发明名称
等静压圆环零件成形模具及其成形方法

摘要
本发明公开了一种等静压圆环零件成形模具和成形方法。其包括模具支撑底座组件、中心定位支撑台、下模套、圆环外径模腔、圆环内径成形组件、上模套和抱紧装置。下模套匹配定位连接于中心定位支撑台上，圆环外径模腔与圆环内径成形组件分别对应设置于下模套相应安装位置上，并且圆环外径模腔与圆环内径成形组件之间形成环形空间。上模套设置于圆环外径模腔与圆环内径成形组件的顶部，并与下模套通过抱紧装置连接在一起，上模套与下模套构成一个内部封闭空腔的环形空腔，所述上模套上密闭设有抽真空系统装置。通过等静压圆环零件成形模具和成形方法得到的圆环零件的圆柱面、上下端面均具有较高的形状和尺寸精度，并具有良好的综合机械性能。
1. 一种等静压圆环零件成形模具，其特征在于：包括模具支撑底座组件（1）、中心定位支撑台（2）、下模套（3）、圆环外径模腔（4）、圆环内径成形组件（5）、上模套（6）和抽紧装置（7），所述下模套（3）匹配定位连接于模具支撑底座组件（1）和中心定位支撑台（2）上；所述圆环外径模腔（4）与圆环内径成形组件（5）分别对应设置于下模套（3）相应安装位置上，并且圆环外径模腔（4）与圆环内径成形组件（5）之间形成环形空间；所述上模套（6）设置于圆环外径模腔（4）与圆环内径成形组件（5）的顶部，并与下模套（3）通过抽紧装置（7）连接在一起；所述圆环外径模腔（4）、圆环内径成形组件（5）、上模套（6）与下模套（3）构成一个内部密闭空间的环形空腔；所述上模套（6）内设有抽真空的通道（8）；所述抽真空系统装置（8）上设有与抽真空设备的真空管相连的接口，抽真空系统装置（8）上还设有真空阀，并且在抽真空系统装置（8）内部设有隔离透气的隔板；所述下模套（3）的下部设有若干个定位孔和定位柱，所述中心定位支撑台（2）上部对应下模套（3）的定位孔设有定位柱，所述中心定位支撑台（2）上部对应下模套（3）的定位柱设有定位孔，下模套（3）与中心定位支撑台（2）通过定位孔、定位柱匹配定位连接。

2. 按照权利要求1所述的等静压圆环零件成形模具，其特征在于：所述模具支撑底座组件（1）的中心具有定位内孔，所述中心定位支撑台（2）的下部安装在模具支撑底座组件（1）的定位内孔上。

3. 按照权利要求1所述的等静压圆环零件成形模具，其特征在于：所述圆环外径模腔（4）由两个对称的半圆环模腔构成，两个半圆环模腔通过若干个定位销固定。

4. 按照权利要求2所述的等静压圆环零件成形模具，其特征在于：所述模具支撑底座组件（1）或/和中心定位支撑台（2）上设有起吊装置（9）。

5. 一种由权利要求1～4任一所述的等静压圆环零件成形模具制造等静压圆环零件的成形方法，其特征在于：其成形方法步骤如下：

第一步：向等静压圆环零件成形模具内填充加工成形所需的粉体材料，再利用加热设备对该模具及装填的粉体材料进行整体加热；

第二步：在等静压圆环零件成形模具外部添加密封装置，利用密封装置实现在抽真空过程中，以及在上模套（6）和下模套（3）压制圆环零件的过程中粉体材料与模具外部介质之间的隔离；通过等静压圆环零件成形模具的抽真空系统装置（8）对模具内部的粉体材料进行抽真空处理，并根据圆环零件的尺寸精度和性能要求，确定相应的等静压压力和温度控制曲线；

第三步：将等静压圆环零件成形模具放置在等静压设备里进行压制成形操作，并使得粉体材料在压制过程中发生致密化变形；

第四步：将压制成形的圆环零件从等静压圆环零件成形模具中取出。
等静压圆环零件成形模具及其成形方法

技术领域
【0001】本发明涉及等静压圆环零件精密成形技术，尤其涉及一种等静压圆环零件成形模具及其成形方法，特别涉及一种利用等静压设备压制高精度尺寸圆环零件的模具及其方法。

背景技术
【0002】目前，国内在粉料圆环成形件的成形方面，主要利用机械压力通过模具压制成形，由于受到成形方式的限制，圆环成形件的强度、成形效率和成形精度不能同时达到很高，以及成形精度尺寸也不是很大，很大尺寸高精度的圆环件还需拼接后组合加工成形，或者依靠进口。因此，需要建立一种圆环零件高复密度的精度形方法和技术，这是发展中国高性能结构材料必须的战略举措，对打破国外技术限制和封锁，满足国民经济以及军事各领域高性能结构材料的需求意义极为重大。
【0003】等静压成形技术是将成形模具放置于高压容器中，利用压力泵将传压介质注入高压容器中，根据流体力学原理，传压介质作用在成形模具外表面的压强大小处处相等，使模具内各料在各个方向上受到的压力均匀相等，最终获得致密胚体。
【0004】等静压成形技术现广泛应用于粉末冶金、国防科研、陶瓷等行业粉体材料压制而成的产品制造与生产，而粉体材料利用等静压成形技术压制圆环零件是一种可行的方法。
【0005】等静压圆环零件成形方法是将被压制的粉体原材料放置在等静压圆环零件成形模具内，然后将该模具放置在等静压设备的传压介质中，通过提高传压介质的压力，通过传静压形模具外表面的压力升高，模具型腔的内部形状和尺寸随着传压介质压力的不断升高而按一定规律发生相应变化，粉体原材料各分子之间的间隙不断减小并被压实，最终形成具有一定形状并且内部致密的圆环零件实体。
【0006】通过等静压设备和成形模具压制圆环零件是一种高效率高质量的新型成形方法，利用该成形方法压制圆环零件主要具有以下特点：第一，圆环零件内分子之间的距离会随着等静压力的增大而更小，使粉体材料分子之间结合得更加紧密，密度也更加均匀，从而获得综合机械性能较高的圆环零件；第二，由于等静压设备内传压介质的压力处处相等，并且等静压成形模具在压制产品的过程中本身的外形尺寸不会增大，所以可以将多个等静压圆环零件成形模具同时放置在一台等静压设备中，实现一次压制多发尺寸规格相同的圆环零件。

