

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 200076260 B2
(10) Patent No. 784971

(54) Title
Treatment of patients having non-Hodgkins lymphoma with bone marrow involvement with anti-CD20 antibodies

(51) ⁶ International Patent Classification(s)
A61K 39/395 20060101AFI20
(2006.01) 060408BMEP
C07K 16/28 C07K 16/28
(2006.01) 20060101ALI20
A61K 39/395 060408BMEP

(21) Application No: 200076260 (22) Application Date: 2000.07.25

(87) WIPO No: WO01/10462

(30) Priority Data

(31) Number (32) Date (33) Country
60/148287 1999.08.11 US

(43) Publication Date : 2001.03.05
(43) Publication Journal Date : 2001.05.10
(44) Accepted Journal Date : 2006.08.10

(71) Applicant(s)
Biogen Idec Inc.

(72) Inventor(s)
William H. Rastetter

(74) Agent/Attorney
Davies Collison Cave, Level 15, 1 Nicholson Street, MELBOURNE VIC 3000

(56) Related Art
US 5595721
US 5843439
MALONEY ET AL. MONOCHONAL ANTI.ONCOLOGY (1998) VOL 12 NO. 8 PP 63-76

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/10462 A1

(51) International Patent Classification⁷: A61K 39/395 (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/US00/40459

(22) International Filing Date: 25 July 2000 (25.07.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/148,287 11 August 1999 (11.08.1999) US
Biogen Idec Inc.
11, Apparatus for ... designated states except U.S. Biogen
PHARMACEUTICALS CORPORATION [US/US];
1101 Torreyana Road, San Diego, CA 92121 (US).
5200 Research Place, San Diego, California,
(72) Inventor: and 92121, US.

(75) Inventor/Applicant (for US only): RASTETTER, William, H. [US/US]; 16067 Puerta Del Sol, Rancho
Sante Fe, CA 92067 (US).

(74) Agent: TESKIN, Robin, L.; BURNS, DOANE,
SWECKER & MATHIS, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404 (US).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/10462 A1

(54) Title: TREATMENT OF PATIENTS HAVING NON-HODGKINS LYMPHOMA WITH BONE MARROW INVOLVEMENT WITH ANTI-CD20 ANTIBODIES

(57) Abstract: This invention relates to methods of reducing bone marrow involvement in B cell lymphoma patients prior to radioimmunotherapy by administering monoclonal antibodies which target cancerous B cells.

**Treatment of Patients having Non-Hodgkins Lymphoma
with Bone Marrow Involvement with Anti-CD20 Antibodies**

Field of the Invention

The present invention relates to a method of
5 reducing the number of cancerous B cells in the bone
marrow of a patient having a B cell lymphoma prior to
radioimmunotherapy comprising administration of an anti-
CD20 antibody. Combined therapeutic methods of treating
a patient having lymphoma with associated bone marrow
10 involvement are also encompassed.

Background of the Invention

Radioimmunotherapy of B cell lymphoma is limited by
marrow involvement, i.e., infiltration of the bone
marrow by cancerous B lymphocytes. This complicates
15 radicimmunotherapy in two regards: (1) antibody binding
to diseased cells in the marrow will deliver a dose of
radiation to the marrow thereby causing unwanted
myelosuppression; and (2) marrow crowding of normal
cells and progenitors will weaken healthy marrow
20 reserves so that patients may actually be closer to
grade 3 or 4 cytopenias than would be the case in
patients without marrow involvement. In either case,
the patient may be less tolerant to radioimmunotherapy,
e.g., with B cell depleting antibody conjugated to a
25 radioisotope such as ^{90}Y or ^{131}I . As a consequence,
patients with greater than 25% bone marrow involvement

-2-

are generally excluded from treatment with radioimmunotherapy.

As found by Wiseman and colleagues, the clinical parameters of baseline platelet counts and degree of bone marrow involvement are accurate predictors of hematologic toxicity in patients with low-grade follicular non-Hodgkins lymphoma undergoing therapy with Y2B8, a murine anti-CD20 antibody conjugated to ^{90}Y . For instance, eight percent of patients (2/25) without bone marrow involvement developed Grade 4 thrombocytopenia vs. 25% (1/4) of those with 0.1-5% bone marrow involvement. 45% (5/11) of those with 5-20% involvement, and 100% (6/6) with 20-25% involvement (Wiseman et al. IDEC-Y2B8 radioimmunotherapy: baseline bone marrow involvement and platelet count are better predictors of hematologic toxicity than dosimetry. Blood 1998 Supplement November, 92(10) : 417a (1721) Poster Board #/Session: 393-III).

