyl}$, $\text{NHCH}_2\text{CH}_2\text{NHC}(\text{O})\text{OCH}_3$, $\text{NHCH}_2\text{CH}_2\text{NHC}(\text{O})\text{CH}_3$, $\text{NHCH}_2\text{CH}_2\text{NH}_2$, or $\text{NHCH}_2\text{-phenyl}$;

(ii) when A is optionally substituted pyridyl, then neither $\text{N}(\text{R}^7)\text{C}(\text{R}^4)(\text{R}^5)(\text{R}^6)$ nor $\text{N}(\text{R}^8)\text{C}(\text{R}^1)(\text{R}^2)(\text{R}^3)$ is $\text{NHCH}_2\text{-phenyl}$, $\text{NHCH}_2\text{-(2,4-difluorophenyl)}$, $\text{N}(\text{CH}_3)\text{CH}_2\text{CH}_2\text{C}(\text{O})\text{OH}$, $\text{NHCH}_2\text{CH}_2\text{C}(\text{O})\text{OH}$, $\text{NHCH}_2\text{CH}_2\text{C}(\text{O})\text{OCH}_2\text{CH}_3$, $\text{NHCH}_2\text{CH}_2\text{C}(\text{O})\text{O-t-butyl}$, $\text{NHCH}_2\text{CH}_2\text{C}(\text{O})\text{NH}_2$, $\text{NHCH}_2\text{CH}_2\text{-phenyl}$, $\text{NHCH}_2\text{CH}_2\text{OH}$, $\text{NHCH}_2\text{CH}_2\text{NH}_2$, $\text{NHCH}_2\text{CH}_2\text{N}(\text{CH}_3)_2$, or $\text{NHCH}_2\text{CH}_2\text{CH}_3$;

(iii) when A is optionally substituted 1-imidazolyl, optionally substituted 1-pyrrolyl or optionally substituted 1-pyrazolyl, then neither $\text{N}(\text{R}^7)\text{C}(\text{R}^4)(\text{R}^5)(\text{R}^6)$ nor $\text{N}(\text{R}^8)\text{C}(\text{R}^1)(\text{R}^2)(\text{R}^3)$ is $\text{NH}(\text{CH}_2)_7\text{CH}_3$, NHCH_2 (o chloro phenyl), or $\text{NHCH}_2\text{CH}_2\text{OH}$;

(iv) when A is unsubstituted 2-pyridinyl, then the ring formed by R^4 and R^5 is not 5-methyl-1H-pyrazol-3-yl; and

(v) when A is optionally substituted 1-pyrazolyl, then neither $\text{N}(\text{R}^7)\text{C}(\text{R}^4)(\text{R}^5)(\text{R}^6)$ nor $\text{N}(\text{R}^8)\text{C}(\text{R}^1)(\text{R}^2)(\text{R}^3)$ is $\text{N}(\text{CH}_3)_2$, NHCH_3 , NHAc , NHisopropyl , NHCH_2CH_3 , $\text{NHCH}_2\text{CH}_2\text{SO}_3\text{H}$ or $\text{N}(\text{CH}_2\text{CH}_3)_2$,


(vi) ring A is not an optionally substituted triazolyl, 3,5-dimethyl-1H-pyrazol-1-yl,

(vii) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and

(viii) the compound is not selected from the group:

- (1) 6-(1H-imidazol-1-yl)-N2,N4-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, or
- (2) N2,N4-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

Also provided is a compound of Formula Ic, or pharmaceutically acceptable salt or hydrate thereof:

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

each R^9 is independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, and cyclopropyl optionally substituted with OH;

n is 1 to 3;

R^2 and R^5 are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl),

-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R^7 and R^8 are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form $C(=O)$; or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl;

wherein:

(i) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is $NHCH_2CH_2OCH_2CH_2OCH_2CH_2NH_2$, or 4-[[2-[2-(2-aminoethoxy)ethoxy]ethyl]amino],

(ii) $N(R^7)C(R^4)(R^5)(R^6)$ and $N(R^8)C(R^1)(R^2)(R^3)$ are not both NH Et, $NH(n\text{-propyl})$, $NH(n\text{-butyl})$, $NH(n\text{-doceyl})$, NH -[(4- methoxyphenyl)methyl], $NHCH_2CH_2CHO$, $NHCH_2CH_2OCH_3$, $NHCH_2CH_2OH$, $NHCH_2CH(OH)CH_3$, $NHCH_2CH_2OC(O)phenyl$, $NHCH_2CH_2CH_2OH$, $NHCH_2CH_2CH_2N(CH_3)phenyl$, $NHCH_2C(O)OCH_3$, $NHCH_2C(O)OCH_2CH_3$, $NHCH_2phenyl$, $NHCH(CH_3)CH_2CH_3$, or $NHCH_2CH_2OC(O)CH_3$; and

(iii) neither $N(R^7)C(R^4)(R^5)(R^6)$ nor $N(R^8)C(R^1)(R^2)(R^3)$ is NH cyclohexylC(O)NHCH₂R, wherein R is phenyl or pyridinyl which is substituted with one or more of OCF_3 , OCH_3 , chloro, or CF_3 .

Also provided is a compound of Formula III, or pharmaceutically acceptable salt or hydrate thereof:

ring A is an optionally substituted 5-6 member monocyclic heteroaryl;

ring B is an optionally substituted 5-6 member monocyclic aryl or monocyclic heteroaryl;

R^1 and R^3 are each independently selected from hydrogen, $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ haloalkyl, $-O\text{-}C_1\text{-}C_4$ alkyl, and CN , wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently

optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

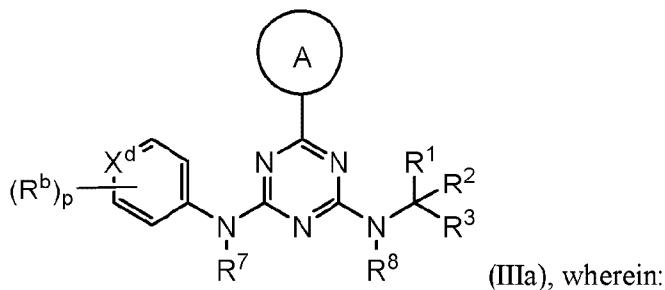
R² is selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;

wherein when A is an oxadiazole substituted with an optionally substituted pyridinyl, then G is not an optionally substituted phenyl.

In some embodiments, G is substituted with 1 or 2 substituents selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl.

Also provided is a compound of Formula IIIa, or pharmaceutically acceptable salt or hydrate thereof:

ring A is a substituted 5-6 member monocyclic heteroaryl;

X^d is C or N;

each R^b is independently selected from halo, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, phenyl, -OH, - $C(O)CH_3$, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, -OH, -NH₂, or -CN;

p is 1 to 2;

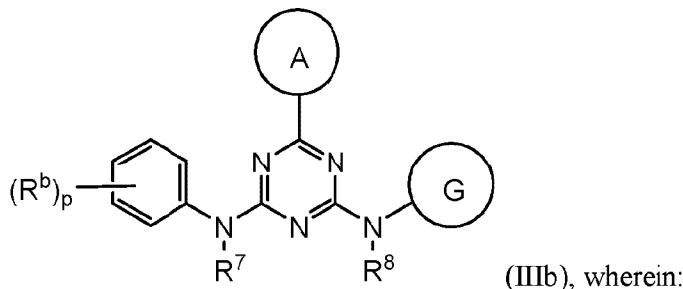
R^1 and R^3 are each independently selected from hydrogen, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, -O- C_1 - C_4 alkyl, and CN, wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with -OH, -NH₂, -CN, -O- C_1 - C_4 alkyl, -NH(C_1 - C_4 alkyl), or -N(C_1 - C_4 alkyl)₂;

R^2 is selected from: -(C_1 - C_6 alkyl), -(C_1 - C_6 alkyl)- $C(O)$ -NH₂, -(C_1 - C_6 alkyl)-CO₂H, -(C_2 - C_6 alkenyl or alkynyl), -(C_1 - C_6 alkylene)-O-(C_1 - C_6 alkyl), -(C_0 - C_6 alkylene)- $C(O)N(R^6)$ -(C_1 - C_6 alkyl),

-(C_0 - C_6 alkylene)-Q, -(C_0 - C_6 alkylene)- $C(O)$ -(C_1 - C_6 alkyl), and -(C_0 - C_6 alkylene)- $C(O)$ -(C_0 - C_6 alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R^2 is optionally substituted with one or more -OH, -O(C_1 - C_4 alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, $C(O)CH_3$, $C(O)CF_3$, CN, or CO₂H;


R^7 and R^8 are each independently selected from hydrogen and C_1 - C_6 alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form C(=O); or


R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;
wherein when A is an oxadiazole substituted with an optionally substituted pyridinyl, then X^d is not C.

Also provided is a compound of Formula IIIb, or pharmaceutically acceptable salt or hydrate thereof:

ring A is a substituted 5-6 member monocyclic heteroaryl;
 R^7 and R^8 are each independently selected from hydrogen and C_1 - C_6 alkyl;
each R^b is independently selected from halo, CN, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_3 - C_6 cycloalkyl, phenyl, -OH, - $C(O)CH_3$, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, -OH, - NH_2 , or -CN;
p is 1 to 2; and
G is an optionally substituted carbocyclyl or heterocyclyl,
wherein A is not an oxadiazole substituted with an optionally substituted pyridinyl.

Also provided is a compound of Formula IIIc, or pharmaceutically acceptable salt or hydrate thereof:

ring A is a substituted 5-6 member monocyclic heteroaryl;

R¹ and R³ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² is selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl),

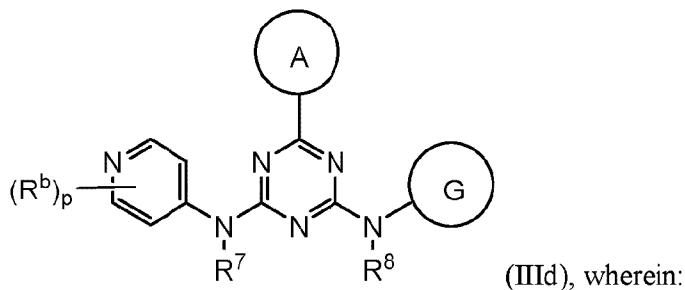
-(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² is optionally replaced with -CH₂OH, CF₃, CH₂F, CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein


R¹ and R³ are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or optionally substituted heterocyclyl;

each R^b is independently selected from halo, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, phenyl, -OH, -C(O)CH₃, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, -OH, -NH₂, or -CN; and

p is 1 to 2.

Also provided is a compound of Formula IIId, or pharmaceutically acceptable salt or hydrate thereof:

ring A is a substituted 5-6 membered monocyclic heteroaryl;

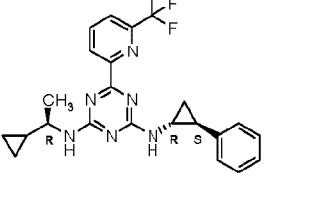
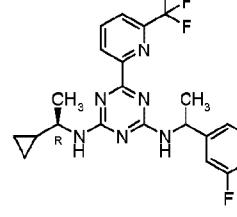
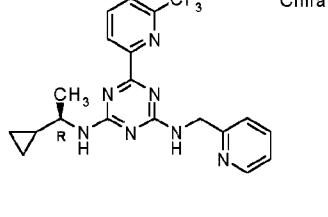
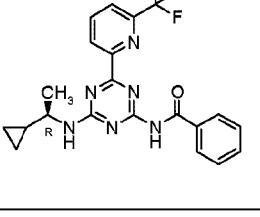
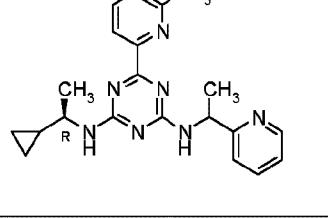
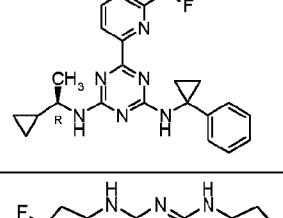
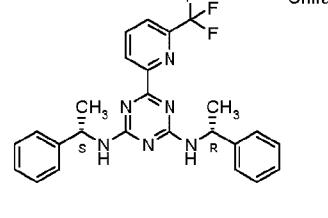
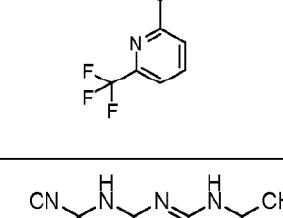
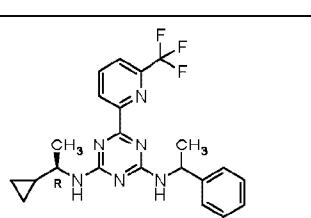
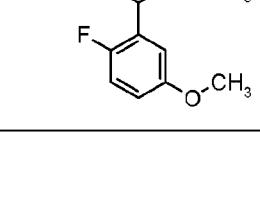
R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl;

each R^b is independently selected from halo, CN, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, phenyl, -OH, -C(O)CH₃, wherein any alkyl, cycloalkyl, or phenyl moiety is optionally substituted with fluoro, chloro, -OH, -NH₂, or -CN;

p is 1 to 2; and

G is an optionally substituted carbocyclyl or heterocyclyl.

Further embodiments provided herein include combinations of one or more of the particular embodiments set forth above.











In another embodiment, the compound is selected from any one of the compounds set forth in Table 1, below.

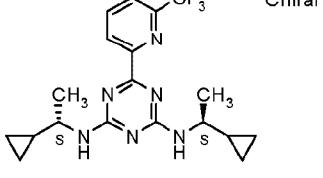
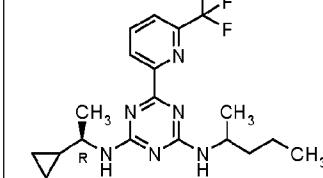
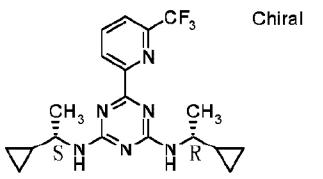
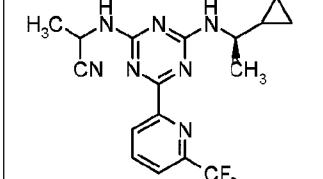
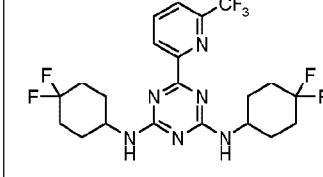
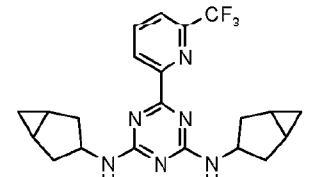
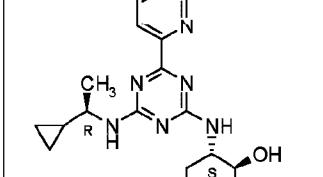
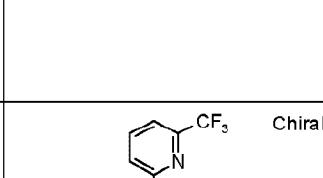
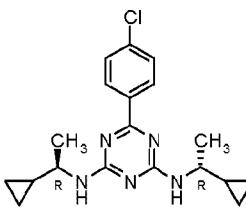
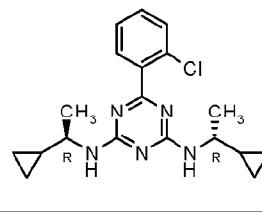
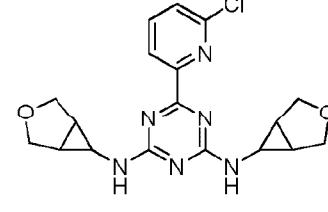
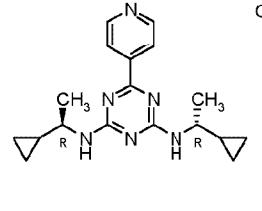
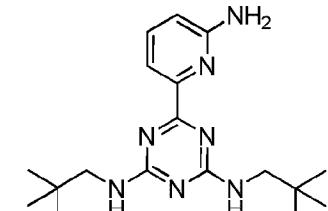
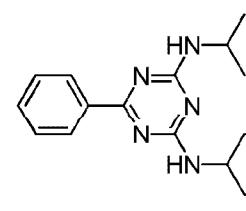
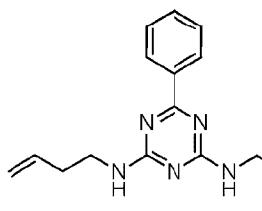
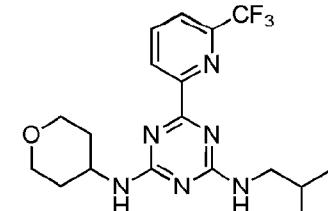









Table 1. Representative Compounds

Compound Number	Structure	Compound Number	Structure
1		2	

Compound Number	Structure	Compound Number	Structure
3		8	
4		9	
5		10	
6		11	
7		12	









Compound Number	Structure	Compound Number	Structure
13		18	
14		19	
15		20	
16		21	
17		22	

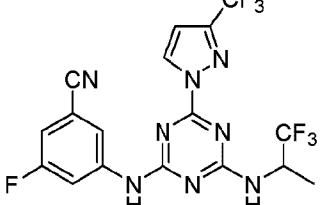
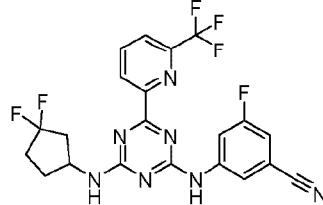
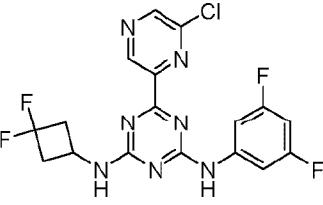
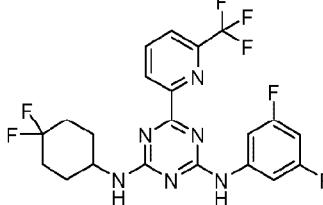
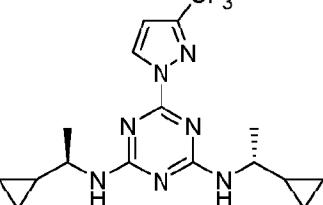
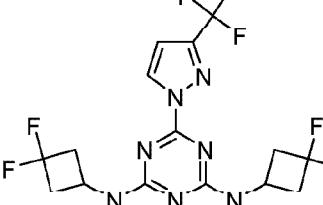
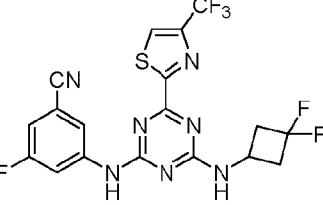
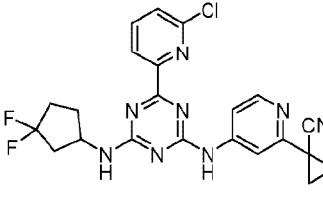
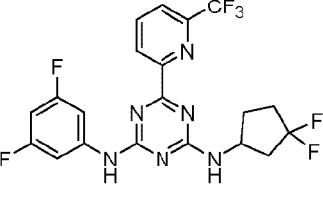
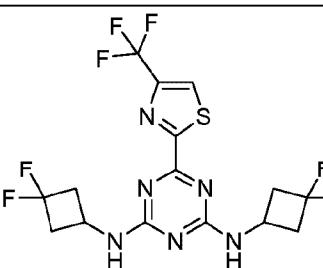
Compound Number	Structure	Compound Number	Structure
23		28	
24		29	
25		30	
26		31	
27		32	

Compound Number	Structure	Compound Number	Structure
33		39	
34		40	
35		41	
36		42	
37		43	
38			

Compound Number	Structure	Compound Number	Structure
44		49	
45		50	
46		51	
47		52	
48		53	

Compound Number	Structure	Compound Number	Structure
54		59	
55		60	
56		61	
57		63	
58		64	

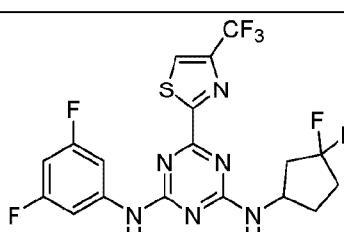
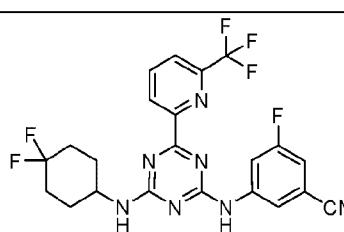
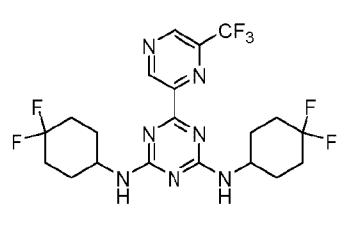
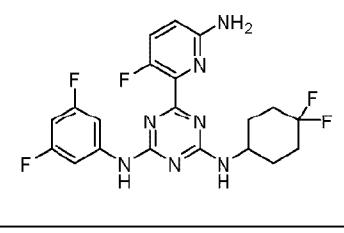
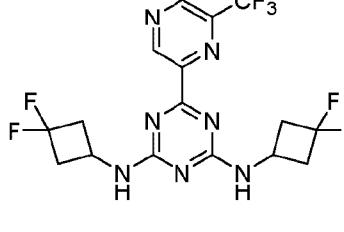
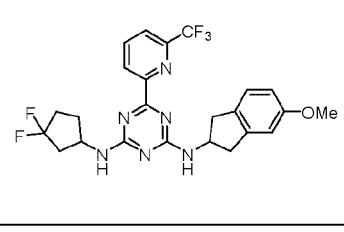
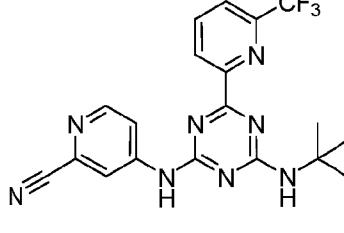
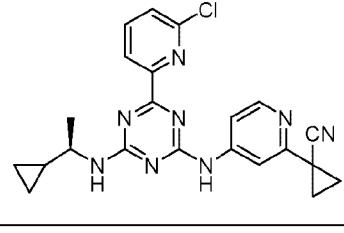
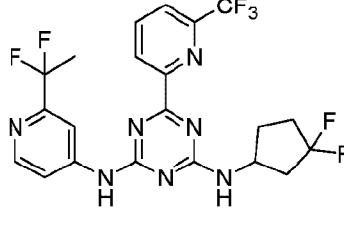
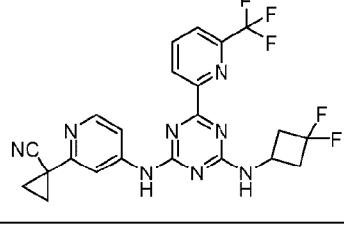
Compound Number	Structure	Compound Number	Structure
65	 Chiral	71	
66	 Chiral	72	
67	 Chiral	73	
69		74	
70		75	











Compound Number	Structure	Compound Number	Structure
76		81	
77		82	
78		83	
79		84	
80		85	

Compound Number	Structure	Compound Number	Structure
86		91	
87		92	
88		93	
89		94	
90		95	

Compound Number	Structure
96	
100	
101	
102	
103	

Compound Number	Structure
104	
105	
106	
107	
108	











Compound Number	Structure	Compound Number	Structure
109		114	
110		115	
111		116	
112		117	
113		118	

Compound Number	Structure	Compound Number	Structure
119		124	
120		125	
121		126	
122		127	
123		128	

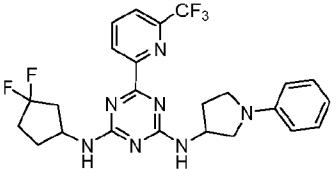
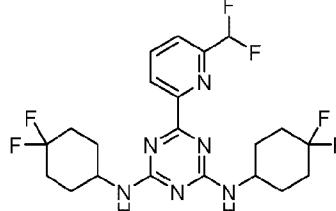
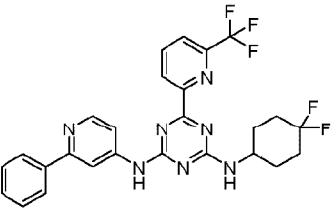
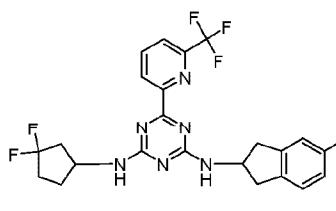
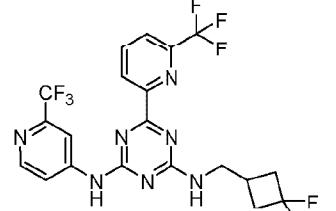
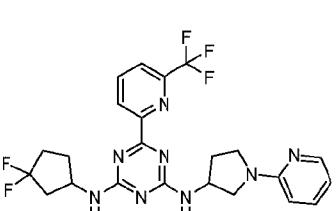
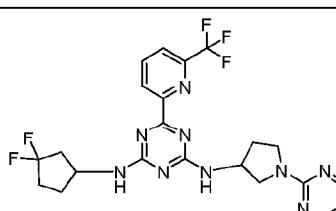
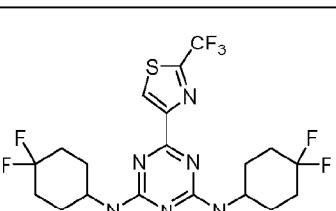
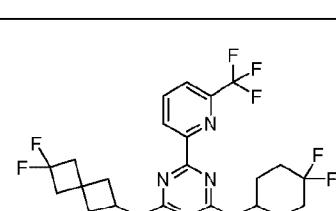
Compound Number	Structure	Compound Number	Structure
129		134	
130		135	
131		136	
132		137	
133		138	

Compound Number	Structure	Compound Number	Structure
139		144	
140		145	
141		146	
142		147	
143		148	

Compound Number	Structure	Compound Number	Structure
149		154	
150		155	
151		156	
152		157	
153		158	

Compound Number	Structure	Compound Number	Structure
159		164	
160		165	
161		166	
162		167	
163		168	

Compound Number	Structure	Compound Number	Structure
169		174	
170		175	
171		176	
172		177	
173		178	










Compound Number	Structure	Compound Number	Structure
179		184	
180		185	
181		186	
182		187	
183		188	

Compound Number	Structure	Compound Number	Structure
189		194	
190		195	
191		196	
192		197	
193		198	

Compound Number	Structure
199	
200	
201	
202	
203	

Compound Number	Structure
204	
205	
206	
207	
208	

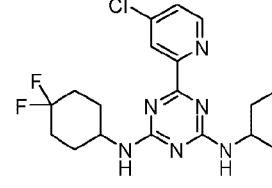
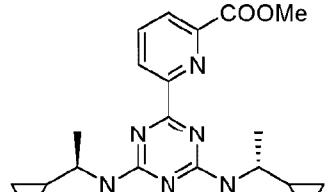
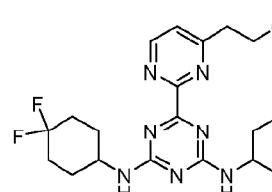
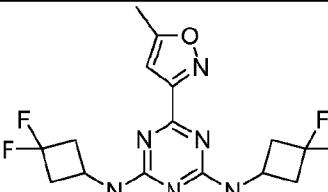
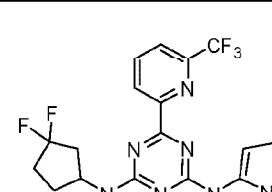
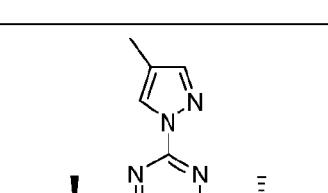
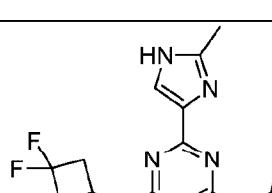
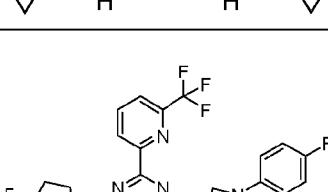
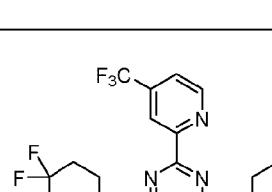
Compound Number	Structure	Compound Number	Structure
209		214	
210		215	
211		216	
212		217	
213		218	

Compound Number	Structure	Compound Number	Structure
219		224	
220		225	
221		226	
222		227	
223		228	

Compound Number	Structure	Compound Number	Structure
229		234	
230		235	
231		236	
232		237	
233		238	

Compound Number	Structure	Compound Number	Structure
239		244	
240		245	
241		246	
242		247	
243		248	

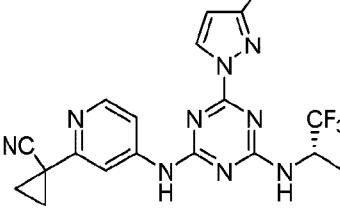
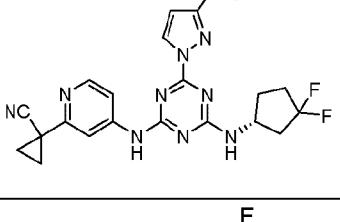
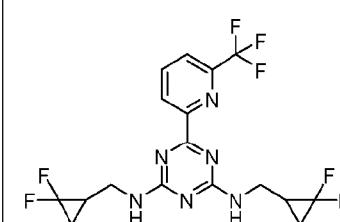
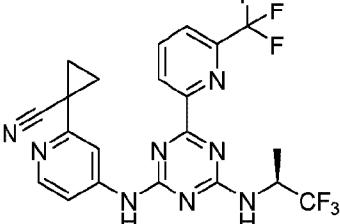
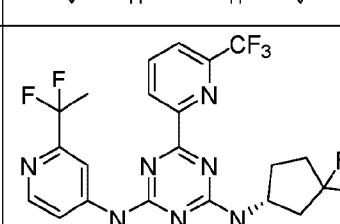
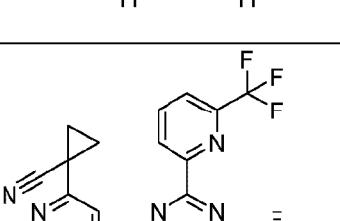
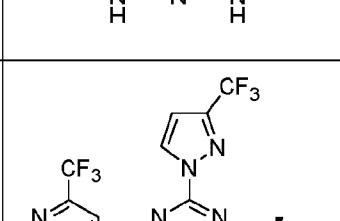
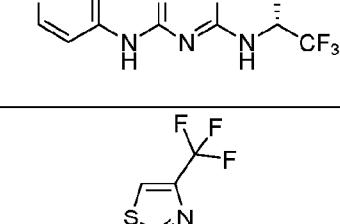
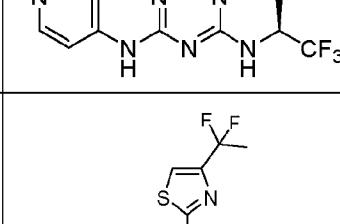
Compound Number	Structure	Compound Number	Structure
259		264	
260		265	
261		266	
262		267	
263		268	










Compound Number	Structure	Compound Number	Structure
269		274	
270		275	
271		276	
272		277	
273		278	

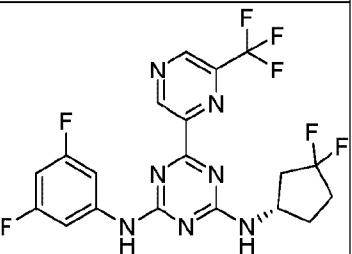
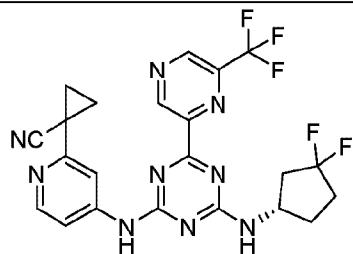
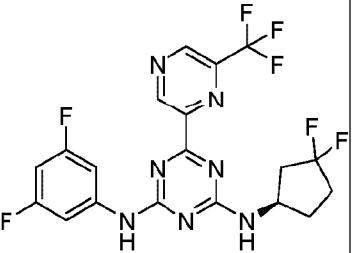
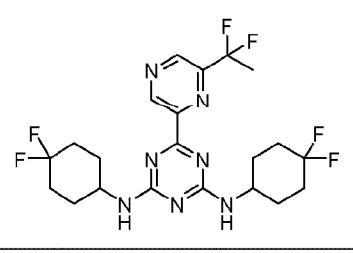
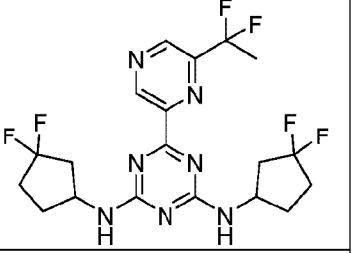
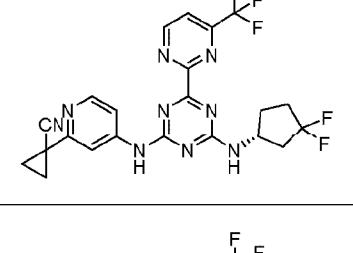
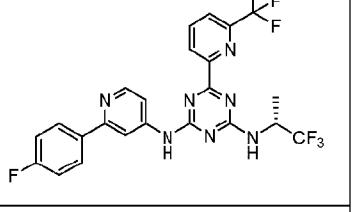
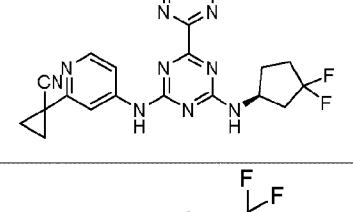
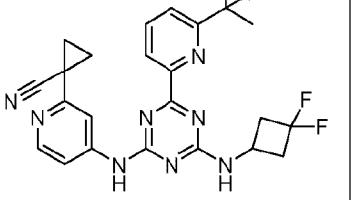
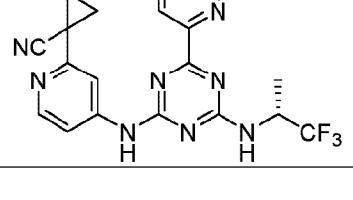
Compound Number	Structure
279	
280	
281	
282	
283	

Compound Number	Structure
284	
285	
286	
287	
288	

Compound Number	Structure	Compound Number	Structure
289		294	
290		295	
291		296	
292		297	
293		298	










Compound Number	Structure	Compound Number	Structure
299		304	
300		305	
301		306	
302		307	
303		308	

Compound Number	Structure	Compound Number	Structure
309		314	
310		315	
311		316	
312		317	
313		318	











Compound Number	Structure	Compound Number	Structure
319		324	
320		325	
321		326	
322		327	
323		328	

Compound Number	Structure	Compound Number	Structure
329		334	
330		335	
331		336	
332		337	
333		338	

Compound Number	Structure	Compound Number	Structure
339		344	
340		345	
341		346	
342		347	
343		348	

Compound Number	Structure	Compound Number	Structure
349			
350		354	
351		355	
352		356	
353		357	

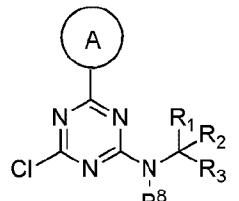
Compound Number	Structure	Compound Number	Structure
358		363	
359		364	
360		365	
361		366	
362		367	

Compound Number	Structure	Compound Number	Structure
368		373	
369		374	
370		375	
371		376	
372		377	

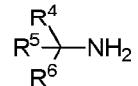
Compound Number	Structure
378	
379	
380	
381	
382	

Compound Number	Structure
383	
384	
385	
386	
387	

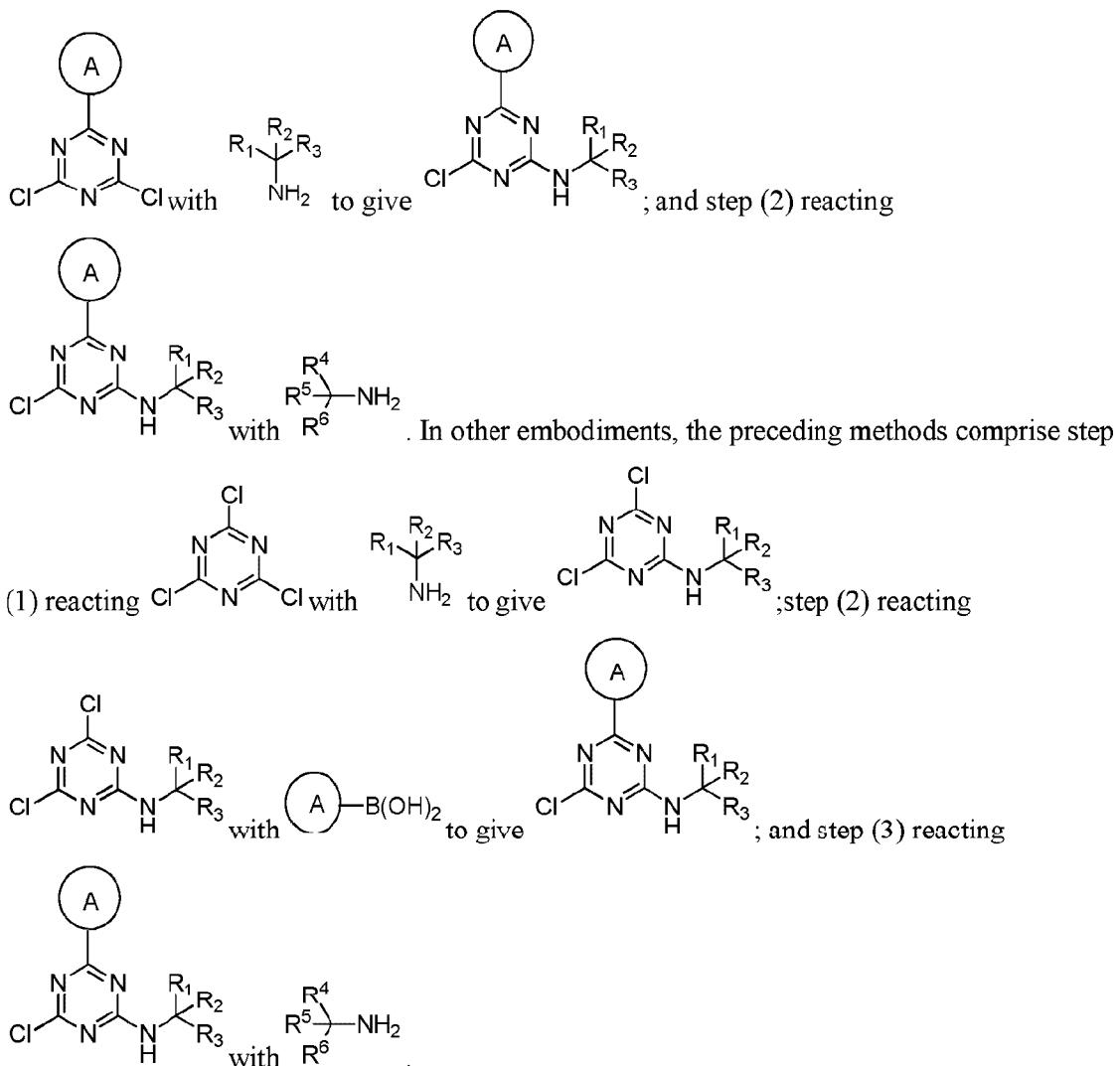
Compound Number	Structure
388	
389	
390	
391	
392	

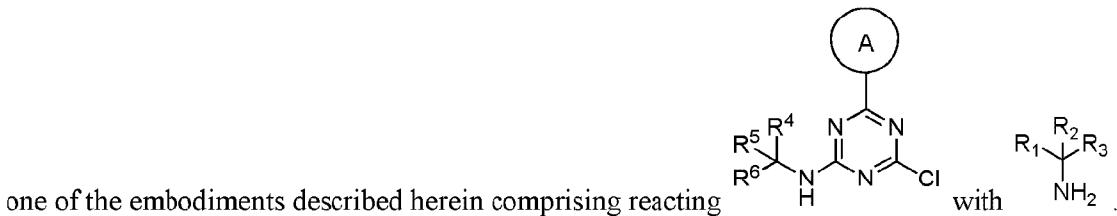

Compound Number	Structure
393	
394	
395	
397	
398	

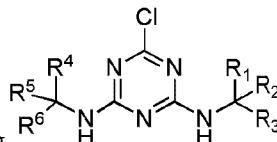
Compound Number	Structure	Compound Number	Structure
399		404	
400		405	
401		406	
402		407	
403		408	

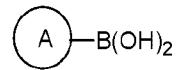

Compound Number	Structure	Compound Number	Structure
409		414	
410		415	
411		416	
412		417	
413		418	

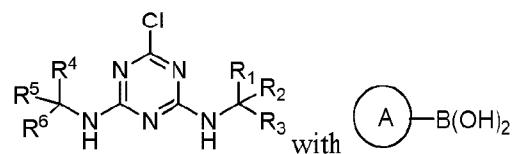
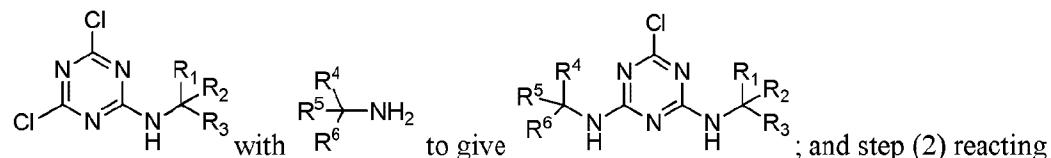
Compound Number	Structure	Compound Number	Structure
419		422	
420		423	
421		424	

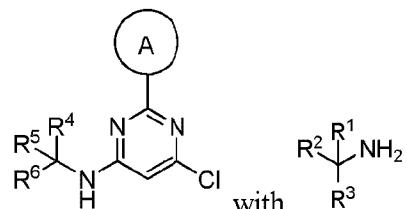

Included herein are also methods for making compounds of Formula I or a compound of any one

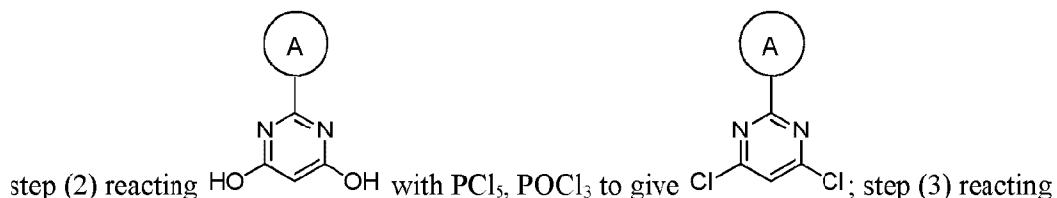
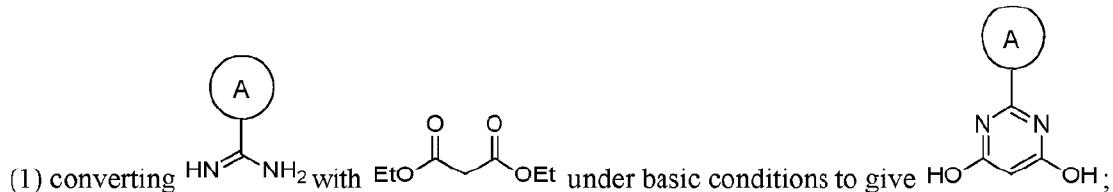

of the embodiments described herein comprising reacting

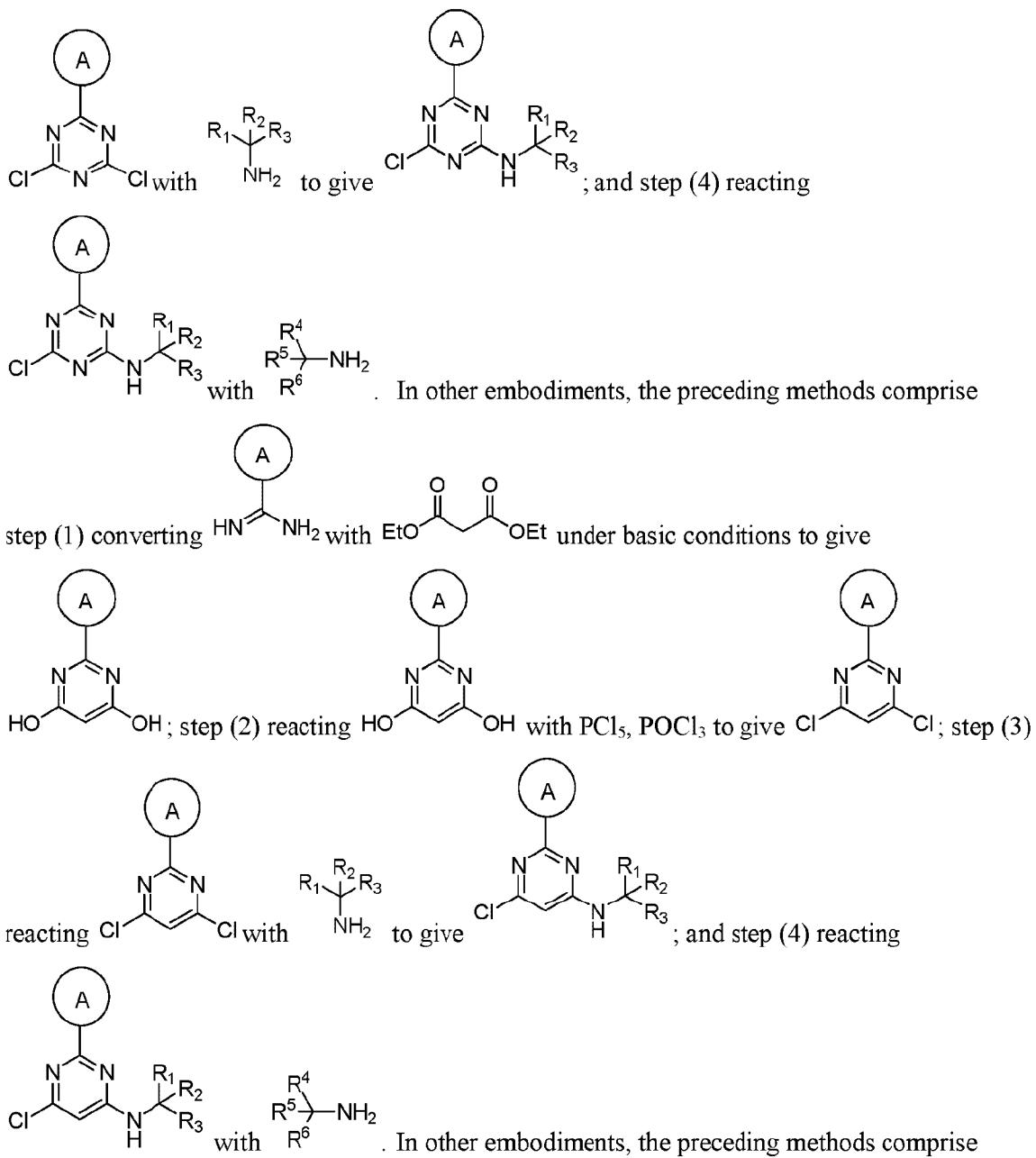

. In some embodiments, the preceding methods comprise step (1) reacting

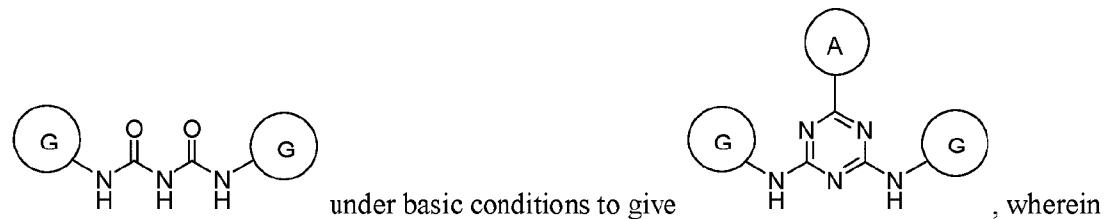
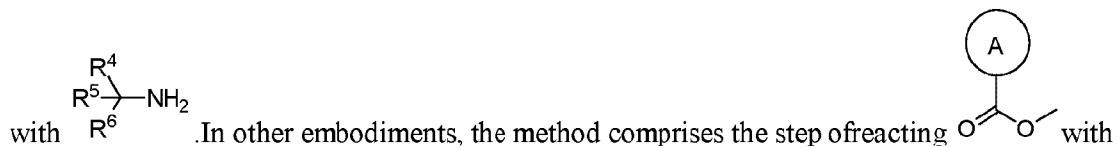
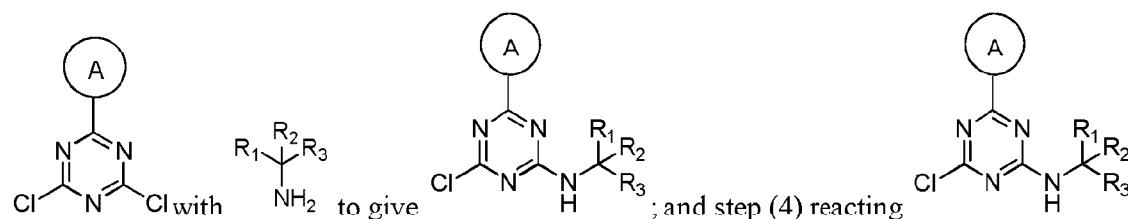
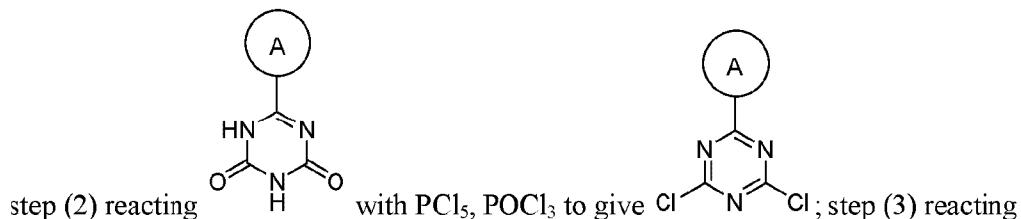
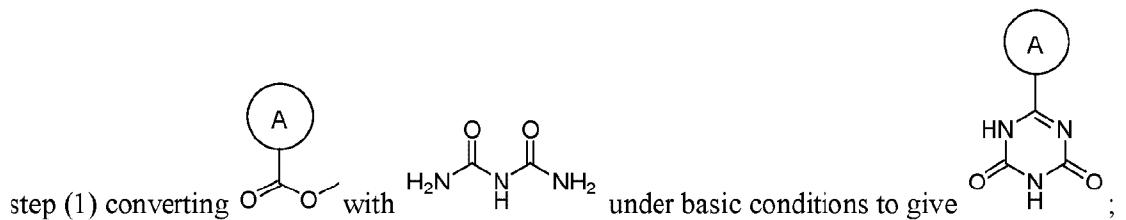

Also included are methods for making compounds of Formula I or a compound of any

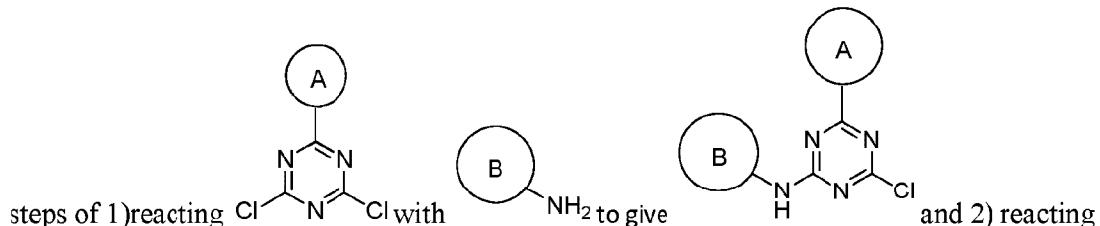


Also included are methods for making compounds of Formula I or a compound of any

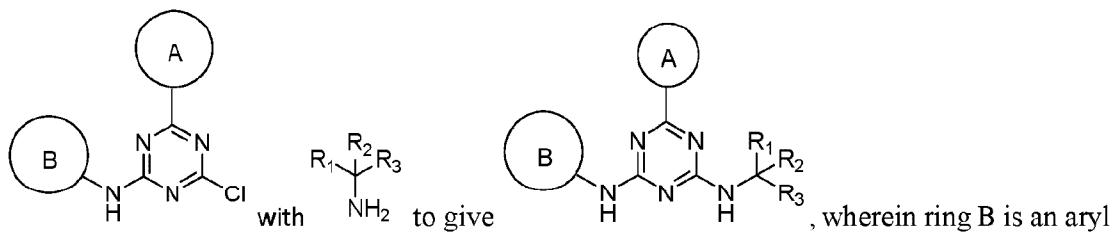

one of the embodiments described herein comprising reacting

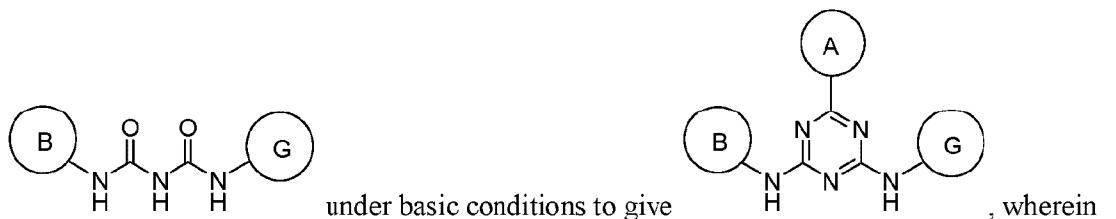


In some embodiments, the preceding methods comprise step (1) reacting



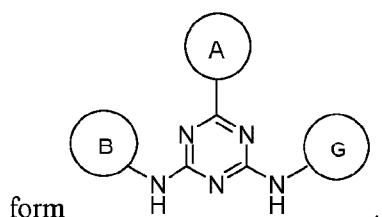





Also included are methods for making compounds of Formula I or a compound of any one of the embodiments described herein comprising reacting


In other embodiments, the preceding methods comprise step





ring G is a carbocyclyl or heterocyclyl ring. In other embodiments, the method comprises the



or heteroaryl ring. In other embodiments, the method comprises the step of reacting $\text{O}=\text{C}(\text{O}^-)\text{O}^-$ with

ring B is an aryl or heteroaryl ring, and ring G is a carbocyclyl or heterocyclyl ring. In other

embodiments, the method comprises the step of reacting with ring A to

The compounds of one aspect of this invention may contain one or more asymmetric centers and thus occur as racemates, racemic mixtures, scalemic mixtures, and diastereomeric mixtures, as well as single enantiomers or individual stereoisomers that are substantially free from another possible enantiomer or stereoisomer. The term "substantially free of other stereoisomers" as used herein means a preparation enriched in a compound having a selected stereochemistry at one or more selected stereocenters by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%. The term "enriched" means that at least the designated percentage of a preparation is the compound having a selected stereochemistry at one or more selected

stereocenters. Methods of obtaining or synthesizing an individual enantiomer or stereoisomer for a given compound are known in the art and may be applied as practicable to final compounds or to starting material or intermediates.