It would be useful to develop methods of reducing the bone marrow involvement in patients with non-Hodgkin's lymphoma such that these patients may benefit from new radioimmunotherapies, thereby providing another avenue of treatment and decreasing the chance of relapse.

Summary of the Invention

The present invention relates to methods of treating patients having B cell lymphoma accompanied by bone marrow involvement comprising administering a monoclonal antibody or fragment thereof such that said bone marrow involvement is reduced or alleviated. Specifically, the invention encompasses methods of reducing the number of cancerous B

-3-

cells in the bone marrow of a patient having non-Hodgkin's lymphoma prior to radioimmunotherapy comprising administering to said patient an effective amount of a therapeutic antibody. The methods are also useful for

5 reducing bone marrow involvement prior to administration of antibodies labeled with cytotoxic moieties such as toxins, or any immunotherapeutic which could damage healthy bone marrow progenitors by virtue of their location in the vicinity of targeted cells which have infiltrated the bone

10 marrow.

According to one embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount

15 of an anti-CD20 antibody or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled antibody that binds to B cell

20 lymphoma cells,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with

25 administering the cytotoxic radiolabeled antibody to the patient having bone marrow involvement greater than 25%.

According to another embodiment of the invention there is provided the use of a B cell depleting anti-CD20 antibody or a B cell depleting fragment thereof for the manufacture

30 of a medicament for reducing the number of cancerous B cells

- 3A -

in the bone marrow of a patient having non-Hodgkin's lymphoma with greater than 25% bone marrow involvement prior to radioimmunotherapy with a cytotoxic radiolabeled antibody that binds to B cell lymphoma cells.

5 According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or

10 fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled antibody that binds to a B cell lymphoma cell antigen selected from

15 CD19 and CD20,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with 20 administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering

- 3B -

to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled anti-CD19 antibody that is radiolabeled with ^{90}Y ,

wherein the risk of developing thrombocytopenia

5 associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

10 According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or 15 fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled anti-CD19 antibody that is radiolabeled with ^{131}I ,

20 wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the 25 patient having marrow involvement greater than 25%.

According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an 30 effective amount of the anti-CD20 antibody rituximab or

- 3C -

fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled anti-CD20 antibody that is radiolabeled with ^{90}Y ,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of the ^{90}Y -labeled anti-CD20 antibody Y2B8,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

According to a further embodiment of the present invention there is provided a method for treating a patient having B cell lymphoma with greater than 25% bone marrow

3D

involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering 5 to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled anti-CD20 antibody that is radiolabeled with ^{131}I ,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

Preferably, anti-CD20 antibodies are used, although
15 antibodies to other B cell surface markers may also be used,
e.g., anti-CD19 antibodies. The cell surface protein which
is targeted should have the characteristics of being
expressed mainly on cancerous B cells and not generally on
normal cells or B cell precursors, and preferably does not
20 shed, internalize or modulate upon being bound by antibody.

The term antibody "fragments" includes any therapeutically effective portion or derivative of a therapeutic antibody, which is effective to bind to the intended target and produce the intended result. Included are Fab, fragments, Fab fragments, Fv fragments, domain-deleted antibodies, etc. Preferably, the antibodies used in the present invention are human,

- 4 -

chimeric or humanized antibodies, such that the antibodies contain human constant region domains capable of stimulating human effector functions. A preferred antibody is the chimeric anti-CD20 antibody, rituximab (marketed as RITUXAN® in the U.S. and MABTHERA® in Britain).

The patients who will most benefit from the present invention will be patients who have greater than 25% bone marrow involvement before being treated with the disclosed immunotherapy. Such patients may be identified by prior diagnostic imaging using antibodies radiolabeled with gamma-emitting isotopes such as ^{111}In . Such patients may also be identified following bone marrow biopsy.