In certain embodiments, the compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, is enriched for a structure or structures having a selected stereochemistry at one or more carbon atoms. For example, the compound is enriched in the specific stereoisomer by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.

The compounds of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, may also comprise one or more isotopic substitutions. For example, H may be in any isotopic form, including ¹H, ²H (D or deuterium), and ³H (T or tritium); C may be in any isotopic form, including ¹¹C, ¹²C, ¹³C, and ¹⁴C; N may be in any isotopic form, including ¹³N, ¹⁴N and ¹⁵N; O may be in any isotopic form, including ¹⁵O, ¹⁶O and ¹⁸O; F may be in any isotopic form, including ¹⁸F; and the like. For example, the compound is enriched in a specific isotopic form of H, C, N, O and/or F by at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99%.

Unless otherwise indicated when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.

The compounds of one aspect of this invention may also be represented in multiple tautomeric forms, in such instances, one aspect of the invention expressly includes all tautomeric forms of the compounds described herein, even though only a single tautomeric form may be represented (e.g., alkylation of a ring system may result in alkylation at multiple sites, one aspect of the invention expressly includes all such reaction products; and keto-enol tautomers). All such isomeric forms of such compounds are expressly included herein.

It may be convenient or desirable to prepare, purify, and/or handle a corresponding salt of the active compound, for example, a pharmaceutically-acceptable salt. Examples of pharmaceutically acceptable salts are discussed in Berge *et al.*, 1977, "Pharmaceutically Acceptable Salts." *J. Pharm. Sci.* Vol. 66, pp. 1-19.

For example, if the compound is anionic, or has a functional group which may be anionic (e.g., -COOH may be -COO⁻), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na⁺ and K⁺,

alkaline earth cations such as Ca^{2+} and Mg^{2+} , and other cations such as Al^{3+} . Examples of suitable organic cations include, but are not limited to, ammonium ion (*i.e.*, NH_4^+) and substituted ammonium ions (*e.g.*, NH_3R^+ , NH_2R^{2+} , NHR^{3+} , NR^{4+}). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is $\text{N}(\text{CH}_3)_4^+$.

If the compound is cationic, or has a functional group that may be cationic (*e.g.*, $-\text{NH}_2$ may be $-\text{NH}_3^+$), then a salt may be formed with a suitable anion. Examples of suitable inorganic anions include, but are not limited to, those derived from the following inorganic acids: hydrochloric, hydrobromic, hydroiodic, sulfuric, sulfurous, nitric, nitrous, phosphoric, and phosphorous.

Examples of suitable organic anions include, but are not limited to, those derived from the following organic acids: 2-acetoxybenzoic, acetic, ascorbic, aspartic, benzoic, camphorsulfonic, cinnamic, citric, edetic, ethanesulfonic, ethanesulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, hydroxymaleic, hydroxynaphthalene carboxylic, isethionic, lactic, lactobionic, lauric, maleic, malic, methanesulfonic, mucic, oleic, oxalic, palmitic, pamoic, pantothenic, phenylacetic, phenylsulfonic, propionic, pyruvic, salicylic, stearic, succinic, sulfanilic, tartaric, toluenesulfonic, and valeric. Mesylates of each compound in Table 1 are explicitly included herein. Examples of suitable polymeric organic anions include, but are not limited to, those derived from the following polymeric acids: tannic acid, carboxymethyl cellulose.

The compounds provided herein therefore include the compounds themselves, as well as their salts, hydrates and their prodrugs, if applicable. The compounds provided herein may be modified and converted to prodrugs by appending appropriate functionalities to enhance selected biological properties, *e.g.*, targeting to a particular tissue. Such modifications (*i.e.*, prodrugs) are known in the art and include those which increase biological penetration into a given biological compartment (*e.g.*, blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion. Examples of prodrugs include esters (*e.g.*, phosphates, amino acid (*e.g.*, valine) esters),

carbamates and other pharmaceutically acceptable derivatives, which, upon administration to a subject, are capable of providing active compounds. Calcium and sodium phosphates of each compound in Table 1, if applicable, are explicitly included herein. Amino acid (e.g., valine) esters of each compound in Table 1, if applicable, are explicitly included herein.

Compositions and routes of administration

The compounds utilized in the methods described herein may be formulated together with a pharmaceutically acceptable carrier or adjuvant into pharmaceutically acceptable compositions prior to be administered to a subject. In another embodiment, such pharmaceutically acceptable compositions further comprise additional therapeutic agents in amounts effective for achieving a modulation of disease or disease symptoms, including those described herein.

The term “pharmaceutically acceptable carrier or adjuvant” refers to a carrier or adjuvant that may be administered to a subject, together with a compound of one aspect of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of one aspect of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d- α -tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α -, β -, and γ -cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-hydroxypropyl- β -cyclodextrins, or other solubilized derivatives may also be advantageously used to enhance delivery of compounds of the formulae described herein.

The pharmaceutical compositions of one aspect of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of one aspect of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.

The pharmaceutical compositions of one aspect of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and

aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

The pharmaceutical compositions of one aspect of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of one aspect of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.

Topical administration of the pharmaceutical compositions of one aspect of this invention is useful when the desired treatment involves areas or organs readily accessible by topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of one aspect of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier with suitable emulsifying agents. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of one aspect of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation.

Topically-transdermal patches are also included in one aspect of this invention.

The pharmaceutical compositions of one aspect of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing

benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.

When the compositions of one aspect of this invention comprise a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of one aspect of this invention. Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of one aspect of this invention in a single composition.

The compounds described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.5 to about 100 mg/kg of body weight, alternatively dosages between 1 mg and 1000 mg/dose, every 4 to 120 hours, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of one aspect of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Alternatively, such preparations contain from about 20% to about 80% active compound.

Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular subject will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the subject's disposition to the disease, condition or symptoms, and the judgment of the treating physician.

Upon improvement of a subject's condition, a maintenance dose of a compound, composition or combination of one aspect of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained when the symptoms have been alleviated to the desired level. Subjects may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.

The pharmaceutical compositions described above comprising a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments herein, may further comprise another therapeutic agent useful for treating cancer.

Methods of Use

Provided is a method for inhibiting mutant IDH1 activity comprising contacting a subject in need thereof with a compound (including its tautomers and/or isotopologues) of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof. In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in a subject. In one aspect of this embodiment, the mutant IDH1 has an R132X mutation. In one aspect of this embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132H or R132C. In yet another aspect, the R132X mutation is R132H. Also provided are methods of treating a cancer characterized by the presence of a mutant allele of IDH1 comprising the step of administering to subject in need thereof (a) a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.

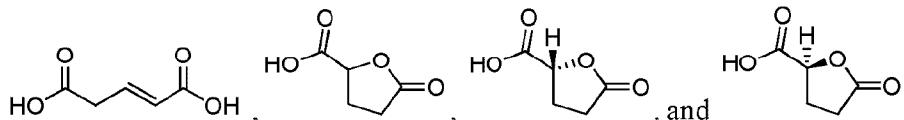
In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in a patient. In one aspect of this embodiment, the IDH1 mutation is an R132X mutation. In another aspect of this

embodiment, the R132X mutation is selected from R132H, R132C, R132L, R132V, R132S and R132G. In another aspect, the R132X mutation is R132 H or R132C. A cancer can be analyzed by sequencing cell samples to determine the presence and specific nature of (e.g., the changed amino acid present at) a mutation at amino acid 132 of IDH1.

Without being bound by theory, applicants believe that mutant alleles of IDH1 wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate, and in particular R132H mutations of IDH1, characterize a subset of all types of cancers, without regard to their cellular nature or location in the body. Thus, the compounds and methods of this invention are useful to treat any type of cancer that is characterized by the presence of a mutant allele of IDH1 imparting such activity and in particular an IDH1 R132H or R132C mutation.

In one aspect of this embodiment, the efficacy of cancer treatment is monitored by measuring the levels of 2HG in the subject. Typically levels of 2HG are measured prior to treatment, wherein an elevated level is indicated for the use of the compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments described herein to treat the cancer. Once the elevated levels are established, the level of 2HG is determined during the course of and/or following termination of treatment to establish efficacy. In certain embodiments, the level of 2HG is only determined during the course of and/or following termination of treatment. A reduction of 2HG levels during the course of treatment and following treatment is indicative of efficacy. Similarly, a determination that 2HG levels are not elevated during the course of or following treatment is also indicative of efficacy. Typically, these 2HG measurements will be utilized together with other well-known determinations of efficacy of cancer treatment, such as reduction in number and size of tumors and/or other cancer-associated lesions, improvement in the general health of the subject, and alterations in other biomarkers that are associated with cancer treatment efficacy.

2HG can be detected in a sample by LC/MS. The sample is mixed 80:20 with methanol, and centrifuged at 3,000 rpm for 20 minutes at 4 degrees Celsius. The resulting supernatant can be collected and stored at -80 degrees Celsius prior to LC-MS/MS to assess 2-hydroxyglutarate levels. A variety of different liquid chromatography (LC) separation methods can be used. Each method can be coupled by negative electrospray ionization (ESI, -3.0 kV) to triple-quadrupole


mass spectrometers operating in multiple reaction monitoring (MRM) mode, with MS parameters optimized on infused metabolite standard solutions. Metabolites can be separated by reversed phase chromatography using 10 mM tributyl-amine as an ion pairing agent in the aqueous mobile phase, according to a variant of a previously reported method (Luo *et al.* *J Chromatogr A* 1147, 153-64, 2007). One method allows resolution of TCA metabolites: t = 0, 50% B; t = 5, 95% B; t = 7, 95% B; t = 8, 0% B, where B refers to an organic mobile phase of 100% methanol. Another method is specific for 2-hydroxyglutarate, running a fast linear gradient from 50% -95% B (buffers as defined above) over 5 minutes. A Syngi Hydro-RP, 100mm × 2 mm, 2.1 μ m particle size (Phenomenex) can be used as the column, as described above. Metabolites can be quantified by comparison of peak areas with pure metabolite standards at known concentration. Metabolite flux studies from ^{13}C -glutamine can be performed as described, *e.g.*, in Munger *et al.* *Nat Biotechnol* 26, 1179-86, 2008.

In one embodiment 2HG is directly evaluated.

In another embodiment a derivative of 2HG formed in process of performing the analytic method is evaluated. By way of example such a derivative can be a derivative formed in MS analysis. Derivatives can include a salt adduct, *e.g.*, a Na adduct, a hydration variant, or a hydration variant which is also a salt adduct, *e.g.*, a Na adduct, *e.g.*, as formed in MS analysis.

In another embodiment a metabolic derivative of 2HG is evaluated. Examples include species that build up or are elevated, or reduced, as a result of the presence of 2HG, such as glutarate or glutamate that will be correlated to 2HG, *e.g.*, R-2HG.

Exemplary 2HG derivatives include dehydrated derivatives such as the compounds provided below or a salt adduct thereof:

In one embodiment the cancer is a tumor wherein at least 30, 40, 50, 60, 70, 80 or 90% of the tumor cells carry an IDH1 mutation, and in particular an IDH1 R132H or R132C mutation, at the time of diagnosis or treatment.

IDH1 R132X mutations are known to occur in certain types of cancers as indicated in Table 2, below.

Table 2. IDH mutations associated with certain cancers

<u>Cancer Type</u>	<u>IDH1 R132X</u>	<u>Tumor Type</u>
	<u>Mutation</u>	
brain tumors	R132H	primary tumor
	R132C	primary tumor
	R132S	primary tumor
	R132G	primary tumor
	R132L	primary tumor
	R132V	primary tumor
fibrosarcoma	R132C	HT1080 fibrosarcoma cell line
Acute Myeloid Leukemia (AML)	R132H	primary tumor
	R132G	primary tumor
	R132C	primary tumor
Prostate cancer	R132H	primary tumor
	R132C	primary tumor
Acute lymphoblastic leukemia (ALL)	R132C	primary tumor
paragangliomas	R132C	primary tumor

IDH1 R132H mutations have been identified in glioblastoma, acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer, cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, and angio-immunoblastic non-Hodgkin's lymphoma (NHL). Accordingly, in one embodiment, the methods described herein are used to treat glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative

neoplasm (MPN), colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.

In another embodiment, the methods described herein are used to treat glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas (e.g., intrahepatic cholangiocarcinoma (IHCC)), chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), prostate cancer, chronic myelomonocytic leukemia (CMML), B-acute lymphoblastic leukemias (B-ALL), B-acute lymphoblastic leukemias (B-ALL), myeloid sarcoma, multiple myeloma, lymphoma colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.

In another embodiment, the advanced hematologic malignancy to be treated is lymphoma (e.g., Non-Hodgkin lymphoma (NHL) such B-cell lymphoma (e.g., Burkitt lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL), diffuse large B-cell lymphoma, follicular lymphoma, immunoblastic large cell lymphoma, precursor B-lymphoblastic lymphoma, and mantle cell lymphoma) and T cell lymphoma (e.g., mycosis fungoides, anaplastic large cell lymphoma, and precursor T-lymphoblastic lymphoma)).

Accordingly in one embodiment, the cancer is a cancer selected from any one of the cancer types listed in Table 2, and the IDH R132X mutation is one or more of the IDH1 R132X mutations listed in Table 2 for that particular cancer type.

Treatment methods described herein can additionally comprise various evaluation steps prior to and/or following treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIIId or a compound described in any one of the embodiments described herein.

In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the growth, size, weight, invasiveness, stage and/or other phenotype of the cancer.

In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the IDH1

genotype of the cancer. This may be achieved by ordinary methods in the art, such as DNA sequencing, immuno analysis, and/or evaluation of the presence, distribution or level of 2HG.

In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of determining the 2HG level in the subject. This may be achieved by spectroscopic analysis, *e.g.*, magnetic resonance-based analysis, *e.g.*, MRI and/or MRS measurement, sample analysis of bodily fluid, such as serum or spinal cord fluid analysis, or by analysis of surgical material, *e.g.*, by mass-spectroscopy.

Also provided is a method for inhibiting a mutant IDH2 activity comprising contacting a subject in need thereof with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof. In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in a subject. In one aspect of this embodiment, the mutant IDH2 has an R140X mutation. In another aspect of this embodiment, the R140X mutation is a R140Q mutation. In another aspect of this embodiment, the R140X mutation is a R140W mutation. In another aspect of this embodiment, the R140X mutation is a R140L mutation. In another aspect of this embodiment, the mutant IDH2 has an R172X mutation. In another aspect of this embodiment, the R172X mutation is a R172K mutation. In another aspect of this embodiment, the R172X mutation is a R172G mutation. Also provided are methods of treating a cancer characterized by the presence of a mutant allele of IDH2 comprising the step of administering to subject in need thereof (a) a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.

In one embodiment, the cancer to be treated is characterized by a mutant allele of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in a patient. In one aspect of this embodiment, the mutant IDH2 has an R140X mutation. In another aspect of this

embodiment, the R140X mutation is a R140Q mutation. In another aspect of this embodiment, the R140X mutation is a R140W mutation. In another aspect of this embodiment, the R140X mutation is a R140L mutation. In another aspect of this embodiment, the mutant IDH2 has an R172X mutation. In another aspect of this embodiment, the R172X mutation is a R172K mutation. In another aspect of this embodiment, the R172X mutation is a R172G mutation. A cancer can be analyzed by sequencing cell samples to determine the presence and specific nature of (e.g., the changed amino acid present at) a mutation at amino acid 140 and/or 172 of IDH2.

Without being bound by theory, applicants believe that mutant alleles of IDH2 wherein the IDH2 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate, and in particular R140Q and/or R172K mutations of IDH2, characterize a subset of all types of cancers, without regard to their cellular nature or location in the body. Thus, the compounds and methods of one aspect of this invention are useful to treat any type of cancer that is characterized by the presence of a mutant allele of IDH2 imparting such activity and in particular an IDH2 R140Q and/or R172K mutation.

In one aspect of this embodiment, the efficacy of cancer treatment is monitored by measuring the levels of 2HG as described herein.

In one embodiment the cancer is a tumor wherein at least 30, 40, 50, 60, 70, 80 or 90% of the tumor cells carry an IDH2 mutation, and in particular an IDH2 R140Q, R140W, or R140L and/or R172K or R172G mutation, at the time of diagnosis or treatment.

In another embodiment, one aspect of the invention provides a method of treating a cancer selected from glioblastoma (glioma), myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), acute myelogenous leukemia (AML), sarcoma, melanoma, non-small cell lung cancer, chondrosarcoma, cholangiocarcinomas or angioimmunoblastic lymphoma in a patient by administering to the patient a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId in an amount effective to treat the cancer. In a more specific embodiment the cancer to be treated is glioma, myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), acute myelogenous leukemia (AML), melanoma, chondrosarcoma, or angioimmunoblastic non-Hodgkin's lymphoma (NHL).

2HG is known to accumulate in the inherited metabolic disorder 2-hydroxyglutaric aciduria. This disease is caused by deficiency in the enzyme 2-hydroxyglutarate dehydrogenase,

which converts 2HG to α -KG (Struys, E. A. et al. Am J Hum Genet 76, 358-60 (2005)). Patients with 2-hydroxyglutarate dehydrogenase deficiencies accumulate 2HG in the brain as assessed by MRI and CSF analysis, develop leukoencephalopathy, and have an increased risk of developing brain tumors (Aghili, M., Zahedi, F. & Rafiee, J Neurooncol 91, 233-6 (2009); Kolker, S., Mayatepek, E. & Hoffmann, G. F. Neuropediatrics 33, 225-31 (2002); Wajner, M., Latini, A., Wyse, A. T. & Dutra-Filho, C. S. J Inherit Metab Dis 27, 427-48 (2004)). Furthermore, elevated brain levels of 2HG result in increased ROS levels (Kolker, S. et al. Eur J Neurosci 16, 21-8 (2002); Latini, A. et al. Eur J Neurosci 17, 2017-22 (2003)), potentially contributing to an increased risk of cancer. The ability of 2HG to act as an NMDA receptor agonist may contribute to this effect (Kolker, S. et al. Eur J Neurosci 16, 21-8 (2002)). 2HG may also be toxic to cells by competitively inhibiting glutamate and/or α KG utilizing enzymes. These include transaminases which allow utilization of glutamate nitrogen for amino and nucleic acid biosynthesis, and α KG-dependent prolyl hydroxylases such as those which regulate HIF1-alpha levels.

Thus, according to another embodiment, one aspect of the invention provides a method of treating 2-hydroxyglutaric aciduria, particularly D-2-hydroxyglutaric aciduria, in a patient by administering to the patient a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein.

Also provided are methods of treating a disease selected from Maffucci syndrome and Ollier disease, characterized by the presence of a mutant allele of IDH1 comprising the step of administering to subject in need thereof (a) a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId, or a compound described in any one of the embodiments herein, or a pharmaceutically acceptable salt thereof, or (b) a pharmaceutical composition comprising (a) and a pharmaceutically acceptable carrier.

Treatment methods described herein can additionally comprise various evaluation steps prior to and/or following treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein.

In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the

embodiments described herein, the method further comprises the step of evaluating the growth, size, weight, invasiveness, stage and/or other phenotype of the cancer.

In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of evaluating the IDH2 genotype of the cancer. This may be achieved by ordinary methods in the art, such as DNA sequencing, immuno analysis, and/or evaluation of the presence, distribution or level of 2HG. In one embodiment, prior to and/or after treatment with a compound of Formula I, Ia, Ib, B, C, Ic, Id, Ie, If, Ig, II, III, IIIa, IIIb, IIIc, or IIId or a compound described in any one of the embodiments described herein, the method further comprises the step of determining the 2HG level in the subject. This may be achieved by spectroscopic analysis, *e.g.*, magnetic resonance-based analysis, *e.g.*, MRI and/or MRS measurement, sample analysis of bodily fluid, such as serum or spinal cord fluid analysis, or by analysis of surgical material, *e.g.*, by mass-spectroscopy.

Combination therapies

In some embodiments, the methods described herein comprise the additional step of co-administering to a subject in need thereof a second therapy *e.g.*, an additional cancer therapeutic agent or an additional cancer treatment. Exemplary additional cancer therapeutic agents include for example, chemotherapy, targeted therapy, antibody therapies, immunotherapy, and hormonal therapy. Additional cancer treatments include, for example: surgery, and radiation therapy. Examples of each of these treatments are provided below.

The term “co-administering” as used herein with respect to an additional cancer therapeutic agents means that the additional cancer therapeutic agent may be administered together with a compound of one aspect of this invention as part of a single dosage form (such as a composition of one aspect of this invention comprising a compound of one aspect of the invention and a second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional cancer therapeutic agent may be administered prior to, consecutively with, or following the administration of a compound of one aspect of this invention. In such combination therapy treatment, both the compounds of one aspect of this invention and the second therapeutic agent(s) are administered by conventional methods. The

administration of a composition of one aspect of this invention, comprising both a compound of one aspect of the invention and a second therapeutic agent, to a subject does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of one aspect of this invention to said subject at another time during a course of treatment. The term “co-administering” as used herein with respect to an additional cancer treatment means that the additional cancer treatment may occur prior to, consecutively with, concurrently with or following the administration of a compound of one aspect of this invention. In some embodiments, the additional cancer therapeutic agent is a chemotherapy agent. Examples of chemotherapeutic agents used in cancer therapy include, for example, antimetabolites (e.g., folic acid, purine, and pyrimidine derivatives), alkylating agents (e.g., nitrogen mustards, nitrosoureas, platinum, alkyl sulfonates, hydrazines, triazenes, aziridines, spindle poison, cytotoxic agents, topoisomerase inhibitors and others), and hypomethylating agents (e.g., decitabine (5-aza-deoxycytidine), zebularine, isothiocyanates, azacitidine (5-azacytidine), 5 flouro 2' deoxycytidine, 5,6 dihydro 5 azacytidine and others). Exemplary agents include Aclarubicin, Actinomycin, Alitretinoin, Altretamine, Aminopterin, Aminolevulinic acid, Amrubicin, Amsacrine, Anagrelide, Arsenic trioxide, Asparaginase, Atrasentan, Belotecan, Bexarotene, bendamustine, Bleomycin, Bortezomib, Busulfan, Camptothecin, Capecitabine, Carboplatin, Carboquone, Carmofur, Carmustine, Celecoxib, Chlorambucil, Chlormethine, Cisplatin, Cladribine, Clofarabine, Crisantaspase, Cyclophosphamide, Cytarabine, Dacarbazine, Dactinomycin, Daunorubicin, Decitabine, Demecolcine, Docetaxel, Doxorubicin, Efaproxiral, Elesclomol, Elsamitrucin, Enocitabine, Epirubicin, Estramustine, Etoglucid, Etoposide, Floxuridine, Fludarabine, Fluorouracil (5FU), Fotemustine, Gemcitabine, Gliadel implants, Hydroxycarbamide, Hydroxyurea, Idarubicin, Ifosfamide, Irinotecan, Irofulven, Ixabepilone, Larotaxel, Leucovorin, Liposomal doxorubicin, Liposomal daunorubicin, Lonidamine, Lomustine, Lucanthone, Mannosulfan, Masoprocol, Melphalan, Mercaptopurine, Mesna, Methotrexate, Methyl aminolevulinate, Mitobronitol, Mitoguazone, Mitotane, Mitomycin, Mitoxantrone, Nedaplatin, Nimustine, Oblimersen, Omacetaxine, Orataxel, Oxaliplatin, Paclitaxel, Pegaspargase, Pemetrexed, Pentostatin, Pirarubicin, Pixantrone, Plicamycin, Porfimer sodium, Prednimustine, Procarbazine, Raltitrexed, Ranimustine, Rubitecan, Sapacitabine, Semustine, Sitimagene ceradenovec, Strataplatin,

Streptozocin, Talaporfin, Tegafur-uracil, Temoporfin, Temozolomide, Teniposide, Teselex, Testolactone, Tetrinitrate, Thiotapec, Tiazofurine, Tioguanine, Tipifarnib, Topotecan, Trabectedin, Triaziquone, Triethylenemelamine, Triplatin, Tretinoin, Treosulfan, Trofosfamide, Uramustine, Valrubicin, Verteporfin, Vinblastine, Vincristine, Vindesine, Vinflunine, Vinorelbine, Vorinostat, Zorubicin, and other cytostatic or cytotoxic agents described herein. Because some drugs work better together than alone, two or more drugs are often given at the same time. Often, two or more chemotherapy agents are used as combination chemotherapy. In some embodiments, the additional cancer therapeutic agent is a differentiation agent. Such differentiation agent includes retinoids (such as all-trans-retinoic acid (ATRA), 9-cis retinoic acid, 13-cis-retinoic acid (13-cRA) and 4-hydroxy-phenretinamide (4-HPR)); arsenic trioxide; histone deacetylase inhibitors HDACs (such as azacytidine (Vidaza) and butyrates (e.g., sodium phenylbutyrate)); hybrid polar compounds (such as hexamethylene bisacetamide ((HMBA)); vitamin D; and cytokines (such as colony-stimulating factors including G-CSF and GM-CSF, and interferons).

In some embodiments the additional cancer therapeutic agent is a targeted therapy agent.

Targeted therapy constitutes the use of agents specific for the deregulated proteins of cancer cells. Small molecule targeted therapy drugs are generally inhibitors of enzymatic domains on mutated, overexpressed, or otherwise critical proteins within the cancer cell. Prominent examples are the tyrosine kinase inhibitors such as Axitinib, Bosutinib, Cediranib, dasatinib, erlotinib, imatinib, gefitinib, lapatinib, Lestaurtinib, Nilotinib, Semaxanib, Sorafenib, Sunitinib, and Vandetanib, and also cyclin-dependent kinase inhibitors such as Alvocidib and Seliciclib. Monoclonal antibody therapy is another strategy in which the therapeutic agent is an antibody which specifically binds to a protein on the surface of the cancer cells. Examples include the anti-HER2/neu antibody trastuzumab (HERCEPTIN®) typically used in breast cancer, and the anti-CD20 antibody rituximab and Tositumomab typically used in a variety of B-cell malignancies. Other exemplary antibodies include Cetuximab, Panitumumab, Trastuzumab, Alemtuzumab, Bevacizumab, Edrecolomab, and Gemtuzumab. Exemplary fusion proteins include Aflibercept and Denileukin difitox. In some embodiments, the targeted therapy can be used in combination with a compound described herein, *e.g.*, a biguanide such as metformin or phenformin, preferably phenformin.

Targeted therapy can also involve small peptides as “homing devices” which can bind to cell surface receptors or affected extracellular matrix surrounding the tumor. Radionuclides which are attached to these peptides (*e.g.*, RGDs) eventually kill the cancer cell if the nuclide decays in the vicinity of the cell. An example of such therapy includes BEXXAR®.

In some embodiments, the additional cancer therapeutic agent is an immunotherapy agent. Cancer immunotherapy refers to a diverse set of therapeutic strategies designed to induce the subject's own immune system to fight the tumor. Contemporary methods for generating an immune response against tumors include intravesicular BCG immunotherapy for superficial bladder cancer, and use of interferons and other cytokines to induce an immune response in renal cell carcinoma and melanoma subjects.

Allogeneic hematopoietic stem cell transplantation can be considered a form of immunotherapy, since the donor's immune cells will often attack the tumor in a graft-versus-tumor effect. In some embodiments, the immunotherapy agents can be used in combination with a compound or composition described herein.

In some embodiments, the additional cancer therapeutic agent is a hormonal therapy agent. The growth of some cancers can be inhibited by providing or blocking certain hormones. Common examples of hormone-sensitive tumors include certain types of breast and prostate cancers.

Removing or blocking estrogen or testosterone is often an important additional treatment. In certain cancers, administration of hormone agonists, such as progestogens may be therapeutically beneficial. In some embodiments, the hormonal therapy agents can be used in combination with a compound or a composition described herein.

Other possible additional therapeutic modalities include imatinib, gene therapy, peptide and dendritic cell vaccines, synthetic chlorotoxins, and radiolabeled drugs and antibodies.

EXAMPLES

General experimental notes:

In the following examples, the reagents (chemicals) were purchased from commercial sources (such as Alfa, Acros, Sigma Aldrich, TCI and Shanghai Chemical Reagent Company), and used without further purification. Nuclear magnetic resonance (NMR) spectra were obtained on a

Brucker AMX-400 NMR (Brucker, Switzerland). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Mass spectra were given with electrospray ionization (ESI) from a Waters LCT TOF Mass Spectrometer (Waters, USA) or Shimadzu LCMS-2020 Mass Spectrometer (Shimadzu, Japan). Microwave reactions were run on an Initiator 2.5 Microwave Synthesizer (Biotage, Sweden).

For exemplary compounds disclosed in this section, the specification of a stereoisomer (e.g., an (R) or (S) stereoisomer) indicates a preparation of that compound such that the compound is enriched at the specified stereocenter by at least about 90%, 95%, 96%, 97%, 98%, or 99%. The chemical name of each of the exemplary compound described below is generated by ChemDraw software.

Abbreviations list:

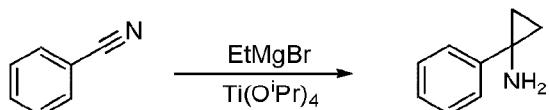
General

anhy.	anhydrous
aq.	aqueous
min	minute(s)
hrs	hours
mL	milliliter
mmol	millimole(s)
mol	mole(s)
MS	mass spectrometry
NMR	nuclear magnetic resonance
TLC	thin layer chromatography
HPLC	high-performance liquid chromatography
satd.	saturated

Spectrum

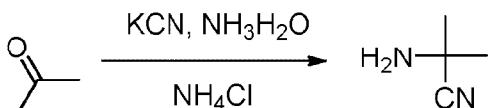
Hz	hertz
δ	chemical shift

J	coupling constant
s	singlet
d	doublet
t	triplet
q	quartet
m	multiplet
br	broad
qd	quartet of doublets
dquin	doublet of quintets
dd	doublet of doublets
dt	doublet of triplets

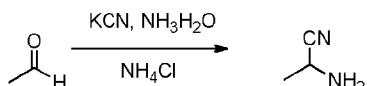

Solvents and Reagents

DAST	diethylaminosulfurtrifluoride
CHCl ₃	chloroform
DCM	dichloromethane
DMF	dimethylformamide
Et ₂ O	diethyl ether
EtOH	ethyl alcohol
EtOAc	ethyl acetate
MeOH	methyl alcohol
MeCN	acetonitrile
PE	petroleum ether
THF	tetrahydrofuran
DMSO	dimethyl sulfoxide
AcOH	acetic acid
HCl	hydrochloric acid
H ₂ SO ₄	sulfuric acid
NH ₄ Cl	ammonium chloride
KOH	potassium hydroxide

NaOH	sodium hydroxide
K ₂ CO ₃	potassium carbonate
Na ₂ CO ₃	sodium carbonate
TFA	trifluoroacetic acid
Na ₂ SO ₄	sodium sulfate
NaBH ₄	sodium borohydride
NaHCO ₃	sodium bicarbonate
NaHMDS	sodium hexamethyldisilylamide
LiHMDS	lithium hexamethyldisilylamide
LAH	lithium aluminum hydride
NaBH ₄	sodium borohydride
LDA	lithium diisopropylamide
Et ₃ N	triethylamine
Py	pyridine
DMAP	4-(dimethylamino)pyridine
DIPEA	<i>N,N</i> -diisopropylethylamine
Xphos	2-dicyclohexylphosphino-2,4,6-triisopropylbiphenyl
BINAP	2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl
dppf	1,1'-bis(diphenylphosphino)ferrocene
TBTU	2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate
DPPA	diphenylphosphoryl azide
NH ₄ OH	ammonium hydroxide
EDCI	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
HOEt	1-hydroxybenzotriazole
Py	Pyridine
Dppf	1,1'-bis(diphenylphosphino)ferrocene
HATU	<i>O</i> -(7-azabenzotriazol-1-yl)- <i>N,N,N',N'</i> -tetra-methyluronium
BINAP	2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl

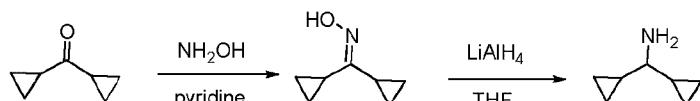

Preparation of Intermediates

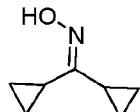
Preparation of 1-phenylcyclopropanamine.


Ethylmagnesium bromide (48.5 mL, 146 mmol) was added dropwise over 30 min to a solution of benzonitrile (5 g, 48 mmol, 3 eq) and titanium tetraisopropenolate (21.5 mL, 73 mmol, 1.5 eq) in dry THF (140 mL) at -70°C. The solution was stirred at r.t. for 1.5 hr, followed by dropwise addition of boron trifluorideetherate (15 mL, 121 mmol, 2.5 eq) over 15 min. The mixture was stirred at r.t. for another 1.5 hr followed by addition of 1N aq. HCl and Et₂O. The resulting mixture was poured into 10% aq. NaOH, and extracted with Et₂O. Combined organic layers were dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography using PE/EtOAc/NH₃.H₂O (4:1:0.1%) to afford the desired product. LC-MS: m/z 134.1 (M+H)⁺.

Preparation of 2-amino-2-methylpropanenitrile

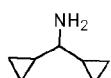
To a mixture of NH₄Cl (4.9 g, 92.3 mmol) and acetone (7 mL, 92.3 mmol) in ammonium hydroxide (40 mL, 230.7 mmol) was added KCN (5 g, 76.9 mmol) at r.t. The reaction mixture was stirred at r.t for 3 days. The mixture was extracted with DCM (2 x 30 mL). Combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated to afford the desired product which was used directly in the next step without any further purification.


Preparation of 2-aminopropanenitrile

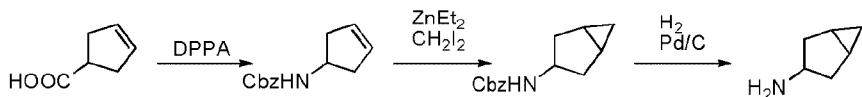

To a mixture of NH₄Cl (981 mg, 18.5mmol), acetaldehyde (1 mL, 18.5mmol) in ammonium hydroxide (3 mL) was added KCN (1 g, 15.4mmol) at room temperature. The reaction mixture

was stirred at r.t for 2 days. The mixture was extracted with DCM (2 x 30 mL). Combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated to afford the desired product which was used directly in the next step without any further purification.

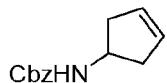
Preparation of dicyclopropylmethanamine



Step 1. Preparation of dicyclopropylmethanoneoxime. To a mixture of dicyclopropylmethanone (500 mg, 4.5 mmol) in pyridine (5 mL) was added hydroxylamine hydrochloride (469 mg, 6.75 mmol). The reaction mixture was stirred at 100°C for 4 hr and cooled to r.t followed by addition of EtOAc. The resulting mixture was washed with 1 N aq. HCl and brine, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.

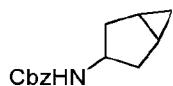

LC-MS : m/z 124.1 ($\text{M}-\text{H}$)⁻

Step 2. Preparation of dicyclopropylmethanamine. To a cooled solution of dicyclopropylmethanoneoxime (550 mg, 4.4 mmol) in THF (5 mL) was added LiAlH_4 (200 mg, 5.3 mmol). The mixture was then stirred at 80°C for 6 hr and cooled to room temperature. The mixture was quenched by 1N aq. NaOH until gas evolution ceased and then filtered. The filtrate was extracted with EtOAc. Combined organic layers were dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.



LC-MS : m/z 112.1 ($\text{M}+\text{H}$)⁺

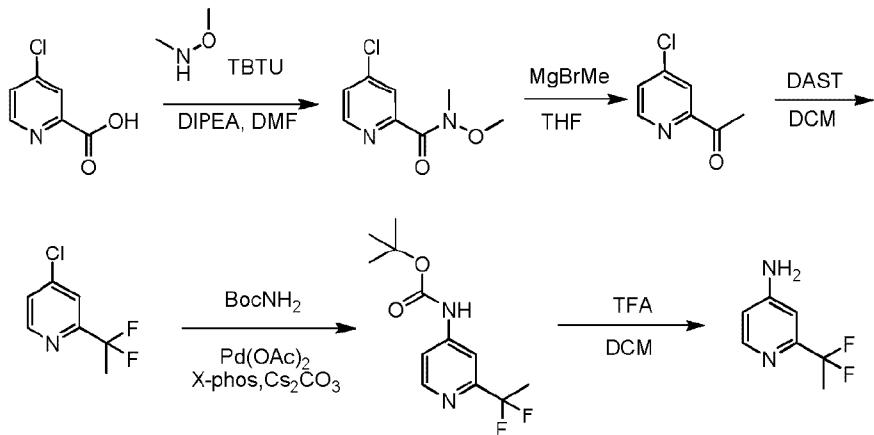
Preparation of bicyclo[3.1.0]hexan-3-amine



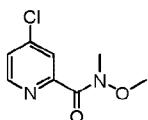
Step 1: Preparation of benzyl cyclopent-3-enylcarbamate. To a solution of cyclopent-3-enecarboxylic acid (5 g, 44.6 mmol, 1 eq) and DPPA (13.5 g, 49 mmol, 1.1 eq) in toluene (80 mL) was added Et₃N (7.4 mL, 53.5 mmol, 1.2 eq) at r.t.. The mixture was then stirred at reflux for 2hr during which period a larger amount of nitrogen evolved. After BnOH (7 mL, 66.9 mmol, 1.5 eq) was added, the resulting mixture was stirred at 100°C overnight and cooled to room temperature. After quenched with saturated aqueous NaHCO₃. The resulting mixture was extracted with EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash chromatography using PE/EtOAc (5:1) as eluent to give the desired product.

LC-MS: m/z 218.0 (M+H)⁺.

Step 2: Preparation of benzyl bicyclo[3.1.0]hexan-3-ylcarbamate. To a solution of benzyl cyclopent-3-enylcarbamate (1 g, 4.6 mmol, 1 eq) in anhydrous DCM at 0°C under an atmosphere of nitrogen was added ZnEt₂ (0.7 mL, 9.7 mmol, 2.1 eq), followed by dropwise addition of CH₂I₂ (0.78 mL, 9.7 mmol, 2.1 eq). The reaction mixture was warmed to room temperature and stirred for 4 hr. The resulting reaction mixture was quenched with brine and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography using PE/EtOAc (5:1) as eluent to give the desired product.

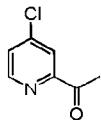

LC-MS: m/z 232.1 (M+H)⁺.

Step 3: Preparation of bicyclo[3.1.0]hexan-3-amine. To a solution of benzyl bicyclo[3.1.0]hexan-3-ylcarbamate (2 g) in MeOH (20 mL) at r.t. under an atmosphere of nitrogen was added Pd/C (0.2 g) in one portion. The resulting mixture was then stirred under a hydrogen balloon overnight. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.

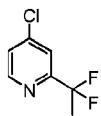


LC-MS: m/z 98.1 (M+H)⁺.

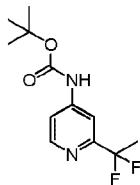
Preparation of 2-(1,1-difluoroethyl)pyridin-4-amine


Step 1: Preparation of 4-chloro-N-methoxy-N-methylpicolinamide. To a solution of 4-chloropicolinic acid (10 g, 63.5 mmol) in DMF (150 mL) was added TBTU (30.6 g, 95.2 mmol), N,O-dimethylhydroxylamine (9.3 g, 95.2 mmol) and DIPEA (24.6 g, 190.4 mmol) at 0°C. The mixture was stirred at room temperature overnight. The reaction mixture was diluted with saturated aqueous NH₄Cl and extracted with EtOAc. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography to give the desired product.

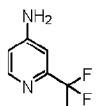
LC-MS: m/z 201.0 (M+H)⁺.


Step 2: Preparation of 1-(4-chloropyridin-2-yl)ethanone. To a solution of 4-chloro-N-methoxy-N-methylpicolinamide (11.25 g, 56.08 mmol) in THF (50 mL) at 0°C was added MeMgBr (28.04 mL, 84.12 mmol). The mixture was then stirred at r.t. overnight and quenched with saturated aqueous NH₄Cl. The resulting mixture was extracted with EtOAc. The organic layer

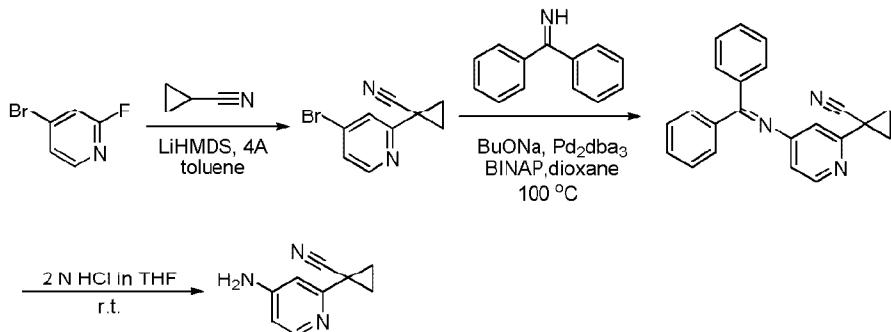
was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by flash chromatography to give the desired product.


¹H NMR (400 MHz, CDCl_3): δ 8.52 (d, J = 5.2 Hz, 1H), 7.96 (s, 1H), 7.40 (d, J = 5.2 Hz, 1H), 2.64 (s, 3H). LC-MS: m/z 156.0 ($\text{M}+\text{H}$)⁺.

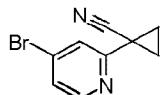
Step 3: 4-chloro-2-(1,1-difluoroethyl)pyridine. To a solution of 1-(4-chloropyridin-2-yl)ethanone (6.3 g, 40.5 mmol) in DCM (30 mL) was added DAST (65.2 g, 405 mmol) at 0°C. The mixture was then stirred at r.t. overnight and quenched with saturated aqueous NaHCO_3 . The resulting mixture was extracted with DCM. The organic layer was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by flash chromatography to give the desired product.


¹H NMR (400 MHz, CDCl_3): δ 8.48 (d, J = 5.2 Hz, 1H), 7.60 (s, 1H), 7.31 (d, J = 5.2 Hz, 1H), 1.90-1.99 (m, 3H). LC-MS: m/z 178.0 ($\text{M}+\text{H}$)⁺.

Step 4: Preparation of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate. To a solution of 4-chloro-2-(1,1-difluoroethyl)pyridine (6.0 g, 33.8 mmol) in dioxane (20 mL) was added BocNH_2 (4.74 g, 40.5 mmol), X-phos (1.14 g, 1.7 mmol), CsCO_3 (16.5 g, 50.7 mmol) and $\text{Pd}(\text{OAc})_2$ (1.32 g, 2.7 mmol) at room temperature. The mixture was then stirred at 80 °C overnight and then cooled to room temperature. The reaction mixture was diluted with Sat. aq. NH_4Cl and extracted with EtOAc. The organic layer was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by flash chromatography to give the desired product.

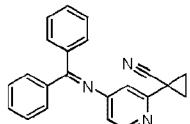

LC-MS: m/z 259.1 (M+H)⁺.

Step 5: Preparation of 2-(1,1-difluoroethyl)pyridin-4-amine. A solution of tert-butyl (2-(1,1-difluoroethyl)pyridin-4-yl)carbamate (7.97 g, 30.86 mmol) in DCM (30 mL) was cooled under ice-water bath. TFA (10 mL) was then added dropwise. The reaction mixture was stirred at room temperature for 4 hrs and monitored by TLC. Once the reaction completed, the mixture was diluted with water and adjusted pH>7 by saturated aqueous NaHCO₃. The resulting mixture was extracted with DCM. Combined organic layers were dried over anhydrous Na₂SO₄ and concentrated to give the desired product which was used in the next step without further purification.

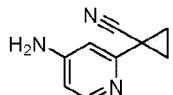


LC-MS: m/z 159.1 (M+H)⁺.

Preparation of 1-(4-aminopyridin-2-yl)cyclopropanecarbonitrile

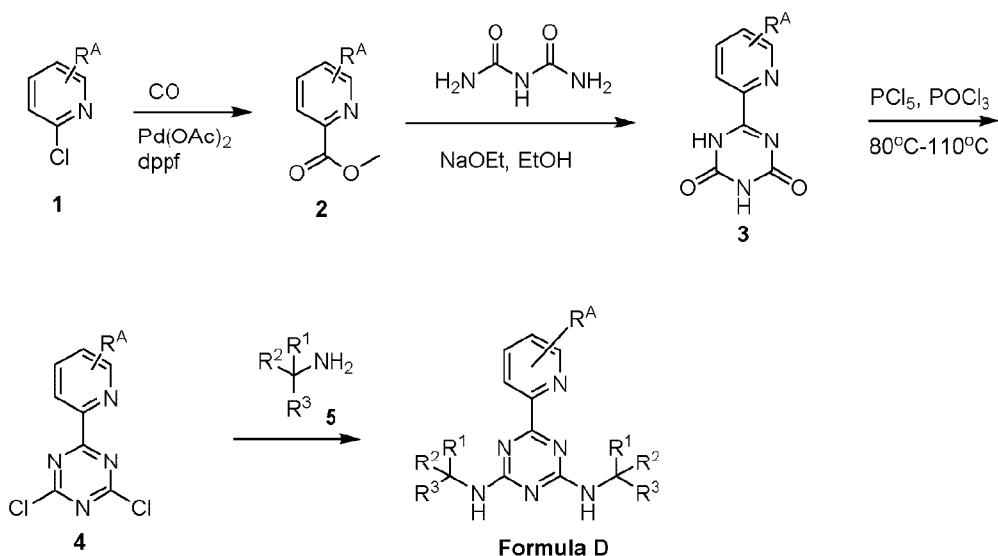


Step 1: Preparation of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile. LiHMDS (1M in toluene, 17.6 mL, 17.6 mmol, 3.1 eq) was added dropwise to a cold (-5°C) mixture of 4-bromo-2-fluoropyridine (1 g, 5.7 mmol), cyclopanecarbonitrile (1.25 mL, 17 mmol, 3 eq) and 4A MS in toluene (20 mL). The reaction mixture was allowed to warm to room temperature and stirred for 16 hr. After it was poured into water, the mixture was filtered. The filtrate was diluted with EtOAc and H₂O, and extracted with EtOAc. The organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by column chromatography using PE/EtOAc (9:1) as eluent to give the desired product.


LC-MS: m/z 223.0 (M+H)⁺.

Step 2: Preparation of 1-(4-(diphenylmethylenamino)pyridin-2-yl)cyclopropanecarbonitrile. To a mixture of 1-(4-bromopyridin-2-yl)cyclopropanecarbonitrile (0.45g, 2.1 mmol), BINAP (0.04 g, 0.063 mmol), Pd₂(dba)₃ (0.019g, 0.021 mmol) and NaOtBu (0.282 g, 2.94 mmol) in toluene (6 mL) at r.t. under an atmosphere of nitrogen was added diphenylmethanimine (0.45 g, 2.51 mmol). The reaction mixture was stirred at reflux for 2 hr and then cooled to room temperature. The mixture was concentrated under reduced pressure and the residue was purified by column chromatography to give the desired product.

LC-MS: m/z 324.1 (M+H)⁺.


Step 3: Preparation of 1-(4-aminopyridin-2-yl)cyclopropanecarbonitrile. A mixture of 1-(4-(diphenylmethylenamino)pyridin-2-yl)cyclopropanecarbonitrile (0.48 g, 1.49 mmol), THF (10 mL) and aq. HCl (2N, 2.0 mL) was stirred at room temperature for 1 hour. The mixture was then partitioned between EtOAc (15 mL) and water (15 mL). The aqueous phase was extracted with EtOAc (2 x 25 mL). Combined organic layers were dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography to give the desired product.

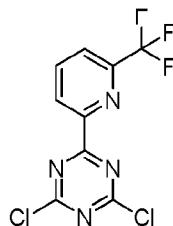
LC-MS: m/z 160.1 (M+H)⁺.

Example 1 Preparation of Di-aliphatic Triazine Compounds of Formula D Wherein Ring A is substituted Pyridin-2-yl or Phenyl. The compounds of this Example are prepared by general **Scheme 1**, set forth below.

Scheme 1

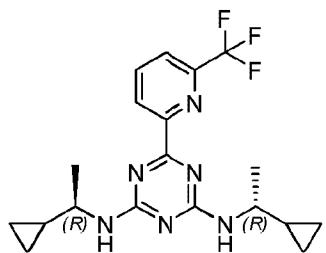

Step 1: Preparation of 6-trifluoromethyl-pyridine-2-carboxylic acid methyl ester (2). To a solution of 2-chloro-6-trifluoromethyl-pyridine (2 g, 11.1 mmol, 1.0 eq) in MeOH (20 mL) was added $\text{Pd}(\text{OAc})_2$ (124 mg, 0.05 eq) and dppf (600 mg, 0.1 eq) under an atmosphere of nitrogen. Et_3N (2.3 mL, 1.5 eq) was then added to the resulting orange solution. The reaction solution was then stirred under an atmosphere of carbon monoxide (40 psi) at 60°C for 22 hr. Once the reaction completed, the mixture was filtered and the filtrate was concentrated in high vacuum. The residue was purified by column chromatography to afford the desired product.

^1H NMR (400 MHz, CDCl_3): δ 8.32 (d, J = 8 Hz, 1H), 8.06 (t, J = 8 Hz, 1H), 8.88 (d, J = 8 Hz, 1H), 4.04 (s, 3H). LC-MS: m/z 206 ($\text{M}+\text{H}$)⁺.


Step 2: Preparation of 6-(6-trifluoromethylpyridin-2-yl)-1,3,5-triazine-2,4-dione. To a solution of freshly prepared NaOEt from Na (3.84 g, 0.16 mol, 3 eq) in ethanol (500 mL) was added methyl 6-trifluoromethylpicolinate (33 g, 0.16 mol, 3 eq) and biuret (5.3 g, 0.052 mol). The resulting mixture was heated to reflux for 1 hr and then concentrated. The residue was poured into water

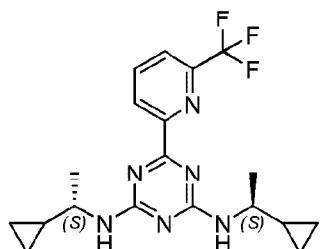
and treated with Sat. aq. NaHCO₃ to adjust pH to 7. The precipitated solid was collected by filtration and dried under air to give the desired compound.

¹H NMR (400 MHz, DMSO-d₆): δ 10.88 (s, 1H), 8.46 (d, *J* = 7.4 Hz, 1H), 8.28 (t, *J* = 7.3 Hz, 1H), 8.11 (d, *J* = 7.4 Hz, 1H). LC-MS: m/z 259 (M+H)⁺.

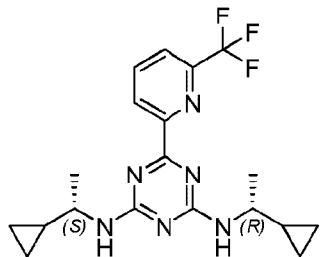

Step 3: Preparation of 2,4-dichloro-6-(6-trifluoromethyl-pyridin-2-yl)-1,3,5-triazine. To a solution of 6-(6-trifluoromethyl-pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione (3.37 g, 0.013 mol) in POCl₃ (48 mL) was added PCl₅ (23 g, 0.1 mol). The mixture was stirred at 100°C for 2 hr and then concentrated. The residue was dissolved in EtOAc and then washed with Sat. aq. NaHCO₃. The organic layer was dried over anhydrous Na₂SO₄ and then concentrated to give the desired product.

¹H NMR (400 MHz, CDCl₃): δ 8.76 (d, *J* = 7.9 Hz, 1H), 8.19 (t, *J* = 7.9 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H). LC-MS: m/z 294.9 (M+H)⁺.

Step 4: Preparation of N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazine (600 mg, 2.0 mmol, 1.0 eq) and (R)-1-cyclopropylethanamine hydrochloride salt (536 mg, 4.4 mmol, 2.2 eq) in THF (12 mL) were added CsF (1.2 g, 8.0 mmol, 2 eq) and DIPEA (1.4 mL, 8.0 mmol, 4 eq) at room temperature. The mixture was stirred at 60°C overnight and then


filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to give the desired product.

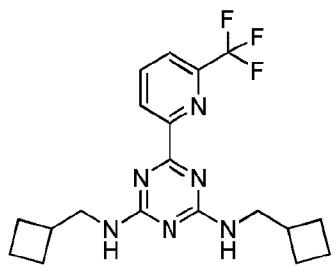
¹H NMR (400 MHz, CD₃OD): δ 8.70-8.68 (m, 1 H), 8.34-8.32 (m, 1 H), 8.16-8.14 (m, 1 H), 3.61-3.57 (m, 2 H), 1.36-1.32 (m, 6 H), 1.06-1.01 (m, 2 H), 0.61-0.39 (m, 8 H). LC-MS: m/z 393.2 (M+H)⁺.


The procedure set forth in Example 1 was used to produce the following compounds using the appropriate starting materials.

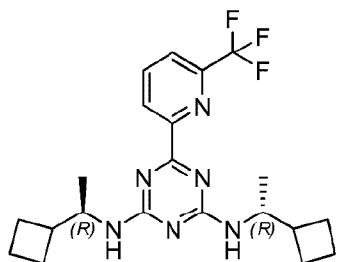
Compound N²,N⁴-bis((S)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.50 (s, 1H), 7.99 (t, J = 7.9 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 5.44 – 5.18 (m, 2H), 3.66 – 3.57 (m, 2H), 1.27 (d, J = 5.4 Hz, 6H), 0.93 – 0.88 (m, 2H), 0.52 – 0.27 (m, 8H). LC-MS: m/z 393.2 (M+H)⁺.

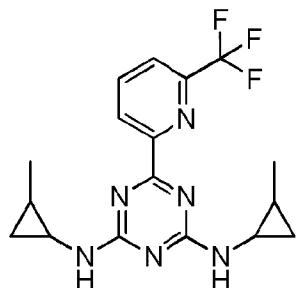
Compound N²-((R)-1-cyclopropylethyl)-N⁴-((S)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.51 (s, 1H), 7.99 (t, J = 7.9 Hz, 1H), 7.77 (d, J = 7.3 Hz, 1H), 5.46 – 5.19 (m, 2H), 3.67 – 3.54 (m, 2H), 1.32 – 1.22 (m, 6H), 0.95 – 0.83 (m, 2H), 0.59 – 0.23 (m, 8H). LC-MS: m/z 393.2 (M+H)⁺.

Compound N²,N⁴-bis(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.6 (m, 1H), 8.2-8.1 (m, 1H), 8.0-7.9 (m, 1H), 4.0-3.52 (m, 2H), 1.4-1.2 (m, 6H), 1.0 (m, 2H), 0.6-0.35 (m, 6H), 0.35-0.2 (m, 2H). LC-MS: m/z 393.2 (M+H)⁺.

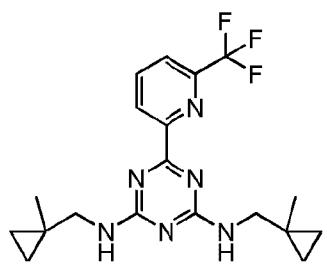
Compound N²,N⁴-bis(cyclobutylmethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.54 (m, 1H), 8.00 (m, 1H), 7.78 (d, *J* = 5.9 Hz, 1H), 5.27 (m, 2H), 3.69 – 3.32 (m, 4H), 2.59 (m, 2H), 2.10 (m, 4H), 1.92 (m, 4H), 1.84 – 1.62 (m, 4H). LC-MS: m/z 393.2 (M+H)⁺.

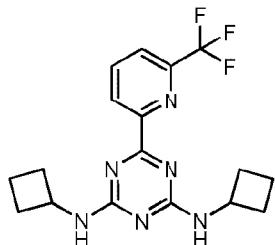
Compound N²,N⁴-bis((R)-1-cyclobutylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃): δ 8.71 – 8.41 (m, 1H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 5.34 – 4.84 (m, 2H), 4.30 – 3.96 (m, 2H), 2.44 – 2.28 (m, 2H), 2.09 – 1.96 (m, 4H), 1.93 – 1.78 (m, 8H), 1.14 (d, *J* = 5.9 Hz, 6H). LC-MS: m/z 421.2 (M+H)⁺.

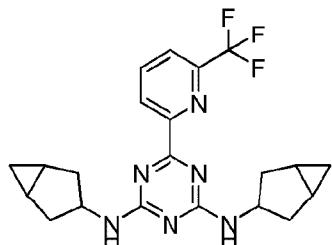
Compound N²,N⁴-bis(2-methylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.65-8.4 (m, 1H), 8.1-7.75 (m, 2H), 2.55-2.25 (m, 2H), 1.2-1.0 (m, 6H), 0.9-0.8 (m, 2H), 0.7-0.6 (m, 2H), 0.5-0.38 (m, 2H). LC-MS: m/z 365.3 (M+H)⁺.

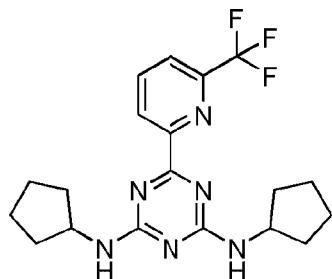
Compound N²,N⁴-bis(cyclopropylmethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.60-8.68 (m, 1H), 8.21 (t, *J* = 8.0 Hz, 1H), 7.93-8.00 (m, 1H), 3.26-3.42 (m, 4H), 1.08-1.19 (m, 2H), 0.51-0.58 (m, 4H), 0.25-0.34 (m, 4H). LC-MS: m/z 365.2 (M+H)⁺.

Compound N²,N⁴-bis((1-methylcyclopropyl)methyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.61-8.59 (m, 1H), 8.17-8.15 (m, 1H), 7.94-7.92 (m, 1H), 3.43-3.33 (m, 4H), 1.14 (s, 6H), 0.55-0.53 (m, 4H), 0.34-0.32 (m, 4H). LC-MS: m/z 393.2 (M+H)⁺.

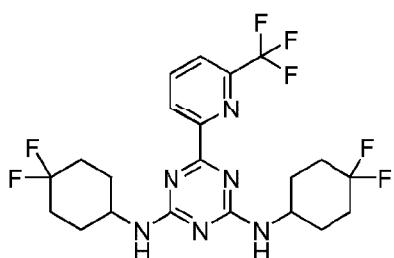
Compound N²,N⁴-dicyclobutyl-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.67 – 8.38 (m, 1H), 7.99 (d, *J* = 6.8 Hz, 1H), 7.78 (d, *J* = 7.5 Hz, 1H), 5.52 (m 2H), 4.80 – 4.32 (m, 2H), 2.41 (s, 4H), 2.20 (s, 1H), 2.06 – 1.62 (m, 8H). LC-MS: m/z 365.2 (M+H)⁺.

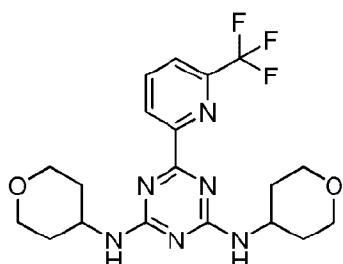
Compound N²,N⁴-di(bicyclo[3.1.0]hexan-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.66 – 8.57 (m, 1H), 8.14 (t, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 7.5 Hz, 1H), 4.60 – 4.44 (m, 2H), 2.44 – 2.21 (m, 4H), 1.80 – 1.69 (m, 4H), 1.35 (d, *J* = 3.4 Hz, 4H), 0.69 – 0.53 (m, 2H), 0.32 (d, *J* = 4.3 Hz, 2H). LC-MS: m/z 417.2 (M+H)⁺.

Compound N,N'-dicyclopentyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine- 2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.60-8.68 (m, 1H), 8.20 (t, *J* = 7.6 Hz, 1H), 7.95-8.01 (m, 1H), 4.29-4.55 (m, 2H), 2.00-2.15 (m, 4H), 1.75-1.84 (m, 4H), 1.51-1.74 (m, 8H). LC-MS : m/z 393.5 (M+H)⁺.

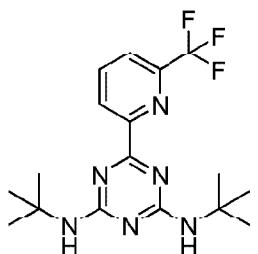
Compound N²,N⁴-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

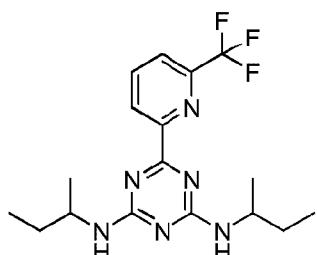

¹H NMR (400 MHz, CDCl₃): δ 8.53 (m, 1H), 8.08 – 8.02 (m, 1H), 7.85 – 7.80 (m, 1H), 5.78 – 5.18 (m, 2H), 4.82 – 4.38 (m, 2H), 2.82 – 2.50 (m, 2H), 2.31 – 2.05 (m, 8H), 1.93 – 1.80 (m, 2H). LC-MS: m/z 465.2 (M+H)⁺.

Compound N,N'-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine 1,3,5-



¹H NMR (400 MHz, CDCl₃): δ 8.64 – 8.42 (m, 1H), 8.05 (t, J = 7.8 Hz, 1H), 7.84 (d, J = 6.6 Hz, 1H), 6.24 – 5.25 (m, 2H), 4.18 – 4.01 (m, 2H), 2.43 – 1.48 (m, 16H). LC-MS: m/z 493.2 (M+H)⁺.


Compound N,N'-bis-(tetrahydro-pyran-4-yl)-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine


¹H NMR (400 MHz, DMSO-d₆): δ 7.43-8.55 (m, 5H), 3.82-4.15 (m, 6H), 3.48-3.50 (m, 4H), 1.75-1.87 (m, 4H), 1.46-1.60 (m, 4H). LC-MS: m/z 425.1 (M+H)⁺.

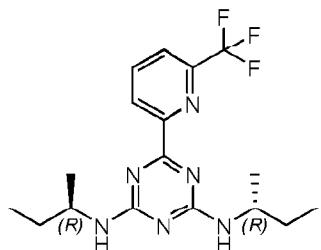
Compound N²,N⁴-diisopropyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃): δ 8.67 – 8.41 (m, 1H), 7.99 (s, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 5.18 (m, 2H), 4.45 – 4.03 (m, 2H), 2.15 (m, 1H), 1.26 (d, *J* = 4.5 Hz, 12H). LC-MS: m/z 341.2 (M+H)⁺.

Compound N²,N⁴-di-tert-butyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, DMSO-d₆): δ 8.44 – 8.31 (m, 1H), 8.19 – 8.12 (m, 1H), 7.93 (d, *J* = 7.3 Hz, 1H), 7.16 – 6.77 (m, 2H), 1.35 (s, 18H). LC-MS: m/z 369.2 (M+H)⁺.

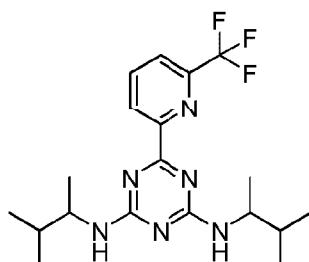
Compound N,N'-di-sec-butyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine


¹HNMR (400 MHz, CD₃OD): δ 8.42-8.68 (m, 1H), 8.15-8.21 (m, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 4.01-4.29 (m, 2H), 1.55-1.69 (m, 4H), 1.19-1.30 (m, 6H), 0.95-1.05 (m, 6H).LC-MS : m/z 369.5 (M+H)⁺.

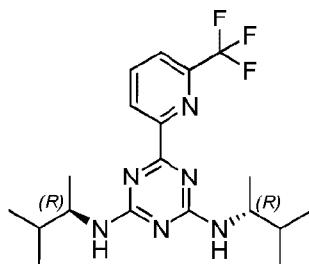
Compound N,N'-Di-sec-butyl-6-(6-trifluoromethyl-pyridin-2-yl)-[1,3,5]triazine-2,4-diamine


¹HNMR (400 MHz, CD₃OD): δ 8.72-8.79 (m, 1H), 8.38-8.43 (m, 1H), 8.20-8.23 (m, 1H), 4.13-4.45 (m, 2H), 1.67-1.74 (m, 4H), 1.29-1.33 (m, 6H), 1.01-1.05 (m, 6H).LC-MS: m/z 369.2 (M+H)⁺.

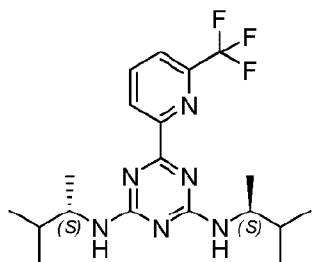
Compound N²,N⁴-di-sec-butyl-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹HNMR (400 MHz, CD₃OD): δ 8.72-8.79 (m, 1H), 8.38-8.43 (m, 1H), 8.20-8.23 (m, 1H), 4.13-4.45 (m, 2H), 1.67-1.74 (m, 4H), 1.29-1.33 (m, 6H), 1.01-1.05 (m, 6H).LC-MS: m/z 369.2 (M+H)⁺.

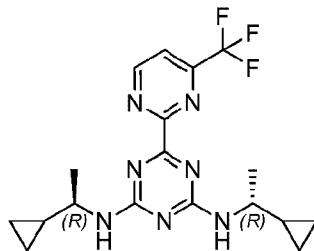
Compound N²-((R)-sec-butyl)-N⁴-((S)-sec-butyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.59-8.65 (m, 1H), 8.15-8.19 (m, 1H), 7.94-7.95 (m, 1H), 4.06-4.24 (m, 2H), 1.58-1.65 (m, 4H), 1.21-1.26 (m, 6H), 0.98-1.01 (m, 6H). LC-MS: m/z 369.2 (M+H)⁺.

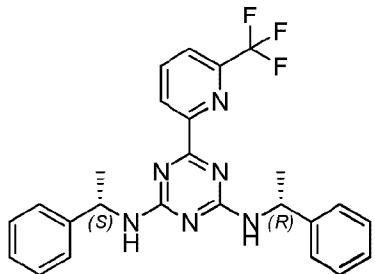
Compound N²,N⁴-bis(3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.58 – 8.47 (m, 1H), 7.99 (t, J = 7.2 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 5.30 – 5.03 (m, 2H), 4.16 – 3.97 (m, 2H), 1.93 – 1.75 (m, 2H), 1.16 (d, J = 6.6 Hz, 6H), 0.97 – 0.93 (m, 12H). LC-MS: m/z 397.2 (M+H)⁺.

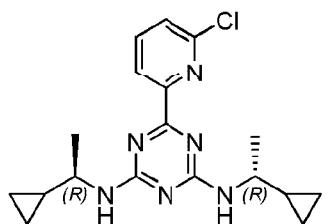
Compound N²,N⁴-bis((R)-3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, DMSO-d₆): δ 8.46 (m, 1H), 8.21 (m, 1H), 8.00 (d, *J* = 7.7 Hz, 1H), 7.36 (m, 2H), 3.90 (m, 2H), 1.79 (m, 2H), 1.05 (t, *J* = 7.6 Hz, 6H), 0.87 (t, *J* = 7.6 Hz, 12H).LC-MS: m/z 397.2 (M+H)⁺.

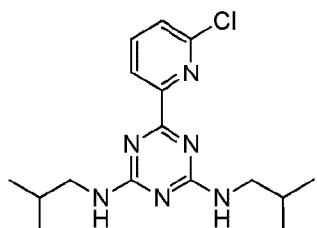
Compound N²,N⁴-bis((S)-3-methylbutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine 1,3,5-


¹H NMR (400 MHz, DMSO-d₆): δ 8.46 (d, *J* = 7.9 Hz, 1H), 8.24 (d, *J* = 6.9 Hz, 1H), 8.03 (d, *J* = 7.7 Hz, 1H), 7.55 (m, 2H), 4.25 – 3.78 (m, 1H), 1.93 – 1.65 (m, 1H), 1.15 – 1.00 (m, 6H), 0.89 (t, *J* = 7.8 Hz, 12H).LC-MS: m/z 397.2 (M+H)⁺.

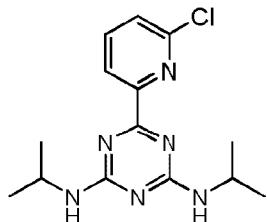
Compound N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(4-(trifluoromethyl)pyrimidin-2-yl)-1,3,5-triazine-2,4-diamine -2-yl)-1,3,5-


¹H NMR (400 MHz, CDCl₃): δ 9.20 (s, 1H), 7.74 (s, 1H), 5.46 (m, 2H), 3.59 (m, 2H), 1.26 (m, 8H), 0.91 (s, 2H), 0.65 – -0.27 (m, 8H).LC-MS: m/z 394.2 (M+H)⁺.

Compound N²-((R)-1-phenylethyl)-N⁴-((S)-1-phenylethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine

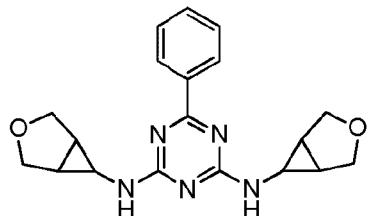

¹H NMR (400 MHz, CDCl₃): δ 8.52 – 8.33 (m, 1H), 8.05 – 7.86 (m, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.52 – 7.18 (m, 10H), 5.82 – 5.40 (m, 2H), 5.37 – 4.92 (m, 2H), 1.65 – 1.39 (m, 6H). LC-MS: m/z 465.2 (M+H)⁺.

Compound 6-(6-chloropyridin-2-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine



¹H NMR (400 MHz, CD₃OD): δ 8.37 (t, *J* = 7.8 Hz, 1H), 8.02 (t, *J* = 7.8 Hz, 1H), 7.71 – 7.65 (m, 1H), 3.74 – 3.54 (m, 2H), 1.32 (d, *J* = 6.6 Hz, 6H), 1.08 – 0.94 (m, 2H), 0.63 – 0.21 (m, 8H). LC-MS: m/z 359.2 (M+H)⁺.

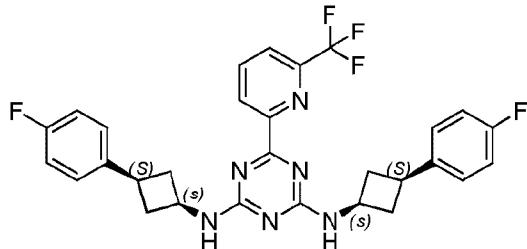

Compound 6-(6-chloropyridin-2-yl)-N²,N⁴-diisobutyl-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.5-8.38 (m, 1H), 8.0-7.9 (m, 1H), 7.6-7.5 (m, 1H), 3.35-3.16 (m, 4H), 2.0-1.9 (m, 2H), 1.0-0.9 (m, 12H). LC-MS: m/z 335.1 (M+H)⁺.

Compound 6-(6-chloropyridin-2-yl)-N²,N⁴-diisopropyl-1,3,5-triazine-2,4-diamine

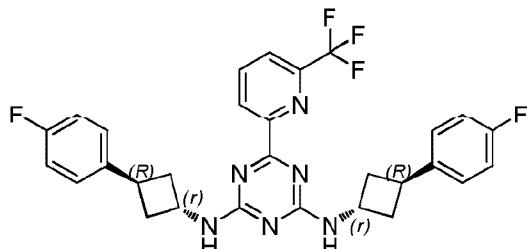
¹HNMR (400 MHz, CD₃OD): δ 8.25-8.19 (m, 1H), 7.81 (brs, 1 H), 7.46 (d, *J* = 7.6 Hz, 1H), 4.26-4.11 (m, 2H), 1.15 (d, *J* = 6.0 Hz, 12H). LC-MS: m/z 307.1 (M+H)⁺.

Compound N²,N⁴-di(but-3-en-1-yl)-6-phenyl-1,3,5-triazine-2,4-diamine

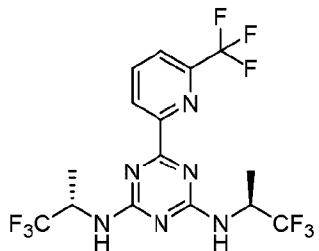

¹HNMR (400 MHz, CD₃OD): δ 8.19-8.13 (m, 2H), 7.77-7.61 (m, 3H), 5.95-5.85 (m, 2H), 5.20-5.11 (m, 4H), 3.72-3.59 (m, 4H), 2.49-2.44 (m, 4H). LC-MS: m/z 296.3 (M+H)⁺.

Compound N²,N⁴-di(3-oxabicyclo[3.1.0]hexan-6-yl)-6-phenyl-1,3,5-triazine-2,4-diamine

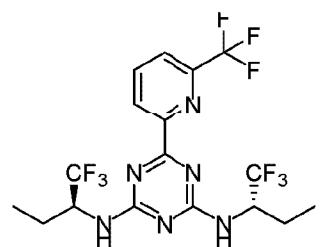
¹HNMR (400 MHz, CD₃OD): δ 8.35-8.1 (m, 2H), 8.3-8.2 (m, 1H), 7.7-7.6 (m, 2H), 4.1-4.0 (m, 4H), 3.85-3.7 (m, 4H), 2.9-2.55 (m, 2H), 2.1-2.0 (m, 2H). LC-MS: m/z 352.2 (M+H)⁺.


Compound N²,N⁴-bis((1S,3S)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridine-2-yl)-1,3,5-triazine (600 mg, 2.0 mmol, 1.0 eq) and (1s,3s)-3-(4-fluorophenyl)cyclobutananamine (726

mg, 4.4 mmol, 2.2 eq) in THF (12 mL) at r.t. were added CsF (0.6 g, 2.0 mmol, 1 eq.) and DIPEA (0.7 mL, 4.0 mmol, 2 eq). The resulting mixture was stirred at 60°C overnight and then filtered. The filtrate was concentrated and purified via standard techniques to afford the desired product.


¹H NMR (400 MHz, CDCl₃) δ 8.48 (m, 1H), 7.95 (m, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.16 – 7.04 (m, 4H), 6.93 (t, *J* = 8.5 Hz, 4H), 6.46 – 5.32 (m, 2H), 4.47 (m, 2H), 3.28 – 3.02 (m, 2H), 2.81 (d, *J* = 7.6 Hz, 4H), 2.01 (m, 4H). LC-MS: m/z 553.2 (M+H)⁺.

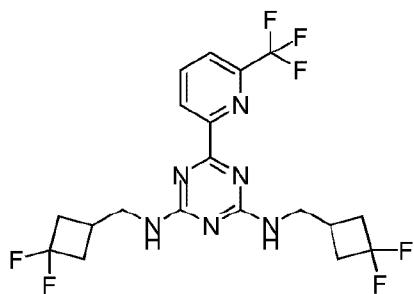
Compound N²,N⁴-bis((1R,3R)-3-(4-fluorophenyl)cyclobutyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.56 (m, 1H), 8.01 (s, 1H), 7.80 (s, 1H), 7.25 – 6.93 (m, 8H), 5.64 (m, 2H), 4.82 – 4.37 (m, 2H), 3.68 (s, 1H), 3.24 (s, 1H), 2.89 (m, 2H), 2.54 (m, 4H), 2.09 – 1.98 (m, 2H). LC-MS: m/z 553.2 (M+H)⁺.

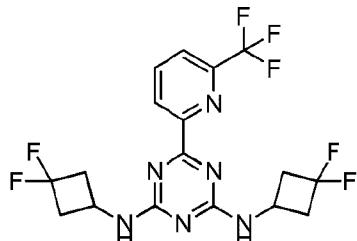
Compound 6-(6-(Trifluoromethyl)pyridin-2-yl)-N²,N⁴-bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.62 (m, 1H), 8.03 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 7.7 Hz, 1H), 5.59 (d, *J* = 9.4 Hz, 1H), 5.34 (m, 3H), 1.42 (m, 6H); LC-MS: m/z 449 (M+H)⁺.

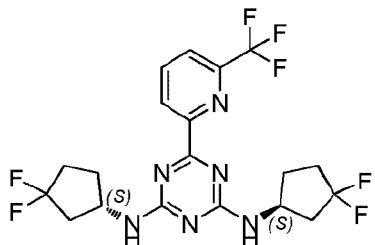
Compound 1 *N*²,*N*⁴-bis((S)-1,1,1-trifluorobutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8 Hz, 1H), 8.06 - 8.02 (m, 1H), 7.83 (d, *J* = 8 Hz, 1H), 5.64 - 5.15 (m, 2H), 4.93 - 4.71 (m, 2H), 2.0 - 1.94 (m, 2H), 1.69 - 1.57 (m, 2H), 1.08 - 1.02 (m, 6H). LCMS: m/z 477 (M+H)⁺.

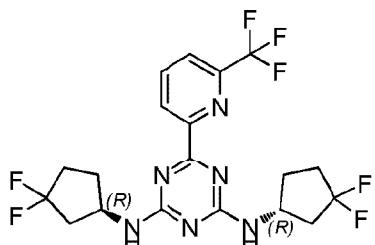
Compound 2 *N*²,*N*⁴-bis((2,2-difluorocyclopropyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.59-8.51 (m, 1H), 8.02 (bs, 1H), 7.80 (d, J=7.6 Hz, 1H), 5.70-5.38 (m, 2H), 3.81- 3.41 (m, 4H), 2.04-1.92 (m, 2H), 1.73-1.59(m, 2H), 1.28-1.23 (m, 2H). LC-MS: m/z 437 (M+H)⁺.

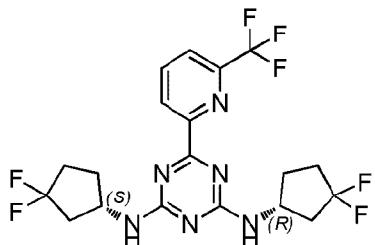
Compound N²,N⁴-bis((3,3-difluorocyclobutyl)methyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.54 (m, 1H), 8.02 (m, 1H), 7.80 (d, J = 7.2 Hz, 1H), 5.84 – 5.11 (m, 2H), 3.95 – 3.27 (m, 4H), 2.94 – 1.99 (m, 10H). LC-MS: m/z 465 (M+H)⁺.

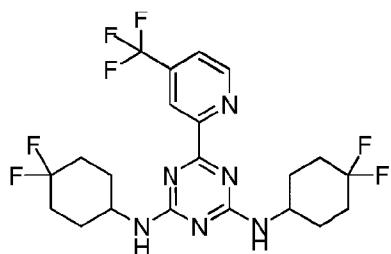
Compound N²,N⁴-bis(3,3-difluorocyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.56 - 8.48 (m, 1H), 8.04 - 8.02 (m, 1H), 7.82 - 7.80 (m, 1H), 5.76 - 5.41 (m, 2H), 4.52 - 4.37 (m, 2H), 3.06 (bs, 4H), 2.63 - 2.61 (m, 4H). LC-MS: m/z 437.1 (M+H)⁺.

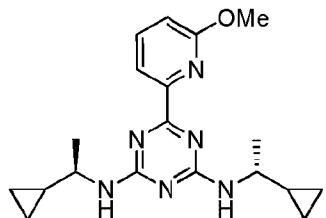
Compound N²,N⁴-bis((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.54 - 8.38 (m, 1H), 7.95 (m 1H), 7.73 (m, 1H), 5.60 - 5.25 (m, 2H), 4.63 - 4.42 (m, 2H), 2.68 - 2.52 (m, 2H), 2.16 - 1.77 (m, 10H). LCMS: m/z 465.1 (M+H)⁺.

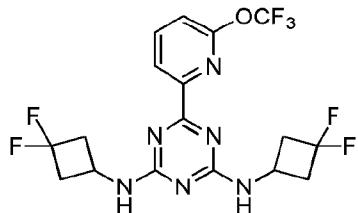
Compound N²,N⁴-bis((R)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.48 (m, 1H), 8.02-8.01 (m, 1H), 7.80 (s, 1H), 5.66-5.32 (m, 2H), 4.71-4.49 (m, 2H), 2.64-2.61 (m, 2H), 2.31-2.05 (m, 8H), 1.86-1.79 (m, 2H). LC-MS: m/z 465 (M+H)⁺.

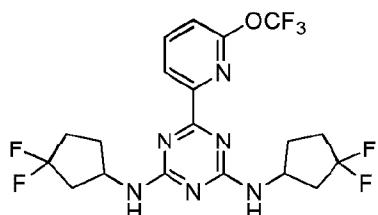
Compound N2-((R)-3,3-difluorocyclopentyl)-N4-((S)-3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.56-8.48 (m, 1H), 8.02(d, *J*=8 Hz, 1H), 7.80-7.81 (m, 1H), 5.66-5.32 (m, 2H), 4.71-4.54 (m, 2H), 2.65-2.60 (m, 2H), 2.31-2.05 (m, 8H), 1.86-1.81 (m, 2H). LC-MS: m/z 465 (M+H)⁺.

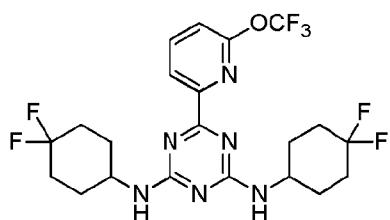
Compound N²,N⁴-bis(4,4-difluorocyclohexyl)-6-(4-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.70-8.62 (m, 2H), 7.62 (d, 1H), 6.70-6.43 (m, 1H), 5.22-3.95 (m, 3H), 2.11-1.69 (m, 16H). LCMS: m/z 493(M+H)⁺.

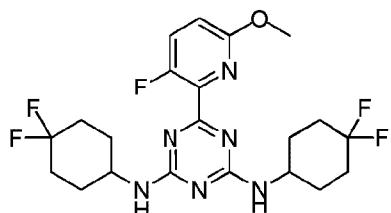
Compound N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.18 – 7.65 (m, 2H), 7.15 – 6.98 (m, 1H), 6.34 – 5.67 (m, 2H), 4.15 (s, 3H), 3.71 – 3.48 (m, 2H), 1.33 – 1.25 (m, 6H), 0.98 – 0.86 (m, 2H), 0.62 – 0.26 (m, 8H). LCMS: m/z 355.2 (M+H)⁺.

Compound N²,N⁴-bis(3,3-difluorocyclobutyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.34 - 8.27 (m, 1H), 7.96 - 7.92 (m, 1H), 7.22 (d, *J* = 8 Hz, 1H), 5.83 - 5.41 (m, 2H), 4.49 - 4.35 (m, 2H), 3.05 (d, *J* = 4 Hz, 4H), 2.63 - 2.54 (m, 4H). LCMS: m/z 453 (M+H)⁺.

Compound N²,N⁴-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

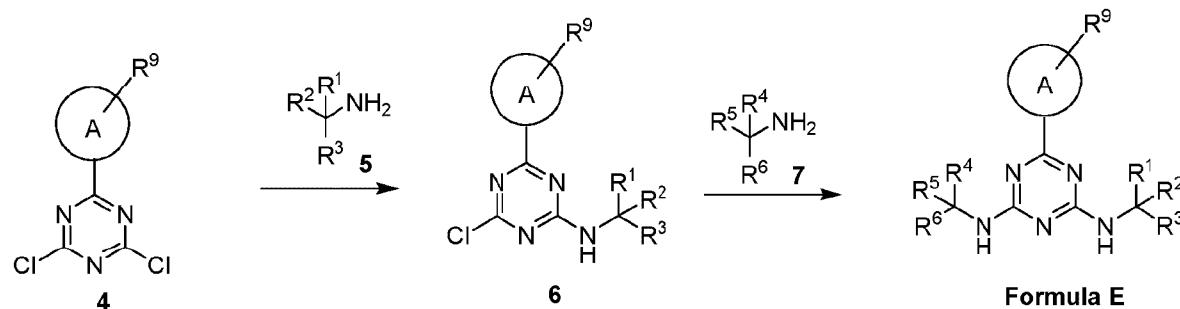

¹H NMR (400 MHz, CDCl₃) δ 8.33 - 8.26 (m, 1H), 7.95 - 7.92 (m, 1H), 7.22 (d, *J* = 8 Hz, 1H), 5.65 - 5.28 (m, 2H), 4.67 - 4.52 (m, 2H), 2.64 - 2.59 (m, 2H), 2.30 - 1.79 (m, 10H). LCMS: m/z 481 (M+H)⁺.

Compound N²,N⁴-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethoxy)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

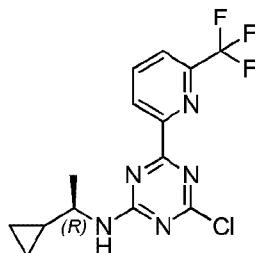
¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 8 Hz, 1H), 7.98 - 7.92 (m, 1H), 7.24 (d, *J* = 12 Hz, 1H), 5.44 - 5.08 (m, 2H), 4.16 - 3.98 (m, 2H), 2.15 - 1.65 (m, 16H). LCMS: m/z 509 (M+H)⁺.

Compound *N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3-fluoro-6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine*

^1H NMR (400 MHz, CDCl_3) δ 7.45-7.41 (t, 1H), 6.84 (d, 1H), 5.43-5.07 (m, 2H), 4.08-3.98 (m, 5H), 2.11-2.01 (m, 8H), 1.96-1.89 (m, 4H), 1.87-1.83 (m, 4H). LCMS : m/z 473($\text{M}+\text{H}$)⁺.

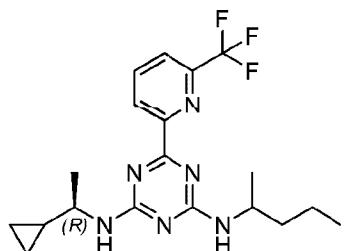

Table 1: The following compounds were prepared by following the procedure described in Scheme 1 above.

Compound No.	Name	Structure	LCMS	
			Expected MW	Found (M+1) ⁺
72	<i>N^2,N^4-di((1<i>R</i>,5<i>S</i>)-3-oxabicyclo[3.1.0]hexa-6-yl)-6-(6-chloropyridin-2-yl)-1,3,5-triazine-2,4-diamine</i>		386.1	387.1
73	<i>6-(6-aminopyridin-2-yl)-N^2,N^4-dineopentyl-1,3,5-triazine-2,4-diamine</i>		343.2	344.2

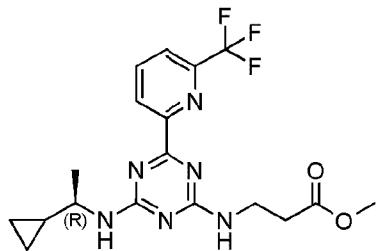

74	<i>6-(6-aminopyridin-2-yl)-N²,N⁴-diisobutyl-1,3,5-triazine-2,4-diamine</i>		315.2	316.2
	<i>6-(6-aminopyridin-2-yl)-N²,N⁴-bis(3-methylbutan-2-yl)-1,3,5-triazine-2,4-diamine</i>		343.2	344.2

Example 2 Preparation of Di-aliphatic Triazine Compounds of Formula E Wherein Ring A is substituted Pyridin-2-yl or Phenyl. The compounds of this Example are prepared by general **Scheme 2**, set forth below.

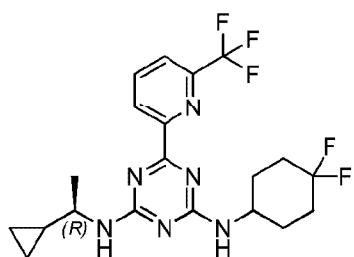
Scheme 2



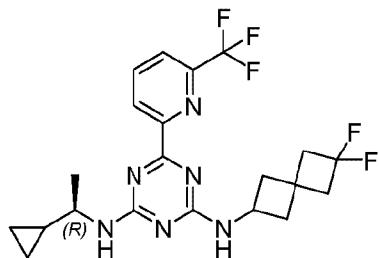
Step 1: Preparation of (R)-4-chloro-N-(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-amine. To a mixture of 2,4-dichloro-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine (600 mg, 2.0mmol, 1.0 eq) and (R)-1-cyclopropylethanamine hydrochloride salt (268 mg, 2.2mmol, 1.1 eq) in THF (6 mL) were added CsF (608 mg, 4.0mmol, 2eq) and DIPEA (0.7 mL, 4.0mmol, 2 eq) at room temperature. The mixture was stirred at 40°C overnight and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to give the desired product.


LC-MS: m/z 344.1 (M+H)⁺.

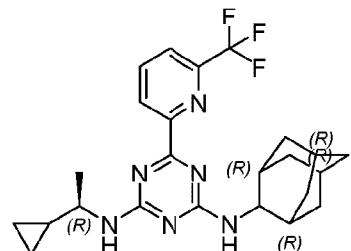
Step 2: Preparation of N²-((R)-1-cyclopropylethyl)-N4-(pentan-2-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a mixture of (R)-4-chloro-N-(1-cyclopropylethyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-amine (80 mg, 0.23 mmol, 1.0 eq) and pentan-2-amine (25 mg, 0.28 mmol, 1.2 eq) in THF (2 mL) were added CsF (70 mg, 0.46 mmol, 2 eq) and DIPEA (0.08 mL, 0.46 mmol, 2 eq) at room temperature. The mixture was stirred at 60°C overnight and filtered. The filtrate was concentrated under reduced pressure and then purified by a standard method to give the desired product.


¹H NMR (400 MHz, DMSO-d₆): δ 8.54 – 8.42 (m, 1H), 8.23 (t, J = 7.8 Hz, 1H), 8.02 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.52 (t, J = 9.5 Hz, 1H), 4.27 – 3.96 (m, 1H), 3.65 – 3.47 (m, 1H), 1.60 – 1.46 (m, 1H), 1.41 – 1.29 (m, 3H), 1.22 (d, 6.5 Hz, 3H), 1.12 (d, J = 6.1 Hz, 3H), 1.01 – 0.96 (m, 1H), 0.88 (t, J = 7.1 Hz, 3H), 0.50 – 0.29 (m, 3H), 0.26 – 0.07 (m, 1H). LC-MS: m/z 395.2 (M+H)⁺.

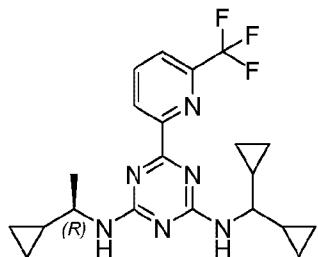
The procedure set forth in Example 2 was used to produce the following compounds using the appropriate starting materials.


¹H NMR (400 MHz, CDCl₃): δ 8.52 (m, 1H), 8.00 (t, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 5.63 (m, 2H), 3.73 (m, 9H), 2.66 (d, *J* = 5.9 Hz, 2H), 1.29 (m, 3H), 1.01 – 0.79 (m, 1H), 0.60 – 0.17 (m, 4H). LC-MS: m/z 411.2 (M+H)⁺.

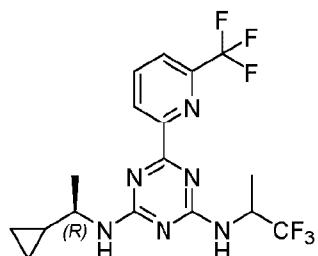
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.66 – 8.39 (m, 1H), 8.02 (t, *J* = 7.7 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 5.34 (m, 2H), 4.11 (m, 1H), 3.63 (m, 1H), 2.32 – 1.54 (m, 9H), 1.29 (m, 3H), 0.95 (s, 1H), 0.70 – 0.16 (m, 4H). LC-MS: m/z 443.2 (M+H)⁺.

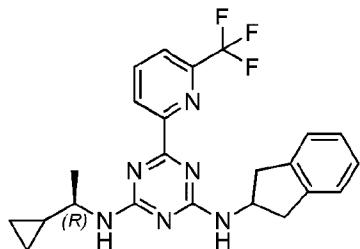
Compound N²-((R*)-1-cyclopropylethyl)-N⁴-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine*


¹H NMR (400 MHz, CDCl₃): δ 8.54 – 8.49 (m, 1H), 8.01 (t, *J* = 7.3 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 5.60 – 5.27 (m, 2H), 4.57 – 4.37 (m, 1H), 3.67 – 3.57 (m, 1H), 2.70 – 2.65 (m, 2H), 2.57 (m, 3H), 2.22 – 1.92 (m, 4H), 1.30 (d, *J* = 5.8 Hz, 2H), 0.93 (s, 1H), 0.54 – 0.29 (m, 4H). LC-MS: m/z 455.2 (M+H)⁺.

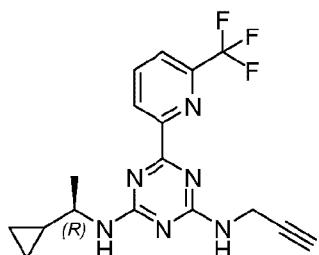
Compound N²-((1R,3R,5R,7R)-adamantan-2-yl)-N⁴-((R)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.63 – 8.34 (m, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 5.57 (m, 2H), 4.21 (m, 1H), 3.85 – 3.32 (m, 1H), 2.22 – 1.57 (m, 15H), 1.25 (m, 4H), 0.90 (m, 1H), 0.66 – 0.24 (m, 4H). LC-MS: m/z 459.2 (M+H)⁺.

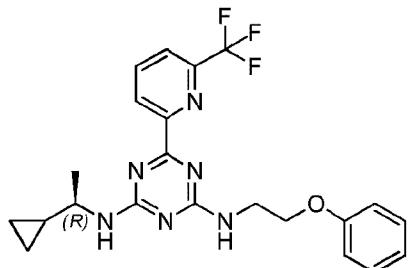
Compound (R)-N²-((1-cyclopropylethyl)-N⁴-((dicyclopropylmethyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 7.5 Hz, 1H), 7.99 (t, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 5.71 – 5.05 (m, 2H), 3.59 (m, 2H), 1.25 (m, 3H), 1.07 – 0.80 (m, 3H), 0.64 – 0.19 (m, 12H). LC-MS: m/z 419.2 (M+H)⁺.

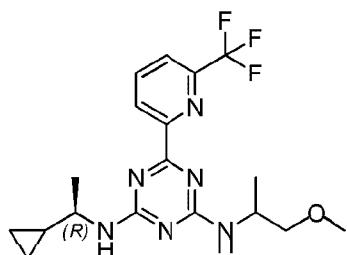
*Compound N²-(*R*)-1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-N⁴-(1,1,1-trifluoroprop-2-yl)-1,3,5-triazine-2,4-diamine (1,1,1-trifluoroprop-2-yl)-1,3,5-triazine-2,4-diamine*


¹H NMR (400 MHz, CDCl₃): δ 8.53 (s, 1H), 8.01 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 5.91 – 4.65 (m, 3H), 3.67 (m, 1H), 1.51 – 1.15 (m, 6H), 0.93 (s, 1H), 0.74 – 0.10 (m, 4H). LC-MS: m/z 421.1 (M+H)⁺.

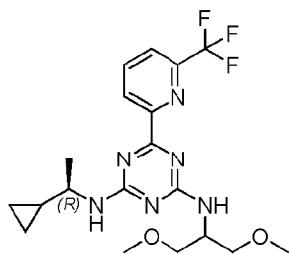
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.61 - 8.46 (m, 1H), 7.99 (t, J = 8.1 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.26 – 7.17 (m, 4H), 5.75 – 5.30 (m, 2H), 5.11 – 4.75 (m, 1H), 3.78 – 3.54 (m, 1H), 3.46 – 3.31 (m, 2H), 2.94 – 2.88 (m, 2H), 1.32 (d, J = 6.4 Hz, 3H), 1.24 – 1.19 (m, 1H), 0.98 – 0.86 (m, 1H), 0.52 – 0.43 (m, 3H), 0.29 (s, 1H). LC-MS: m/z 441.2 (M+H)⁺.

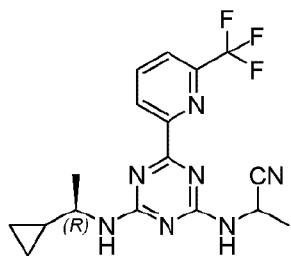
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(prop-2-yn-1-yl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.55 (m, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 5.94 – 5.12 (m, 2H), 4.30 (m 2H), 3.59 (m, 1H), 2.23 (s, 1H), 2.01 (s, 3H), 0.90 (m, 1H), 0.59 – 0.16 (m, 4H). LC-MS: m/z 363.1 (M+H)⁺.

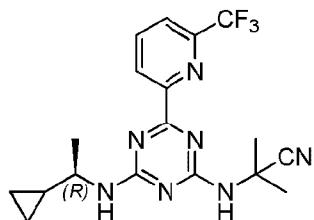
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(2-phenoxyethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 8.0 Hz, 1H), 7.93 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.34 – 7.18 (m, 2H), 7.00 – 6.69 (m, 3H), 6.03 – 5.08 (m, 2H), 4.07 (s, 2H), 3.94 – 3.71 (m, 2H), 3.53 (d, *J* = 6.8 Hz, 1H), 1.34 – 1.04 (m, 4H), 0.35 (m, 4H). LC-MS: m/z 445.2 (M+H)⁺.

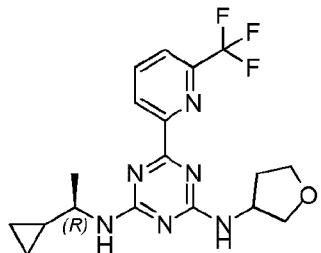
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-methoxypropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.51 (m, 1H), 7.99 (t, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 5.55 – 5.33 (m, 2H), 4.45 – 4.29 (m, 2H), 3.68 – 3.39 (m, 4H), 1.85 (s, 3H), 1.28 – 0.93 (m, 6H), 0.60 – 0.27 (m, 3H). LC-MS: m/z 397.2 (M+H)⁺.

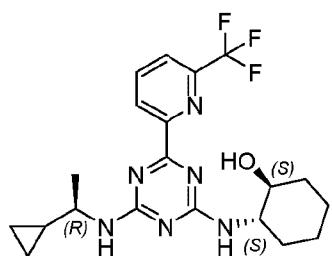
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(1,3-dimethoxypropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): 8.47 (m, 1H), 8.05 – 7.80 (m, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 5.90 – 5.06 (m, 2H), 4.57 – 4.05 (m, 1H), 3.65 – 3.38 (m, 4H), 3.33 (m, 6H), 1.23 (m, 4H), 0.84 (m, 1H), 0.61 – 0.05 (m, 4H). LC-MS: m/z 427.2 (M+H)⁺.

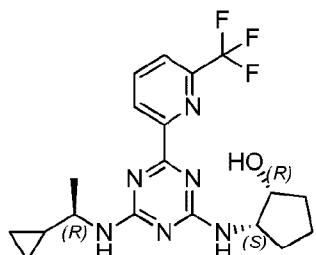
Compound 2-((4-((R)-1-cyclopropylethyl)amino)-6-(trifluoromethyl)pyridine -2-yl)-1,3,5-triazin-2-yl)amino)propanenitrile


¹H NMR (400 MHz, CDCl₃): δ 8.56 (m, 1H), 8.03 (t, *J* = 7.8 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 5.52 (m, 2H), 5.16 – 4.85 (m, 1H), 3.76 – 3.44 (m, 1H), 1.72 – 1.55 (m, 3H), 1.39 – 1.21 (m, 3H), 0.95 (s, 1H), 0.65 – 0.16 (m, 4H). LC-MS: m/z 378.2 (M+H)⁺.