According to a study by Wiseman et al., such patients have a very high chance of developing thrombocytopenia due to radioimmunotherapy. However, as the chance of developing such an adverse reaction following radioimmunotherapy increases depending on the extent of bone marrow involvement, any patient with any level of bone marrow involvement will benefit from the present invention in that they will benefit from a decreased risk of radioimmunotherapy-induced thrombocytopenia following the disclosed treatment.

The dosages to be used in the present invention may vary depending on the patient, the extent of bone marrow involvement, and the antibody used. Chimeric anti-CD20 antibody such as rituximab may be administered at a dosage of at least about 50 mg/m² weekly for at least 4

-5-

weeks. A preferred dosage regimen is about 375 mg/m² weekly for four weeks.

Because the purpose of the methods of the present invention is to decrease the bone marrow involvement in patients with lymphoma preparing to undergo radioimmunotherapy, the treatment methods of the present invention naturally encompass treatment with a radiolabeled antibody subsequent to purging of the marrow. The radiolabeled antibody may also be directed to any B cell surface marker which is found generally on cancerous cells and not normal cells. Preferably, the radiolabeled antibody is an anti-CD20 antibody.

Preferred radiolabels are beta emitting isotopes such as ⁹⁰Y or ¹³¹I, but any radioisotope may be used so long as it may be effectively conjugated to the antibody, it has a relatively short decay range, and it succeeds in killing nearby cells, i.e., the cells to which it is targeted. A preferred radiolabeled anti-CD20 antibody is Y2B8.

A patient should generally be treated within one week after administration of the depleting antibody, so long as they are not severely cytopenic, e.g., platelets <150,000. If the patient is cytopenic following treatment with the depleting antibody, recovery should be allowed to occur, e.g. nadir AGC >1000 or platelets >150,000, before radioimmunotherapy. In cases where cell recovery in the peripheral blood and/or bone marrow is permitted to occur, more depleting antibody may be administered directly before immunotherapy. Such a

-6-

secondary dosage may be administered, for example, at about 250 mg/m² for about two weeks directly before or overlapping with radioimmunotherapy.

Dosages of radiolabeled antibodies will also vary
5 depending on the patient, the antibody specificity, half-life, stability, etc., and of course, the extent of disease. Radiolabeled anti-CD20 antibodies like Y2B8 are administered at a dosage of about 0.1 to 0.5 mCi/kg.

It should be clear that the treatment methods
10 disclosed herein may be combined with other known treatment methods such as chemotherapy or radiotherapy. Bone marrow or peripheral blood stem cells may be harvested from said patient subsequent to treatment with
15 anti-CD20 antibody and prior to treatment with said radiolabeled antibody in order to effect autologous bone marrow or stem cell transplantation after radiotherapy.

It may also be useful to treat patients with cytokines in order to upregulate the expression of CD20 or other target protein on the surface of cancerous B
20 cells prior to administration of the depleting antibody or the radiolabeled antibody. For upregulation of CD20, cytokines useful for this purpose are IL-4, GM-CSF and TNF-alpha. Cytokines may also be administered simultaneously with or prior to or subsequent to
25 administration of the depleting antibody or radiolabeled antibody in order to stimulate immune effector functions. Cytokines useful for this purpose include interferon alpha, GM-CSF and G-CSF.

- 7 -

Chemotherapeutic regimens may be used to supplement the therapies disclosed herein, and may be administered simultaneously with or sequentially in any order with administration of said radiolabeled antibody. The 5 chemotherapy regimen may be selected from the group consisting of CHOP, ICE, Mitozantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, La La chemotherapy regime, ABVD, CEOP, 2-CdA, FLAG & IDA (with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, 10 ABCM, MOPP and DHAP. A preferred chemotherapeutic regimen is CHOP.

The methods of the present invention may be used to treat a variety of B cell lymphomas but are particularly useful wherein said B cell lymphoma is non-Hodgkin's 15 lymphoma (NHL). Rituximab has already been approved for the treatment of low-grade-follicular NHL, but the present inventors have surprisingly found that rituximab is also beneficial for the treatment of intermediate- and high-grade NHL, including bulky disease. Accordingly, the lymphomas 20 which are treatable by the methods of the present invention include low grade/follicular non-Hodgkin's lymphoma (NHL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, chronic lymphocytic leukemia (CLL), high grade immunoblastic NHL, high grade 25 lymphoblastic NHL, high grade small noncleaved cell NHL, bulky disease NHL, mantle cell lymphoma, AIDS-related lymphoma and Waldenstrom's Macroglobulinemia, so long as such lymphomas are accompanied by bone marrow involvement which complicates the availability of radioimmunotherapy.