Compound (R)-2-(4-(1-cyclopropylethylamino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)-2-methylpropanenitrile

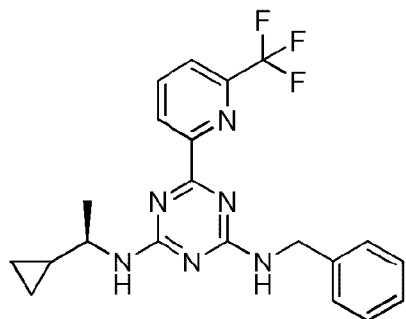

¹H NMR (400 MHz, CDCl₃): δ 8.56 (d, *J* = 8.2 Hz, 1H), 8.03 (t, *J* = 7.7 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 5.71 – 5.54 (m, 2H), 3.70 (m, 1H), 1.82 (s, 6H), 1.36 – 1.25 (m, 4H), 0.97 (d, *J* = 7.7 Hz, 1H), 0.62 – 0.26 (m, 4H). LC-MS: m/z 392 (M+H)⁺.

Compound N²-((R)-1-cyclopropylethyl)-N⁴-(tetrahydrofuran-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

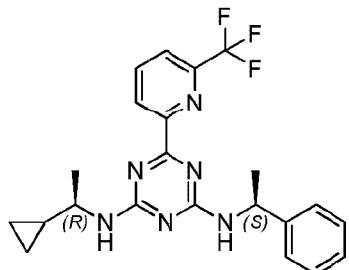

¹H NMR (400 MHz, CDCl₃): δ 8.57 – 8.47 (m, 1H), 7.99 (t, J = 7.2 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 5.73 – 5.32 (m, 2H), 4.79 – 4.60 (m, 1H), 3.99 – 3.49 (m, 5H), 2.29 (m, 2H), 1.91 (m, 1H), 1.30 (m, 3H), 0.56 – 0.23 (m, 4H). LC-MS: m/z 395.2 (M+H)⁺.

Compound(1S,2S)-2-(4-((R)-1-cyclopropylethylamino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)cyclohexanol

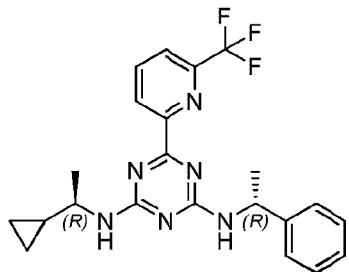
¹H NMR (400 MHz, CDCl₃): δ 8.48 (d, J = 7.4 Hz, 1H), 8.01 (t, J = 7.8 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), 5.67 – 5.28 (m, 2H), 3.65 (m, 4H), 2.09 (s, 3H), 1.47 – 1.23 (m, 8H), 0.92 (s, 1H), 0.62 – 0.40 (m, 3H), 0.30 (s, 1H). LC-MS: m/z 423.2 (M+H)⁺.


Compound(1R,2S)-2-(4-((R)-1-cyclopropylethylamino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)cyclopentanol

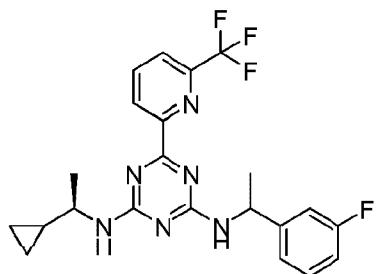
¹H NMR (400 MHz, CDCl₃): δ 8.51 (m, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.80 (t, J = 6.4 Hz, 1H), 5.40 – 5.31 (m, 1H), 4.10 – 3.97 (m, 2H), 3.69 – 3.52 (m, 1H), 2.25 – 2.09 (m, 2H), 1.95 – 1.55


(m, 7H), 1.29 (d, $J = 6.0$ Hz, 2H), 0.93 (d, $J = 7.5$ Hz, 1H), 0.66 – 0.16 (m, 4H).LC-MS: m/z 409.2 ($M+H$)⁺.

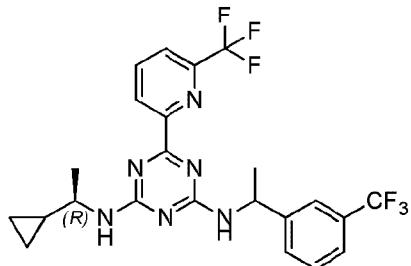
Compound (R)-N²-benzyl-N⁴-(1-cyclopropylethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, $J = 7.2$ Hz, 1H), 7.98 (t, $J = 7.7$ Hz, 1H), 7.77 (d, $J = 7.7$ Hz, 1H), 7.31 (m, 5H), 5.51 (m, 2H), 4.67 (m, 2H), 3.63 (m, 1H), 1.27 (m, 3H), 0.91 (s, 1H), 0.38 (m, 4H).LC-MS: m/z 415.2 ($M+H$)⁺.

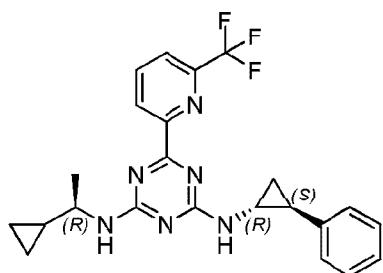
Compound N²-((R)-1-cyclopropylethyl)-N⁴-((S)-1-phenylethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.45 (t, $J = 10.4$ Hz, 1H), 7.98 (t, $J = 7.7$ Hz, 1H), 7.77 (d, $J = 7.7$ Hz, 1H), 7.54 – 7.03 (m, 5H), 5.70 (d, $J = 6.9$ Hz, 1H), 5.45 (m, 1H), 5.15 (m, 1H), 3.50 (m, 1H), 1.55 (m, 3H), 1.28 (m, 1H), 0.96 (m, 3H), 0.64 – 0.18 (m, 4H).LC-MS: m/z 429.2 ($M+H$)⁺.

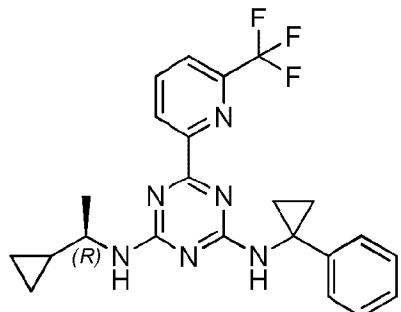
Compound N²-((R)-1-cyclopropylethyl)-N⁴-((R)-1-phenylethyl)-6-(6-(trifluoro methyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, *J* = 8.3 Hz, 1H), 7.98 (t, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.50 – 7.02 (m, 5H), 5.78 – 5.07 (m, 3H), 3.55 (m, 1H), 1.72 (m, 1H), 1.56 (d, *J* = 6.7 Hz, 3H), 0.97 (m, 3H), 0.58 – 0.15 (m, 4H). LC-MS: m/z 429.2 (M+H)⁺.

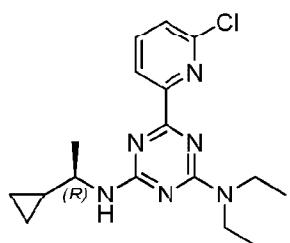
Compound N²-(R)-1-cyclopropylethyl)-N⁴-(1-(3-fluorophenyl)ethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.55 – 8.36 (m, 1H), 8.00 (t, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.18 – 6.90 (m, 3H), 5.71 – 5.06 (m, 3H), 3.78 – 3.32 (m, 1H), 1.54 (d, *J* = 6.8 Hz, 3H), 1.34 – 1.22 (m, 3H), 1.00 (d, *J* = 6.3 Hz, 1H), 0.94 – 0.72 (m, 1H), 0.54 – 0.37 (m, 2H), 0.31 – 0.20 (m, 1H). LC-MS: m/z 447.2 (M+H)⁺.

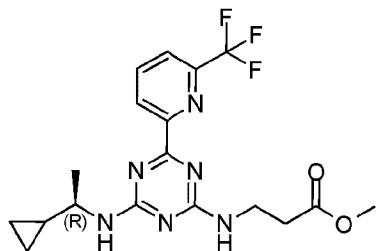
Compound N²-(R)-1-cyclopropylethyl)-N⁴-(1-(3-(trifluoromethyl)phenyl)ethyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.42 (m, 1H), 8.08 – 7.93 (m, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.67 – 7.38 (m, 4H), 5.84 – 5.49 (m, 1H), 5.49 – 5.03 (m, 2H), 3.72 – 3.16 (m, 1H), 1.57 (d, *J* = 6.9 Hz, 3H), 1.26 (d, *J* = 6.3 Hz, 3H), 0.92 (d, *J* = 6.4 Hz, 1H), 0.73 (m, 1H), 0.53 – 0.41 (m, 1H), 0.37 (m, 1H), 0.25 (m, 1H). LC-MS: m/z 497.2 (M+H)⁺.

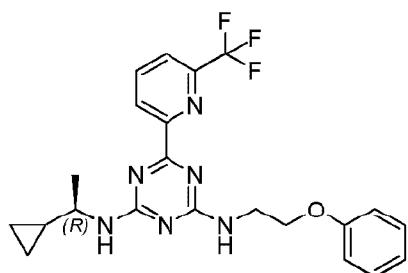
Compound N²-((R)-1-cyclopropylethyl)-N⁴-((1R,2S)-2-phenylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.47 (d, *J* = 8.3 Hz, 1H), 7.98 (t, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.37 (m, 4H), 7.23 (m, 1H), 5.81 – 5.05 (m, 3H), 3.55 (m, 1H), 1.72 (s, 1H), 1.56 (d, *J* = 6.7 Hz, 3H), 0.97 (m, 3H), 0.63 – 0.18 (m, 4H). LC-MS: m/z 441.2 (M+H)⁺.

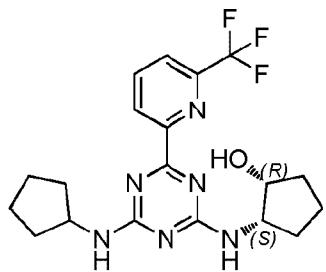
Compound (R)-N²-((1-cyclopropylethyl)-N⁴-((1-phenylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, DMSO-d₆): δ 8.53 – 8.13 (m, 3H), 7.99 (m, 1H), 7.70 (m, 1H), 7.45 – 7.04 (m, 5H), 3.30 – 3.19 (m, 1H), 1.38 – 1.09 (m, 5H), 1.07 – 0.75 (m, 3H), 0.43 – -0.09 (m, 4H). LC-MS: m/z 441.2 (M+H)⁺.

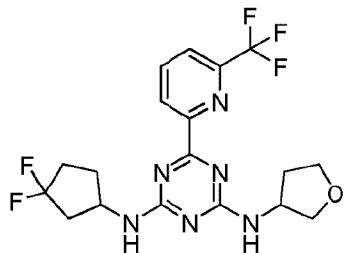
Compound (R)-6-(6-chloropyridin-2-yl)-N²-(1-cyclopropylethyl)-N⁴,N⁴-diethyl-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.32 (d, *J* = 6.6 Hz, 1H), 7.75 (s, 1H), 7.42 (s, 1H), 5.51 (s, 1H), 3.62 (m, 5H), 1.42 – 1.03 (m, 9H), 0.92 (d, *J* = 7.7 Hz, 1H), 0.63 – 0.17 (m, 4H). LC-MS: m/z 347.2 (M+H)⁺.

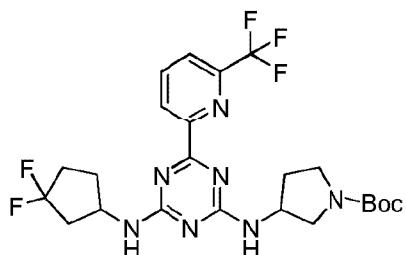
Compound (R)-methyl 3-((4-((1-cyclopropylethyl)amino)-6-(trifluoromethyl)pyridin-2-yl)amino)propanoate


¹H NMR (400 MHz, CDCl₃): δ 8.52 (m, 1H), 8.00 (t, *J* = 7.6 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 5.63 (m, 2H), 3.73 (m, 9H), 2.66 (d, *J* = 5.9 Hz, 2H), 1.29 (m, 3H), 1.01 – 0.79 (m, 1H), 0.60 – 0.17 (m, 4H). LC-MS: m/z 411.2 (M+H)⁺.

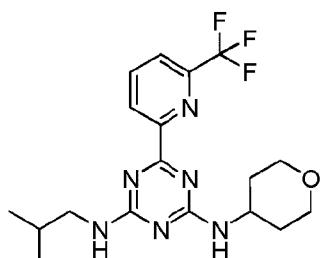
Compound (R)-N²-(1-cyclopropylethyl)-N⁴-(2-phenoxyethyl)-6-(6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 8.0 Hz, 1H), 7.93 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.7 Hz, 1H), 7.34 – 7.18 (m, 2H), 7.00 – 6.69 (m, 3H), 6.03 – 5.08 (m, 2H), 4.07 (s, 2H), 3.94 – 3.71 (m, 2H), 3.53 (d, *J* = 6.8 Hz, 1H), 1.34 – 1.04 (m, 4H), 0.35 (m, 4H). LC-MS: m/z 445.2 (M+H)⁺.

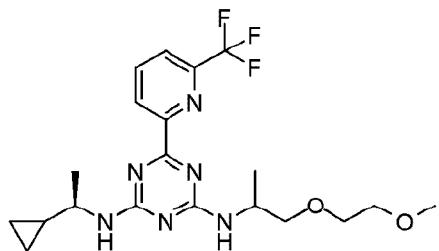
Compound (1R,2S)-2-((4-(cyclopentylamino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)cyclopentanol


¹H NMR (400 MHz, CD₃OD): δ 8.63-8.57 (m, 1H), 8.17-8.14 (m, 1H), 7.94-7.92 (m, 1H), 4.48-4.23 (m, 3H), 2.05-1.91 (m, 5H), 1.78-1.59 (m, 9H). LC-MS: m/z 409.3 (M+H).

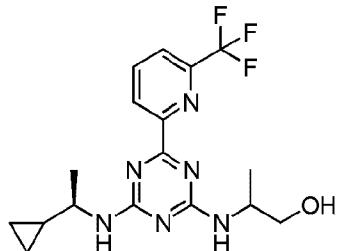
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(tetrahydrofuran-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.68-8.56 (m, 1H), 8.15 (t, *J* = 8.3 Hz, 1H), 7.93 (d, *J* = 7.5 Hz, 1H), 4.81 – 4.43 (m, 2H), 4.11 – 3.92 (m, 2H), 3.86 (m, 1H), 3.78 – 3.66 (m, 1H), 2.74 - 2.50 (m, 1H), 2.38 – 1.75 (m, 7H). LC-MS: m/z 431.2 (M+H)⁺.

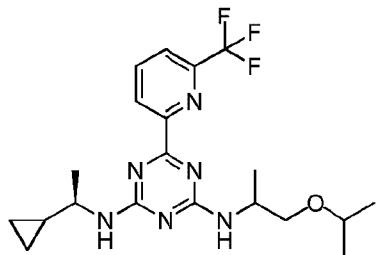
Compound tert-butyl 3-((4-((3,3-difluorocyclopentyl)amino)-6-(trifluoromethyl) pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidine-1-carboxylate


¹H NMR (400 MHz, CDCl₃): δ 8.62 – 8.46 (m, 1H), 8.03 (d, *J* = 6.9 Hz, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 5.91 – 5.19 (m, 2H), 4.61 (m, 2H), 3.82 – 3.59 (m, 1H), 3.50 (s, 1H), 3.29 (m, 1H), 2.65 (m, 1H), 2.43 – 2.06 (m, 5H), 1.97 (s, 1H), 1.47 (s, 9H). LC-MS: m/z 530.2 (M+H)⁺.

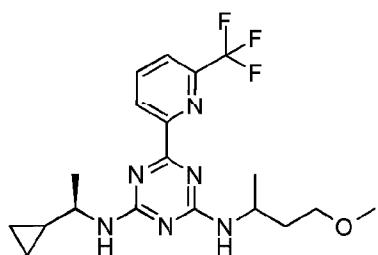
Compound N²-isobutyl-N⁴-(tetrahydro-2H-pyran-4-yl)-6-(trifluoromethyl)-pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CD₃OD): δ 8.7-8.6 (m, 1H), 8.25-8.15 (m, 1H), 8.0-7.9 (m, 1H), 4.4-4.1 (m, 1H), 4.05-3.96 (m, 2H), 3.3-3.2 (m, 2H), 2.1-1.9 (m, 3H), 1.63-1.5 (m, 2H), 1.05-0.9 (m, 6H). LC-MS: m/z 397.3 (M+H)⁺.

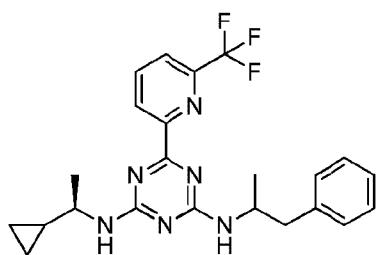
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-(2-methoxyethoxy)propan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.61 – 8.42 (m, 1H), 7.99 (t, J = 7.9 Hz, 1H), 7.77 (d, J = 7.7 Hz, 1H), 5.78 – 5.37 (m, 2H), 4.52 – 4.22 (m, 1H), 3.79 – 3.47 (m, 7H), 3.40 (s, 3H), 1.29 (d, J = 5.7 Hz, 6H), 0.99 – 0.80 (m, 1H), 0.61 – 0.21 (m, 4H). LC-MS: m/z 441 (M+H)⁺.

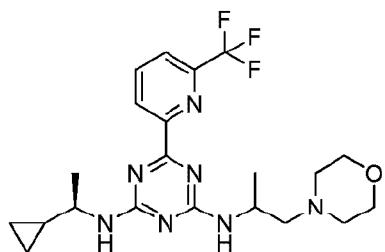
Compound 2-((4-((R)-1-cyclopropylethyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)propan-1-ol


¹H NMR (400 MHz, CDCl₃) δ 8.57 – 8.47 (m, 1H), 8.01 (t, J = 7.6 Hz, 1H), 7.79 (d, J = 7.6 Hz, 1H), 5.62- 5.20 (m, 2H), 4.23 (m, 1H), 3.82 – 3.49 (m, 3H), 1.35 – 1.22 (m, 6H), 0.93 (m, 1H), 0.58 – 0.29 (m, 4H). LCMS: m/z 383.2 (M+H)⁺.

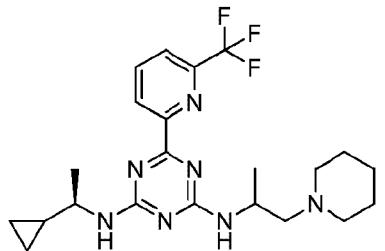
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-isopropoxypyran-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.42 (m, 1H), 7.99 (t, *J* = 7.9 Hz, 1H), 7.78 (d, *J* = 7.3 Hz, 1H), 5.92 – 5.08 (m, 2H), 4.44 – 4.13 (m, 1H), 3.73 – 3.27 (m, 4H), 1.27 (m, 6H), 1.17 (d, *J* = 6.1 Hz, 6H), 1.04 – 0.84 (m, 1H), 0.63 – 0.16 (m, 4H). LC-MS: m/z 425 (M+H)⁺.

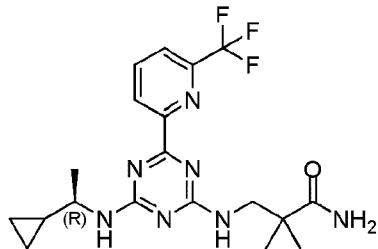
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(4-methoxybutan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.63 – 8.48 (m, 1H), 8.01 – 7.97 (m, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 5.54 – 5.25 (m, 2H), 4.44 – 4.22 (m, 1H), 3.64 – 3.49 (m, 3H), 3.33 (d, *J* = 2.4 Hz, 3H), 1.89 – 1.78 (m, 2H), 1.30 – 1.25 (m, 5H), 0.93 – 0.83 (m, 2H), 0.53 – 0.28 (m, 4H). LCMS: m/z 411 (M+H)⁺.

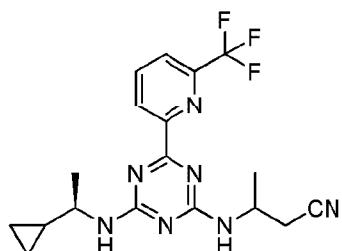
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-phenylpropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 7.6 Hz, 1H), 7.92 (t, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.25 – 7.14 (m, 5H), 5.50 – 4.92 (m, 2H), 4.25 (m, 1H), 3.68 – 3.39 (m, 1H), 2.99 (m, 1H), 2.61 (m, 1H), 1.26 – 1.06 (m, 8H), 0.52 – 0.28 (m, 3H). LC-MS: m/z 443 (M+H)⁺.

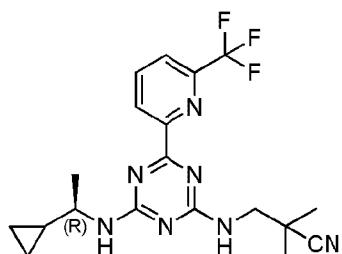
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-morpholinopropan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.51 – 8.50 (m, 1H), 8.22 (s, 1H), 8.03 – 7.99 (m, 1H), 7.83 – 7.79 (m, 1H), 6.39 – 5.86 (m, 2H), 4.44 (m, 7H), 3.79 – 3.52 (m, 5H), 3.25 – 2.53 (m, 5H), 0.95 (s, 1H), 0.54 – 0.26 (m, 4H). LCMS: m/z 452 (M+H)⁺.

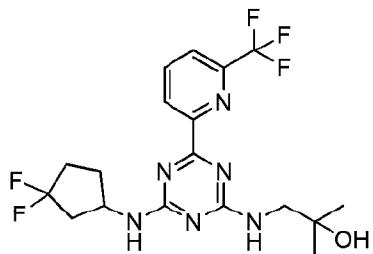
Compound N²-((R)-1-cyclopropylethyl)-N⁴-(1-(piperidin-1-yl)propan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.54 – 8.51 (m, 2H), 8.01 – 7.98 (m, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 6.66 – 6.17 (m, 1H), 5.72 – 5.54 (m, 1H), 4.84 – 4.44 (m, 1H), 4.21 (s, 5H), 3.67 – 2.63 (m, 7H), 1.77 (d, *J* = 5.2 Hz, 4H), 1.53 (s, 2H), 0.93 (d, *J* = 4 Hz, 1H), 0.52 – 0.27 (m, 4H). LCMS: m/z 450 (M+H)⁺.

Compound (R)-3-((4-((1-cyclopropylethyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,2-dimethylpropanamide


¹H NMR (400MHz, CDCl₃)δ 8.52 - 8.37 (m, 1H), 8.00 - 7.96(m, 1H), 7.87 - 7.75 (m, 1H), 6.01-5.22 (m, 2H), 4.26- 3.53(m, 3H), 2.32 - 1.45(m, 2H), 1.41 - 1.29 (m, 8H), 1.23 - 1.21 (m, 1H), 0.97 - 0.28 (m, 5H). LCMS: m/z 424(M+H)⁺.

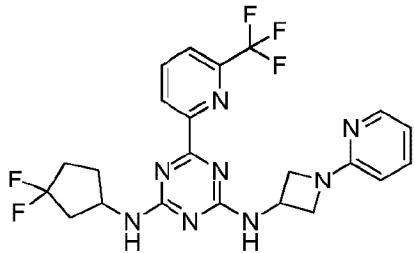
Compound 3-((4-((R)-1-cyclopropylethyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)butanenitrile


¹H NMR (400MHz, CDCl₃)δ 8.50 (d, J=7.6Hz, 1H), 8.03 - 7.99(m, 1H), 7.80(d, J=7.6Hz, 1H), 5.64 - 5.17 (m, 2H), 4.55 - 4.32 (m, 1H), 3.70 - 3.51 (m, 1H), 2.87 - 2.69 (m, 2H), 1.46(d, J=6.8Hz, 3H), 1.33 - 1.25 (m, 3H), 0.96 - 0.89 (m, 1H), 0.55- 0.30 (m, 4H). LCMS: m/z 392(M+H)⁺.

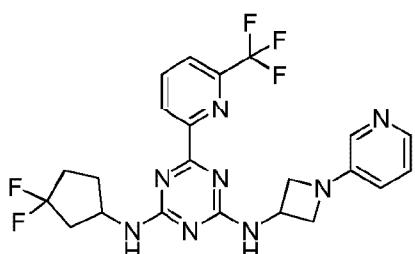
Compound (R)-3-((4-((1-cyclopropylethyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,2-dimethylpropanenitrile

¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.11 (s, 1H), 7.91 (d, *J*=8 Hz, 1H), 3.73 - 3.62 (m, 4H), 1.47 - 1.42 (m, 7H), 1.37 - 1.35 (m, 3H), 0.75 - 0.69 (m, 1H), 0.58 (m, 2H), 0.40 - 0.34 (m, 2H). LCMS: m/z 406(M+H)⁺.

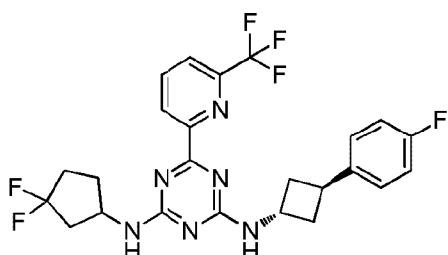
Compound 1-((4-((3,3-Difluorocyclopentyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol


¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.03 (d, *J*=7.3 Hz, 1H), 7.80 (d, *J*=7.4 Hz, 1H), 5.68 (m, 2H), 4.60 (m, 1H), 3.83 - 3.03 (m, 3H), 2.74 - 2.56 (m, 1H), 2.31 (s, 2H), 2.19 - 1.97 (m, 2H), 1.83 (m, 1H), 1.30 (s, 6H). LCMS: m/z 433 (M+H)⁺.

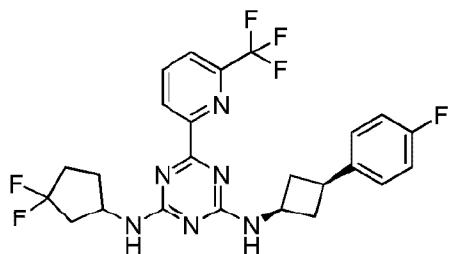
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-(4-fluorophenyl)azetidin-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 10.05 - 8.37 (m, 1H), 8.31 - 7.54 (m, 2H), 7.60 - 6.68 (m, 4H), 5.49 - 4.41 (m, 4H), 3.80 - 3.35 (m, 2H), 2.55 - 2.12 (m, 6H). LC-MS: m/z 510 (M+H)⁺.

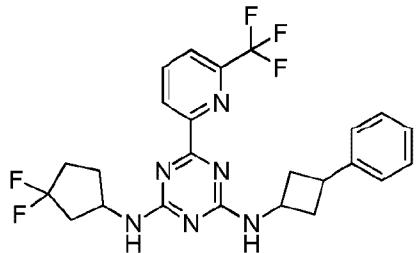
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-(pyridin-2-yl)azetidin-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.09 (m, 2H), 7.80 (s, 1H), 7.49 (s, 1H), 6.66 (s, 1H), 6.26 (m, 2H), 5.77 (m, 1H), 4.99 – 4.34 (m, 4H), 3.96 (m, 2H), 2.42 – 1.71 (m, 6H). LCMS: m/z 493(M+H)⁺.

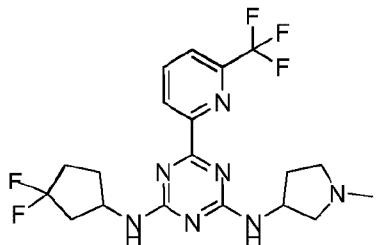
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-(pyridin-3-yl)azetidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃): δ 8.50 (d, J=8Hz, 1H), 8.07 - 8.01 (m, 2H), 7.92(s, 1H), 7.80 (d, J=8Hz, 1H), 7.17 - 7.14 (m, 1H), 6.80 - 6.79 (m, 1H), 6.15 – 5.34 (m, 2H), 5.14 – 4.51 (m, 2H), 4.39 - 4.35 (m, 2H), 3.89 - 3.78 (m, 2H), 2.62 - 2.57 (m, 1H), 2.30 - 2.11 (m, 5H). LCMS: m/z 493(M+H)⁺.

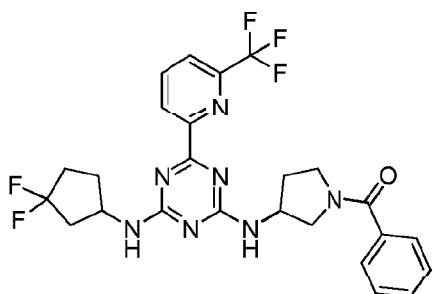
*Compound N²-(3,3-difluorocyclopentyl)-N⁴-((1*r*,3*r*)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine*


¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 7.6 Hz, 1H), 8.21 – 8.01 (m, 1H), 7.88 (m, 1H), 7.26 – 7.15 (m, 2H), 7.04 (t, *J* = 8.4 Hz, 2H), 4.89 – 4.35 (m, 2H), 3.88 – 3.40 (m, 1H), 3.00 – 1.75 (m, 11H). LC-MS: m/z 509 (M+H)⁺.

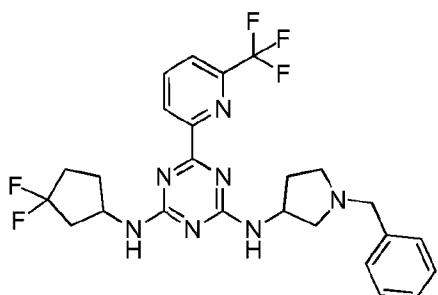
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1s,3s)-3-(4-fluorophenyl)cyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.42 (m, 1H), 8.02 (t, *J* = 7.3 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.20 – 7.12 (m, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 5.82 – 5.20 (m, 2H), 4.83 – 4.37 (m, 2H), 3.40 – 3.11 (m, 1H), 3.00 – 1.75 (m, 10H). LC-MS: m/z 509 (M+H)⁺.

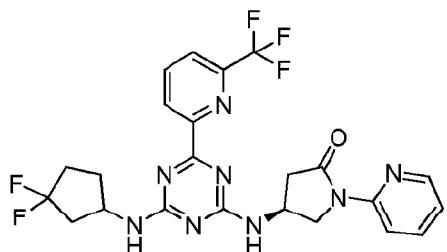
Compound N2-(3,3-difluorocyclopentyl)-N4-(3-phenylcyclobutyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.65 – 8.42 (m, 1H), 8.01 (t, *J* = 7.8 Hz, 1H), 7.80 (d, *J* = 7.4 Hz, 1H), 7.42 – 7.29 (m, 3H), 7.23 (t, *J* = 6.4 Hz, 1H), 6.07 – 5.20 (m, 2H), 4.90 – 4.40 (m, 2H), 4.13 – 3.56 (m, 1H), 2.75 – 1.75 (m, 10H). LC-MS: m/z 491 (M+H)⁺.

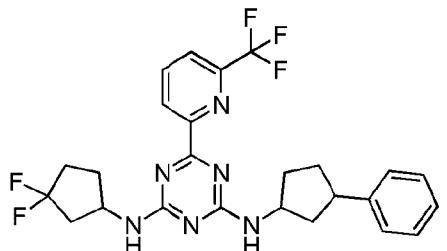
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-methylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.62 – 8.48 (m, 1H), 8.09 – 7.94 (m, 1H), 7.80 (t, *J* = 7.4 Hz, 1H), 4.91 – 4.27 (m, 2H), 3.42 – 2.56 (m, 9H), 2.44 – 2.22 (m, 4H), 2.00 – 1.57 (m, 4H). LC-MS: m/z 444 (M+H)⁺.

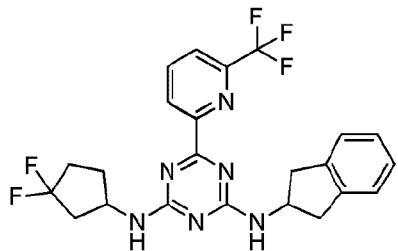
Compound 3-((4-((3,3-Difluorocyclopentyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidin-1-yl)phenyl)methanone


¹H NMR (400 MHz, CDCl₃) δ 8.76 – 8.35 (m, 1H), 8.10 – 7.91 (m, 1H), 7.84 (s, 1H), 7.53 (d, *J* = 7.4 Hz, 2H), 7.43 (d, *J* = 6.5 Hz, 3H), 5.75 – 5.29 (m, 2H), 4.86 – 3.77 (m, 4H), 3.70 – 3.23 (m, 2H), 2.79 – 1.74 (m, 8H). LC-MS: m/z 534 (M+H)⁺.

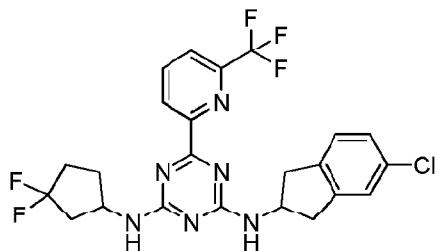
Compound N²-(1-benzylpyrrolidin-3-yl)-N⁴-(3,3-difluorocyclopentyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ: 8.62 – 8.40 (m, 1H), 8.12 – 7.93 (m, 1H), 7.79 (d, *J* = 7.3 Hz, 1H), 7.57 – 7.28 (m, 5H), 6.23 – 5.45 (m, 2H), 5.07 – 3.75 (m, 4H), 3.06 – 2.40 (m, 4H), 2.38 – 1.60 (m, 8H). LC-MS: m/z 520 (M+H)⁺.

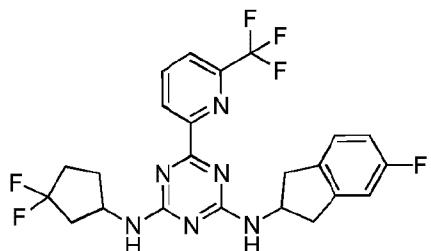
Compound (4S)-4-((4-((3,3-difluorocyclopropyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-1-(pyridin-2-yl)pyrrolidin-2-one


¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.29 (m, 3H), 8.00 (s, 1H), 7.73 (m, 2H), 7.12 – 7.01 (m, 1H), 5.73 (m, 2H), 5.00 – 4.40 (m, 3H), 4.24 – 4.05 (m, 1H), 3.15 (m, 6.3 Hz, 1H), 2.85 – 2.51 (m, 2H), 2.21 (m, 5H). LCMS: m/z 521 (M+H)⁺.

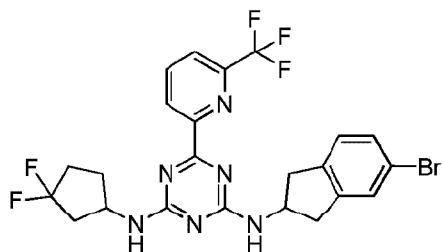
Compound N²-(3,3-difluorocyclopropyl)-N⁴-(3-phenylcyclopropyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.48 (m, 1H), 8.03 – 7.99 (m, 1H), 7.80 (d, *J*=4Hz, 1H), 7.34 – 7.30 (m, 3H), 7.23 – 7.19 (m, 2H), 5.63 – 5.31 (m, 2H), 4.70 – 4.56 (m, 2H), 3.29 – 3.17 (m, 1H), 2.65 – 2.04 (m, 9H), 1.81 (m, 3H). LCMS: m/z 505 (M+H)⁺.

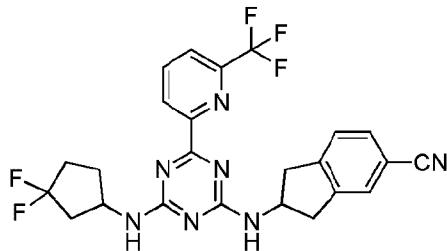
Compound N²-(3,3-difluorocyclopropyl)-N⁴-(2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400MHz, CDCl₃): δ 8.64 - 8.46 (m, 1H), 8.01 (d, J=12.8Hz, 1H), 7.78 (d, J=7.6Hz, 1H), 7.21(m, 3H), 5.76 - 5.31 (m, 2H), 5.02 - 4.44 (m, 2H), 3.45 - 3.36 (m, 2H), 2.97 - 2.91 (m, 2H), 2.68 - 2.58(m, 1H), 2.31 - 2.09 (m, 4H), 1.85 - 1.84 (m, 1H), 1.25(m, 1H). LCMS: m/z 477(M+H)⁺.

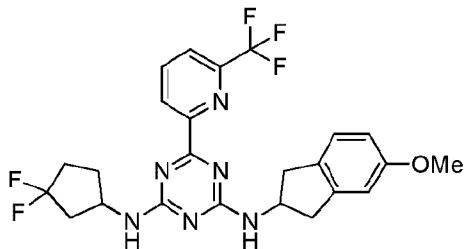
Compound N²-(5-chloro-2,3-dihydro-1H-inden-2-yl)-N⁴-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.57 - 8.48 (m, 1H), 8.01 (d, J = 8 Hz, 1H), 7.81 (d, J = 8 Hz, 1H), 7.26 - 7.18 (m, 3H), 6.02 - 5.36 (m, 2H), 5.05 - 4.43(m, 2H), 3.48 - 3.32 (m, 2H), 3.04 - 2.87 (m, 2H), 2.70 - 2.58 (m, 1H), 2.36 - 2.10 (m, 4H), 1.99 - 1.82 (m, 1H). LCMS: m/z 511 (M+H)⁺.

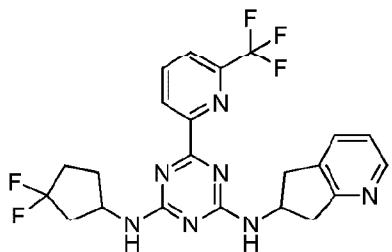
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(5-fluoro-2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.59 - 8.47 (m, 1H), 8.04 - 7.97 (m, 1H), 7.79 (d, *J*=7.2 Hz, 1H), 7.26 - 7.17 (m, 1H), 6.96 - 6.87 (m, 2H), 5.75 - 5.30 (m, 2H), 5.06 - 4.44 (m, 2H), 3.39 - 3.32 (m, 2H), 2.95 - 2.62 (m, 3H), 2.33 - 2.05 (m, 4H), 1.87 - 1.82 (m, 1H). LCMS: m/z 495 (M+H)⁺.

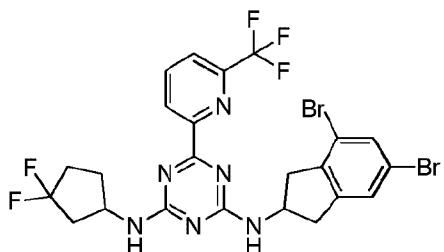
Compound N²-(5-bromo-2,3-dihydro-1H-inden-2-yl)-N⁴-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.57 - 8.47 (m, 1H), 8.04 - 7.99 (m, 1H), 7.82 - 7.78 (m, 1H), 7.52 - 7.29 (m, 2H), 7.18 - 7.00 (m, 1H), 5.70 - 5.30 (m, 2H), 5.03 - 4.48 (m, 2H), 3.40 - 3.30 (m, 2H), 2.96 - 2.63 (m, 3H), 2.35 - 2.07 (m, 4H), 1.87 - 1.25 (m, 1H). LCMS: m/z 556 (M+H)⁺.

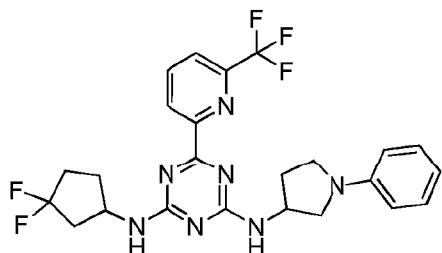
Compound 2-((4-((3,3-Difluorocyclopentyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2,3-dihydro-1H-indene-5-carbonitrile


¹H NMR (400 MHz, CDCl₃) δ 8.57 - 8.47 (m, 1H), 8.01 (d, *J*=8 Hz, 1H), 7.80 (d, *J*=4 Hz, 1H), 7.54 - 7.50 (m, 2H), 7.37 - 7.33 (m, 1H), 5.77 - 5.34 (m, 2H), 5.07 - 4.56 (m, 2H), 3.43 (m, 2H), 3.03 - 2.99 (m, 2H), 2.70 - 2.58 (m, 1H), 2.32 - 2.04 (m, 5H). LCMS: m/z 502 (M+H)⁺.

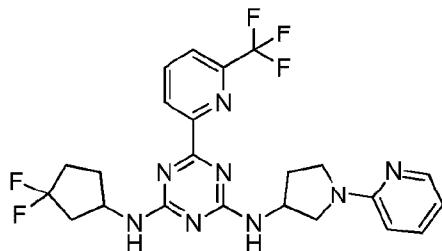
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(5-methoxy-2,3-dihydro-1H-inden-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.69 - 8.46 (m, 1H), 8.00 (d, *J* = 8 Hz, 1H), 7.79 - 7.74 (m, 1H), 7.14 (s, 1H), 6.81 - 6.75 (m, 2H), 5.76 - 5.33 (m, 2H), 5.02 - 4.78 (m, 1H), 4.58 - 4.47 (m, 1H), 3.80 (s, 3H), 3.39 - 3.33 (m, 2H), 2.93 - 2.62 (m, 4H), 2.31 - 2.10 (m, 4H). LCMS: m/z 507 (M+H)⁺.

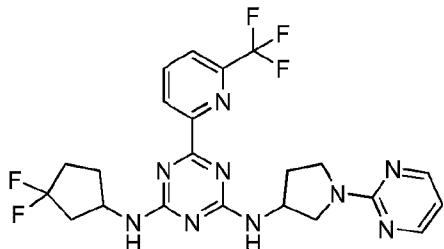
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(6,7-dihydro-5H-cyclopenta[b]pyridin-6-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ: 8.64 - 8.35 (m, 2H), 8.07 - 7.76 (m, 2H), 7.53 (m, 1H), 7.11 (m, 1H), 5.86 - 5.30 (m, 2H), 5.01 - 4.54 (m, 2H), 3.62 - 2.60 (m, 5H), 2.40 - 1.86 (m, 5H). LCMS: m/z 478.2 (M+H)⁺.

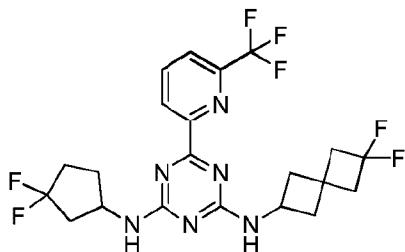
Compound N²-(4,6-dibromo-2,3-dihydro-1H-inden-2-yl)-N⁴-(3,3-difluorocyclopentyl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.55 - 8.46 (m, 1H), 8.07 - 7.99 (m, 1H), 7.80 (d, *J* = 8 Hz, 1H), 7.51 - 7.44 (m, 2H), 7.09 - 7.04 (m, 2H), 6.03 - 5.38 (m, 2H), 5.03 - 4.43 (m, 2H), 3.48 - 3.25 (m, 2H), 3.06 - 2.88 (m, 2H), 2.69 - 2.58 (m, 1H), 2.31 - 2.29 (d, *J* = 8 Hz, 2H), 2.17 - 2.01 (m, 2H), 1.90 - 1.77 (m, 1H). LCMS: m/z 635(M+H)⁺.

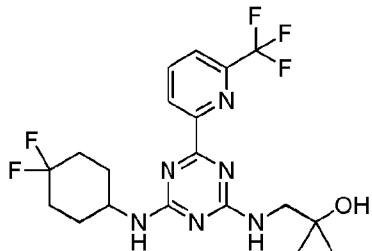
Compound N²-(3,3-difluorocyclopropyl)-N⁴-(1-phenylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.61-8.49 (m, 1H), 8.04-7.98 (m, 1H), 7.80-7.78 (m, 1H), 7.27-7.23 (m, 2H), 6.74-6.70 (t, 1H), 6.59 (d, 2H), 5.73-5.33 (m, 2H), 4.91-4.48 (m, 2H), 3.75-3.28 (m, 4H), 2.62-1.87 (m, 8H). LCMS: m/z 506 (M+H)⁺.

Compound N²-(3,3-difluorocyclopropyl)-N⁴-(1-(pyridin-2-yl)pyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.67 - 8.44 (m, 1H), 8.17 (s, 1H), 8.01 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 6.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 1H), 6.59 (t, *J* = 5.9 Hz, 1H), 6.39 (d, *J* = 8.1 Hz, 1H), 5.84 - 4.30 (m, 4H), 4.07 - 3.51 (m, 4H), 2.83 - 1.97 (m, 8H). LC-MS: m/z 507 (M+H)⁺.

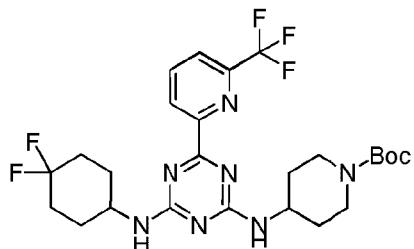
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-(pyrimidin-2-yl)pyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.64 - 8.48 (m, 1H), 8.34 - 8.33 (m, 2H), 8.04 - 7.38 (m, 1H), 7.80 - 7.79 (m, 1H), 6.54 - 6.52 (m, 1H), 5.73 - 5.35 (m, 2H), 4.61 - 4.58 (m, 2H), 4.00 - 3.93 (m, 1H), 3.79 - 3.58 (m, 3H), 2.90 - 2.61 (m, 1H), 2.38 - 2.12 (m, 6H), 1.88 - 1.82 (m, 1H). LCMS: m/z 508(M+H)⁺.

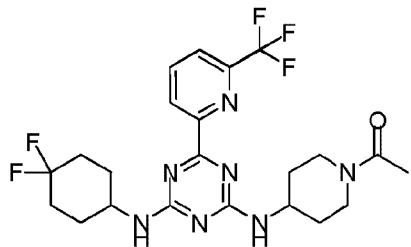
Compound N²-(3,3-difluorocyclopentyl)-N⁴-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.66 - 8.39 (m, 1H), 8.02 (d, *J* = 7.2 Hz, 1H), 7.80 (d, *J* = 6.6 Hz, 1H), 5.73 - 5.20 (m, 2H), 4.80 - 4.30 (m, 2H), 2.83 - 1.78 (m, 14H). LC-MS: m/z 491 (M+H)⁺.

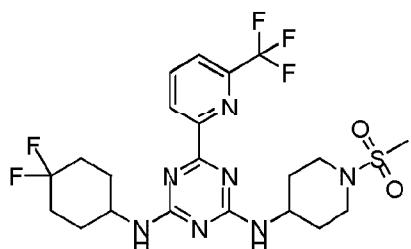
Compound 1-((4-(4,4-Difluorocyclohexyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)-2-methylpropan-2-ol


¹H NMR (400 MHz, DMSO-d₆) δ 8.63 – 8.45 (m, 1H), 8.24 (t, *J* = 7.7 Hz, 1H), 8.03 (d, *J* = 7.5 Hz, 1H), 7.83 (d, *J* = 7.2 Hz, 1H), 7.57 – 7.10 (m, 1H), 4.62 (m, 1H), 4.03-4.04 (m, 1H), 3.37 (s, 2H), 2.08 (s, 2H), 1.93-1.85 (m, 4H), 1.62 (d, *J* = 12.2 Hz, 2H), 1.12 (s, 6H). LC-MS: m/z 447 (M+H)⁺.

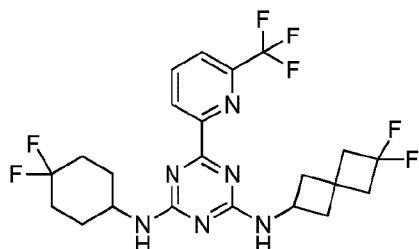
Compound N²-(4,4-difluorocyclohexyl)-N⁴-(tetrahydro-2H-pyran-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.55 – 8.48 (m, 1H), 8.05 – 7.99 (m, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 5.44 – 5.12 (m, 2H), 4.26 – 4.01 (m, 4H), 3.74 – 3.52 (m, 2H), 2.20 – 1.83 (m, 8H), 1.73 – 1.50 (m, 4H); LCMS: m/z 459.2 (M+H)⁺.

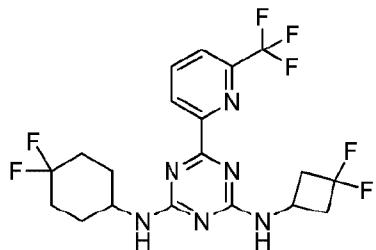
Compound Tert-butyl 4-((4-((4,4-difluorocyclohexyl)amino)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)piperidine-1-carboxylate


¹H NMR (400 MHz, CDCl₃) δ 8.48 - 8.40 (m, 1H), 7.97 - 7.91 (m, 1H), 7.74 - 7.69 (m, 1H), 5.56 - 5.15 (m, 2H), 4.18 - 3.85 (m, 4H), 2.95 - 2.82 (m, 2H), 2.10 - 1.54 (m, 9H), 1.40 (m, 12H). LCMS: m/z 558.3 (M+H)⁺.

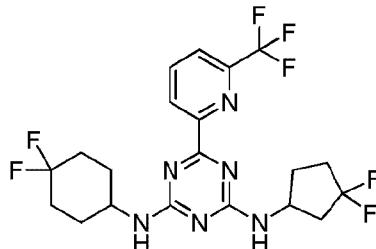
Compound 1-((4-((4,4-Difluorocyclohexyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)piperidin-1-yl)ethanone


¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.48 (m, 1H), 8.06 – 7.97 (m, 1H), 7.81 (d, *J* = 7.2 Hz, 1H), 5.57 – 5.14 (m, 2H), 4.54 – 3.83 (m, 4H), 3.25 – 2.83 (m, 4H), 2.24 – 2.05 (m, 7H), 1.77 – 1.44 (m, 6H). LCMS: m/z 500.2 (M+H)⁺.

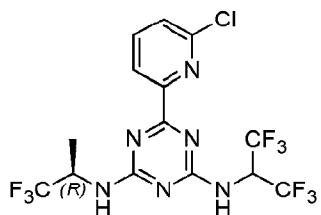
Compound N²-(4,4-difluorocyclohexyl)-N⁴-(1-(methylsulfonyl)piperidin-4-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.48 (m, 1H), 8.05 – 7.96 (m, 1H), 7.80 (d, *J* = 6.8 Hz, 1H), 5.56 – 5.18 (m 2H), 4.25 – 3.95 (m, 4H), 3.64 – 3.45 (m, 2H), 2.26 – 1.55 (m, 15H). LCMS: m/z 536.2 (M+H)⁺.

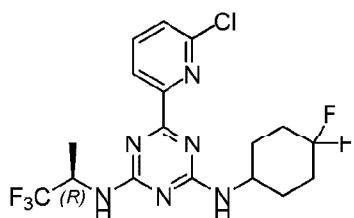
Compound N²-(4,4-difluorocyclohexyl)-N⁴-(6,6-difluorospiro[3.3]heptan-2-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.39 (m, 1H), 8.14 – 7.94 (m, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 6.04 – 5.01 (m, 2H), 4.74 – 3.74 (m, 2H), 2.79 – 2.42 (m, 6H), 2.31 – 1.96 (m, 6H), 1.85 – 1.50 (m, 4H). LC-MS: m/z 505 (M+H)⁺.

Compound N²-(3,3-difluorocyclobutyl)-N⁴-(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.54 – 8.48 (m, 1H), 8.02 (d, *J* = 8 Hz, 1H), 7.81 (d, *J* = 4 Hz, 1H), 5.77 – 5.14 (m, 2H), 4.53 – 3.96 (m, 2H), 3.11 – 3.03 (m, 2H), 2.70 – 2.54 (m, 2H), 2.15 – 2.09 (m, 4H), 1.93 (m, 2H), 1.69 (m, 2H). LCMS: m/z 465 (M+H)⁺.

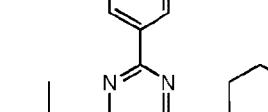
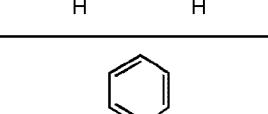
Compound N²-(4,4-difluorocyclohexyl)-N⁴-(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.48 – 8.56 (m, 1H), 8.01 (d, *J* = 4 Hz, 1H), 7.80 (d, *J* = 4 Hz, 1H), 5.63 – 5.13 (m, 2H), 4.72 – 3.97 (m, 2H), 2.62 (m, 1H), 2.31 (m, 2H), 2.14 – 1.86 (m, 9H), 1.74 (m, 2H). LCMS: m/z 479 (M+H)⁺.

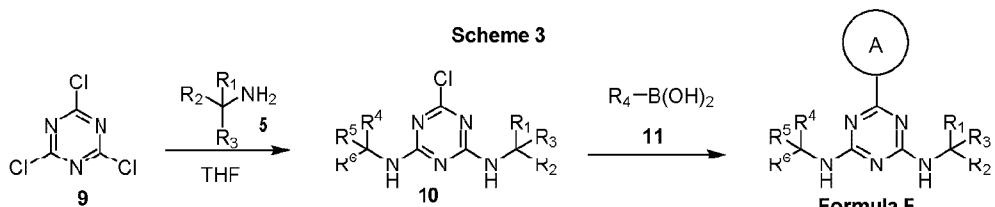
Compound (R)-6-(6-chloropyridin-2-yl)-N²-(1,1,1,3,3-hexafluoropropan-2-yl)-N⁴-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.40-8.34 (m, 1H), 7.87 - 7.84 (m, 1H), 7.53 (d, *J* = 8 Hz, 1H), -6.15-5.83 (m, 1H), 5.77-5.31 (m, 2H), 5.17-4.76 (m, 1H), 1.51- 1.43 (m, 3H) ; LC-MS: m/z 469 (M+H)⁺.

Compound (R)-6-(6-chloropyridin-2-yl)-N²-(4,4-difluorocyclohexyl)-N⁴-(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine

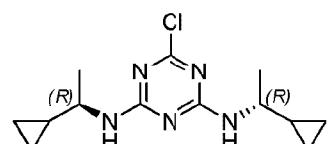



¹H NMR (400 MHz, DMSO-d₆) δ 8.33 (m, 2H), 8.13 – 7.92 (m, 2H), 7.78 – 7.59 (m, 1H), 5.21 – 4.76 (m, 1H), 4.06 (m, 1H), 2.23 – 1.45 (m, 8H), 1.42 – 1.25 (m, 3H). LCMS: m/z 437 (M+H)⁺.

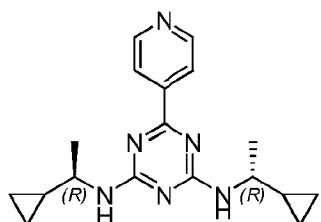

Table 2: The following targets were prepared by the procedure described in Scheme 2 above.

Compound ID	Name	Structure	LCMS	
			Expected MW	Found (M+1) ⁺

12	<i>1-((R)-1-cyclopropylethylamin o)-6-(6-(trifluoromethyl)pyrid in-2-yl)-1,3,5-triazin-2-ylamino)propan-2-ol</i>		382.2	383.2
10	<i>1-((1-cyclopropylethylamin o)-6-(6-(trifluoromethyl)pyrid in-2-yl)-1,3,5-triazin-2-ylamino)-2-methylpropan-2-ol</i>		396.2	397.2
24	<i>(R)-N²-(1-cyclopropylethyl)-N⁴-(pyridin-2-ylmethyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine</i>		415.2	416.2
25	<i>N²-((R)-1-cyclopropylethyl)-N⁴-(1-(pyridin-2-yl)ethyl)-6-(6-(trifluoro methyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine</i>		429.2	430.2

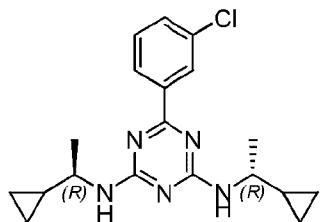

	N^2 -cyclohexyl- N^4 -isopropyl-6-phenyl-1,3,5-triazine-2,4-diamine		311.2	312.2
69	N^2 -isopropyl-6-phenyl- N^4 -(tetrahydro-2H-pyran-3-yl)-1,3,5-triazine-2,4-diamine		313.2	314.2

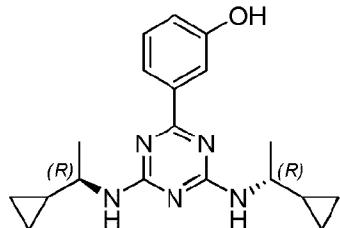
Example 3 Preparation of Di-aliphatic Triazine Compounds of Formula F. The compounds of this Example are prepared by general **Scheme 3**, set forth below.


Scheme 3

Step 1: Preparation of 6-chloro- N^2,N^4 -bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine.
 To a mixture of 2,4,6-trichloro-1,3,5-triazine (2g, 10.9 mmol, 1 eq) and (R)-1-cyclopropylethanamine hydrochloride (2.7 g, 22.8 mmol, 2.1 eq) in acetone (50 mL) was added DIPEA (4.5 mL, 27.3 mmol, 2.5 eq) and CsF (3.3 g, 21.8 mmol, 2.0 eq). The mixture was stirred at 40°C for 3 hr and then at 50°C for another 3 hr. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by a standard method to afford the desired product.

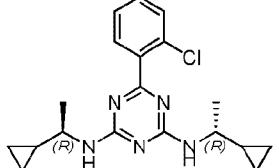
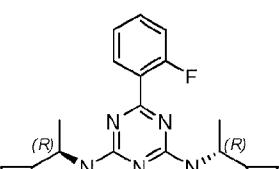
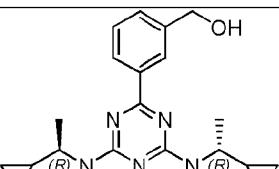
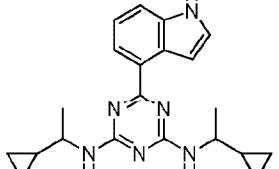
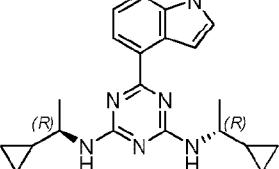
LC-MS: m/z 282.1 (M+H)⁺.


Step 2: Preparation of N^2,N^4 -bis((R)-1-cyclopropylethyl)-6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine. To a mixture of 6-chloro- N^2,N^4 -bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (100 mg, 0.36 mmol), pyridin-4-ylboronic acid (66 mg, 0.52 mmol), and K_2CO_3 (99 mg, 0.72 mmol) in 1,4-dioxane (3 mL) and water (1 mL) stirred at r.t. under the atmosphere of nitrogen was added $Pd(PPh_3)_4$ (42 mg, 0.036 mmol) in one portion. The reaction mixture was stirred at 80°C overnight. The mixture was partitioned between water and EtOAc. The organic layer was dried over anhydrous Na_2SO_4 and concentrated. The residue was purified by a standard method to give the desired product.


1H NMR (400 MHz, DMSO-d₆): δ 7.61 – 7.28 (m, 6H), 3.58 – 3.39 (m, 2H), 1.23 – 1.10 (m, 3H), 1.02 – 0.89 (m, 2H), 0.48 – 0.26 (m, 6H), 0.20 – 0.10 (m, 2H). LC-MS: m/z 325.2 (M+H)⁺.

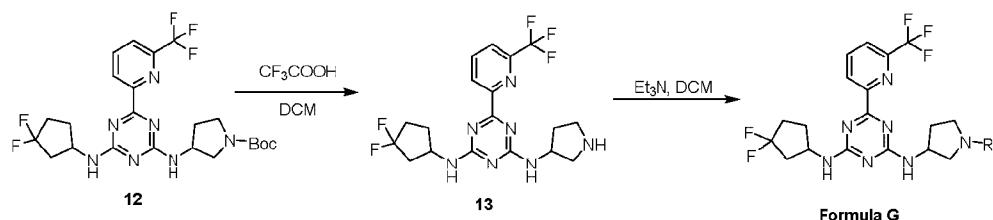
The procedure set forth above was used to produce the following compounds using the appropriate starting materials.

Compound 6-(3-chlorophenyl)- N^2,N^4 -bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine

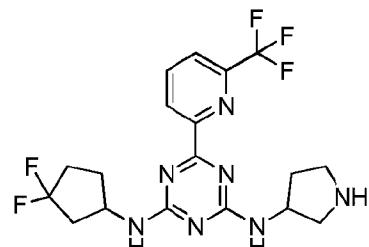





1H NMR (400 MHz, DMSO-d₆): δ 8.30 – 8.14 (m, 2H), 7.58 (d, J = 7.7 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.2 Hz, 1H), 7.35 – 7.26 (m, 1H), 3.70 – 3.43 (m, 2H), 1.26 – 1.15 (m, 6H), 1.02 – 0.92 (m, 2H), 0.49 – 0.30 (m, 6H), 0.26 – 0.11 (m, 2H). LC-MS: m/z 358.2 (M+H)⁺.

Compound 3-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)phenol

¹H NMR (400 MHz, CDCl₃): δ 7.99 – 7.64 (m, 2H), 7.29 (d, *J* = 7.9 Hz, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 5.78 – 5.04 (m, 2H), 4.07 (s, 1H), 3.60 (m, 2H), 1.27 (d, *J* = 4.3 Hz, 6H), 0.89 (d, *J* = 3.6 Hz, 2H), 0.43 (m, 8H). LC-MS: m/z 340.2 (M+H)⁺.

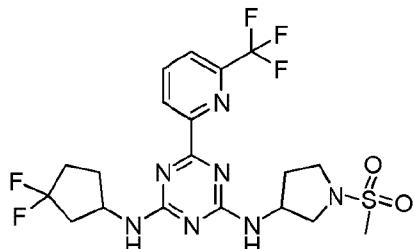

Table 3: The following targets were prepared by the procedure described in Scheme 3 above.

Compound ID	Name	Structure	LCMS	
			Expected MW	Found (M+1) ⁺
92	<i>N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(pyridin-3-yl)-1,3,5-triazine-2,4-diamine</i>		324.2	325.2
78	<i>N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(2-fluoro-5-methoxyphenyl)-1,3,5-triazine-2,4-diamine</i>		371.2	372.2


66	<i>6-(2-chlorophenyl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine</i>		357.2	358.2
77	<i>6-(2-fluorophenyl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine</i>		341.2	342.2
82	<i>(3-(4,6-bis((R)-1-cyclopropylethylamino)-o)-1,3,5-triazin-2-yl)phenyl) methanol</i>		353.2	354.2
	<i>N²,N⁴-bis(1-cyclopropylethyl)-6-(1H-indol-4-yl)-1,3,5-triazine-2,4-diamine</i>		362.2	363.2
	<i>N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(1H-indol-4-yl)-1,3,5-triazine-2,4-diamine</i>		362.2	363.2

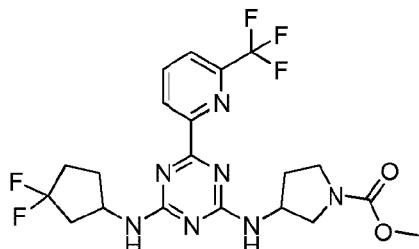
Example 4 Preparation of Di-aliphatic Triazine Compounds of Formula G. The compounds of this Example are prepared by general **Scheme 4**, set forth below.

Scheme 4

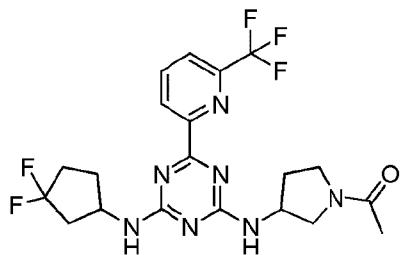

Step 1. Preparation of N^2 -(3,3-difluorocyclopentyl)- N^4 -(pyrrolidin-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of tert-butyl 3-(4-(3,3-difluorocyclopentylamino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)pyrrolidine-1-carboxylate (160 mg, 0.3 mmol) in DCM (3 mL) at 0°C was added TFA (1 mL). The mixture was stirred at room temperature for 2 hrs and then concentrated. The residue was extracted with EtOAc. Combined organic layers were washed with saturated aqueous NaHCO₃ and brine, dried over anhydrous Na₂SO₄ and then concentrated to afford the desired product which was used in the next step without any further purification.

LC-MS: m/z 430.2 (M+H)⁺.

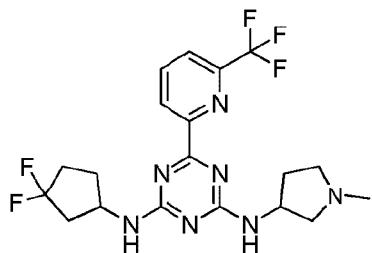
Step 2. Preparation of N^2 -(3,3-difluorocyclopentyl)- N^4 -(1-(methylsulfonyl)pyrrolidin-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine. A mixture of N^2 -(3,3-difluorocyclopentyl)- N^4 -(pyrrolidin-3-yl)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine (20 mg, 0.05 mmol), Et₃N (9.4 mg, 0.09 mmol), MsCl (6 mg, 0.06 mmol) in DCM (2


mL) was stirred at room temperature overnight. The mixture was concentrated and the residue was purified by a standard method to afford the desired product.

¹H NMR (400 MHz, CDCl₃): δ 8.62 – 8.46 (m, 1H), 8.04 (d, *J* = 7.5 Hz, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 5.79 – 5.38 (m, 2H), 4.80 – 4.53 (m, 2H), 3.76 – 3.52 (m, 2H), 3.39 – 3.23 (m, 1H), 2.91 (s, 3H), 2.69 – 2.57 (m, 1H), 2.45 – 2.25 (m, 3H), 2.20 – 1.98 (m, 3H), 1.95 – 1.81 (m, 1H), 1.22 – 1.18 (m, 1H). LC-MS: m/z 508.1 (M+H)⁺.

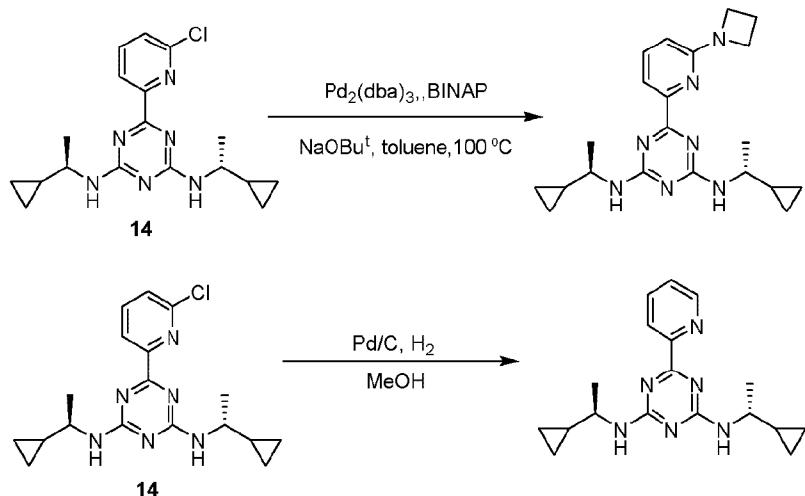

The procedure set forth above was used to produce the following compounds using the appropriate starting material.

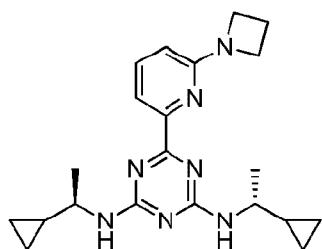
Compound methyl 3-((4-((3,3-difluorocyclopentyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidine-1-carboxylate.


¹H NMR (400 MHz, CDCl₃): δ 8.58-8.48 (m, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.81 (d, *J* = 7.5 Hz, 1H), 5.94 – 5.18 (m, 2H), 4.72 - 4.47 (m, 2H), 3.83 - 3.74 (m, 1H), 3.72 (s, 3H), 3.65 - 3.51 (m, 2H), 3.44 - 3.28 (m, 1H), 2.45 – 1.80 (m, 7H). LC-MS: m/z 488.2 (M+H)⁺.

Compound 1-(3-((4-((3,3-difluorocyclopentyl)amino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-yl)amino)pyrrolidin-1-yl)ethanone

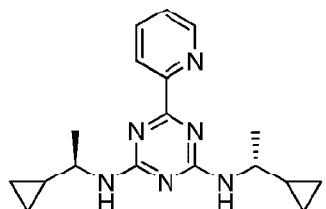
¹H NMR (400 MHz, CDCl₃): δ 8.55 (m, 1H), 8.07 (d, *J* = 6.8 Hz, 1H), 7.85 (t, *J* = 6.7 Hz, 1H), 4.84 – 4.30 (m, 2H), 3.97 – 3.52 (m, 4H), 2.62 (m, 1H), 2.50 – 2.22 (m, 3H), 2.22 – 1.98 (m, 3H), 1.25 (s, 3H). LC-MS: m/z 472.2 (M+H)⁺.


Compound N²-(3,3-difluorocyclopentyl)-N⁴-(1-methylpyrrolidin-3-yl)-6-(6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of tert-butyl 3-(4-(3,3-difluorocyclopentylamino)-6-(trifluoromethyl)pyridin-2-yl)-1,3,5-triazin-2-ylamino)pyrrolidine-1-carboxylate (25 mg, 0.05 mmol) in THF (3 mL) at 0°C was added LiAlH₄ (5 mg, 0.14 mmol). The mixture was stirred at 0°C for 2 hr, then at r.t for 30 min, and finally at 60 °C for 2 hr. The reaction mixture was quenched with water and extracted by EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by a standard method to give the desired product.

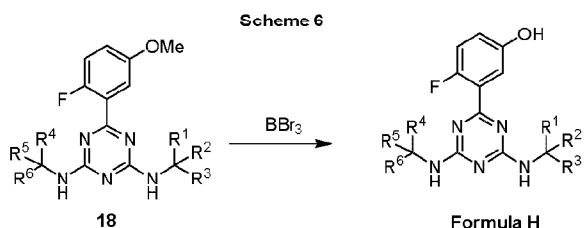

¹H NMR (400 MHz, CDCl₃): δ 8.55 (m, 1H), 8.08 – 7.93 (m, 1H), 7.80 (t, *J* = 7.4 Hz, 1H), 4.63 (m, 2H), 3.47 – 2.87 (m, 3H), 2.69 (m, 6H), 2.28 (m, 4H), 1.84 (m, 4H). LC-MS: m/z 444.2 (M+H)⁺.

Example 5 Preparation of Di-aliphatic Triazine Compounds. The compounds of this Example are prepared by general **Scheme 5**, set forth below.

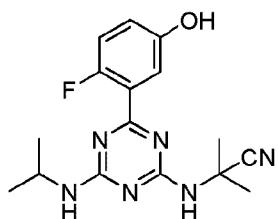
Scheme 5



Step 1: Preparation of 6-(6-(azetidin-1-yl)pyridin-2-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine. A mixture of 6-(6-chloropyridin-2-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (40 mg, 0.11 mmol), azetidine (7.6 mg, 0.13 mmol), 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl (6.9 mg, 0.01 mmol), sodium tert-butoxide (15 mg, 0.16 mmol) and tris(dibenzylideneacetone)-dipalladium (10.2 mg, 0.01 mmol) in toluene (3 mL) was stirred at 100°C under an atmosphere of nitrogen overnight. The mixture was cooled to room temperature and filtered. The filtrate was concentrated under reduced pressure and the residue was purified by a standard method to afford the desired product.

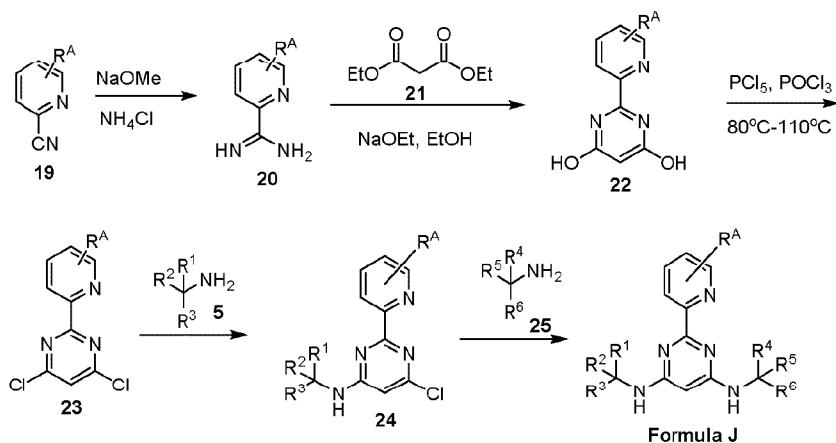

¹H NMR (400 MHz, CD₃OD): δ 8.49 (s, 1H), 7.72 – 7.53 (m, 2H), 6.56 (d, J =7.4, 1H), 4.11 (t, J =7.4, 4H), 3.59 (m, 2H), 2.42 (p, J =7.4, 2H), 1.30 (d, J =6.5, 6H), 0.98 (s, 2H), 0.67 – 0.13 (m, 8H). LC-MS: m/z 380.2 (M+H)⁺.

Step 2: Preparation of N^2,N^4 -bis((R)-1-cyclopropylethyl)-6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of 6-(6-chloropyridin-2-yl)- N^2,N^4 -bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (20 mg, 0.05 mmol) in methanol (2 mL) was added Pd/C (2 mg) under an atmosphere of nitrogen. The mixture was then stirred at room temperature under a hydrogen balloon overnight. The mixture was filtered and the filtrate was concentrated. The residue was purified by a standard method to afford the desired product.


¹H NMR (400 MHz, DMSO-d₆): δ 8.82 – 8.03 (m, 4H), 7.75 (m, 2H), 3.79 – 3.45 (m, 2H), 1.21 (d, J = 6.3 Hz, 6H), 1.07 – 0.84 (m, 2H), 0.55 – 0.05 (m, 8H). LC-MS: m/z 325.2 (M+H)⁺.

Example 6 Preparation of Di-aliphatic Triazine Compounds of Formula H. The compounds of this Example are prepared by general **Scheme 6**, set forth below.

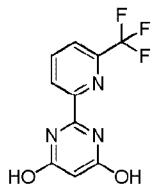
Step 1: Preparation of 2-((4-(2-fluoro-5-hydroxyphenyl)-6-(isopropylamino)-1,3,5-triazin-2-yl)amino)-2-methylpropanenitrile. To a solution of 2-((4-(2-fluoro-5-methoxyphenyl)-6-(isopropylamino)-1,3,5-triazin-2-yl)amino)-2-methylpropanenitrile (200 mg, 0.6 mmol) in anhydrous DCM (3 mL) at -65°C was added dropwise BBr_3 (0.6 mL) and the reaction mixture was stirred at this temperature for 20 min. The mixture was slowly warmed up to 0°C and stirred


for 10 min. and then stirred at room temperature for 1 hr. The reaction was quenched with icy Sat. aq. NaHCO_3 till pH = 8. The resulting mixture was extracted with EtOAc (2 x 10 mL). Combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by a standard method to afford the desired product.

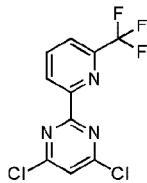
$^1\text{H NMR}$ (400 MHz, CDCl_3): δ 7.20 (s, 1H), 6.96 (t, J = 9.6 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 5.72 (m, 2H), 4.26 (s, 1H), 1.79 (s, 6H), 1.26 (d, J = 6.1 Hz, 6H). LC-MS: m/z 331.2 ($\text{M}+\text{H}$)⁺.

Example 7 Preparation of Di-aliphatic Pyrimidine Compounds of Formula J. The compounds of this Example are prepared by general **Scheme 7**, set forth below.

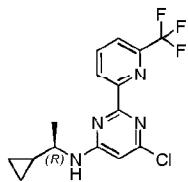
Scheme 7


Step 1: Preparation of 6-(trifluoromethyl)picolinimidamide. To a solution of 6-(trifluoromethyl)picolinonitrile (50 mg, 0.3 mmol, 1 eq) in EtOH (3 mL) was added NaOMe (1.6 mg, 0.03 mmol, 0.1 eq) at 0°C. The mixture was stirred at r.t. for 1 hr, followed by addition of NH_4Cl (21 mg, 0.39 mmol, 13 eq). The resulting mixture was stirred at 90°C for 1 hr and cooled to room temperature. The mixture was adjusted pH to 9 with saturated aqueous NaHCO_3 and

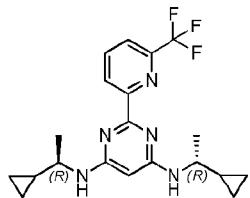
then extracted with EtOAc. Combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated. The residue was purified by a standard method to afford the desired product.


LC-MS: m/z 190.1 ($\text{M}+\text{H}$)⁺.

Step 2: Preparation of 2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diol. To a solution of sodium (366 mg, 15.9 mmol, 5.0 eq) in anhydrous EtOH (6 mL) was added dropwise a solution of 6-(trifluoromethyl)picolinimidamide (600 mg, 3.2 mmol) in EtOH. The reaction mixture was stirred at r.t. for 1 hr, followed by addition of diethyl malonate (1 mL, 6.4 mmol, 2.0 eq). The mixture was stirred at reflux overnight and then cooled to room temperature. The resulting mixture was adjusted pH to 7 by 1 N aq. HCl solution. The suspension was filtered and the filter cake was washed with water. The solid was suspended in MeOH and filtered. The filtrate was concentrated under reduced pressure to give the desired product which was used directly in the next step without any further purification.

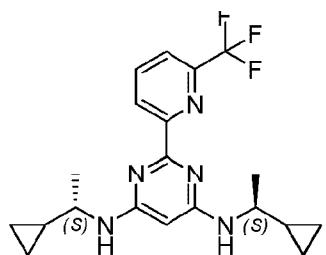

LC-MS: m/z 256.0 ($\text{M}-\text{H}$)⁻.

Step 3: Preparation of 4,6-dichloro-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine. A solution of 2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diol (1 g, 3.9 mmol) in POCl_3 (6 mL) was stirred at 90°C overnight and then concentrated to remove the volatile. The residue was purified by a standard method to afford the desired product.

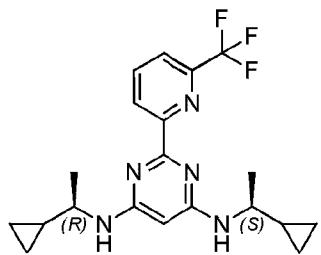

LC-MS: m/z 294.0 (M+H)⁺.

Step 4: Preparation of (R)-6-chloro-N-(1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidin-4-amine. To a solution of 4,6-dichloro-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine (80 mg, 0.27 mmol, 1 eq) in THF (3 mL) was added (R)-1-cyclopropylethanamine (0.06 mL, 0.6 mmol, 2.2 eq) and Et₃N (0.07 mL, 0.54 mmol, 2 eq). The reaction mixture was stirred at room temperature overnight and concentrated. The residue was purified by a standard method to give the desired product.

LC-MS: m/z 343.1 (M+H)⁺.


Step 5 : Preparation of N4,N6-bis((R)-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diamine. To a solution of (R)-6-chloro-N-(1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidin-4-amine (50 mg, 0.15 mmol, 1 eq) in DMSO (2 mL) was added (R)-1-cyclopropylethanamine hydrochloride (22 mg, 0.18 mmol, 1.2 eq) and DIPEA (0.08 mL, 0.45 mmol, 3 eq). The mixture was irradiated under microwave at 160 °C for 1.5 hr. After addition of (R)-1-cyclopropylethanamine (0.18 mmol, 1.2 eq), the resulting mixture was stirred and irradiated under microwave at 160 °C for another 2 hr. The mixture was cooled to r.t. and then partitioned between EtOAc and water. The organic layer was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated. The residue was purified by a standard method to give the desired product.

¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, *J* = 7.9 Hz, 1H), 7.87 (t, *J* = 7.9 Hz, 1H), 7.62 (d, *J* = 7.8 Hz, 1H), 5.19 (m, 3H), 3.13 (d, *J* = 6.3 Hz, 2H), 1.19 (d, *J* = 6.4 Hz, 6H), 0.96 – 0.72 (m, 2H), 0.52 – 0.33 (m, 4H), 0.33 – 0.10 (m, 4H). LC-MS: m/z 392.2 (M+H)⁺.

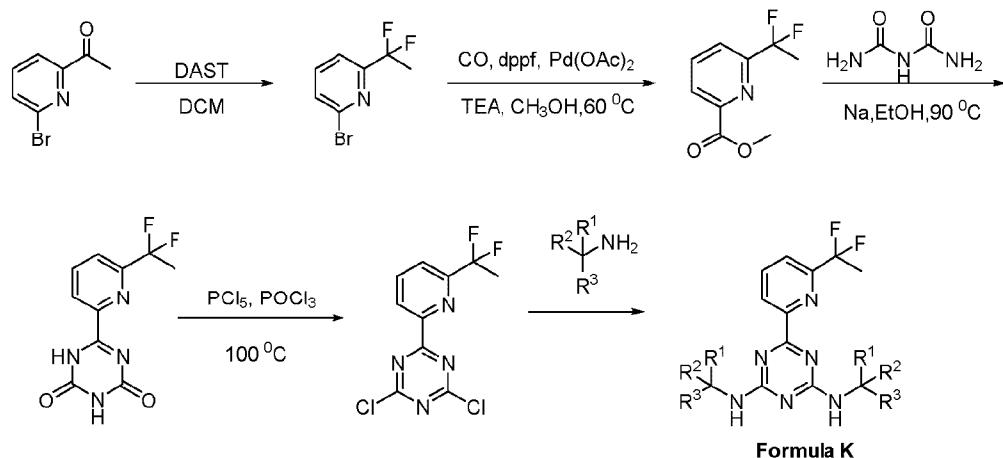

The procedure set forth above was used to produce the following compounds using the appropriate starting materials.

Compound N⁴,N⁶-bis((S)-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diamine

¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, *J* = 7.8 Hz, 1H), 7.95 (t, *J* = 7.9 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 5.22 (m, 3H), 3.22 (d, *J* = 6.5 Hz, 2H), 1.40 – 1.15 (m, 6H), 0.95 (m, 2H), 0.61 – 0.44 (m, 4H), 0.31 (m, 4H). LC-MS: m/z 392.2 (M+H)⁺.

Compound N⁴-((R)-1-cyclopropylethyl)-N⁶-((S)-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diamine

¹H NMR (400 MHz, CDCl₃): δ 8.49 (d, J = 7.8 Hz, 1H), 7.97 (t, J = 7.9 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 5.22 (m, 3H), 3.22 (d, J = 6.5 Hz, 2H), 1.68 – 1.25 (m, 6H), 0.97 (m 2H), 0.61 – 0.44 (m, 4H), 0.31 (m, 4H). LC-MS: m/z 392.2 (M+H)⁺.


Table 7: The following compounds were prepared by the procedure described in Scheme 7 above.

Compound ID	Name	Structure	LCMS	
			Expected MW	Found (M+1) ⁺
	<i>N⁴,N⁶-bis(-1-cyclopropylethyl)-2-(6-(trifluoromethyl)pyridin-2-yl)pyrimidine-4,6-diamine</i>		391.2	392.2

Example 9. Preparation of Symmetric Di-aliphatic Triazine Compounds of Formula K.

The compounds of this Example are prepared by general **Scheme 9**, set forth below.

Scheme 9

Step 1: Preparation of 2-bromo-6-(1,1-difluoroethyl)pyridine.

To a solution of 1-(6-bromopyridin-2-yl)ethanone (26 g, 130 mmol) in dry DCM (150 mL) at 0 °C was added dropwise DAST (84 mL, 650 mmol) over 30 min. The reaction mixture was then slowly allowed to warm up to r.t., and stirred until the reaction was complete. The resulting mixture was slowly poured into ice (300 g) and extracted with DCM (2 x 50 mL). The combined organic layers were washed with water, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by standard methods to afford 2-bromo-6-(1,1-difluoroethyl)pyridine. LC-MS: m/z 222.0 ($\text{M}+\text{H}$)⁺.

Step 2: Preparation of methyl 6-(1,1-difluoroethyl)picolinate.

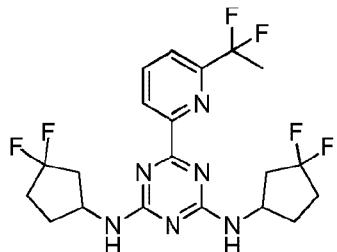
To a solution of 2-bromo-6-(1,1-difluoroethyl)pyridine (30.2 g, 136 mmol) in MeOH (300 mL) were added 1,1'-bis(diphenylphosphino)-ferrocene (7.5 g, 13.6 mmol), triethylamine (28.4 mL, 204 mmol), and $\text{Pd}(\text{OAc})_2$ (1.52 g, 6.7 mmol). The mixture was stirred at 60°C under CO atmosphere (60 psi) for 16 hr. The resulting mixture was filtered and concentrated under reduced pressure. The residue was purified by standard methods to afford methyl 6-(1,1-difluoroethyl) picolinate. LC-MS: m/z 202.2 ($\text{M}+\text{H}$)⁺.

Step 3: Preparation of 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione. To a solution of NaOEt in EtOH (freshly prepared from sodium (1.9 g, 82.6 mmol) and EtOH (150 mL)) was added methyl 6-(1,1-difluoroethyl)picolinate (2.8 g, 28 mmol) and biuret (14.0 g, 70 mmol). The mixture was stirred at 90°C for 16 hr and concentrated under reduced pressure. To the residue was added water (50 mL). The resulting mixture was adjusted the pH to 7 with 1N HCl, and then filtered. The filter cake was washed with water, and dried under high vacuum to afford 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione. LC-MS: m/z 255.1 ($\text{M}+\text{H}$)⁺.

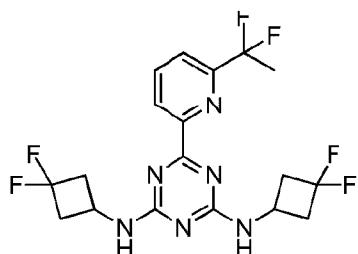
Step 4: Preparation of 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine.

To a solution of 6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione (6 g, 25 mmol) in POCl_3 (60 mL) was added PCl_5 (26 g, 125 mmol). The mixture was stirred at 100°C for 16 hr and concentrated under reduced pressure. The residue was purified by standard methods to

afford 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine. ^1H NMR (400MHz, CDCl_3) δ 8.62 (d, 1H), 8.07 (t, 1H), 7.94 (d, 1H), 2.16 (q, 3H). LC-MS: m/z 292.1 ($\text{M}+\text{H}$) $^+$.


Step 5: Preparation of N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine To a mixture of 2,4-dichloro-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine (582 mg, 2.0 mmol, 1.0 eq) and 4,4-difluorocyclohexanamine hydrochloride (752 mg, 4.4 mmol, 2.2 eq) in THF (12 mL) at r.t. were added CsF (1.2 g, 8.0 mmol, 2eq) and DIPEA (1.4 mL, 8.0 mmol, 4 eq). The mixture was stirred at 60°C overnight and then filtered. The filtrate was concentrated under reduced pressure and the residue was purified by standard methods to give the desired product.

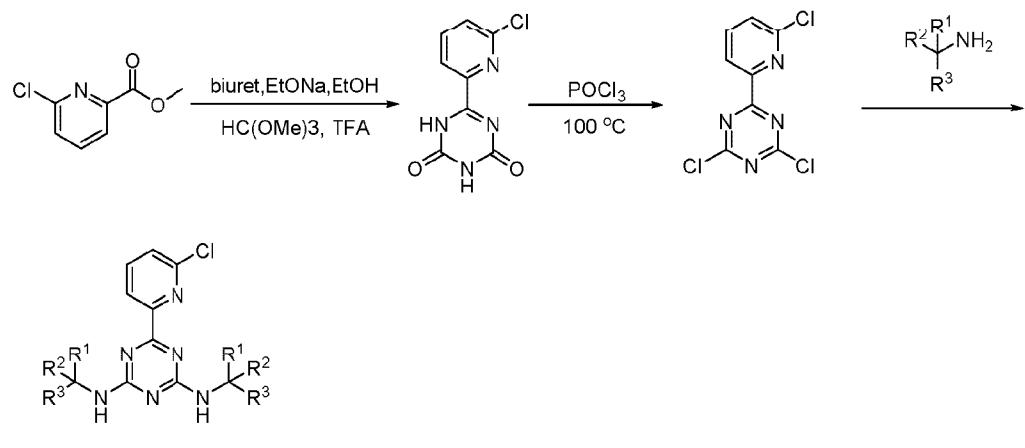
^1H NMR (400 MHz, CDCl_3) δ 8.32-8.40 (m, 1H), 7.94 (bs, 1H), 7.78 (bs, 1H), 5.07-5.46 (m, 2H), 3.99-4.18 (m, 2H), 1.71-2.17 (m, 19H). LC-MS: m/z 489.2 ($\text{M}+\text{H}$) $^+$.


The procedure set forth in Example 9 was used to produce the following compounds using the appropriate starting materials.

Compound N^2,N^4 -bis(3,3-difluorocyclopentyl)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.32-8.43 (m, 1H), 7.93-7.95 (m, 1H), 7.78 (bs, 1H), 5.28-5.70 (m, 2H), 4.54-4.71 (m, 2H), 1.72-2.65 (m, 15H). LC-MS: m/z 461.2 (M+H)⁺.

Compound N²,N⁴-bis(3,3-difluorocyclobutyl)-6-(6-(1,1-difluoroethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

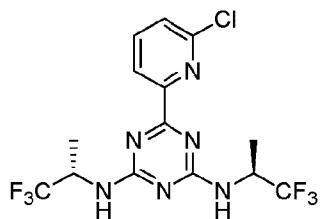


¹H NMR (400 MHz, CDCl₃) δ 8.35-8.42 (m, 1H), 7.95 (bs, 1H), 7.80 (bs, 1H), 5.42-5.85 (m, 2H), 4.35-4.52 (m, 2H), 3.04 (bs, 4H), 2.62 (bs, 4H), 2.04-2.16 (m, 3H). LC-MS: m/z 433.2 (M+H)⁺.

Example 10. Preparation of Symmetric Di-aliphatic Triazine Compounds of Formula L.

The compounds of this Example are prepared by general **Scheme 10**, set forth below.

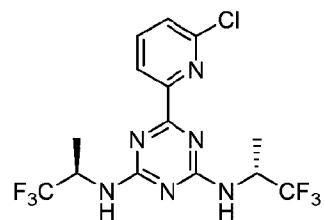
Scheme 10



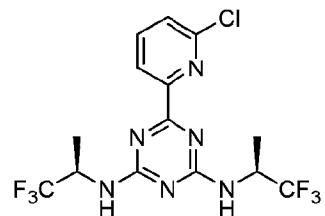
Step 1: Preparation of 6-(6-chloropyridin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione. To a dried three-necked round bottom flask were added biuret (14.8 g, 0.14 mol), methyl 6-chloropicolinate (21 g, 0.12 mol) and EtOH (250 mL). The mixture was degassed with N₂ three times and then stirred at 25°C for 20 min. Then the temperature was allowed to rise to 50°C, followed by

addition of $\text{HC}(\text{OMe})_3$ (17 mL, 0.14 mol) and TFA (1.37 g, 0.01 mol). The reaction mixture (pale yellow slurry) was stirred at this temperature for 30 min, followed by dropwise addition of a solution of NaOEt in EtOH (20%wt, 163 g, 0.48 mol). The resulting yellowish thick slurry was heated to reflux for 2hr until the reaction was complete. The mixture was cooled to r.t. and concentrated under reduced pressure. The residue was treated with water (200 mL) and concentrated under reduced pressure to remove the remaining ethanol. Then water (300 mL) was added to the residue (while stirring) to form a clear brown solution. The solution was cooled to 10°C and slowly adjusted to pH 1 by 6N HCl. The resulting mixture was stirred for another 2 hr and filtered. The filter cake was washed with aq. HCl (pH=1), collected and suspended in DCM (300 mL). The suspension was stirred at r.t. for 2hr, filtered and dried to afford the desired product. LC-MS: m/z 225.0 ($\text{M}+\text{H}$)⁺.

Step 2: Preparation of 2,4-dichloro-6-(6-chloropyridin-2-yl)-1,3,5-triazine. The procedure is the same as Example 1 Step 3 described above. LC-MS: m/z 260.9 ($\text{M}+\text{H}$)⁺.


Step 3 : Preparation of 6-(6-chloropyridin-2-yl)- N^2,N^4 -bis((R)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine. A mixture of 2,4-dichloro-6-(6-chloropyridin-2-yl)-1,3,5-triazine (0.27 g, 1.04 mol), (R)-1,1,1-trifluoropropan-2-amine hydrochloride (0.39 g, 2.6 mol), and potassium carbonate (0.43 g, 3.1 mol) in dry 1,4-dioxane (2.5 mL) was stirred under the atmosphere of N_2 at 50°C for 36 hr then at 100°C for another 36 hr until the reaction was complete. The resulting mixture was filtered through CeliteTM and the cake was washed with EtOAc. The filtrate was concentrated and the residue was purified by standard methods to give the desired product.

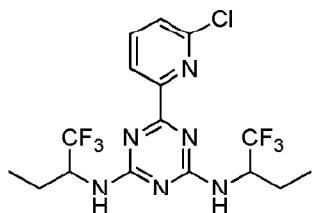
¹H NMR (400 MHz, CDCl₃) δ 8.32 (m, 1H), 7.80 (m, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 5.61 (m, 1.5H), 5.25 (m, 0.5H), 5.09 (m, 0.5H), 4.88 (m, 1.5H), 1.54 – 1.26 (m, 6H). LC-MS: m/z 415 (M+H)⁺.


The procedure set forth in Example 10 was used to produce the following compounds using the appropriate starting materials.

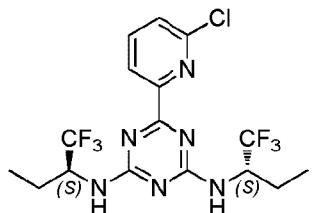
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis((S)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.16 (m, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 5.70 – 5.13 (m, 2H), 5.09 – 4.71 (m, 2H), 1.34 (m, 6H). LC-MS: m/z 415 (M+H)⁺.

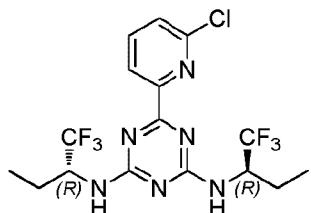
Compound 6-(6-Chloropyridin-2-yl)-N²-((R)-1,1,1-trifluoropropan-2-yl)-N⁴-((S)-1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.23 (m, 1H), 7.83 (s, 1H), 7.51 (d, *J* = 6.2 Hz, 1H), 5.68 – 5.20 (m, 2H), 5.18 – 4.81 (m, 2H), 1.48 – 1.39 (m, 6H). LC-MS: m/z 415 (M+H)⁺.

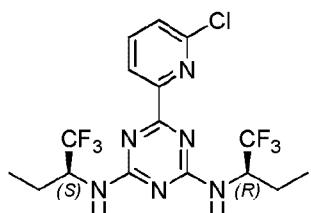
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(1,1,1-trifluoropropan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.29 – 8.16 (m, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 1H), 5.70 – 5.13 (m, 2H), 5.09 – 4.71 (m, 2H), 1.34 (m, 6H). LC-MS: m/z 415 (M+H)⁺.

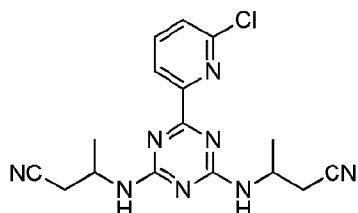
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.39 – 8.31 (m, 1H), 7.86 – 7.79 (m, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 5.67 – 5.12 (m, 2H), 4.98 – 4.65 (m, 2H), 2.07 – 1.91 (m, 2H), 1.70 – 1.55 (m, 2H), 1.06 (dd, *J* = 8.6, 6.0 Hz, 6H). LC MS: m/z 443 (M+H)⁺.

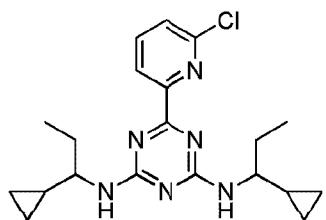
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis((S)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.30-8.35 (t, 1H), 7.78-7.82 (t, 1H), 7.47-7.52 (m, 1H), 5.49-5.63 (m, 2H), 4.72-4.89 (m, 2H), 1.95-1.99 (m, 2H), 1.59 (m, 2H), 1.02-1.08 (t, 6H). LC-MS: m/z 443 (M+H)⁺.

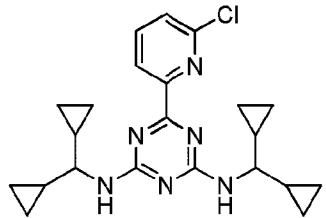
Compound6-(6-Chloropyridin-2-yl)-N²,N⁴-bis((R)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.31-8.35 (t, 1H), 7.78-7.82 (t, 1H), 7.47-7.49 (m, 1H), 5.16-5.71 (m, 2H), 4.72-4.74 (m, 2H), 1.94-2.01 (m, 2H), 1.62-1.64 (m, 2H), 1.02-1.08 (t, 6H). LC-MS: m/z 443 (M+H)⁺.

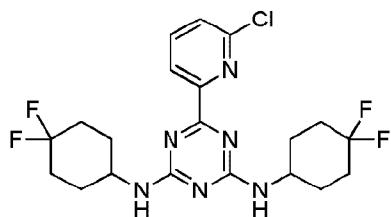
Compound6-(6-Chloropyridin-2-yl)-N²-((R)-1,1,1-trifluorobutan-2-yl)-N⁴-((S)-1,1,1-trifluorobutan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.30-8.35 (m, 1H), 7.81 (s, 1H), 7.47-7.49 (d, 1H), 5.35-5.66 (m, 2H), 4.91-5.13 (d, 1H), 4.72 (s, 1H), 2.00-2.23 (d, 3H), 1.31-1.42 (d, 1H), 1.03-1.07 (m, 6H). LC-MS: m/z 443 (M+H)⁺.

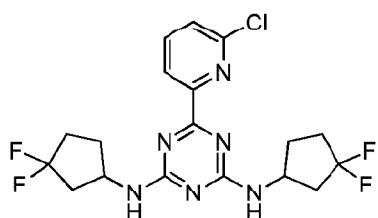
Compound3,3'-(6-(6-Chloropyridin-2-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)dibutanenitrile


¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.73 (t, *J* = 7.6 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 5.61 – 5.18 (m, 2H), 4.59 – 4.20 (m, 2H), 2.85 – 2.60 (m, 4H), 1.44 – 1.36 (m, 6H). LC-MS: m/z 357 (M+H)⁺.

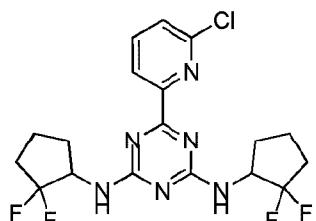
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(1-cyclopropylpropyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 7.3 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 5.37 – 5.08 (m, 2H), 3.48 – 3.37 (m, 2H), 1.73 – 1.56 (m, 4H), 0.98 (t, *J* = 7.3 Hz, 6H), 0.92 – 0.80 (m, 2H), 0.66 – 0.20 (m, 8H). LC-MS (m/z): 387.2 (M+H)⁺.

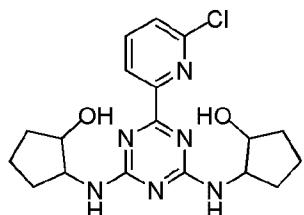
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(dicyclopropylmethyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.36 (d, *J* = 7.8 Hz, 1H), 5.50 – 5.01 (m, 2H), 3.30 (s, 2H), 0.89 (m, 4H), 0.50 – 0.21 (m, 16H). LC-MS: m/z 411.2 (M+H)⁺.

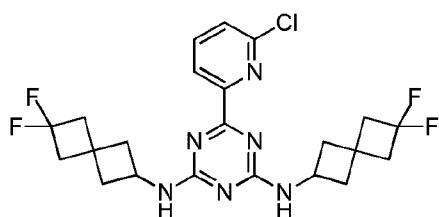
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.2 Hz, 1H), 7.80 (t, *J* = 7.5 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 6.64-6.12 (m, 2H), 4.17-3.98 (m, 2H), 2.17-1.70 (m, 16H). LC-MS: m/z 459 (M+H)⁺.

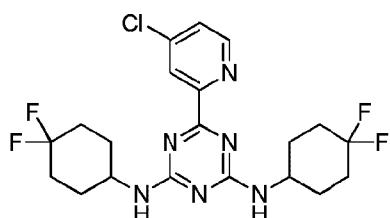
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(3,3-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.41 – 8.25 (m, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.53 (d, *J* = 7.6 Hz, 1H), 5.78 – 5.37 (m, 2H), 4.69 – 4.53 (m, 2H), 2.65 – 2.55 (m, 2H), 2.51 – 1.98 (m, 8H), 1.85 – 1.76 (m, 2H). LCMS: m/z 431.1 (M+H)⁺.

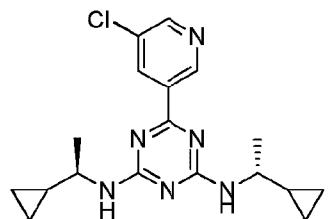
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(2,2-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.48 – 8.26 (m, 1H), 7.82 (s, 1H), 7.49 (s, 1H), 5.63 (m, 2H), 4.70 (m, 2H), 2.41–2.08 (m, 6H), 1.83 (m, 4H), 1.66 (s, 2H). LCMS: m/z 431(M+H)⁺.

Compound 2,2'-(6-(6-Chloropyridin-2-yl)-1,3,5-triazine-2,4-diyl)bis(azanediyl)dicyclopentanol

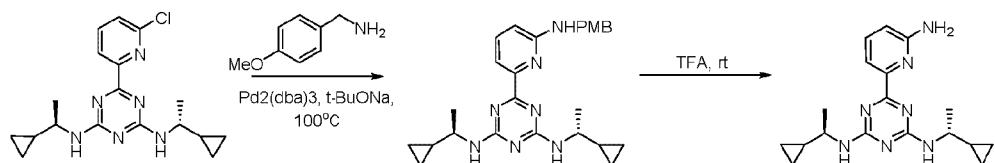

¹H NMR (400 MHz, CDCl₃) δ 8.27 – 8.17 (m, 1H), 7.77 (t, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 7.9 Hz, 1H), 6.30 – 5.83 (m, 1H), 5.52 (m, 2H), 5.00 (m, 1H), 4.05 – 3.88 (m, 2H), 2.32 – 2.17 (m, 2H), 2.10 (m, 1H), 2.01 (s, 1H), 1.88 – 1.65 (m, 6H), 1.51 (m, 2H). LCMS: m/z 391(M+H)⁺.

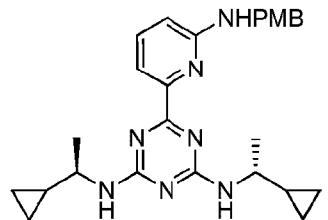
Compound 6-(6-Chloropyridin-2-yl)-N²,N⁴-bis(6,6-difluorospiro[3.3]heptan-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 8.25 - 7.78 (m, 4H), 7.64 (m, 1H), 4.45 - 4.24 (m, 2H), 2.72- 2.66 (m, 4H), 2.61 - 2.50 (m, 4H), 2.46 - 2.41 (m, 4H), 2.22 - 2.19 (m, 4H). LCMS: m/z 483(M+H)⁺.