- 8 -

Exemplary treatment conditions will now be illustrated by way of the following data.

Radioimmunotherapy of Relapsed or Refractory Non-Hodgkin's

5 Lymphoma (NHL) : Y2B8 Phase I/II ^{90}Y Trial

This Phase I/II trial included 58 relapsed or refractory NHL patients, median age 60, 43% bone marrow involvement, 60% bulky lesions > 5 cm (White et al. Poster Presentation at VII International Conference on Malignant 10 Lymphoma, Lugano, Switzerland. Annals of Oncology Suppl. 3 (1999) 10:64 (215)). All patients had dosimetry by gamma camera measurements and by serial urine and blood sampling following administration of 5 mCi of ^{113}In -labeled antibody In2B8. Prior to imaging and therapy, rituximab was used to 15 clear peripheral B-cells and optimize radiolabeled antibody distribution. One week later, Y2B8 (0.2, 0.3 or 0.4 mCi/kg) was administered to Group 2 & 3 patients. No bone marrow or stem cell harvest was performed.

20 Results:

The MTD was 0.4 mCi/kg (0.3 mCi/kg for patients with 25 mild thrombocytopenia). Adverse events were mainly hematologic, transient and reversible. Overall, 5 patients (10%) developed nadir platelet counts <10,000/mm³ and 14 patients (28%) developed nadir AGC <500. Three patients (6%) acquired infections requiring

- 9 -

hospitalization over a one year observation period.

Only 2% developed HAMA/HACA. Mean serum immunoglobulins remained normal over a one year observation period. The ORR was 67% (26% CR and 41% PR) in all histologies and 82% for

5 patients with low-grade NHL. The median TTP was 12.9+ months for responders, and the duration of response was 11.7+ months as projected by Kaplan Meier methodology. In patients with baseline splenomegaly, 4/8 (50%) patients responded compared to 74% (29/39) without splenomegaly
10 (p= 0.1761). Two clinical parameters, baseline platelet counts and degree of bone marrow involvement in baseline biopsy, were better at predicting severity of hematologic toxicity than dosimetry parameters.

Throughout this specification and the claims which
15 follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of
20 integers or steps.

The reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that that prior art forms part of the common general knowledge in Australia.

- 10 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising
 - 5 administering to the patient an effective amount of an anti-CD20 antibody or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled antibody that binds to B cell lymphoma cells, wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with
 - 15 administering the cytotoxic radiolabeled antibody to the patient having bone marrow involvement greater than 25%.
2. The method of claim 1, wherein said anti-CD20 antibody is a human, chimeric or humanized antibody.
 - 20
 3. The method of claim 2, wherein said anti-CD20 antibody is a chimeric anti-CD20 antibody.
 4. The method of claim 3, wherein said chimeric anti-CD20 antibody is rituximab.
 - 25

- 11 -

5. The method of claim 4, wherein said chimeric anti-CD20 antibody is administered at a dosage of at least about 50 mg/m² weekly for at least 4 weeks.

5 6. The method of claim 5, wherein said chimeric anti-CD20 antibody is administered at a dosage of about 375 mg/m² weekly for four weeks.

7. The method of claim 1, wherein said radiolabeled 10 antibody is an anti-CD20 antibody.

8. The method of claim 7, wherein said radiolabeled anti-CD20 antibody is Y2B8.

15 9. The method of claim 8, wherein said radiolabeled anti-CD20 antibody is administered at a dosage of about 0.1 to 0.5 mCi/kg.

10. The method of claim 1, wherein additional anti-CD20 20 antibody is administered simultaneously with or sequentially in either order with said radiolabeled antibody.

11. The method of claim 10, wherein at least a single dosage of said additional anti-CD20 antibody is administered 25 at a dosage of about 250 mg/m².

12. The method of claim 1, wherein bone marrow or peripheral blood stem cells are harvested from said patient subsequent to treatment with anti-CD20 antibody and prior to 30 treatment with said radiolabeled antibody.