Compound 6-(4-Chloropyridin-2-yl)-N₂,N₄-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine

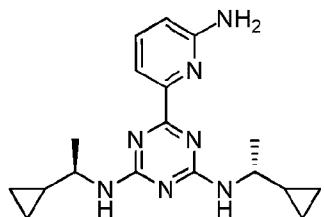
¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, *J* = 8.0 Hz, 1H), 8.48 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 5.28 (d, *J* = 8.0 Hz, 2H), 4.20-4.02 (m, 2H), 1.98-1.61 (m, 16H). LC-MS: m/z 459.1 (M+H)⁺.


Compound 6-(5-Chloropyridin-3-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 9.36 (m, 1H), 8.65 (d, *J* = 2.1 Hz, 1H), 8.54 (t, *J* = 1.9 Hz, 1H), 5.46 – 5.06 (m, 2H), 3.78 – 3.40 (m, 2H), 1.29 (s, 6H), 0.95 – 0.87 (m, 2H), 0.56 – 0.38 (m, 6H), 0.29 (s, 2H). LC-MS: m/z 359 (M+H)⁺.

Example 11 The compounds of this Example are prepared by general **Scheme 11**, set forth below.

Scheme 11



Step 1. Preparation of N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(6-((4-methoxybenzyl)amino)pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of 6-(6-chloropyridin-2-yl)-N₂,N₄-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (120 mg, 0.33 mmol), (4-methoxyphenyl)methanamine (69 mg, 0.51 mmol), BINAP (42 mg, 0.66 mmol) and t-BuONa (63 mg, 0.66 mmol) in anhydrous dioxane (2 mL) at r.t. under N₂ atmosphere was added Pd₂(dba)₃ (30 mg, 0.033 mmol) in one portion. The reaction mixture was then stirred at 100 °C overnight then concentrated under reduced pressure to afford the desired product.

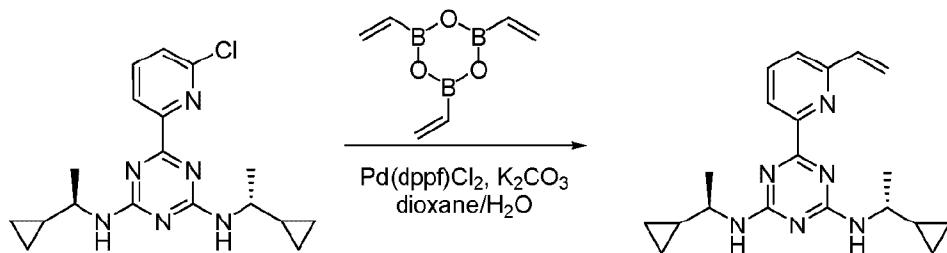
LCMS: m/z 460 (M+H)⁺.

Step 2. Preparation of 6-(6-aminopyridin-2-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine. N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(6-(4-methoxybenzylamino) pyridin-2-yl)-1,3,5-triazine-2,4-diamine (80 mg, 0.17 mmol) was dissolved in TFA (0.5 mL) under N₂ atmosphere. The solution mixture was then stirred at r.t. overnight then concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product.

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.54 (m, 2H), 6.74 – 6.69 (m, 1H), 6.24 – 5.30 (m, 2H), 3.70 – 3.54 (m, 2H), 1.29 – 1.25 (m, 6H), 0.95 – 0.90 (m, 2H), 0.58 – 0.26 (m, 8H). LCMS: m/z 340.2 (M+H)⁺.

Example 12 The compounds of this example are prepared by general **Scheme 12**, set forth below.

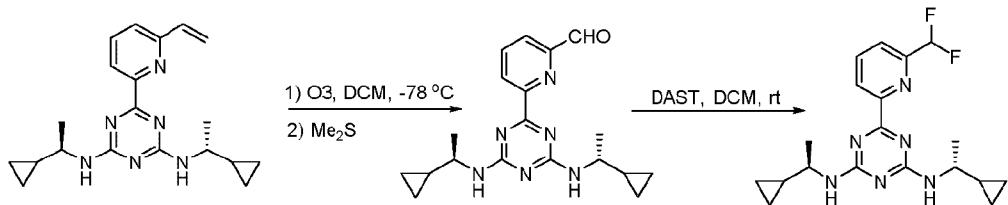
Scheme 12


Step 1. Preparation of 6-(6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)pyridin-2-ol.

To a mixture of N²,N⁴-bis((R)-1-cyclopropylethyl)-6-(6-methoxypyridin-2-yl)-1,3,5-triazine-2,4-diamine (50 mg, 0.14 mmol) and NaI (63 mg, 0.42 mmol) in anhydrous CH₃CN (1 mL) at r.t. was added TMSCl (46 mg, 0.42 mmol) in one portion. The reaction mixture was stirred 80 °C for 6 hr then concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 10.24 (br s, 1H), 7.51 (t, J = 8.0 Hz,

1H), 7.29 – 7.20 (m, 1H), 6.71 (d, J = 8.0 Hz, 1H), 5.42 – 5.31 (m, 2H), 3.63 – 3.52 (m, 2H), 1.30 – 1.25 (m, 6H), 0.98 – 0.87 (m, 2H), 0.62 – 0.21 (m, 8H). LCMS: m/z 341.2 (M+H)⁺.

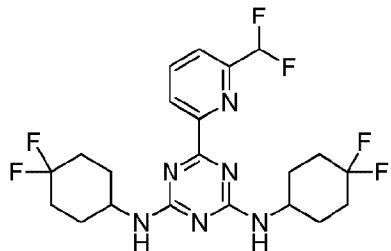
Example 13 The compounds of this Example are prepared by general **Scheme 13**, set forth below.


Scheme 13

Step 1. Preparation of *N*²,*N*⁴-bis((R)-1-cyclopropylethyl)-6-(6-vinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a suspension of 6-(6-chloropyridin-2-yl)-N2,N4-bis ((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (200 mg, 0.56 mmol), 2,4,6-trivinyl-1,3,5,2,4,6-trioxatriborinane (135 mg, 0.84 mmol) and K₂CO₃ (154 mg, 1.11 mmol) in dioxane (2 mL) and H₂O (0.8 mL) under an atmosphere of N₂ was added Pd(dppf)Cl₂ (41 mg, 0.06 mmol) in one portion. The reaction mixture was stirred at 100 °C overnight then cooled to r.t. and quenched with water. The resulting mixture was extracted with EtOAc (20 mL x 2). The combined organic layers were washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by standard methods to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 8.28 – 8.15 (m, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.05 – 6.99 (m, 1H), 6.15 (d, J = 17.6 Hz, 1H), 5.42 (d, J = 17.6 Hz, 1H), 5.44 – 5.16 (m, 2H), 3.72 – 3.52 (m, 2H), 1.35 – 1.22 (m, 6H), 0.98 – 0.86 (m, 2H), 0.58 – 0.21 (m, 8H). LCMS: m/z 351.1 (M+H)⁺.

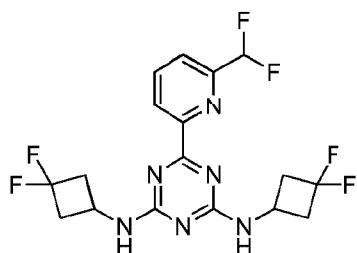
Example 14 The compounds of this Example are prepared by general **Scheme 14**, set forth below.

Scheme 14



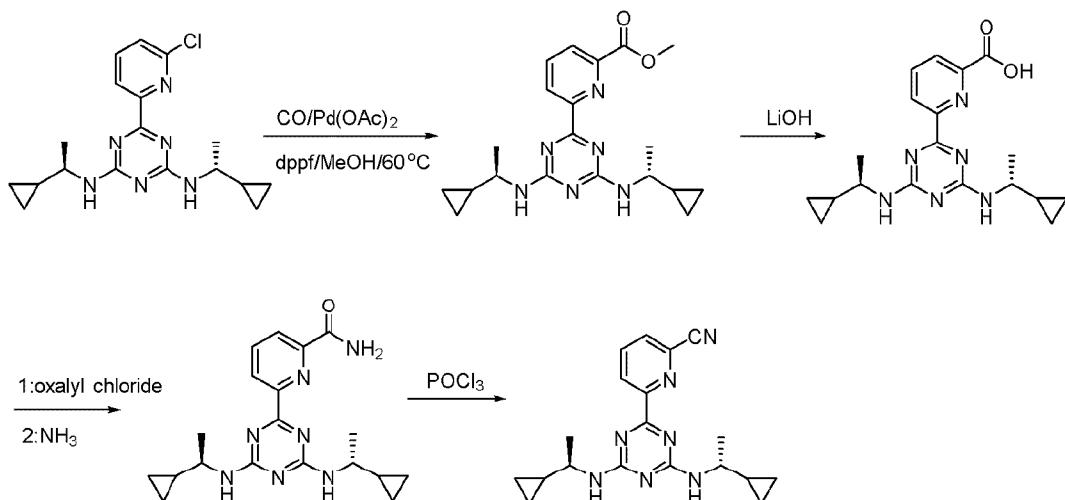
Step 1. Preparation of 6-(4,6-bis((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl)picolinaldehyde. Ozone was bubbled into a solution of N^2, N^4 -bis((R)-1-cyclopropylethyl)-6-(6-vinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine (120 mg, 0.34 mmol) in DCM (2 mL) at -78 °C for 1hr. After excess ozone was purged by N_2 , Me_2S (0.2 mL) was added into the reaction mixture at 0 °C. The resulting mixture was concentrated and the residue was purified by standard methods to afford the desired product. LCMS: m/z 353 ($M+H$)⁺.

Step 2. Preparation of N^2, N^4 -bis((R)-1-cyclopropylethyl)-6-(6-(difluoromethyl) pyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of 6-(4,6-bis((R)-1-cyclopropylethyl)amino)-1,3,5-triazin-2-yl)picolinaldehyde (50 mg, 0.14 mmol) in anhydrous DCM (2 mL) at 0 °C was added dropwise DAST (68 mg, 0.43 mmol). The reaction mixture was stirred at r.t overnight. The resulting mixture was slowly quenched with satd. aq. $NaHCO_3$ (5 mL) at 0°C, then extracted with DCM (40 mL). The combined organic layers were washed with water and brine, dried over anhydrous Na_2SO_4 , concentrated, and purified by standard methods to afford the desired product. 1H NMR (400 MHz, $CDCl_3$) δ 8.46 (s, 1H), 7.97 (t, J = 7.6 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 6.98 – 6.70 (m, 1H), 5.47 – 5.21 (m, 2H), 3.67 – 3.50 (m, 2H), 1.32 – 1.25 (m, 6H), 0.92 – 0.86 (m, 2H), 0.58 – 0.21 (m, 8H). LCMS: m/z 375 ($M+H$)⁺.


The procedure set forth in Example 14 was used to produce the following compounds using the appropriate starting materials.

Compound N^2, N^4 -bis(4,4-difluorocyclohexyl)-6-(6-(difluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.48 (, 1H), 8.01 (br s., 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 6.67 - 7.01 (m, 1H), 5.02 - 5.55 (m, 2H), 3.95 - 4.20 (m, 2H), 2.14 (m, 8H), 1.86 - 1.98 (m, 4H), 1.77 (m, 4H). LC-MS: m/z 475 (M+H)⁺.

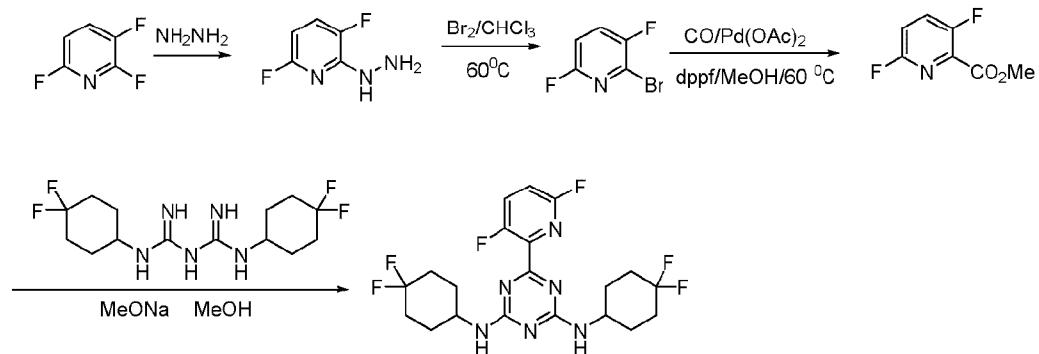

Compound N2,N4-bis(3,3-difluorocyclobutyl)-6-(6-(difluoromethyl)pyridin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.64 – 8.35 (m, 1H), 8.10 – 7.92 (m, 1H), 7.81 (d, *J* = 7.7 Hz, 1H), 6.82 (m, 1H), 5.98 – 5.29 (m, 2H), 4.70 – 4.16 (m, 2H), 3.24 – 2.92 (m, 4H), 2.79 – 2.44 (m, 4H). LC-MS: m/z 419 (M+H)⁺.

Example 15 The compounds of this Example are prepared by general **Scheme 15**, set forth below.

Scheme 15

Step 1: Preparation of methyl 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinate. To a mixture of 6-(6-chloropyridin-2-yl)-N²,N⁴-bis((R)-1-cyclopropylethyl)-1,3,5-triazine-2,4-diamine (0.25g, 0.7mmol) in MeOH (10mL) were added dppf (80mg, 0.15mmol), Pd(OAc)₂ (60mg, 0.27 mmol) and Et₃N (150mg, 1.5 mmol). The reaction mixture was degassed and back-filled with CO three times and then stirred under an atmosphere of CO (60 psi) at 70°C for 12hr. The resulting mixture was cooled to r.t. and concentrated under reduced pressure. The residue was triturated with EtOAc (100mL) and filtered. The filtrate was concentrated and purified by standard methods to afford methyl 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinate. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (m, 1H), 8.24-8.22 (dd, 1H), 7.99-7.95 (t, 1H), 5.49 (m, 2H), 4.02 (s, 3H), 3.57 (m, 2H), 1.92 (s, 6H), 0.96-0.87 (m, 2H), 0.52-0.26 (m, 8H). LCMS: m/z 383(M+H)⁺.


Step 2: Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl) picolinic acid. To a mixture of methyl 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinate (150 mg, 0.40 mmol) in water(2.0mL) and THF(3.0mL) was added lithium hydroxide(47 mg, 2.0 mmol). The reaction mixture was stirred at r.t. overnight then acidified withaq.HCl (1 N) to pH5-6 and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give the desired product. LCMS: m/z 367 (M-H)⁻.

Step 3: Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide.

To an ice cold mixture of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinic acid (120mg, 0.32mmol) in dry DCM(5.0mL) and DMF(0.1mL) was added dropwise oxalyl chloride(65mg, 0.5mmol). The reaction mixture was stirred at r.t. for 2 hr then treated with ammonia. The resulting mixture was stirred for 10min at 0°C, and then concentrated and purified by standard methods to give 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide. ¹H NMR (400 MHz, CDCl₃) δ 13.59 (s, 1H), 9.30-9.14 (m, 3H), 8.58-8.30 (m, 3H), 7.95 (s, 1H), 3.77-3.54 (m, 2H), 1.29 (d, 6H), 1.02 (m, 2H), 0.50-0.30 (m, 8H). LCMS: m/z 368(M+H)⁺.

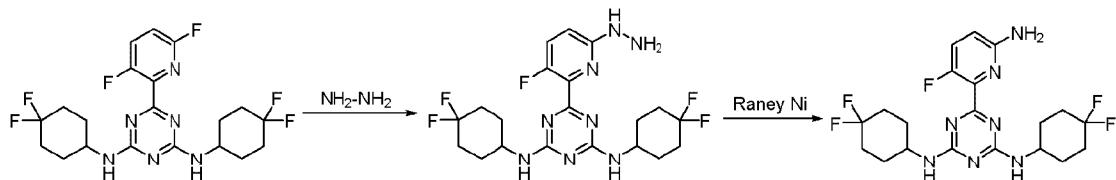
Step 4: Preparation of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinonitrile. To a mixture of 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinamide(36mg, 0.1mmol) in dry pyridine(3.0mL) was added phosphorous trichloride (0.1mL). The reaction mixture was stirred at r.t. for 2 hr then concentrated under reduced pressure. The residue was purified by standard methods to give 6-(4,6-bis((R)-1-cyclopropylethylamino)-1,3,5-triazin-2-yl)picolinonitrile. ¹H NMR (400 MHz, CDCl₃) δ 8.50-8.48 (m, 1H), 8.24-8.22 (t, 1H), 7.73-7.71 (dd, 1H), 5.46-5.14 (m, 2H), 3.62-3.50 (m, 2H), 1.22-1.18 (m, 6H), 0.89-0.84 (m, 2H), 0.46-0.20 (m, 8H). LCMS: m/z 350(M+H)⁺.

Example 16 The compounds of this Example are prepared by general **Scheme 16**, set forth below.

Scheme 16

Step 1: Preparation of 3,6-difluoro-2-hydrazinylpyridine. To an ice-cold solution of 2,3,6-trifluoropyridine(1.0 g, 7.5 mmol) in ethanol (10 mL) was added hydrazine hydrate (0.75 g, 15.0 mmol). The reaction mixture was warmed up to r.t. and then heated at reflux for 2 hr. After it was cooled to r.t., the reaction mixture was diluted with water (10 mL) and extracted with DCM (2 x 20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to afford 3,6-difluoro-2-hydrazinylpyridine. LC-MS (m/z): 146 ($\text{M}+\text{H}$)⁺.

Step 2: Preparation of 2-bromo-3,6-difluoropyridine. To a stirred solution of 3,6-difluoro-2-hydrazinylpyridine(1.1 g, 7.0 mmol) in chloroform (20 mL) at r.t. was added dropwise bromine (1.8 g, 11.2 mmol). The reaction mixture was heated to 60°C for 1.5 hr. The resulting mixture was cooled to r.t., quenched with satd. aq. NaHCO_3 , and extracted with dichloromethane (2 x 20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 and concentrated and purified by standard methods to afford 2-bromo-3,6-difluoropyridine. LC-MS: m/z 194 ($\text{M}+\text{H}$)⁺.

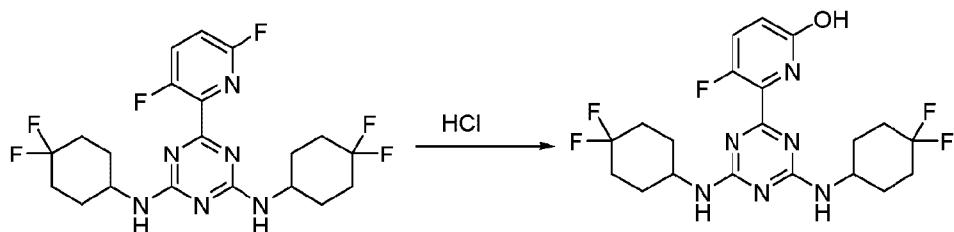

Step 3: Preparation of methyl 3,6-difluoropicolinate. To a solution of 2-bromo-3,6-difluoropyridine (0.8 g, 4.1 mmol) in MeOH (10 mL) were added dppf (0.3 g, 0.56 mmol), $\text{Pd}(\text{OAc})_2$ (0.1 g, 0.45 mmol) and Et_3N (1.6 mL, 8.2 mmol). The suspension was degassed and back-filled with CO atmosphere three times. The resulting mixture was stirred under CO atmosphere (60 psi) at 70°C for 12 hr, then cooled to r.t. and concentrated under reduced pressure. The residue was triturated with EtOAc (150 mL) and filtered. The filtrate was concentrated and purified by standard methods to afford methyl 3,6-difluoropicolinate. LC-MS: m/z 174 ($\text{M}+\text{H}$)⁺.

Step 4: Preparation of N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a suspension of N^1,N^5 -bis(4,4-difluorocyclohexyl)-biguanide (167 mg, 0.50 mmol) and methyl 3,6-difluoropicolinate (130 mg, 0.75 mmol) in MeOH (5 mL) was added NaOMe (81 mg, 1.5 mmol). The reaction mixture was stirred at r.t. overnight, then poured into water, and extracted with EtOAc. The combined organic extracts were dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure. The residue was purified by standard methods to afford N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-

diamine. ^1H NMR (400 MHz, CDCl_3) δ 7.67-7.61 (m, 1H), 7.07-7.03 (m, 1H), 5.46-5.10 (m, 2H), 4.08-3.97 (m, 2H), 2.17-2.09 (m, 8H), 1.96-1.83 (m, 4H), 1.73-1.63 (m, 4H). LC-MS: m/z 461 ($\text{M}+\text{H}$) $^+$.

Example 17 The compounds of this Example are prepared by general **Scheme 17**, set forth below.

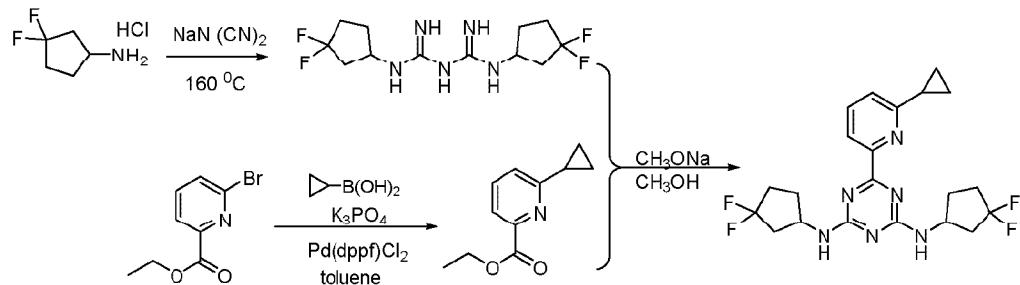
Scheme 17



Step 1: Preparation of N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3-fluoro-6-hydrazinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine. To a solution of N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine (230 mg, 0.50 mmol) in THF (20 mL) was added hydrazine hydrate (150 mg, 3.0 mmol). The reaction mixture was stirred at 60°C for 2.5 hr. After cooling to r.t., the reaction mixture was diluted with DCM and washed with water. The organic phase was separated, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure to give the desired product. LC-MS (m/z): 473.2 ($\text{M}+\text{H}$) $^+$.

Step 2: Preparation of 6-(6-amino-3-fluoropyridin-2-yl)- N^2,N^4 -bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine. To a solution of N^2,N^4 -bis(4,4-difluorocyclohexyl)-6-(3-fluoro-6-hydrazinylpyridin-2-yl)-1,3,5-triazine-2,4-diamine (47 mg, 0.1 mmol) in methanol (5.0 mL) was added Raney Ni (100 mg). The reaction mixture was stirred under H_2 atmosphere overnight at r.t. then filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. ^1H NMR (400 MHz, CDCl_3) δ 7.43-7.39 (m, 1H), 7.03-7.01 (m, 1H), 4.59 (s, 2H), 4.10-4.05 (m, 2H), 2.09-1.93 (m, 12H), 1.76-1.68 (m, 4H). LC-MS: m/z 458.2 ($\text{M}+\text{H}$) $^+$.

Example 18 The compounds of this Example are prepared by general **Scheme 18**, set forth below.

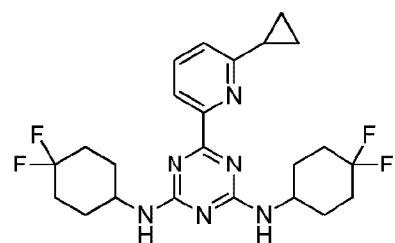

Scheme 18

Step 1: Preparation of 6-(4,6-bis((4,4-difluorocyclohexyl)amino)-1,3,5-triazin-2-yl)-5-fluoropyridin-2-ol. A mixture of N₂,N₄-bis(4,4-difluorocyclohexyl)-6-(3,6-difluoropyridin-2-yl)-1,3,5-triazine-2,4-diamine (100 mg, 0.22 mmol) in conc. HCl (5.0 mL) was stirred at 100°C overnight. The resulting mixture was concentrated and purified by standard methods to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 9.96 (m, 1H), 7.40-7.27 (m, 2H), 6.73-6.67 (m, 1H), 5.47-5.17 (m, 2H), 4.02-3.92 (m, 2H), 2.11-1.66 (m, 16H). LCMS: m/z 459(M+H)⁺.

Example 19 The compounds of this Example are prepared by general **Scheme 19**, set forth below.

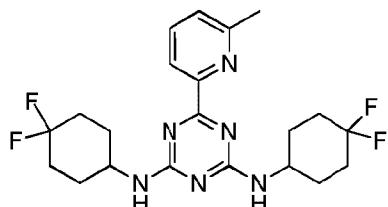
Scheme 19

Step 1: Preparation of N¹,N⁵-bis(3,3-difluorocyclopentyl)-biguanide. A mixture of 3,3-difluorocyclopentanamine hydrochloride (3 g, 19.1 mmol) and sodium dicyanamide (1.7 g, 19.1 mmol) was heated at 160°C for 1 hr. The resulting product was dissolved in MeOH then filtered. The filtrate was concentrated to afford the desired product. LC-MS: m/z 310.2 (M+H)⁺.


Step 2: Preparation of ethyl 6-cyclopropylpicolinate. To a mixture of ethyl 6-bromopicolinate (200 mg, 0.87 mmol) and cyclopropylboronic acid (149 mg, 1.74 mmol) in toluene (15 mL) were added K₃PO₄ (369 mg, 1.74 mmol) and dichloro(diphenylphosphinoferrocene)palladium (11 mg,

0.017 mmol). The resulting mixture was stirred under N₂ atmosphere at 100°C overnight, then cooled to r.t. and filtered. The filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 192.1 (M+H)⁺.

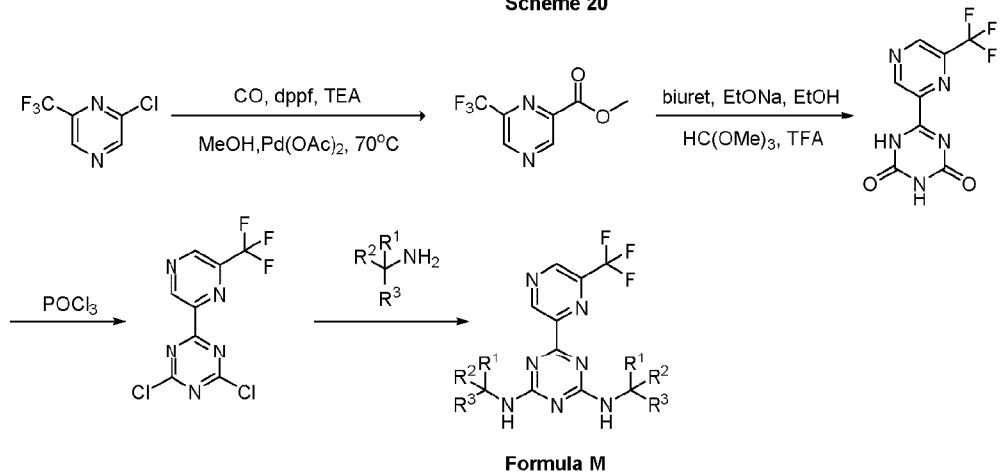
Step 3: 6-(6-cyclopropylpyridin-2-yl)-N²,N⁴-bis(3,3-difluorocyclopentyl)-1,3,5-triazine-2,4-diamine. To a mixture of N¹,N⁵-bis(3,3-difluorocyclopentyl)-biguanide (50 mg, 0.16 mmol) and ethyl 6-cyclopropylpicolinate (62 mg, 0.33 mmol) in methanol (5 mL) was added NaOMe (44 mg, 0.80 mmol). The reaction mixture was stirred at r.t. overnight, and then concentrated under reduced pressure. The residue was partitioned between EtOAc and water. The organic layer was separated, washed with brine, and dried over anhydrous Na₂SO₄, concentrated, and purified by standard methods to afford the desired product. ¹H NMR (400 MHz, CDCl₃) δ 8.43-8.33 (m, 1H), 8.06-7.99 (m, 1H), 7.25-7.23 (d, J=8 Hz, 1H), 6.66-6.52 (m, 1H), 5.90-5.79 (m, 1H), 4.74-4.45 (m, 2H), 2.66-2.54 (m, 2H), 2.38-2.16 (m, 8H), 1.90-1.88 (m, 2H), 1.42-1.40 (m, 2H), 1.29-1.25 (m, 1H), 1.25-1.01 (m, 2H). LC MS: m/z 437.2 (M+H)⁺.


The procedure set forth in Example 19 was used to produce the following compounds using the appropriate starting materials.

Compound 6-(6-Cyclopropylpyridin-2-yl)-N²,N⁴-bis(4,4-difluorocyclohexyl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.87 (s, 1H), 7.14 (s, 1H), 5.16 (s, 1H), 4.17 - 4.01 (m, 2H), 2.43 (s, 1H), 2.16 - 1.74 (m, 16H), 1.25 (s, 2H), 1.02 (s, 2H), 0.87 (m, 1H). LCMS: m/z 465 (M+H)⁺.

Compound N²,N⁴-bis(4,4-difluorocyclohexyl)-6-(6-methylpyridin-2-yl)-1,3,5-triazine-2,4-diamine



¹H NMR (400MHz, CDCl₃) δ 8.181 - 8.11 (m, 1H), 7.71(s, 1H), 7.29(s, 1H), 5.46 - 5.07 (m, 2H), 4.19 - 3.99 (m, 2H), 2.69(s, 3H), 2.17 - 2.12 (m, 9H), 1.97 - 1.84 (m, 4H), 1.63 - 1.55 (m, 3H). LCMS: m/z 439(M+H)⁺.

Example 20 Preparation of Symmetric Di-aliphatic Triazine Compounds of Formula M.

The compounds of this Example are prepared by general **Scheme 20**, set forth below.

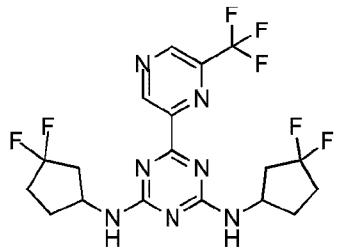
Scheme 20


Step 1: Preparation of methyl 6-(trifluoromethyl)pyrazine-2-carboxylate. To a mixture of 2-chloro-6-(trifluoromethyl)pyrazine (1 g, 5.5 mol) in MeOH (5.5 mL) was added dppf (0.16 g, 0.29 mmol), Pd(OAc)₂ (0.1 g, 0.44 mmol) and Et₃N (0.12 mL, 8.2 mmol). The suspension was degassed under vacuum and then backfilled with CO three times. The resulting mixture was stirred under CO atmosphere (80 psi) at 70°C for 2 days until the reaction was completed. The mixture was cooled to r.t. and concentrated under reduced pressure at 30°C. To the residue was

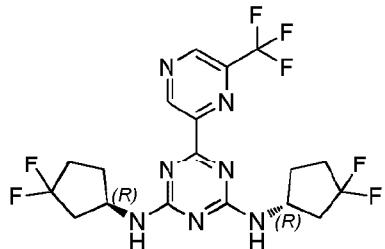
added EtOAc (150 mL). The suspension was filtered and the filtrate was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 207 (M+H)⁺.

Step 2: Preparation of 6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione. The procedure is the same as Example 1 Step 2 described above. LC-MS: m/z 260 (M+H)⁺.

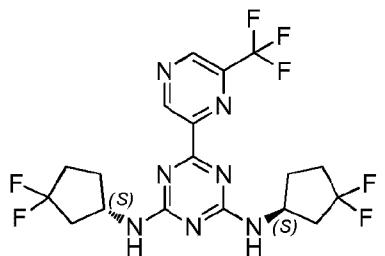
Step 3: Preparation of 2,4-dichloro-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine. To a solution of 6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4(1H,3H)-dione (2.8 g, 0.011 mol) in POCl₃ (30 mL) was added Et₃N (0.3 mL). The mixture was stirred at 100°C for 16 hr until the reaction was completed. The resulting mixture was concentrated and purified by standard methods to afford the desired product. LC-MS: m/z 296 (M+H)⁺.


Step 4: Preparation of N²,N⁴-bis(4,4-difluorocyclohexyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine. The procedure is the same as Example 1 Step 4.

¹H NMR (400 MHz, CDCl₃) δ 9.73 (m, 1H), 9.07 (s, 1H), 5.49-5.15 (m, 2H), 4.17-3.99 (m, 2H), 2.17-1.58 (m, 16H). LC-MS: m/z 494 (M+H)⁺.


The procedure set forth in Example 20 above was used to produce the following compounds using the appropriate starting materials.

N²,N⁴-bis(3,3-difluorocyclopentyl)-6-(6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine


¹H NMR (400 MHz, CDCl₃) δ 9.74 (m, 1H), 9.07 (d, *J* = 3.2 Hz, 1H), 5.68 - 5.37 (m, 2H), 4.71 - 4.53 (m, 2H), 2.66 - 2.61 (m, 2H), 2.32 - 1.85 (m, 10H). LC-MS: m/z 466 (M+H)⁺.

N²,N⁴-bis((R)-3,3-difluorocyclopentyl)-6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 9.77-9.71 (m, 1H), 9.06 (s, 1H), 5.68-5.37 (m, 2H), 5.54-4.72 (m, 2H), 3.12 (m, 1H), 2.64 (m, 1H), 2.32 (m, 3H), 2.17-2.13 (m, 6H). LC-MS: m/z 466 (M+H)⁺.

N²,N⁴-bis((S)-3,3-difluorocyclopentyl)-6-(trifluoromethyl)pyrazin-2-yl)-1,3,5-triazine-2,4-diamine

¹H NMR (400 MHz, CDCl₃) δ 9.74 (m, 1H), 9.07 (d, *J* = 3.6 Hz, 1H), 5.70 - 5.38 (m, 2H), 4.83 - 4.38 (m, 2H), 2.80 - 1.76 (m, 12H). LC-MS: m/z 466 (M+H)⁺.

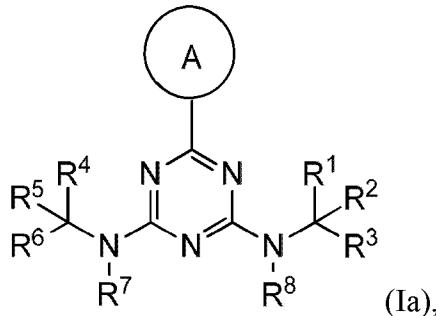
DEMANDES OU BREVETS VOLUMINEUX

**LA PRÉSENTE PARTIE DE CETTE DEMANDE OU CE BREVETS
COMPREND PLUS D'UN TOME.**

CECI EST LE TOME 1 DE 2

NOTE: Pour les tomes additionnels, veillez contacter le Bureau Canadien des Brevets.

JUMBO APPLICATIONS / PATENTS


**THIS SECTION OF THE APPLICATION / PATENT CONTAINS MORE
THAN ONE VOLUME.**

THIS IS VOLUME 1 OF 2

NOTE: For additional volumes please contact the Canadian Patent Office.

Claims

1. A compound having Formula (Ia) or a pharmaceutically acceptable salt or hydrate thereof, wherein:

ring A is selected from phenyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, and cyclopropyl optionally substituted with OH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl) and -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

R¹ and R² are optionally taken together to form a carbocyclyl or heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from halo, C₁-C₄

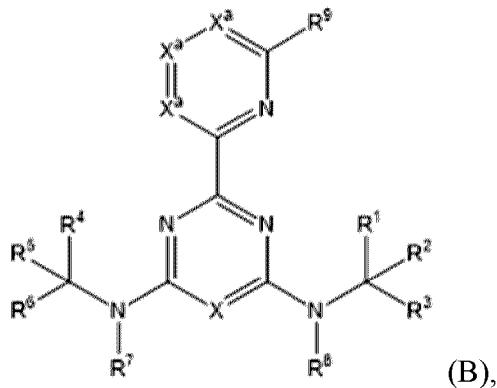
alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl; or

R⁴ and R⁵ are optionally taken together to form a carbocyclyl, or heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl;

wherein:

(i) when A is pyridyl as defined above, then (A) N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHCH₂CH₂OH or NH-cyclohexyl; and (B) when N(R⁷)C(R⁴)(R⁵)(R⁶) is NHC(CH₃)₃ then N(R⁸)C(R¹)(R²)(R³) is not NH-CH₂CH₃;

(ii) when A is a heteroaryl selected from pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl as defined above, then N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both N(CH₂CH₃)₂, NHCH₂CH₂-i-propyl or NHCH₂CH(CH₃)₂;


(iii) when A is 1-pyrazolyl as defined above, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NH-isopropyl, NHCH₂CH₃, or N(CH₂CH₃)₂,

(iv) when A is substituted 1-pyrazolyl, then N(R⁷)C(R⁴)(R⁵)(R⁶) and N(R⁸)C(R¹)(R²)(R³) are not both NHC(CH₃)₃;

(v) when A is phenyl as defined above, then N(R⁷)C(R⁴)(R⁵)(R⁶) is not the same as N(R⁸)C(R¹)(R²)(R³), and

(vi) the compound is not N²-isopropyl-6-phenyl-N4-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazine-2,4-diamine.

2. A compound having Formula (B) or pharmaceutically acceptable salt or hydrate thereof, wherein:

X is N, CH or C-halo;

X^a is N or C-R^{9a}, provided that when one X^a is N, then the other two X^a are both C-R^{9a};

R⁹ is halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, or cyclopropyl optionally substituted with OH;

each R^{9a} is independently selected from hydrogen, halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, and cyclopropyl optionally substituted with OH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R⁷ and R⁸ are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R¹ and R² are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl; or

R⁴ and R⁵ are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl;

wherein the compound is not selected from the group:

(1) 4,6-Pyrimidinediamine, 2-(6-methyl-2-pyridinyl)-N₄,N₆-dipropyl-;

(2) 4,6-Pyrimidinediamine, N⁴-ethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-; and
 (3) 4,6-Pyrimidinediamine, N⁴,N⁴-diethyl-2-(6-methyl-2-pyridinyl)-N6-propyl-.

3. The compound of claim 2 or a pharmaceutically acceptable salt or hydrate thereof, wherein R⁴ and R⁵ are optionally taken together to form an optionally substituted 3- to 6-member carbocyclyl or an optionally substituted 3- to 6-member heterocyclyl.

4. A compound having Formula C or pharmaceutically acceptable salt or hydrate thereof, wherein:

X is N, CH or C-halo;

each X^b is independently N-R^{9b}, O, S, C-H, or C-R^{9c}, provided that at least one X^b is C-R^{9c}, and when one X^b is C-H or C-R^{9c} and the other is C-R^{9c} then X^c is N, and when one X^b is N-R^{9b}, O, or S, then X^c is C;

R^{9b} is hydrogen or -C₁-C₄ alkyl;

R^{9c} is halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), aryl, or cyclopropyl optionally substituted with OH;

R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -NH₂, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₀-C₆ alkylene)-Q, -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl) and -(C₀-C₆ alkylene)-C(O)-(C₀-C₆ alkylene)-Q, wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

R^7 and R^8 are each independently selected from hydrogen and C₁-C₆ alkyl; and

Q is selected from aryl, heteroaryl, carbocyclyl and heterocyclyl, any of which is optionally substituted; wherein

R^1 and R^3 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^4 and R^6 are optionally taken together with the carbon atom to which they are attached to form C(=O); or

R^1 and R^2 are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl; or

R^4 and R^5 are optionally taken together to form an optionally substituted carbocyclyl or an optionally substituted heterocyclyl;;

wherein:

(i) when X is CH and is optionally substituted 1-pyrazolyl, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is NHCH₂-(o-chloro-phenyl) or NHCH₂CH₂OH; and

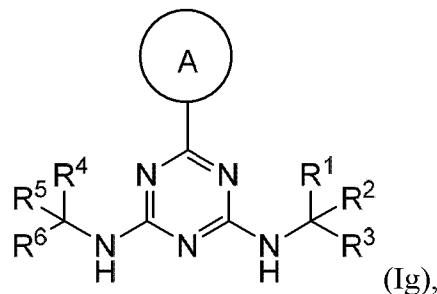
(ii) when X and X^c are both N, then neither N(R⁷)C(R⁴)(R⁵)(R⁶) nor N(R⁸)C(R¹)(R²)(R³) is N(CH₂CH₃)₂.

5. The compound of claim 4 or a pharmaceutically acceptable salt or hydrate thereof, wherein:

R^{9c} is halo, -OH, CN, -NH₂, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)₂, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, or -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl);

R^1 and R^4 are each hydrogen;

R^3 and R^6 are each independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN; and


R^2 and R^5 are each -(C₁-C₆ alkyl), wherein:

the alkyl moiety present in R^2 and R^5 is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo; and any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H.

6. The compound of claim 4 or a pharmaceutically acceptable salt or hydrate thereof, wherein R^1 and R^4 are each independently selected from C₁-C₄ alkyl and C₁-C₄ haloalkyl, and R^2 and R^5 are each -(C₁-C₆ alkyl).

7. The compound of any one of claims 1, 2 or 4 or a pharmaceutically acceptable salt or hydrate thereof, wherein R^3 and R^6 are both hydrogen, R^1 and R^4 are each independently selected from C₁-C₄ alkyl and C₁-C₄ haloalkyl, and R^2 and R^5 are each -(C₁-C₆ alkyl).

8. A compound of Formula (Ig) or a pharmaceutically acceptable salt or hydrate thereof, wherein:

ring A is a 5-6 member monocyclic aryl or monocyclic heteroaryl substituted with 0-2 instances of halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH-(C₁-C₄ alkyl), -OH, OCF₃, CN, -NH₂, -C(O)NH₂, -C(O)NH-(C₁-C₄ alkyl), -C(O)N(C₁-C₄ alkyl)₂, azetidinyl, phenyl or cyclopropyl substituted with 0-1 instances of OH;

R³ and R⁶ are both hydrogen;

R¹ and R⁴ are each independently selected from C₁-C₄ alkyl and C₁-C₄ haloalkyl;

R² and R⁵ are each -(C₁-C₆ alkyl);

wherein

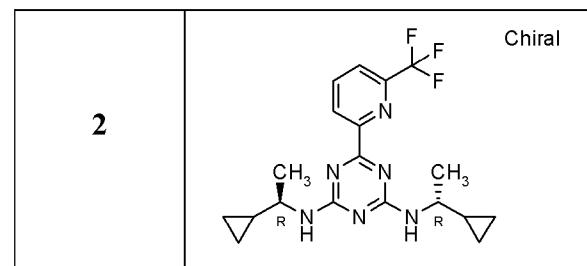
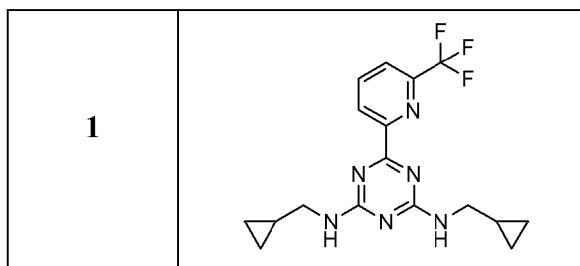
R^1 and R^2 can optionally be taken together to form a monocyclic carbocyclyl substituted with 0-3 substituents independently selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH and -C(O)C₁-C₄ alkyl; or

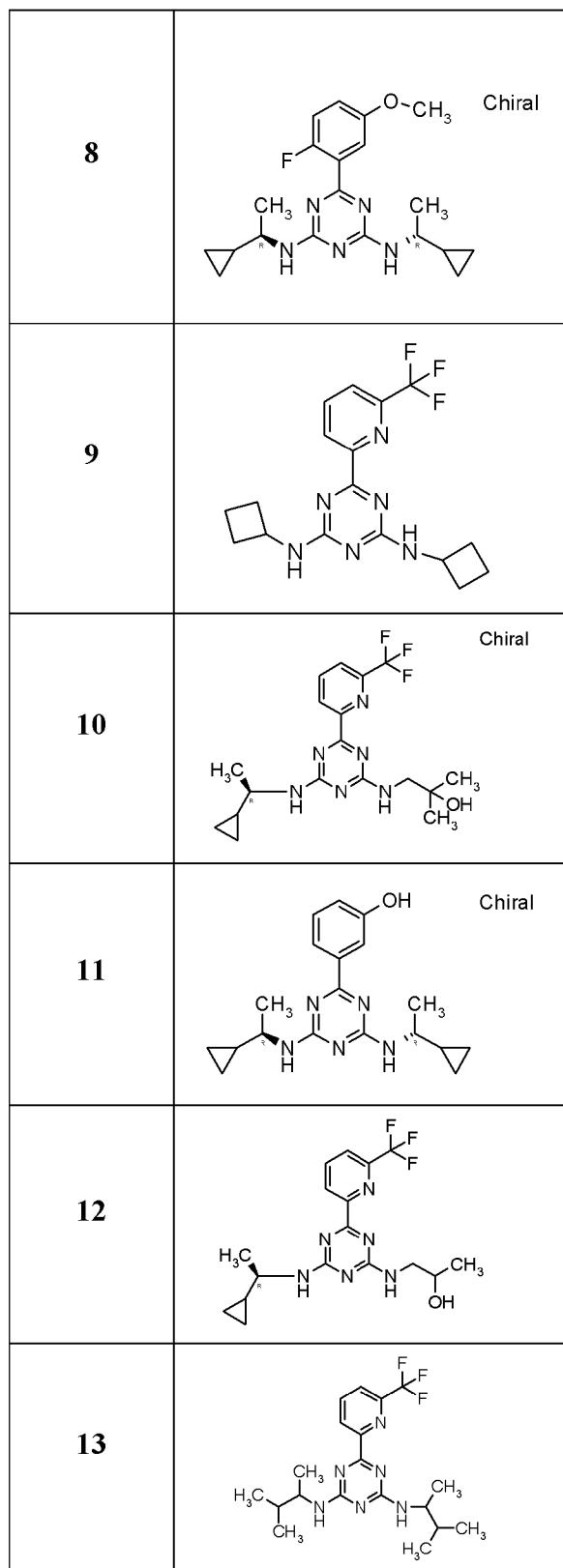
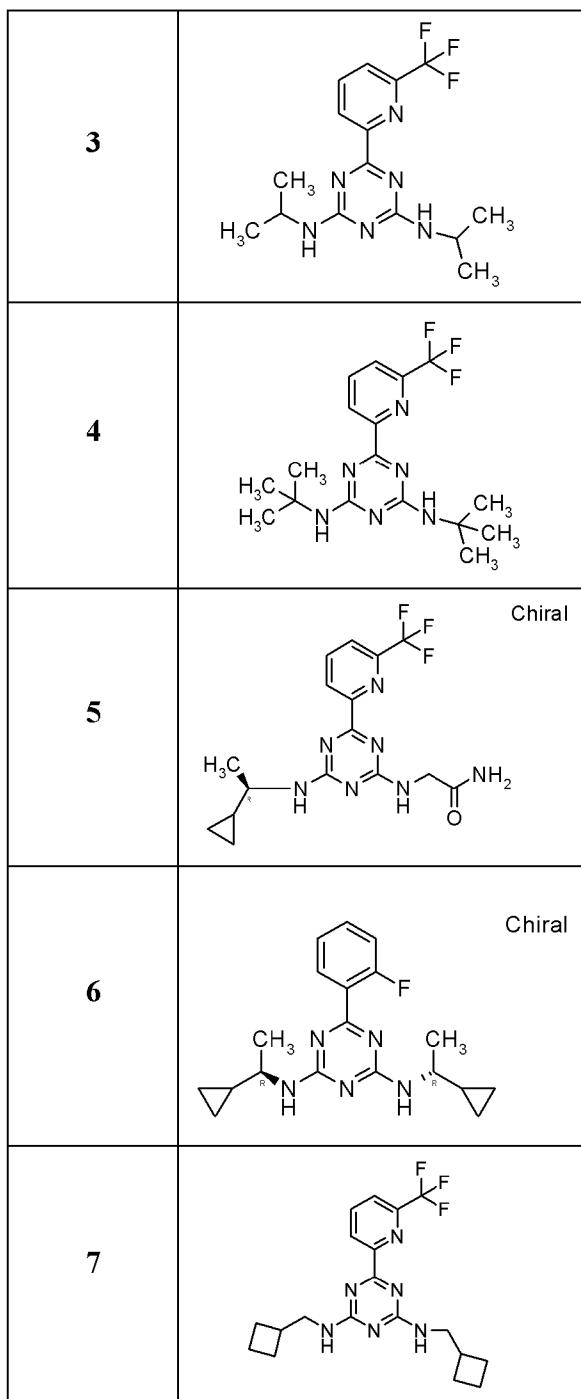
R^4 and R^5 can optionally be taken together to form a monocyclic carbocyclyl substituted with 0-3 substituents independently selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH and -C(O)C₁-C₄ alkyl; and

wherein:

(i) ring A is not a triazolyl as defined above or 3,5-dimethyl-1H-pyrazol-1-yl,

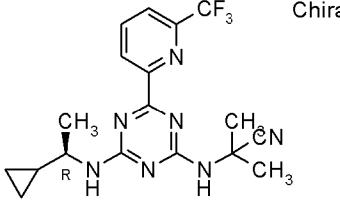
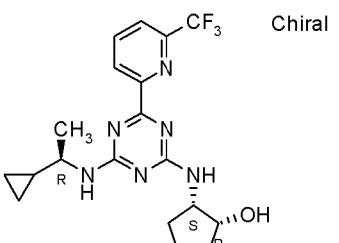
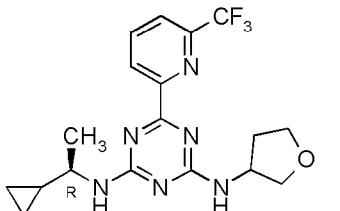
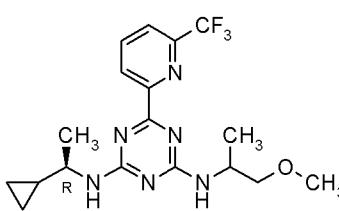
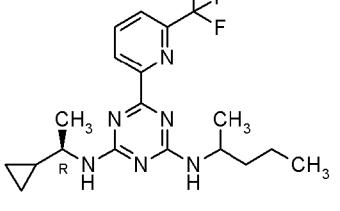
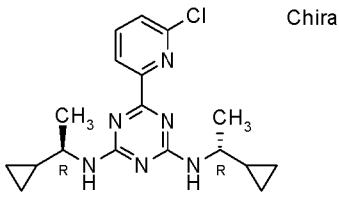
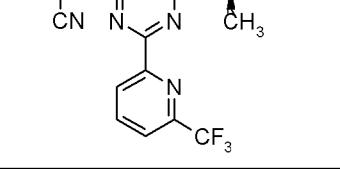
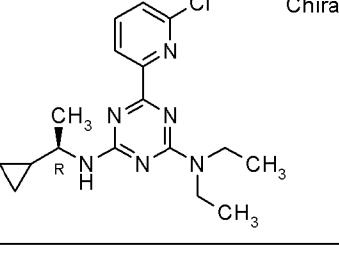
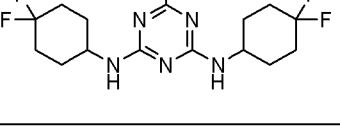
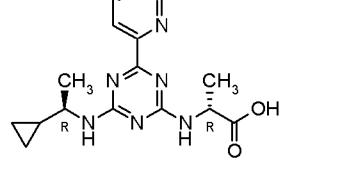
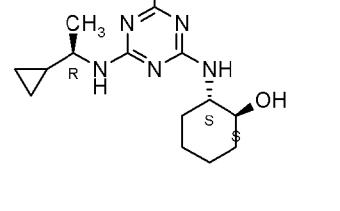
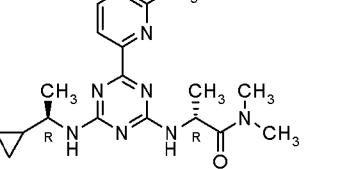
(ii) when R^1 and R^2 are optionally taken together to form an unsubstituted cyclohexyl, and R^4 and R^5 are optionally taken together to form an unsubstituted cyclohexyl, then A is not a disubstituted 1-pyrazolyl or an unsubstituted phenyl; and

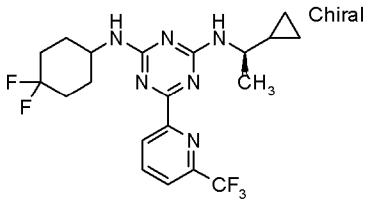
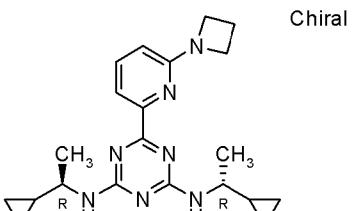
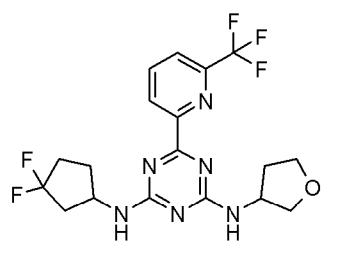
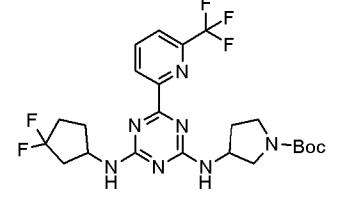
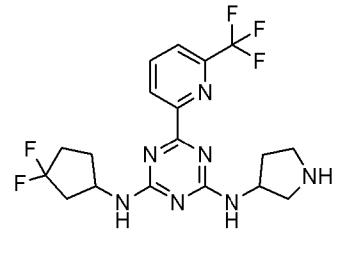
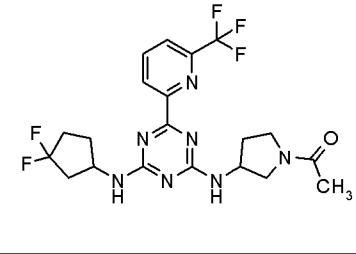
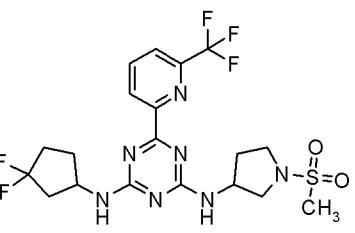
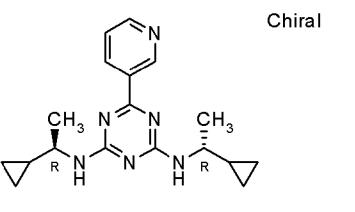
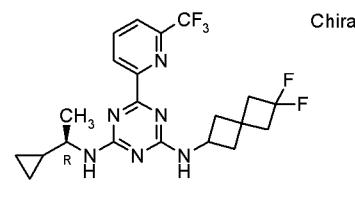


(iii) the compound is not selected from the group:

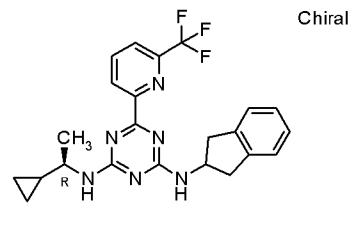
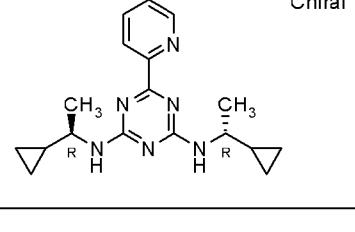


(1) 6-(1H-imidazol-1-yl)-N₂,N₄-bis(1-methylethyl)-1,3,5-Triazine-2,4-diamine, and

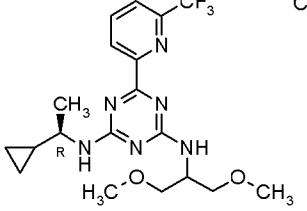
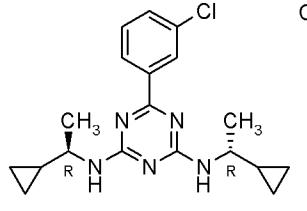
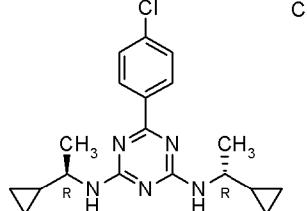
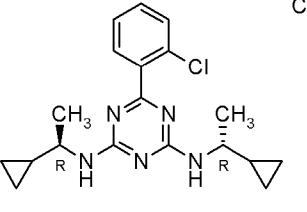
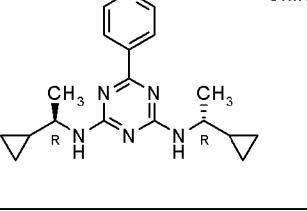
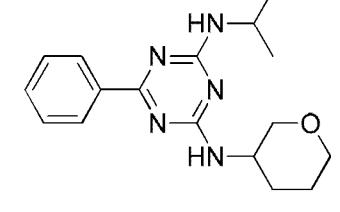
(2) N₂,N₄-bis(1-methylpropyl)-6-phenyl-1,3,5-Triazine-2,4-diamine.