- 12 -

13. The method of claim 1, wherein expression of CD20 is upregulated on the surface of cancerous B cells prior to administration of said anti-CD20 antibody by administering 5 at least one cytokine.

14. The method of claim 13, wherein said cytokine is selected from the group consisting of IL-4, GM-CSF and TNF-alpha.

10

15. The method of claim 1, further comprising treatment with a chemotherapeutic regimen simultaneously with or sequentially in any order with administration of said radiolabeled antibody.

15

16. The method of claim 15, wherein said chemotherapy is selected from the group consisting of CHOP, ICE, Mitozantrone, Cytarabine, DVP, ATRA, Idarubicin, hoelzer chemotherapy regime, La La chemotherapy regime, ABVD, CEOP, 20 2-CdA, FLAG & IDA (with or without subsequent G-CSF treatment), VAD, M & P, C-Weekly, ABCM, MOPP and DHAP.

RECEIVED
U.S. PATENT AND
TRADEMARK OFFICE
MAY 2016

17. The method of claim 16, wherein the chemotherapeutic regimen is CHOP.

25

18. The method of claim 1, further comprising administration of at least one cytokine simultaneously with or sequentially in either order with said anti-CD20 antibody.

30

- 13 -

19. The method of claim 18, wherein said at least one cytokine is selected from the group consisting of interferon alpha, GM-CSF and G-CSF.

5 20. The method of claim 1, wherein said B cell lymphoma is non-Hodgkin's lymphoma (NHL).

21. The method of claim 20, wherein said NHL is selected from the group consisting of low grade/follicular non-
10 Hodgkin's lymphoma (NHL), small lymphocytic (SL) NHL, intermediate grade/follicular NHL, intermediate grade diffuse NHL, chronic lymphocytic leukemia (CLL), high grade immunoblastic NHL, high grade lymphoblastic NHL, high grade small noncleaved cell NHL, bulky disease NHL, mantle cell
15 lymphoma, AIDS-related lymphoma and Waldenstrom's Macroglobulinemia.

22. The use of a B cell depleting anti-CD20 antibody or a B cell depleting fragment thereof for the manufacture of a
20 medicament for reducing the number of cancerous B cells in the bone marrow of a patient having non-Hodgkin's lymphoma with greater than 25% bone marrow involvement prior to radioimmunotherapy with a cytotoxic radiolabeled antibody that binds to B cell lymphoma cells.

25
23. Use according to claim 22, wherein said anti-CD20 antibody is a human antibody, a chimeric antibody or a humanized antibody.

2-10827-0068-V199-CT100640-00-2.msp generated date: 16/06/05

- 14 -

24. Use according to claim 23, wherein said chimeric anti-CD20 antibody is rituximab.

25. Use according to claim 24, wherein said chimeric
5 anti-CD20 antibody is administered at a dosage of at least
about 50 mg/m² weekly for at least 4 weeks.

26. Use according to claim 25, wherein said chimeric
anti-CD20 antibody is administered at a dosage of about
10 375 mg/m² weekly for four weeks.

27. Use according to claim 22, wherein said radiolabeled antibody is an anti-CD20 antibody.

15 28. Use according to claim 27, wherein said radiolabeled
anti-CD20 antibody is Y2B8.

29. A method according to claim 1, substantially as hereinbefore described with reference to the Phase I/II
20 trial.

30. Use according to claim 22, substantially as hereinbefore described with reference to the Phase I/II trial.

31. The method of claim 1, wherein the radiolabeled

32. The method of claim 1, wherein the radiolabeled

- 15 -

33. The method of claim 1, wherein the radiolabeled antibody is an anti-CD19 antibody that is radiolabeled with ^{90}Y .

5

34. The method of claim 1, wherein the radiolabeled antibody is an anti-CD19 antibody that is radiolabeled with ^{131}I .

10 35. The method of claim 1, wherein the radiolabeled antibody is an anti-CD20 antibody that is radiolabeled with ^{90}Y .

33
34
35
36
37
38
39

15 36. The method of claim 1, wherein the radiolabeled antibody is an anti-CD20 antibody that is radiolabeled with ^{131}I .

33
34
35
36
37
38
39

37. The method of claim 1, wherein said anti-CD20 antibody is rituximab and the radiolabeled antibody that is radiolabeled with ^{90}Y or ^{131}I .