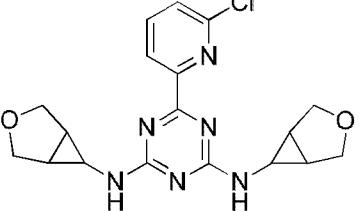
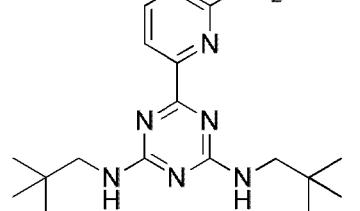
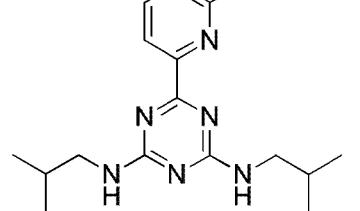
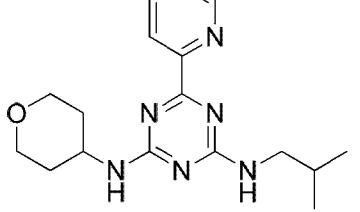
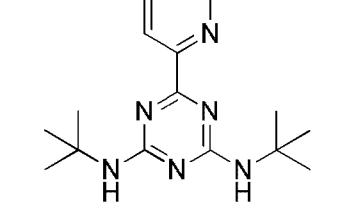
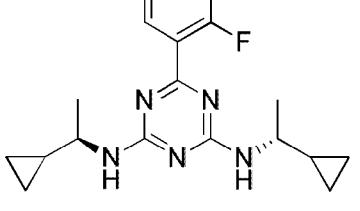
9. The compound of claim 8 or a pharmaceutically acceptable salt or hydrate thereof, wherein ring A is substituted with 0-2 instances of halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH-(C₁-C₄ alkyl), -OH, OCF₃, CN, -NH₂, -C(O)NH₂, -C(O)NH-(C₁-C₄ alkyl), -C(O)N(C₁-C₄ alkyl)₂, azetidinyl, phenyl or cyclopropyl substituted with 0-1 instances of OH.

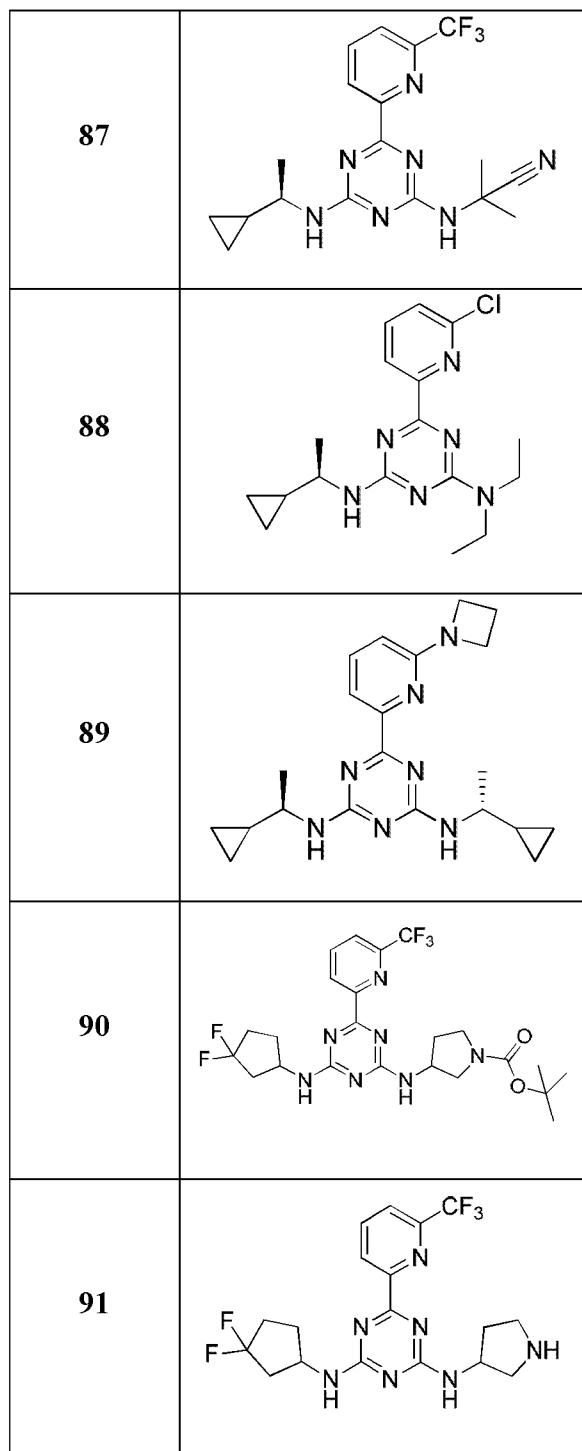
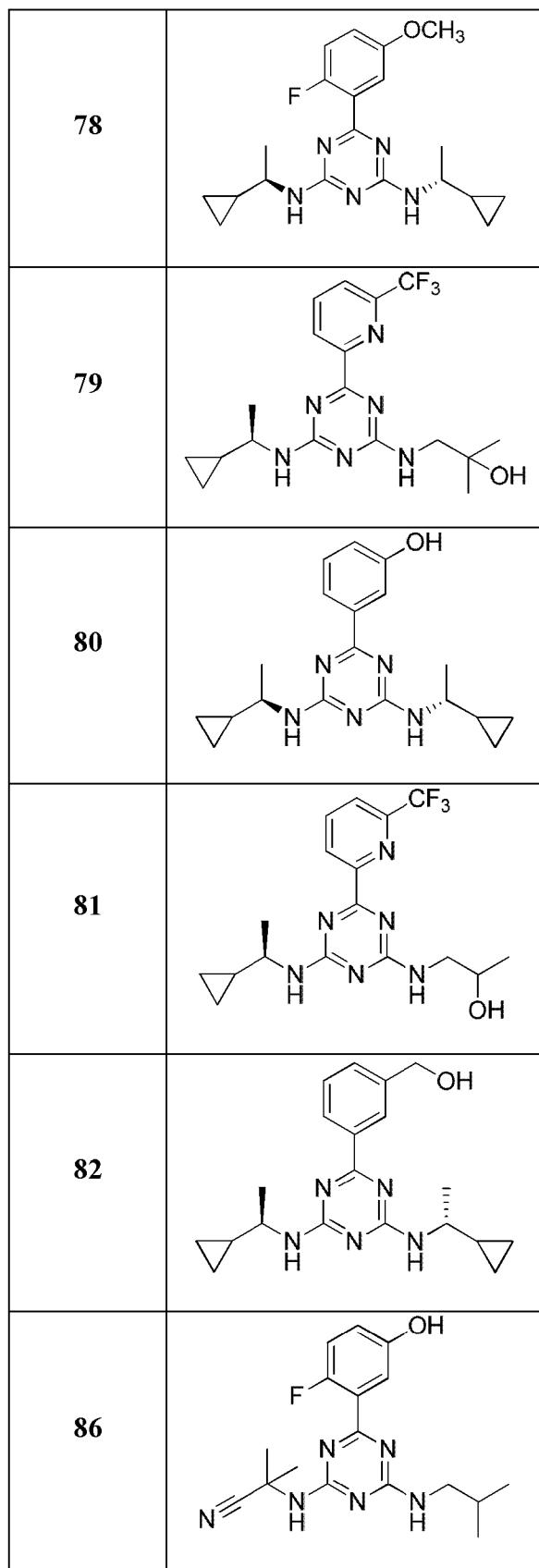












10. The compound of claim 1 or a pharmaceutically acceptable salt or hydrate thereof, wherein the compound is selected from:

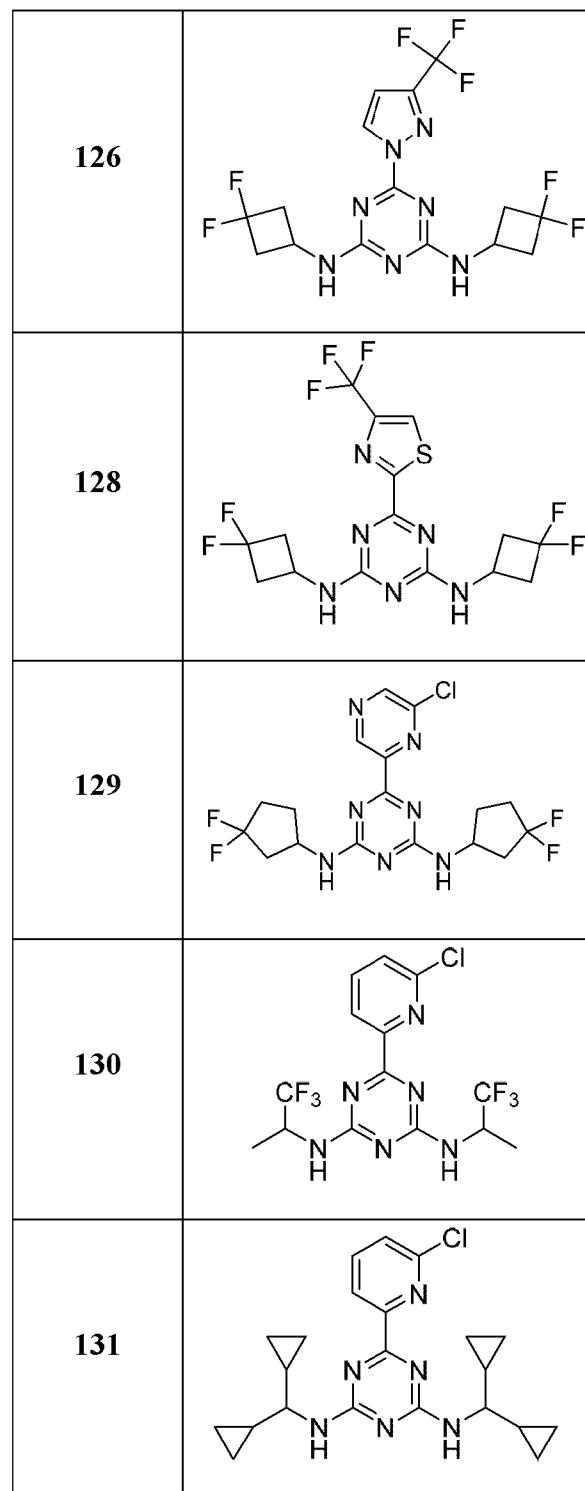
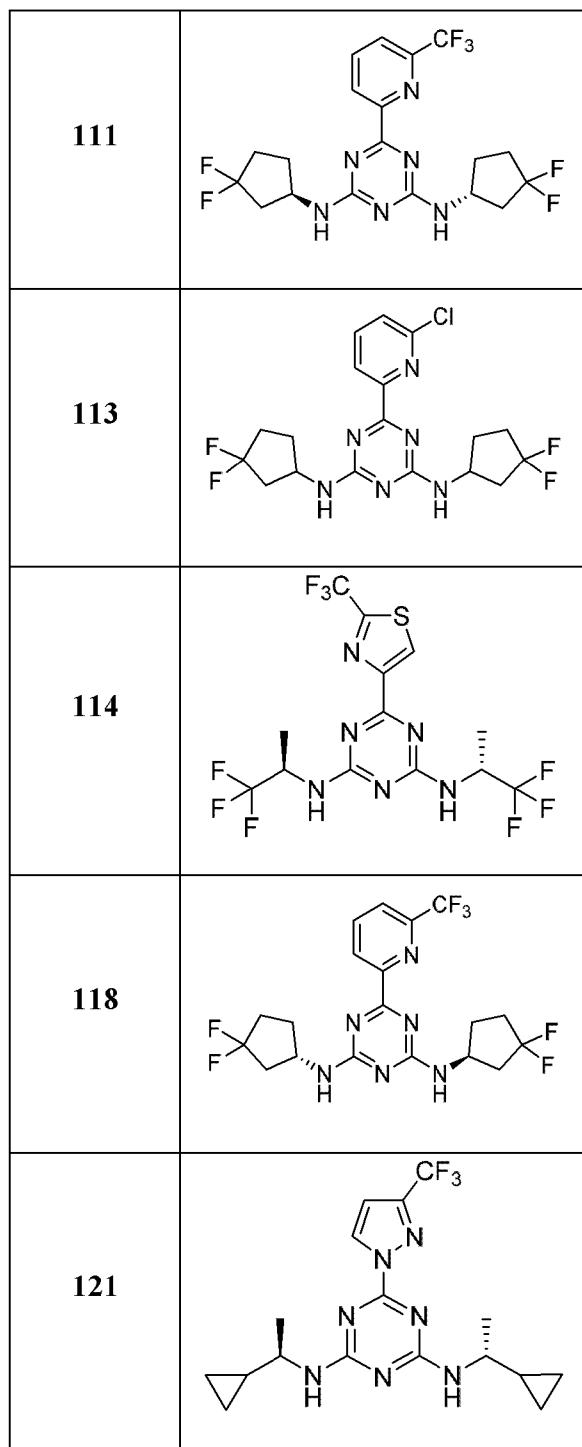



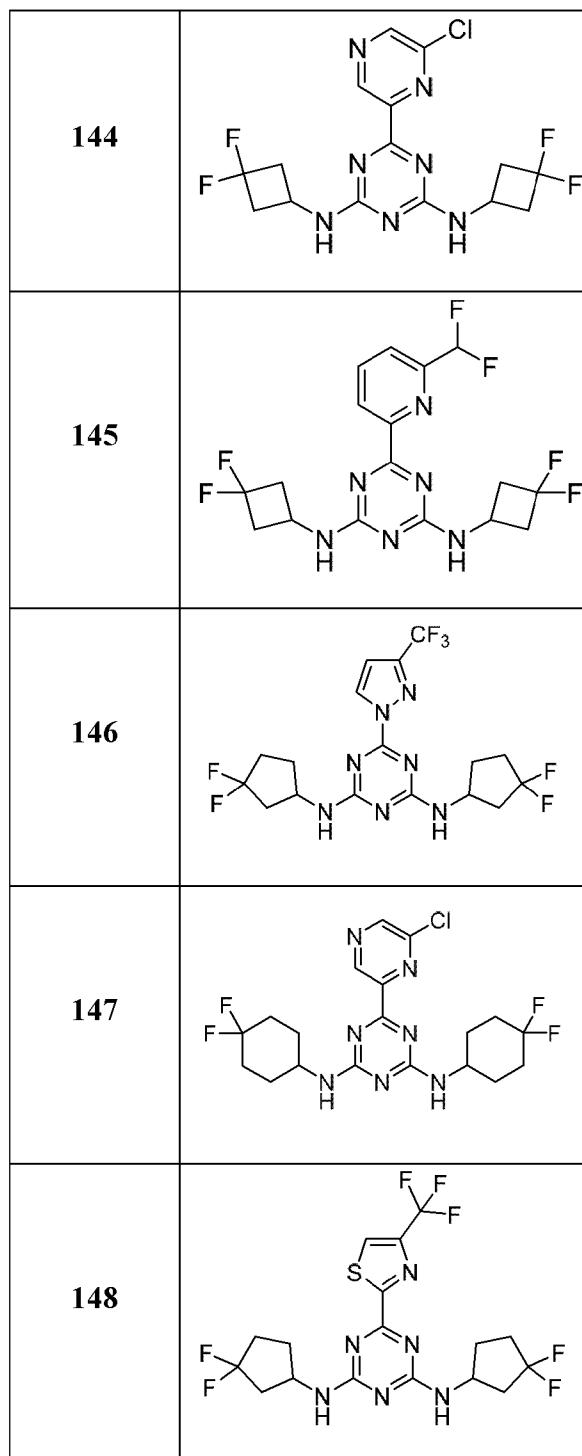
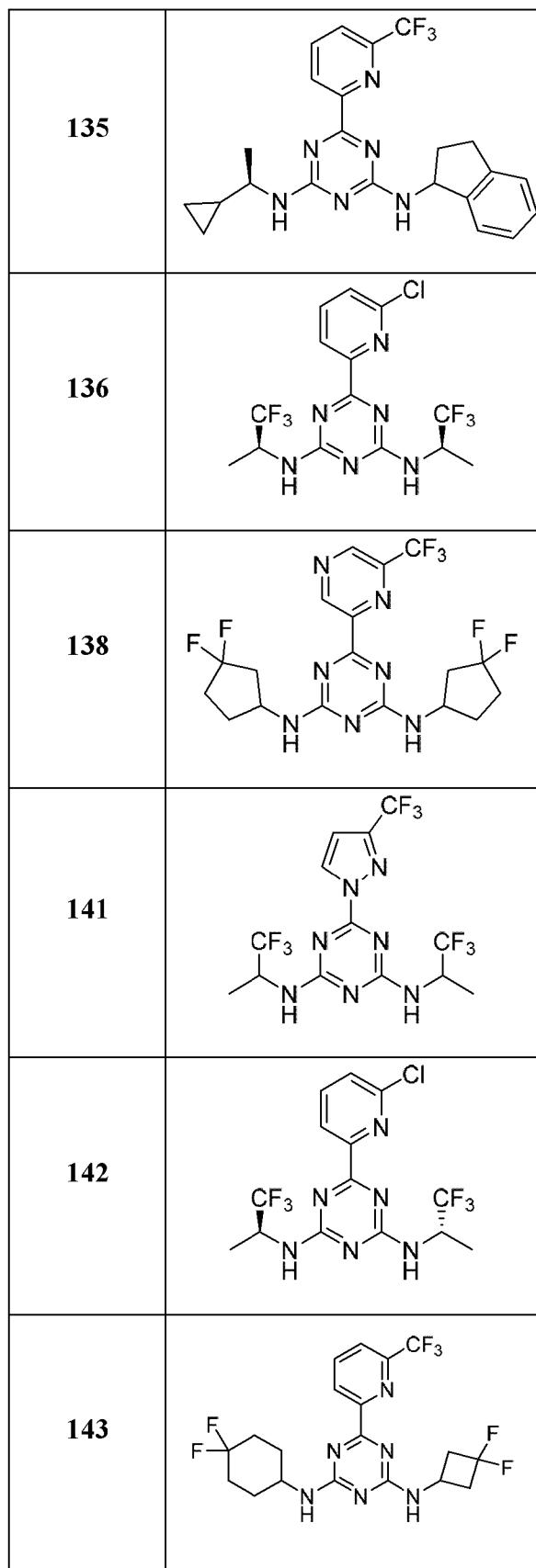







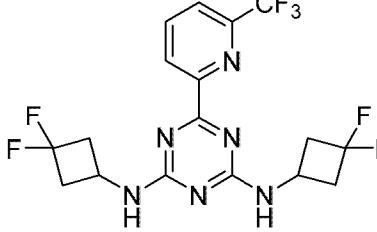
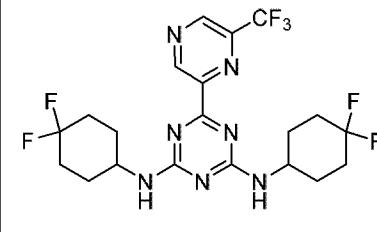
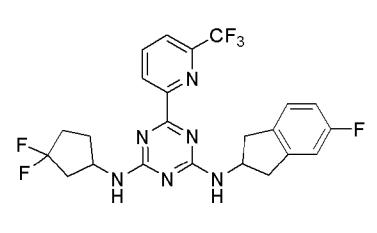
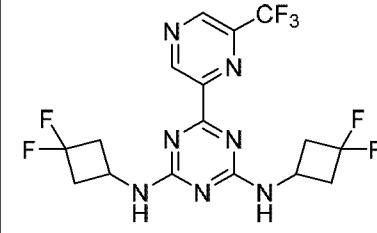
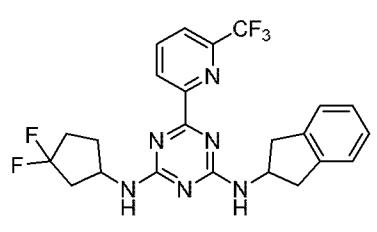
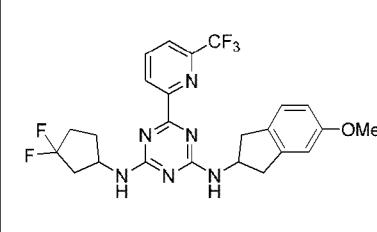
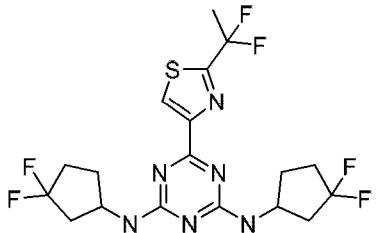
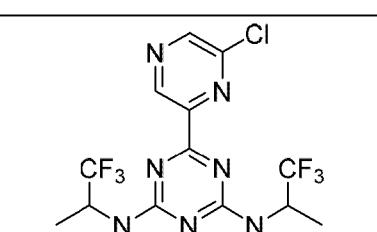
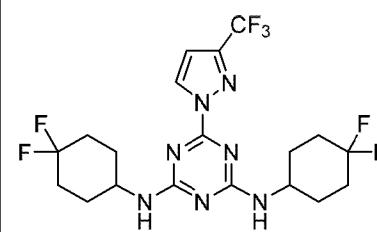
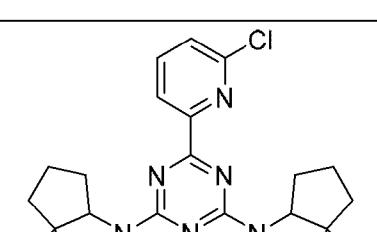
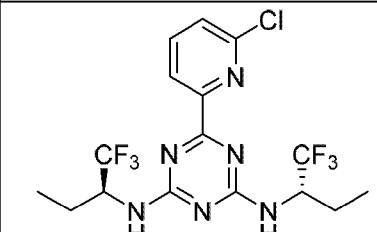






14	
15	
16	
17	
18	
19	

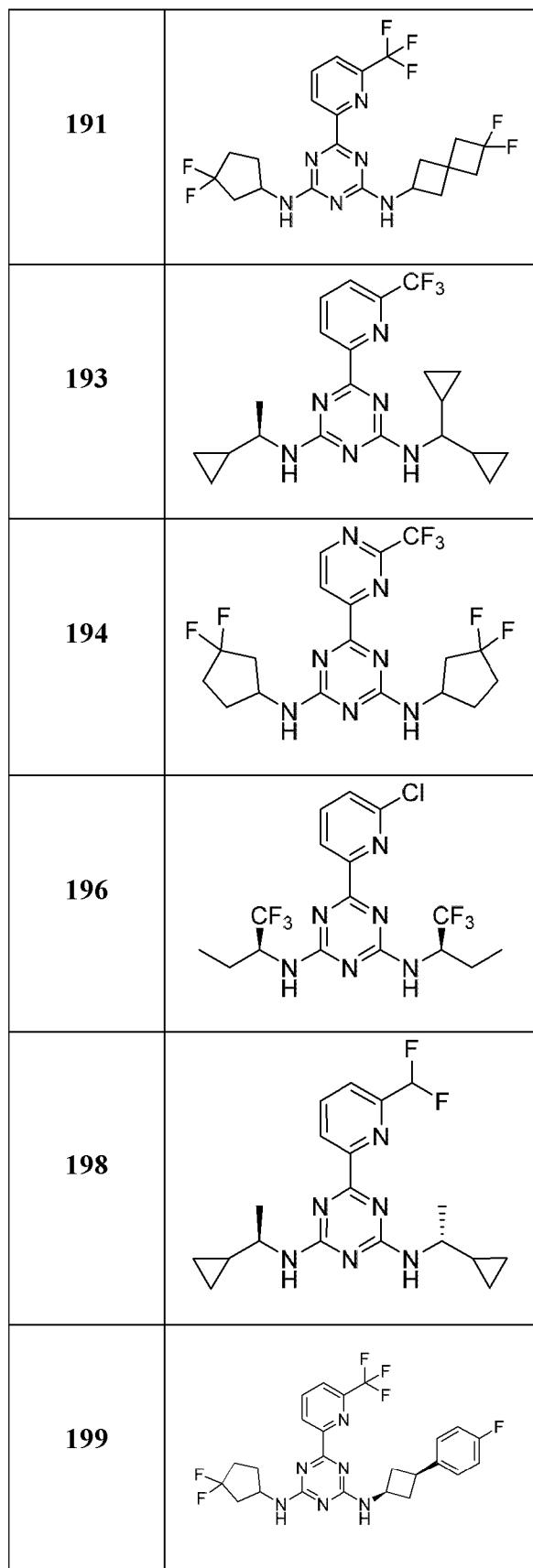
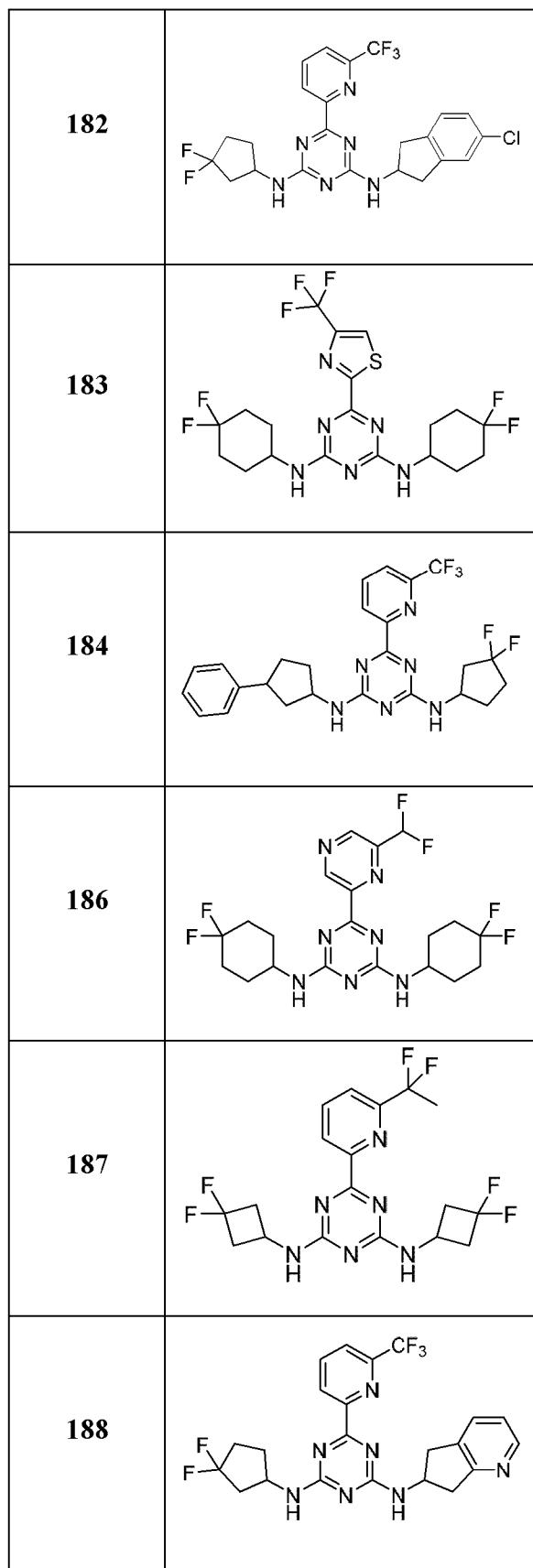


31	
32	
33	
34	
35	
36	

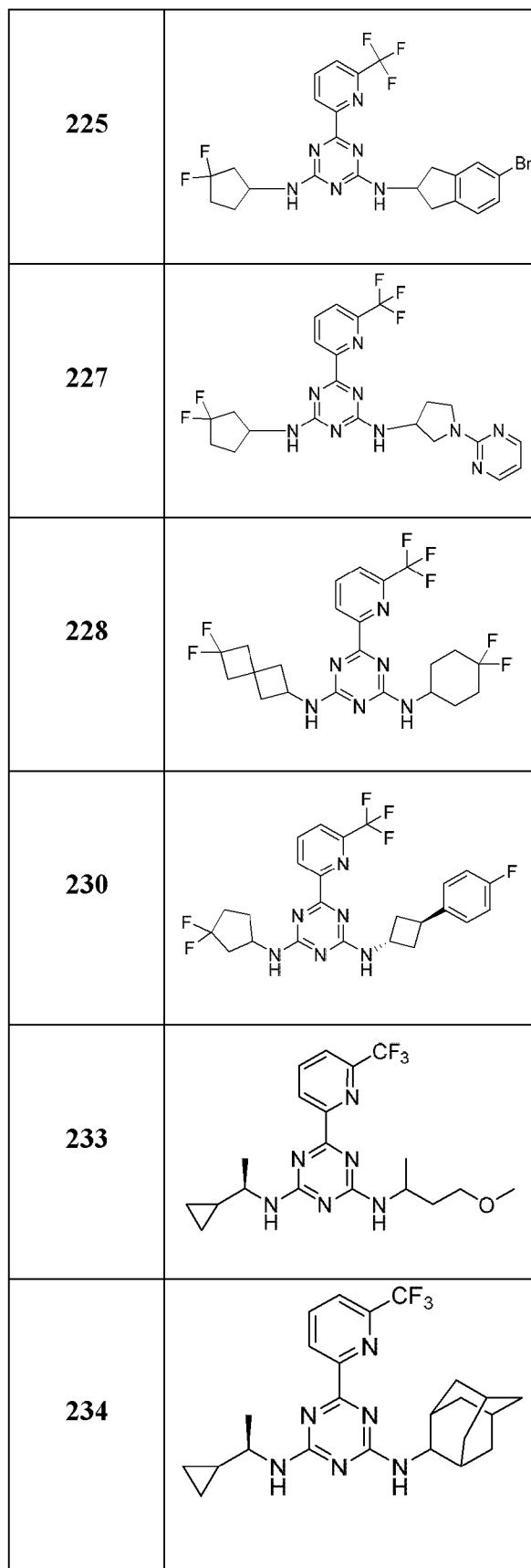
37			43	
38			44	
39			45	
40			46	
41			47	
42			48	

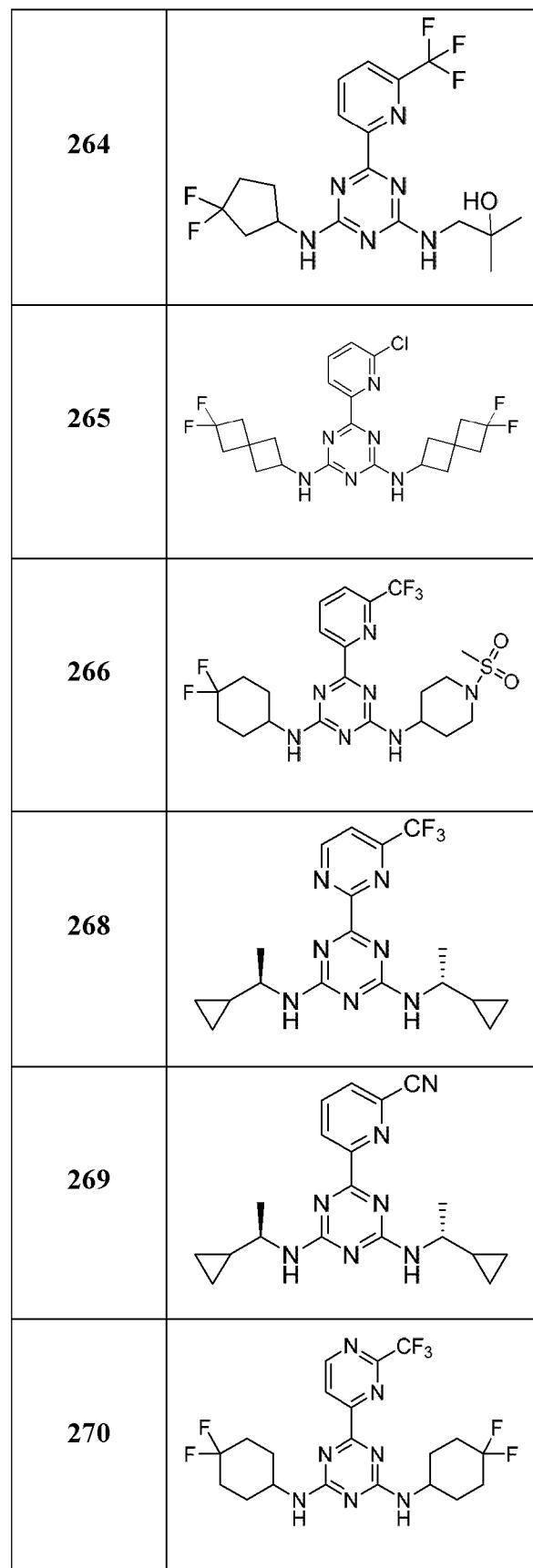
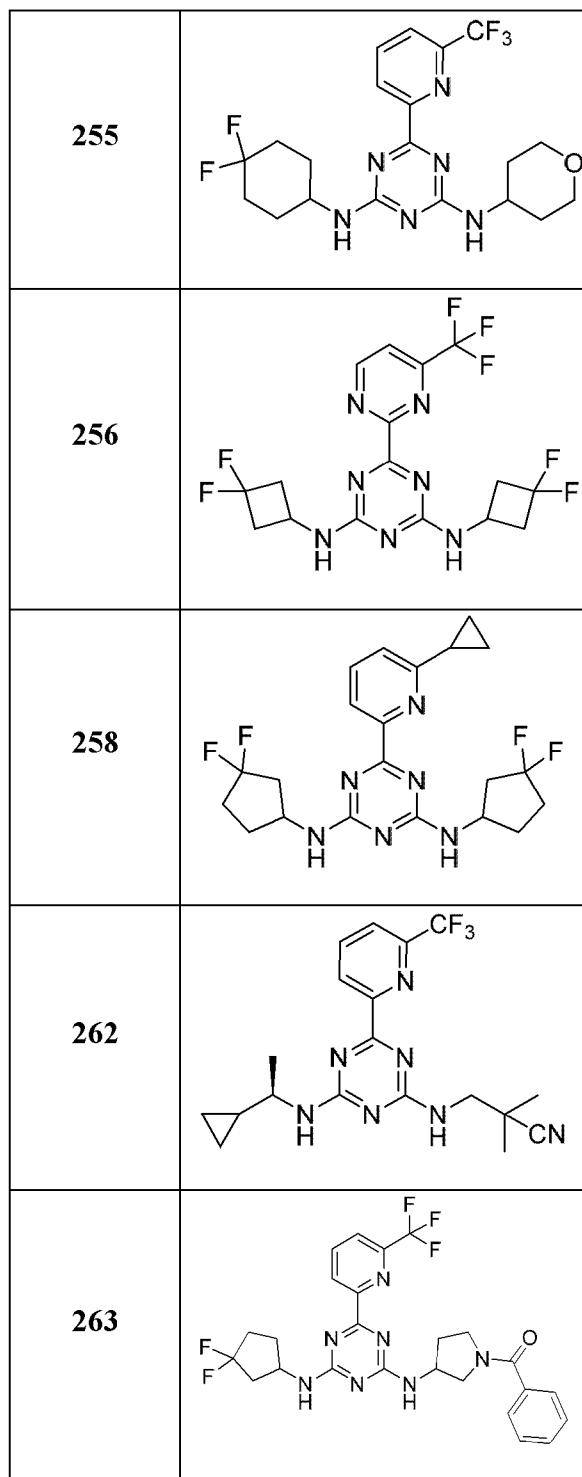


50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	

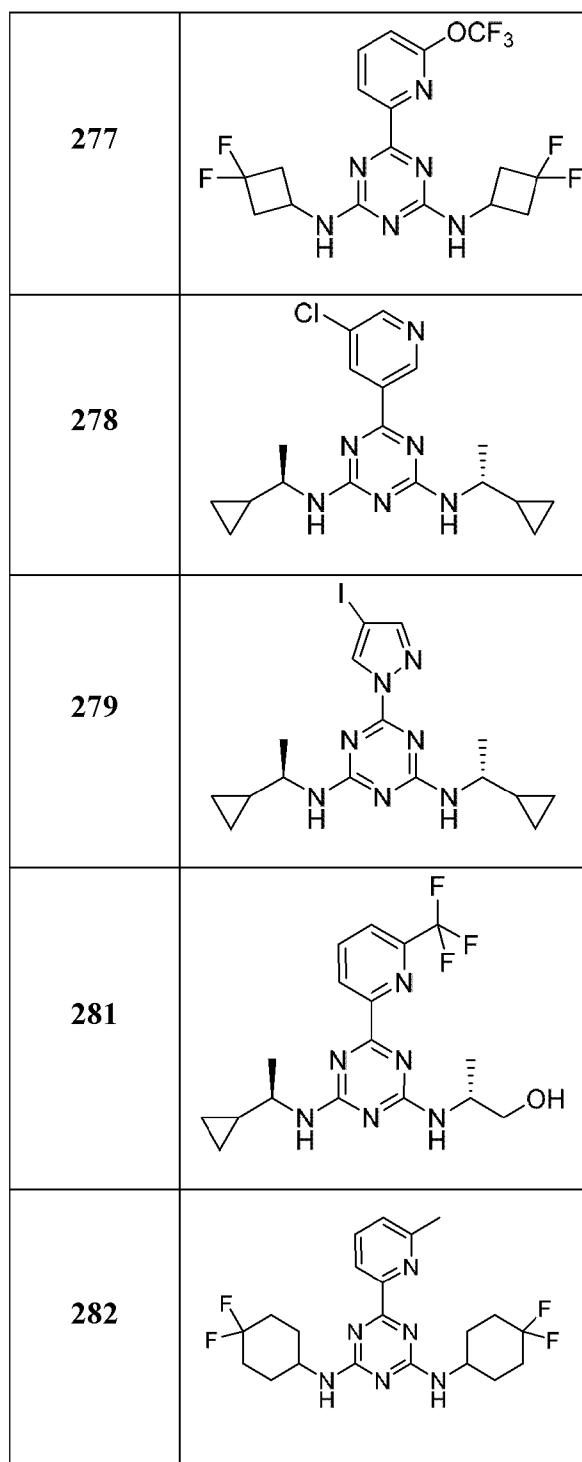
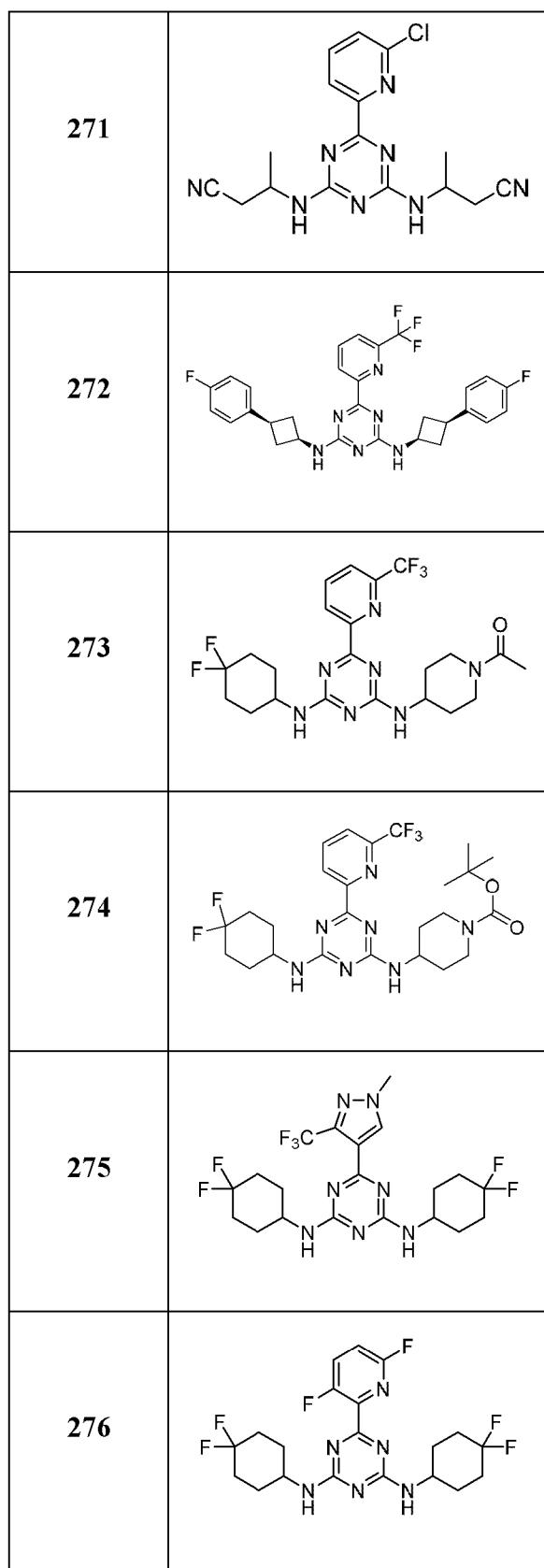


63		Chiral
64		Chiral
65		Chiral
66		Chiral
67		Chiral
69		

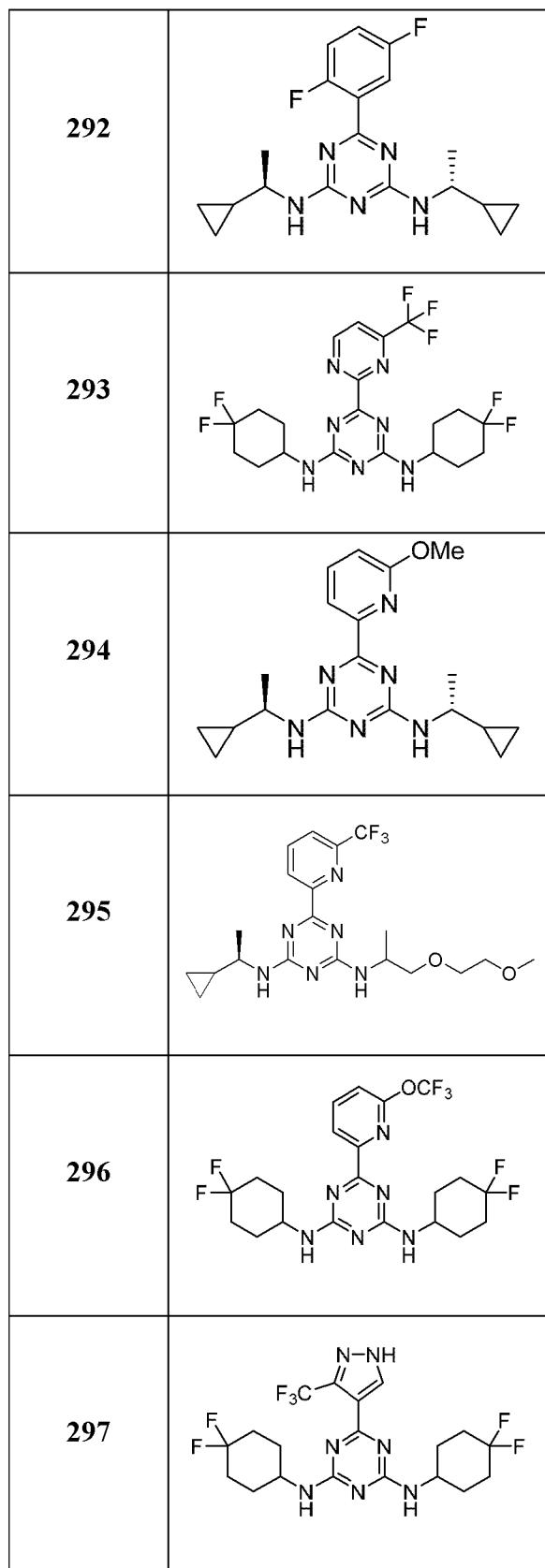
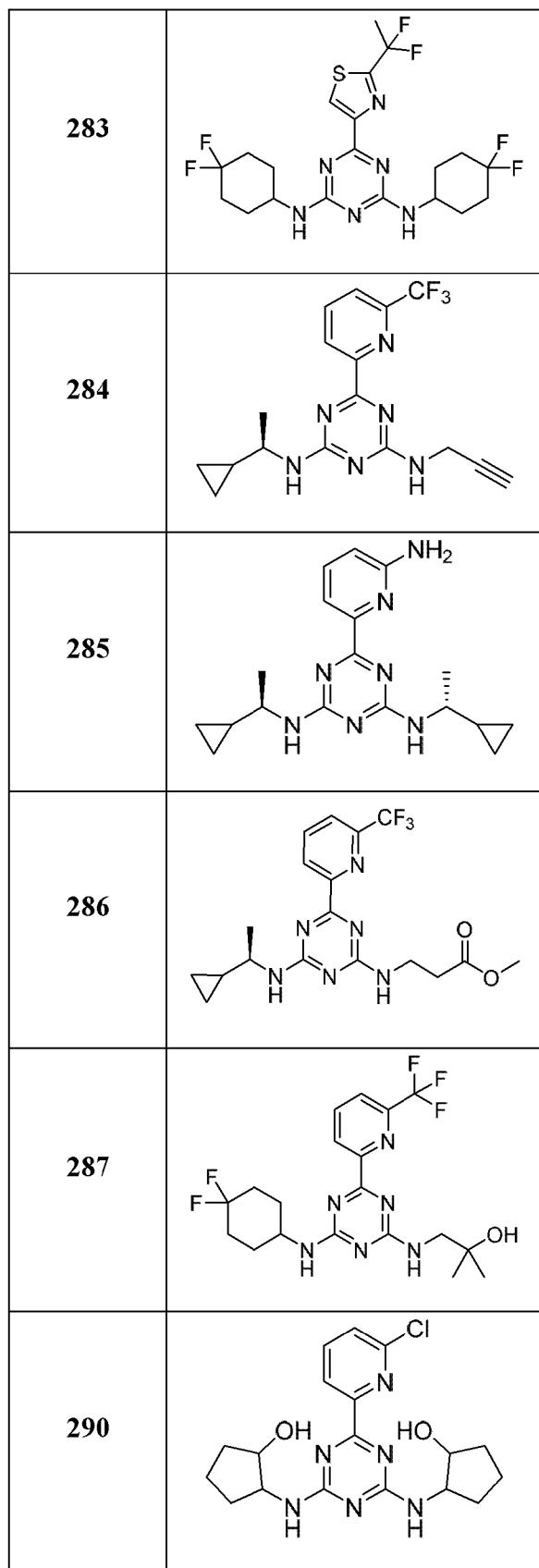











72	
73	
74	
75	
76	
77	

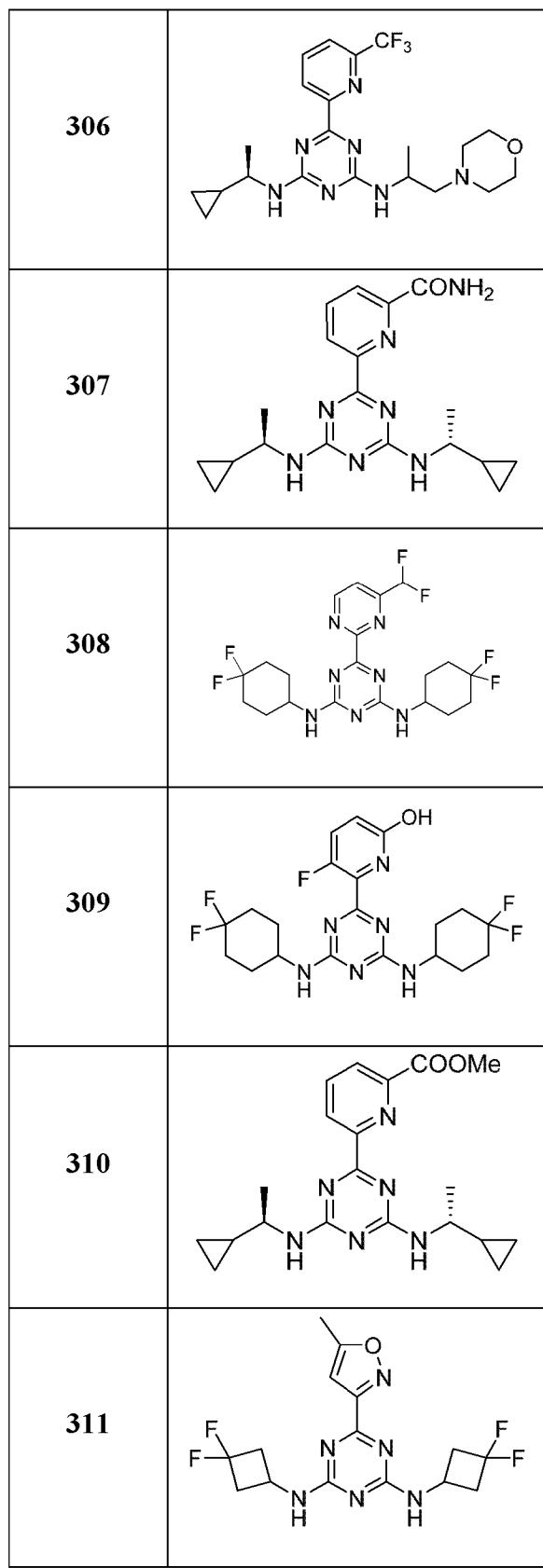
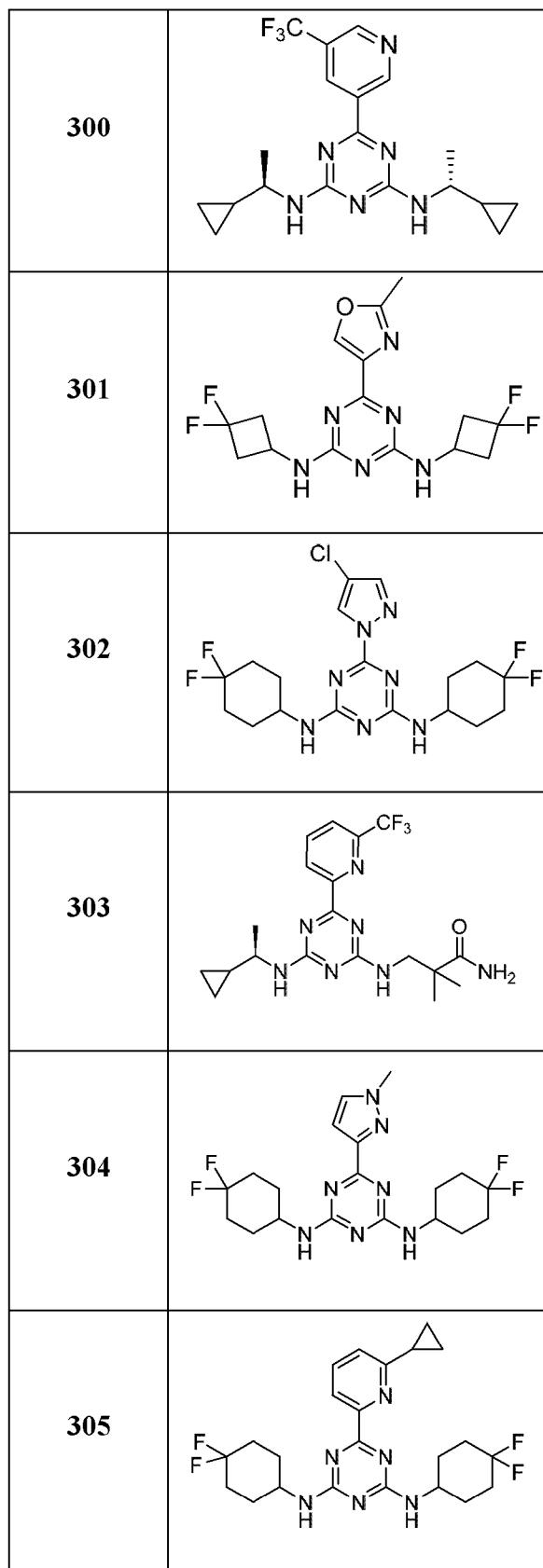



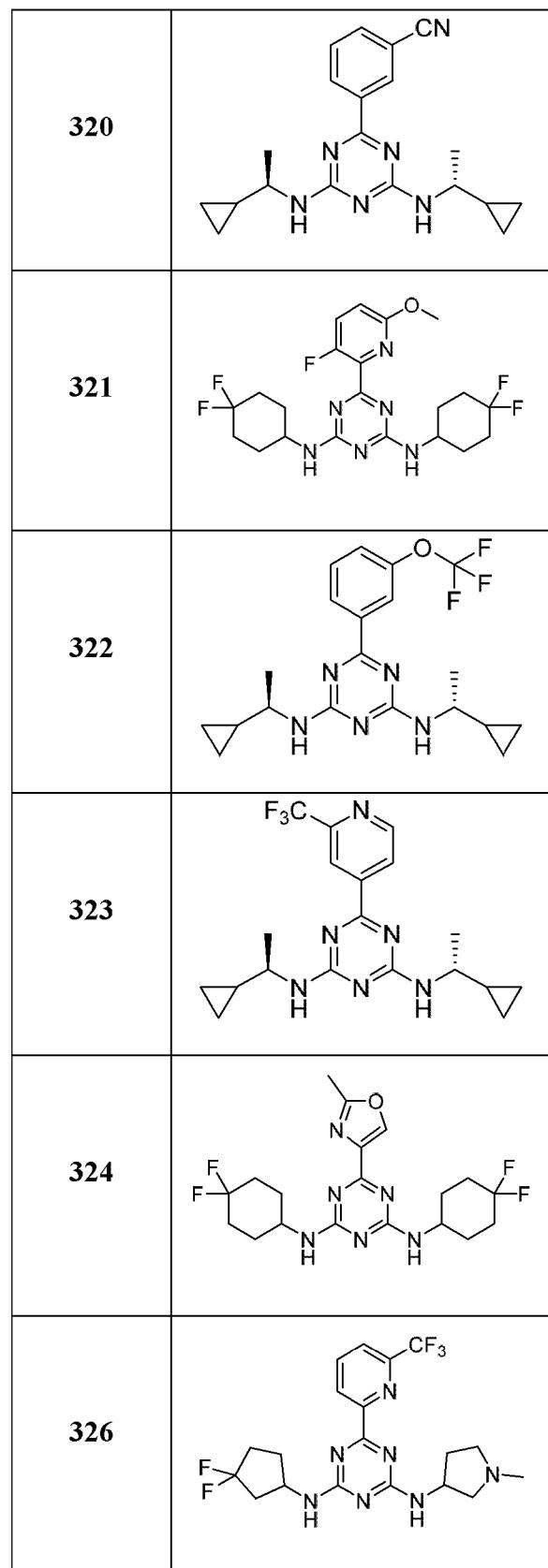



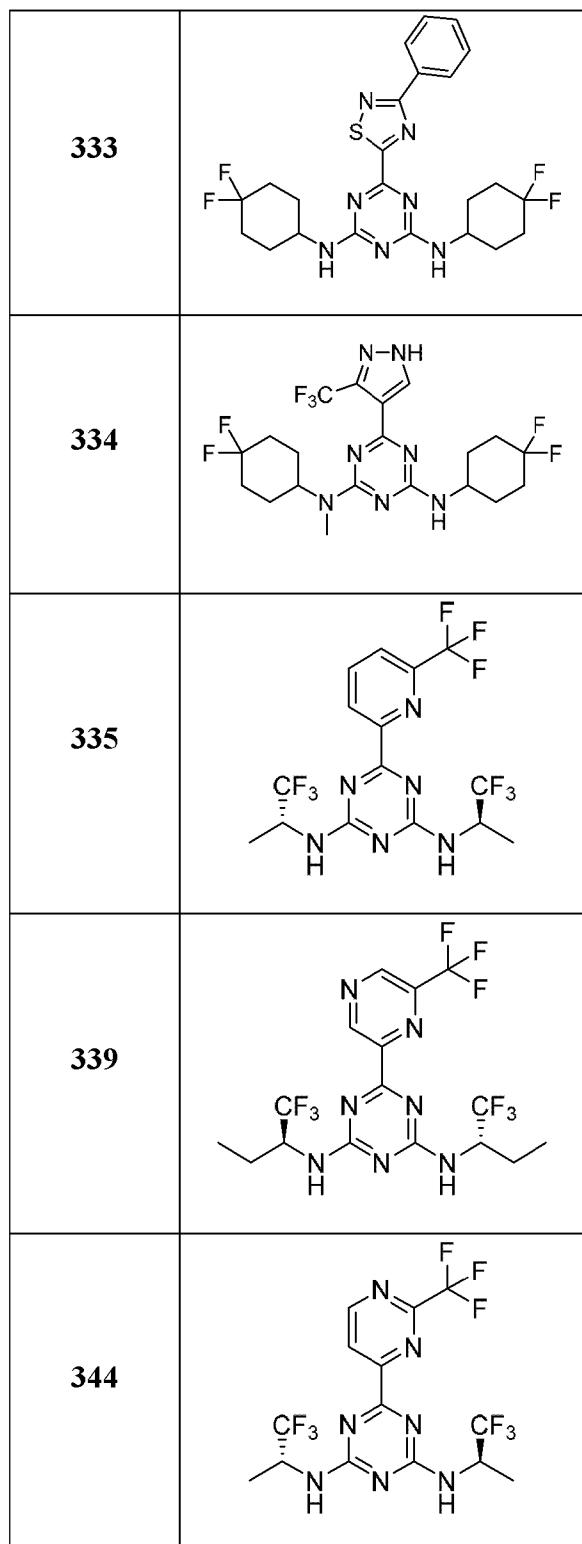
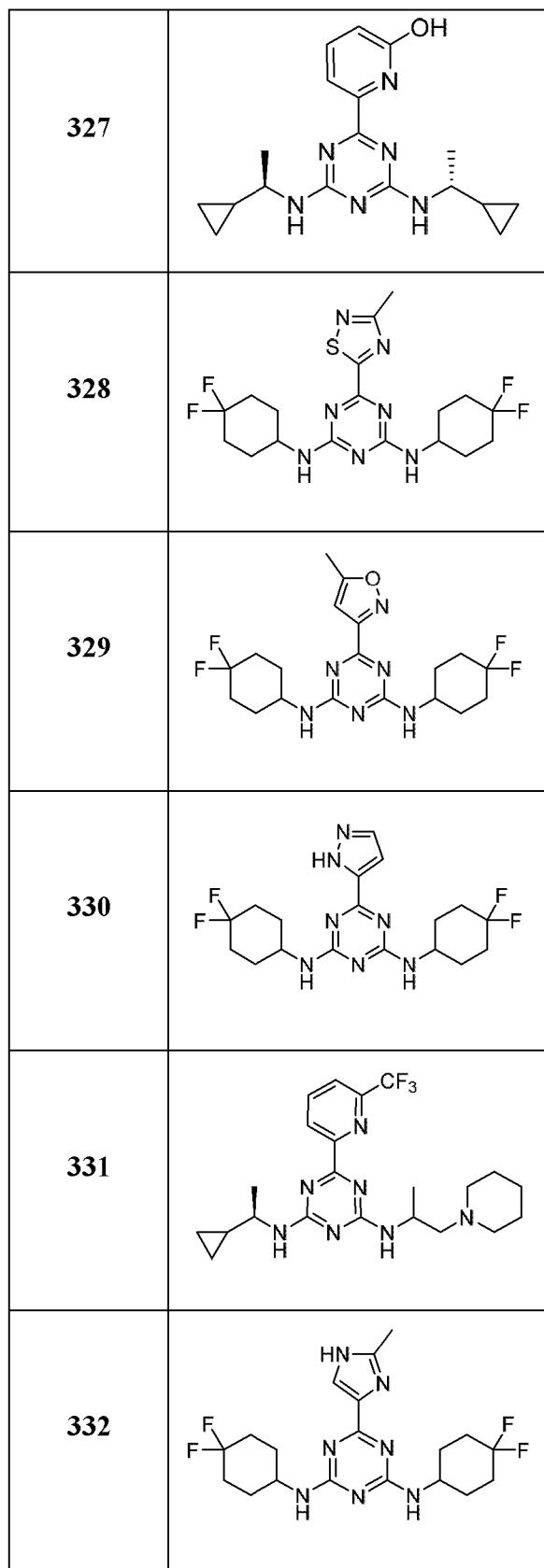



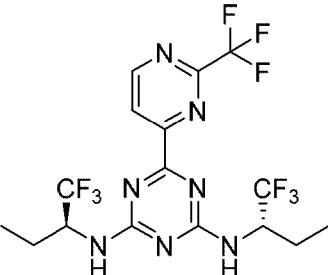
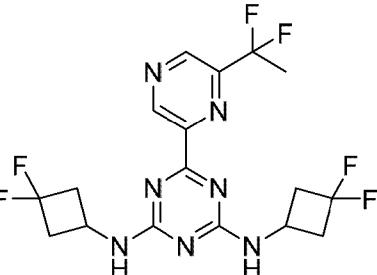
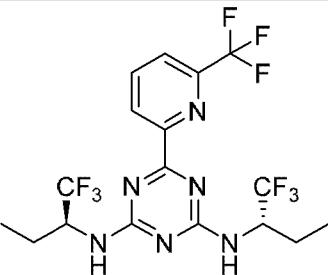
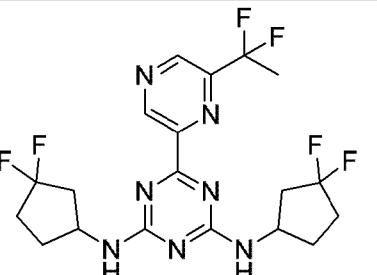
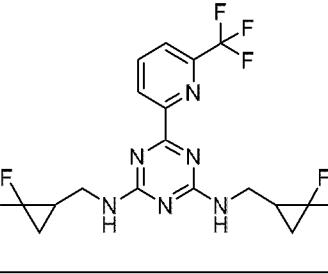
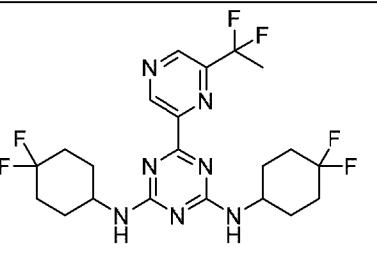
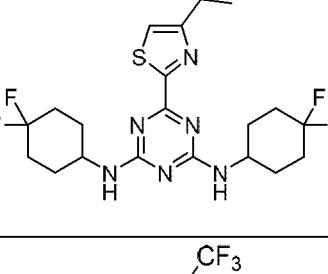
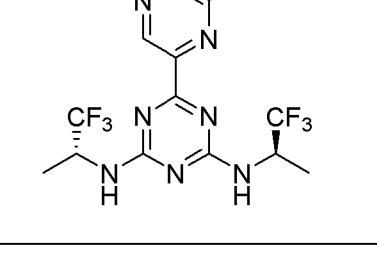
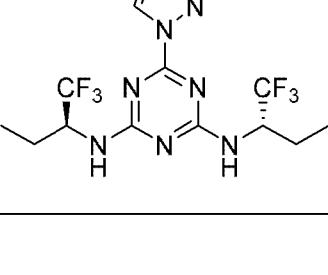
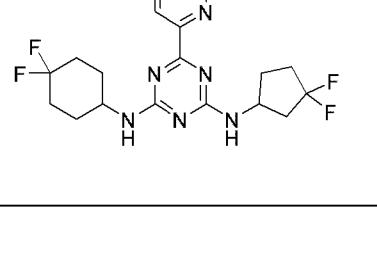


149		160	
150		161	
152		166	
155		170	
156		176	
157		180	

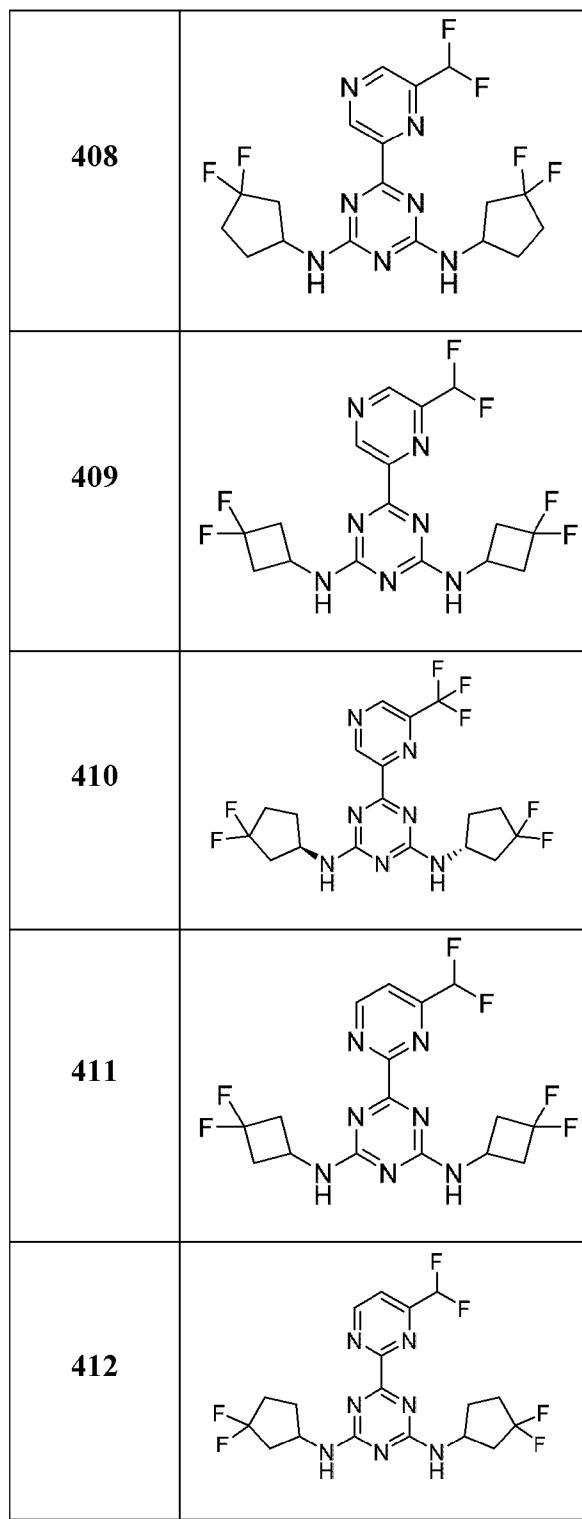
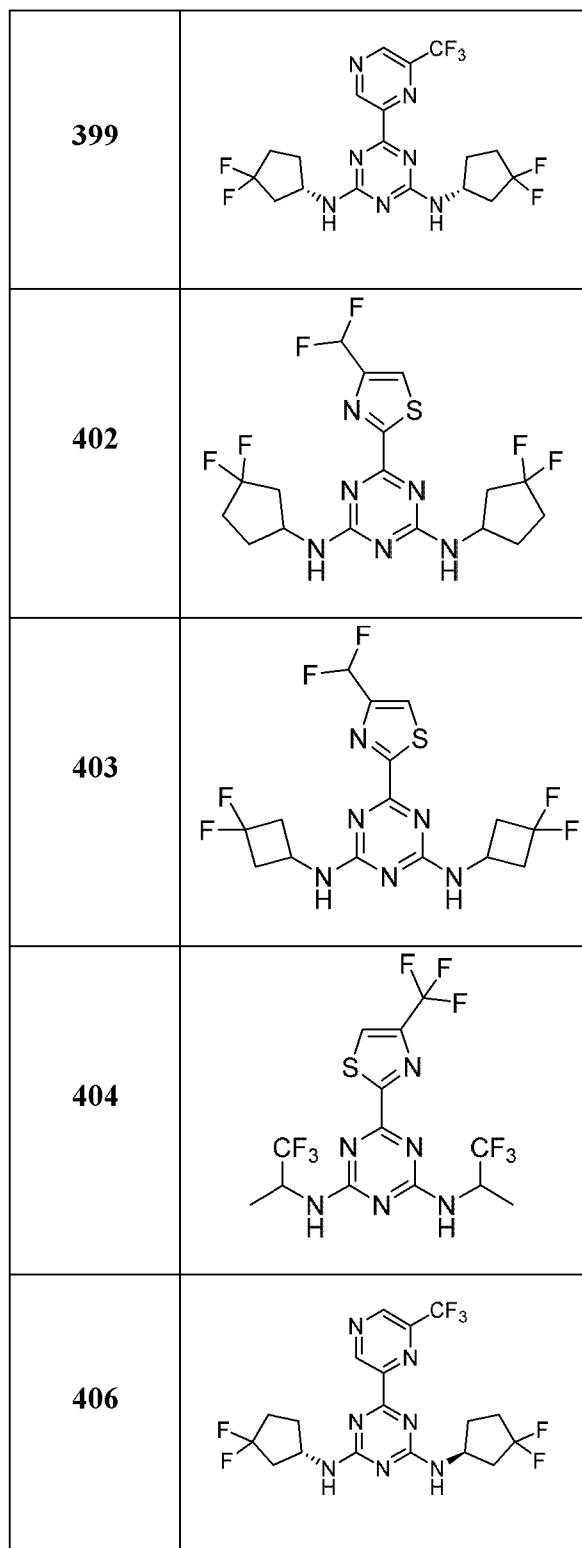



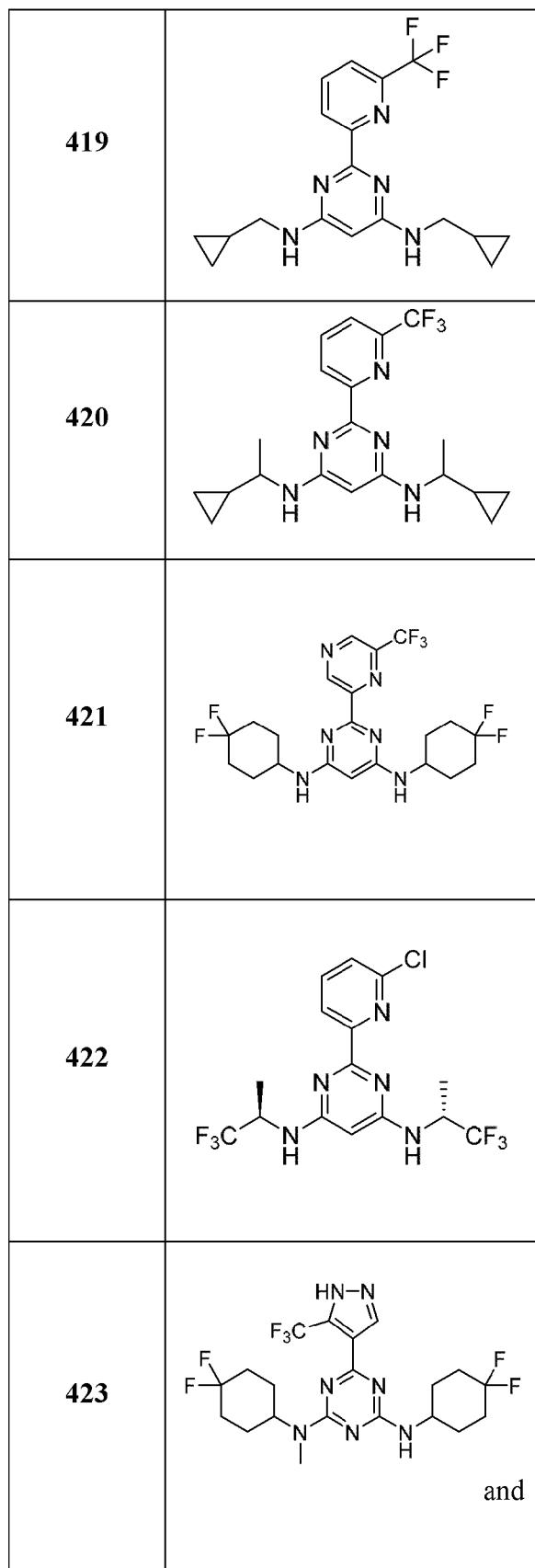
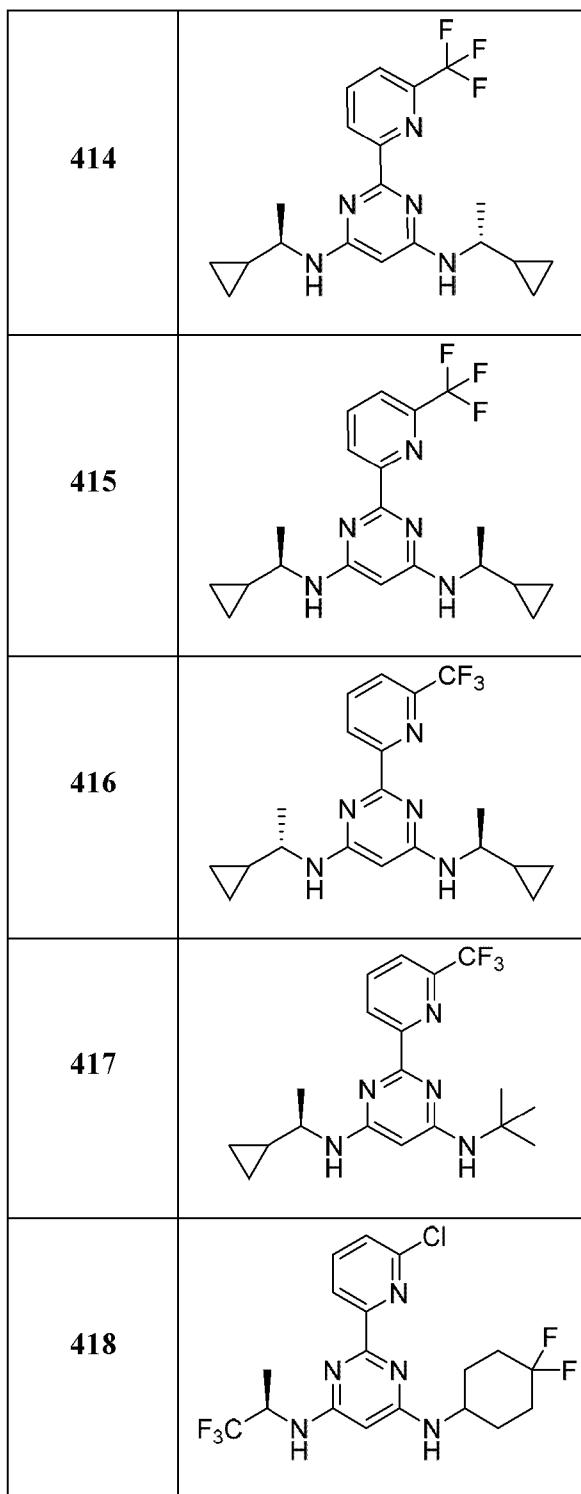


203		216	
205		218	
208		219	
209		222	
212		223	
214		224	



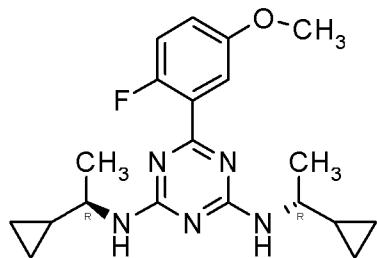











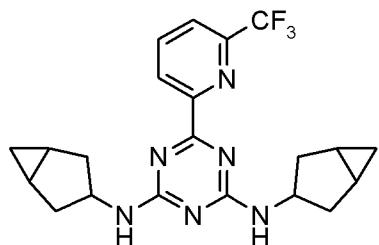



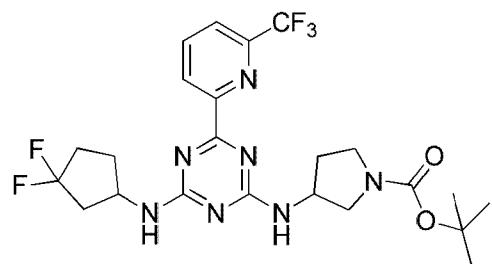



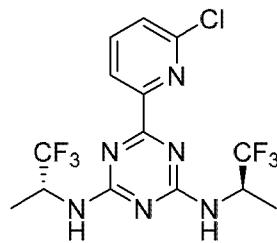


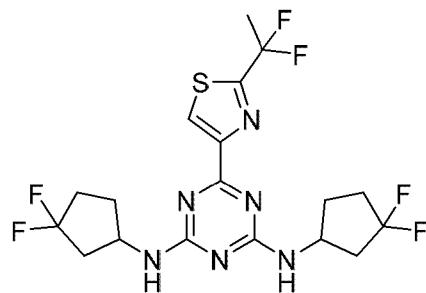
345		366	
346		370	
354		374	
357		386	
363		395	

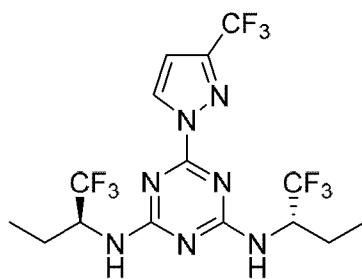


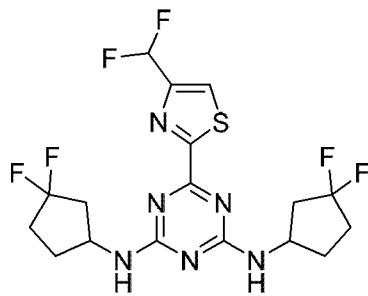

424

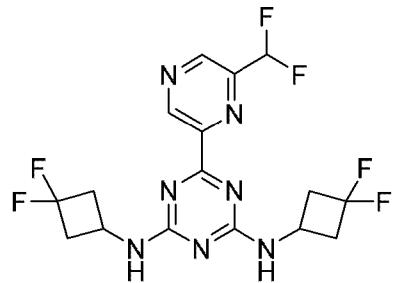

11. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

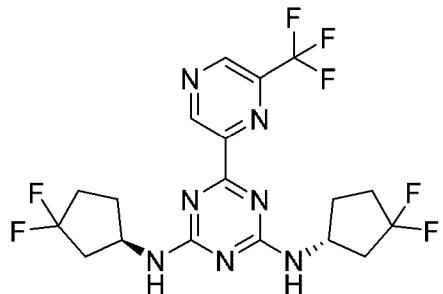

12. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

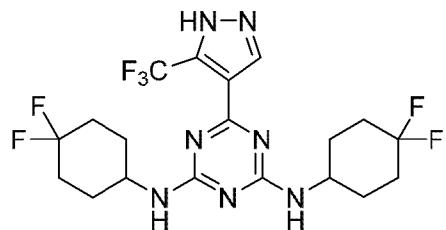

13. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:


14. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:


15. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:


16. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:


17. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

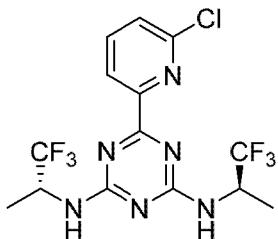

18. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

19. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

20. The compound of claim 10 or a pharmaceutically acceptable salt or hydrate thereof, having the structure:

21. A pharmaceutical composition comprising a compound of any one of claims 1 to 20 or a pharmaceutically acceptable salt or hydrate thereof, and a pharmaceutically acceptable carrier.

22. The pharmaceutical composition of claim 21, further comprising a second therapeutic agent useful in the treatment of a cancer.


23. Use of the compound of any one of claims 1 to 20 or a pharmaceutically acceptable salt or hydrate thereof for treatment of a cancer in a patient, wherein the cancer is characterized by the presence of an IDH1 mutation, wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in the patient.

24. The use of claim 23, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.

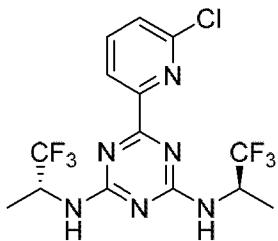
25. The use of claim 24, wherein the cancer is selected from glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, and angio-immunoblastic non-Hodgkin's lymphoma (NHL) in the patient.

26. The use of claim 25 wherein the cancer is glioma.

27. Use of a compound of formula:

or a pharmaceutically acceptable salt or hydrate thereof in treatment of glioma characterized by the presence of an IDH1 mutation in a patient in need thereof.

28. The use of claim 27, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.


29. The compound of any one of claims 1 to 20, or a pharmaceutically acceptable salt or hydrate thereof, for use in treatment of a cancer in a patient, wherein the cancer is characterized by the presence of an IDH1 mutation, wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in the patient.

30. The compound or the pharmaceutically acceptable salt or hydrate thereof of claim 29, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.

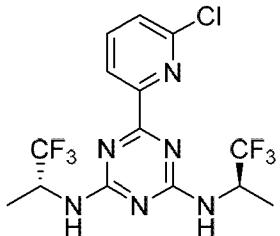
31. The compound or the pharmaceutically acceptable salt or hydrate thereof of claim 29 or 30, wherein the cancer is glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.

32. The compound or the pharmaceutically acceptable salt or hydrate thereof of claim 31 wherein the cancer is glioma.

33. A compound of formula:

or a pharmaceutically acceptable salt or hydrate thereof for use in treatment of glioma characterized by the presence of an IDH1 mutation in a patient in need thereof.

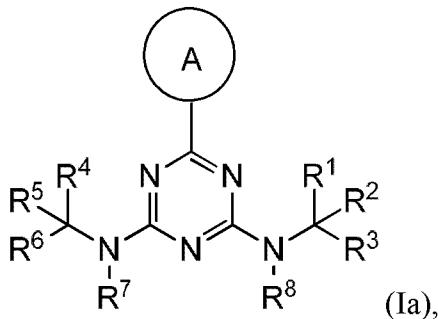
34. The compound or the pharmaceutically acceptable salt or hydrate thereof of claim 33, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.


35. The pharmaceutical composition of claim 21 or 22 for use in treatment of a cancer in a patient, wherein the cancer is characterized by the presence of an IDH1 mutation, wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in the patient.

36. The pharmaceutical composition of claim 35, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.

37. The pharmaceutical composition of claim 36, wherein the cancer is glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, or angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.

38. The pharmaceutical composition of claim 37 wherein the cancer is glioma.


39. A pharmaceutical composition comprising a compound of formula:

or a pharmaceutically acceptable salt or hydrate thereof, and a pharmaceutically acceptable carrier for use in treatment of glioma characterized by the presence of an IDH1 mutation in a patient in need thereof.

40. The pharmaceutical composition of claim 39, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.

41. A method for preparing a compound of formula (Ia) wherein:

ring A is selected from phenyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, and cyclopropyl optionally substituted with OH;

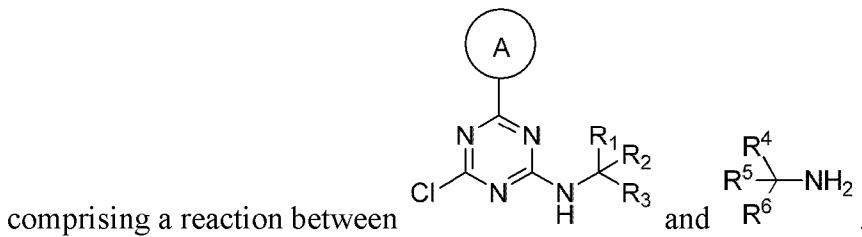
R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently optionally substituted with -OH, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl)-(C₀-C₆ alkylene)-Q and -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl) wherein:

any alkyl or alkylene moiety present in R² and R⁵ is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

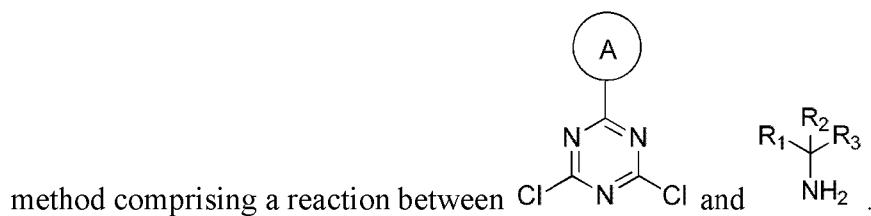
any terminal methyl moiety present in R² and R⁵ is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

Q is selected from carbocyclyl and heterocyclyl, any of which is substituted with 0-3 instances of halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, =O, -C(O)-C₁-C₄ alkyl, or CN; and

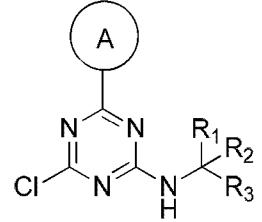

R⁷ and R⁸ are H;

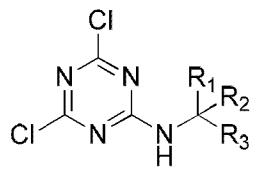
wherein

R¹ and R² are optionally taken together to form a carbocyclyl or substituted heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from


halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl; or

R⁴ and R⁵ are optionally taken together to form a substituted carbocyclyl, or a substituted heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from halo, -C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl;

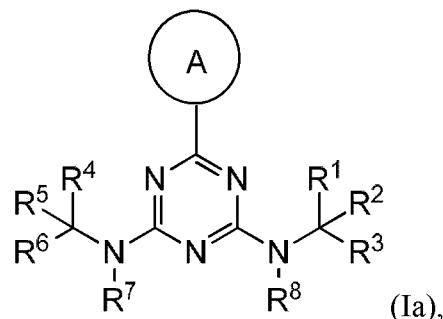



42. The method of claim 41 wherein the reaction takes place between 40-120 °C.

43. The method of claims 41 or 42 wherein is prepared by a

44. The method of claim 43 wherein the reaction takes place between 20-50 °C.

45. The method of claims 41 or 42 wherein is prepared by a


method comprising a reaction between and .

46. The method of claim 45 wherein the reaction takes place in the presence of a palladium catalyst and a base.

47. The method of claim 46 wherein the palladium catalyst is $\text{Pd}(\text{PPh}_3)_4$.

48. The method of claim 47 wherein the base is K_2CO_3 .

49. A method for preparing a compound of Formula (Ia) wherein:

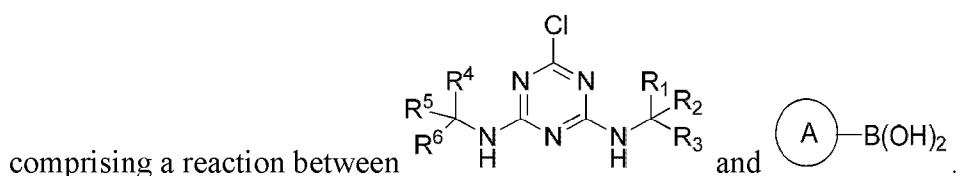
ring A is selected from phenyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl, pyrimidinyl, pyrazinyl, and thiazolyl, wherein ring A is optionally substituted with up to two substituents independently selected from halo, -C₁-C₄ alkyl, -C₁-C₄ haloalkyl, -C₁-C₄ hydroxyalkyl, -NH-S(O)₂-(C₁-C₄ alkyl), -S(O)₂NH(C₁-C₄ alkyl), -CN, -S(O)₂-(C₁-C₄ alkyl), C₁-C₄ alkoxy, -NH(C₁-C₄ alkyl), -OH, -OCF₃, -CN, -NH₂, -C(O)NH₂, -C(O)NH(C₁-C₄ alkyl), -C(O)-N(C₁-C₄ alkyl)₂, and cyclopropyl optionally substituted with OH;

R^1 , R^3 , R^4 , and R^6 are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R^1 , R^3 , R^4 , and R^6 are each independently optionally substituted with -OH, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂;

R^2 and R^5 are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl)-(C₀-C₆ alkylene)-Q and -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl) wherein:

any alkyl or alkylene moiety present in R^2 and R^5 is optionally substituted with one or more -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo;

any terminal methyl moiety present in R^2 and R^5 is optionally replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

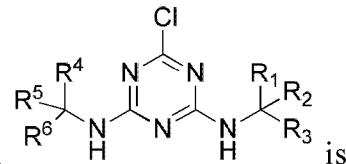

Q is selected from carbocyclyl and heterocyclyl, any of which is substituted with 0-3 instances of halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, =O, -C(O)-C₁-C₄ alkyl, or CN; and

R^7 and R^8 are H;

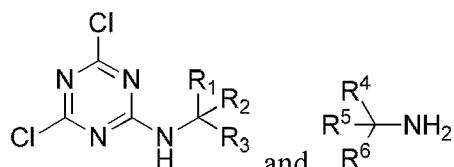
wherein

R^1 and R^2 are optionally taken together to form a carbocyclyl or substituted heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from halo, -C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl; or

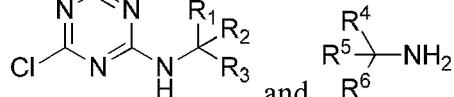
R^4 and R^5 are optionally taken together to form a substituted carbocyclyl, or a substituted heterocyclyl either of which is optionally substituted with up to 3 substituents independently selected from halo, -C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH, aryl, heteroaryl, -SO₂C₁-C₄ alkyl, -CO₂C₁-C₄ alkyl, -C(O)aryl, and -C(O)C₁-C₄ alkyl; and



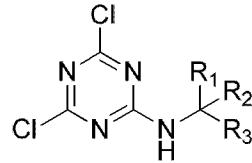
50. The method of claim 49 wherein the reaction takes place in the presence of a palladium catalyst and a base.


51. The method of claim 50 wherein the palladium catalyst is $\text{Pd}(\text{PPh}_3)_4$.

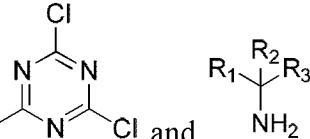
52. The method of claim 51 wherein the base is K_2CO_3 .


53. The method of any one of claims 49-52 wherein

prepared by method comprising a reaction between



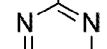
and



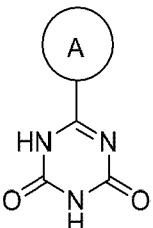
54. The method of claim 53 wherein the reaction takes place between 30-60 °C.

55. The method of any one of claims 45-48 and 53-54 wherein

prepared by a method comprising a reaction between

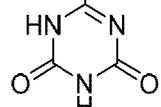


56. The method of claim 55 wherein the reaction takes place between 20-60 °C.


57. The method of any one of claims 41-44 and 55-58 wherein the reaction takes place in the presence of a base.

58. The method of claim 57 wherein the base is CsF , NaHCO_3 , Na_2CO_3 , DIPEA, TEA, pyridine or a combination thereof.

59. The method of claim 58 wherein the base is a mixture of CsF and DIPEA.


60. The method of any one of claims 43-44 wherein Clc1nc(Cl)nc2c1nc1c2n2c3c4c(Cl)c(Cl)c3[nH]2 is prepared by a

method comprising a reaction between HN=NC(=O)NHC(=O)N and POCl3.

61. The method of claim 60, wherein the reaction additionally takes place in the presence of PCl5.

62. The method of claim 60 or 61 wherein the reaction takes place at 80-110 °C.

63. The method of any one of claims 60-62 wherein HN=NC(=O)NHC(=O)N is prepared by a

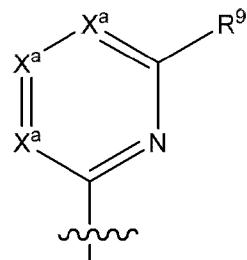
method comprising a reaction between O=C[O-] and H2N-C(=O)-NH-C(=O)-NH2 in the presence of a base.

64. The method of claim 62 wherein the base is an alkoxide base dissolved in the corresponding alcohol.

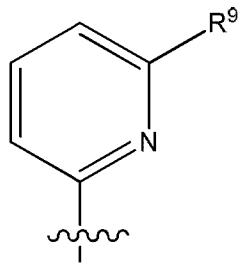
65. The method of claim 64 wherein the alkoxide is sodium ethoxide dissolved in ethanol.

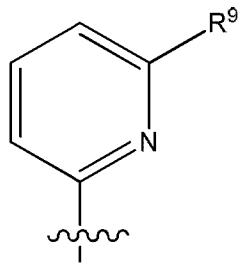
66. The method of any one of claims 63-65 wherein the reaction takes place at 20-110 °C.

67. The method of any one of claims 41-66 wherein R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, -O-C₁-C₄ alkyl, and CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ is independently substituted with 0-3 instances of -OH, -CN, -O-C₁-C₄ alkyl, -NH(C₁-C₄ alkyl), or -N(C₁-C₄ alkyl)₂; and


R² and R⁵ are each independently selected from: -(C₁-C₆ alkyl), -(C₁-C₆ alkyl)-C(O)-NH₂, -(C₁-C₆ alkyl)-CO₂H, -(C₂-C₆ alkenyl or alkynyl), -(C₁-C₆ alkylene)-O-(C₁-C₆ alkyl), -(C₀-C₆ alkylene)-C(O)N(R⁶)-(C₁-C₆ alkyl), and -(C₀-C₆ alkylene)-C(O)-(C₁-C₆ alkyl), wherein:

any alkyl or alkylene moiety present in R² and R⁵ is substituted with 0-3 instances of -OH, -O(C₁-C₄ alkyl), -CO₂H, or halo; and


any terminal methyl moiety present in R² and R⁵ can be replaced with -CH₂OH, CF₃, -CH₂F, -CH₂Cl, C(O)CH₃, C(O)CF₃, CN, or CO₂H;

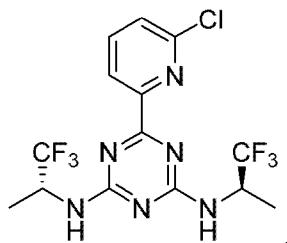

R¹ and R² can be taken together to form a carbocyclyl substituted with 0-3 substituents independently selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH and -C(O)C₁-C₄ alkyl; or

R⁴ and R⁵ can be taken together to form a carbocyclyl substituted with 0-3 substituents independently selected from halo, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, -CN, =O, -OH and -C(O)C₁-C₄ alkyl.

68. The method of any one of claims 41 to 67 wherein ring A is: , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl; each X^a is independently N or C-R^{9a}, provided that when one X^a is N, then the other two X^a are both C-R^{9a}; and R^{9a} is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

69. The method of any one of claims 41 to 68 wherein ring A is , wherein R⁹ is selected from hydrogen, halo, and -C₁-C₄ haloalkyl.

70. The method of any one of claims 41 to 69 wherein R¹, R³, R⁴, and R⁶ are each independently selected from hydrogen, C₁-C₄ alkyl, and -CN, wherein each said alkyl moiety of R¹, R³, R⁴, and R⁶ are each independently substituted with 0-1 instances of -OH, -NH₂, -CN, or -O-C₁-C₄ alkyl; and R² and R⁵ are each independently selected from -(C₁-C₆ alkyl) and -(C₀-C₆ alkylene)-Q.

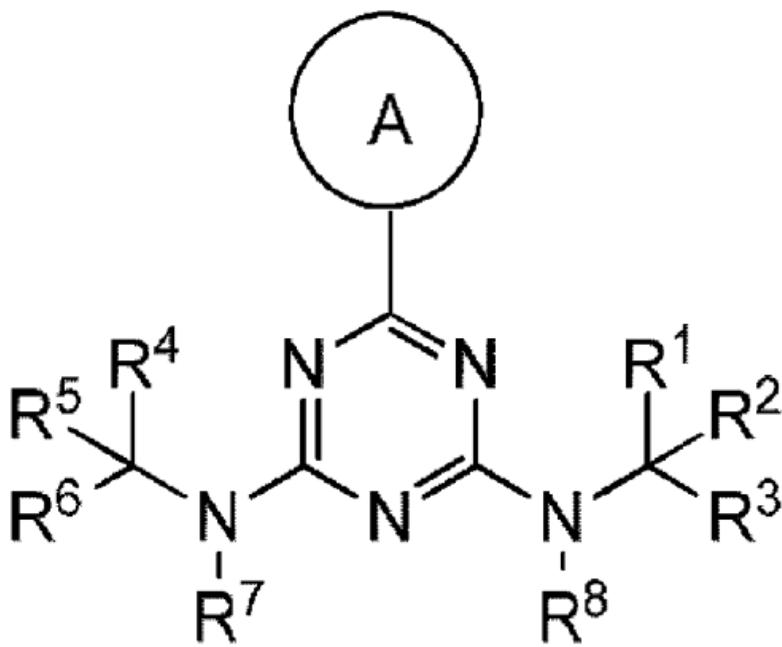

71. The method of any one of claims 41 to 70 wherein Q is selected from pyridinyl, tetrahydrofuranyl, cyclobutyl, cyclopropyl, phenyl, pyrazolyl, morpholinyl and oxetanyl, wherein Q is substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ haloalkyl, =O, fluoro, chloro, and bromo.

72. The method of claim 71 wherein Q is cyclopropyl.

73. The method of any one of claims 41 to 72 wherein R¹ and R² are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, and azetidinyl, any of which is substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, -OH, -C(O)CH₃, fluoro, and chloro.

74. The method of any one of claims 41 to 73 wherein R⁴ and R⁵ are taken together to form cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydrofuranyl, tetrahydropyranyl, oxetanyl, bicyclo[2.2.1]heptanyl, oxobicyclo[3.1.0]hexanyl, or azetidinyl, any of which is substituted with 0-2 substituents independently selected from C₁-C₄ alkyl, C₁-C₄ alkoxy, C₃-C₆ cycloalkyl, -OH, -C(O)CH₃, fluoro, and chloro.

75. The method of any one of claims 41 to 74 wherein the compound is



76. Use of the compound of any one of claims 1 to 20 or a pharmaceutically acceptable salt or hydrate thereof in preparation of a medicament for treatment of a cancer in a patient, wherein the cancer is characterized by the presence of an IDH1 mutation, wherein the IDH1 mutation results in a new ability of the enzyme to catalyze the NADPH-dependent reduction of α -ketoglutarate to *R*(-)-2-hydroxyglutarate in the patient.

77. The use of claim 76, wherein the IDH1 mutation is an IDH1 R132H or R132C mutation.

78. The use of claim 77, wherein the cancer is selected from glioma (glioblastoma), acute myelogenous leukemia, sarcoma, melanoma, non-small cell lung cancer (NSCLC), cholangiocarcinomas, chondrosarcoma, myelodysplastic syndromes (MDS), myeloproliferative neoplasm (MPN), colon cancer, and angio-immunoblastic non-Hodgkin's lymphoma (NHL) in a patient.

79. The use of claim 78, wherein the cancer is glioma.

Formular (Ia)