25

38. The method of claim 1, wherein said anti-CD20 antibody is rituximab and the radiolabeled antibody is an anti-CD19 antibody.

33
34
35
36
37
38
39

39. The method of claim 1, wherein said anti-CD20 antibody is rituximab and the radiolabeled antibody is an anti-CD19 antibody that is radiolabeled with ^{90}Y .

• 16 •

40. The method of claim 1, wherein said anti-CD20 antibody is rituximab and the radiolabeled antibody is an anti-CD19 antibody that is radiolabeled with ^{131}I .

5 41. The method of claim 1, wherein said anti-CD20 antibody
is rituximab and the radiolabeled antibody is an anti-CD20
antibody.

42. The method of claim 1, wherein said anti-CD20 antibody
10 is rituximab and the radiolabeled antibody is an anti-CD20 antibody that is radiclabelled with ^{90}Y .

43. The method of claim 1, wherein said anti-CD20 antibody
is rituximab and the radiolabeled antibody is the ⁹⁰Y-labeled
15 anti-CD20 antibody Y2B8.

44. The method of claim 1, wherein said anti-CD20 antibody is rituximab and the radiolabeled antibody is an anti-CD20 antibody that is radiolabeled with ^{131}I .

20

45. A method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled antibody that binds to a B cell lymphoma cell antigen selected from CD19 and CD20,

- 17 -

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with 5 administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

46. A method for treating a patient having B cell lymphoma
with greater than 25% bone marrow involvement, comprising
10 administering to the patient an effective amount of the
anti-CD20 antibody rituximab or fragment thereof that
reduces the patient's lymphoma bone marrow involvement to
less than 25%, and then administering to the patient having
less than 25% bone marrow involvement an effective amount of
15 a cytotoxic radiolabeled anti-CD19 antibody that is
radiolabeled with ^{90}Y ,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

47. A method for treating a patient having B cell lymphoma
25 with greater than 25% bone marrow involvement, comprising
administering to the patient an effective amount of the
anti-CD20 antibody rituximab or fragment thereof that
reduces the patient's lymphoma bone marrow involvement to
less than 25%, and then administering to the patient having
30 less than 25% bone marrow involvement an effective amount of

P-107284MKR13PS/CF76260-00-2ops zmcwad36en13.400-16/04/06

- 18 -

a cytotoxic radiolabeled anti-CD19 antibody that is radiolabeled with ^{131}I ,

wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

10 48. A method for treating a patient having B cell lymphoma
with greater than 25% bone marrow involvement, comprising
administering to the patient an effective amount of the
anti-CD20 antibody rituximab or fragment thereof that
reduces the patient's lymphoma bone marrow involvement to
15 less than 25%, and then administering to the patient having
less than 25% bone marrow involvement an effective amount of
a cytotoxic radiolabeled anti-CD20 antibody that is
radiolabeled with ^{90}Y .

wherein the risk of developing thrombocytopenia
20 associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

25 49. A method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that

30 reduces the patient's lymphoma bone marrow involvement to

195

less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of the ^{90}Y -labeled anti-CD20 antibody Y2B8.

wherein the risk of developing thrombocytopenia

5 associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the patient having marrow involvement greater than 25%.

10

50. A method for treating a patient having B cell lymphoma with greater than 25% bone marrow involvement, comprising administering to the patient an effective amount of the anti-CD20 antibody rituximab or fragment thereof that reduces the patient's lymphoma bone marrow involvement to less than 25%, and then administering to the patient having less than 25% bone marrow involvement an effective amount of a cytotoxic radiolabeled anti-CD20 antibody that is radiolabeled with ^{131}I ,

20 wherein the risk of developing thrombocytopenia associated with administering the cytotoxic radiolabeled antibody to the patient having less than 25% bone marrow involvement is lower than that which is associated with administering the cytotoxic radiolabeled antibody to the
25 patient having marrow involvement greater than 25%.

- 20 -

51. A method according to any one of claims 45 to 50,
substantially as hereinbefore described with reference to
the Phase I/II trial.

5 DATED this 16th day of June, 2006

Biogen Idec Inc.

By DAVIES COLLISON CAVE

10 Patent Attorneys for the Applicant

BBR

DC