发明内容
【0007】针对现有技术存在的不足之处，本发明的目的在于提供一种等静压圆环零件成形模具，通过成形模具和成形方法得到的圆环零件的圆柱面、上下端面均具有较高的形状和尺寸精度，并具有良好的综合机械性能。
【0008】本发明的目的通过下述技术方案实现：
【0009】 一种等静压圆环零件成形模具，包括模具支撑底座组件、中心定位支撑台、下模套、圆环外径模腔、圆环内径成形组件、上模套和抱紧装置，所述下模套匹配定位连接于模具支撑底座组件和中心定位支撑台上；所述圆环外径模腔与圆环内径成形组件分别对应设置于下模套相应安装位置上，并且圆环外径模腔与圆环内径成形组件之间形成环形空间；所述上模套设置于圆环外径模腔与圆环内径成形组件的顶部，并与下模套通过抱紧装置连接在一起，圆环外径模腔、圆环内径成形组件、上模套与下模套构成一个内部密闭高度可自适应变化的环形空腔，并且该环形空腔就是等静压圆环零件成形模腔；所述上模套上密闭设有抽真空系统装置。

【0010】为了更好地实现本发明，所述抽真空系统装置上设有与抽真空设备的真空管相连的接口，抽真空系统装置上设有真空阀，并且在抽真空系统装置内部设有隔离透气网格板，所述真空阀可以设置于上模套利于抽真空的任何位置，真空阀的数量可根据实际抽真空需求进行选取。

【0011】本发明提供一种优选的下模套与中心定位支撑台之间定位结构技术方案是：所述下模套的下端设有若干个定位孔和定位柱，所述中心定位支撑台上部对应下模套的定位孔设有定位柱，所述中心定位支撑台上部对应下模套的定位柱设有定位孔，下模套与中心定位支撑台通过定位孔、定位柱匹配定位连接。

【0012】进一步的技术方案是：所述中心定位支撑台的下部设有模具支撑底座组件，所述模具支撑底座组件的中心具有定位内孔，所述中心定位支撑台的下部安装在模具支撑底座组件的定位内孔上。

【0013】本发明提供一种优选的圆环外径模腔结构技术方案是：所述圆环外径模腔由两个对称的半圆环模腔构成，两个半圆环模腔通过若干个定位销固定，本发明的圆环外径模腔是由刚性材料制作的，能够保持圆柱形。

【0014】为了使得本成形模具吊装更加方便，所述模具支撑底座组件或/和中心定位支撑台上设有起吊装置。

【0015】 一种等静压圆环零件及其成形方法，其成形方法步骤如下：

【0016】第一步：向等静压圆环零件成形模具内填充成形所需的粉体材料，再利用加热设备对该模具及装填的粉体材料进行整体加热；

【0017】第二步：在等静压圆环零件成形模具外部添加密封装置，利用密封装置实现在抽真空过程中，以及在上模套和下模套压制圆环零件的过程中粉体材料与模具外部介质之间的隔离；通过等静压圆环零件成形模具的抽真空系统装置对模具内部的粉体材料进行抽真空处理，并根据圆环零件的尺寸精度和性能要求，确定相应的等静压压力和温度控制曲线；

【0018】第三步：将等静压圆环零件成形模具放置在等静压设备里进行压制成形操作，并使得粉体材料在压制过程中发生致密化变形；

【0019】第四步：将压制成形的圆环零件从等静压圆环零件成形模具中取出。

【0020】本发明较现有技术相比，具有以下优点及有益效果：

【0021】通过等静压圆环零件成形模具和成形方法得到的圆环零件的圆柱面，上下端面均具有较高的形状和尺寸精度，并具有良好的综合机械性能。

附图说明
说明书

具体实施方式

下面结合实施例对本发明作进一步地详细说明：

实施例

如图1～图8所示，一种等静压圆环零件成形模具，包括模具支撑底座组件1、中心定位支撑台2、下模套3、圆环外径模腔4、圆环内径成形组件5、上模套6和抱紧装置7，下模套3匹配定位连接于模具支撑底座组件1和中心定位支撑台2上；圆环外径模腔4与圆环内径成形组件5分别对应设置于下模套3相应安装位置上，并且圆环外径模腔4与圆环内径成形组件5之间形成环形空间；上模套6设置于圆环外径模腔4与圆环内径成形组件5的顶部，并与下模套3通过抱紧装置7连接在一起，圆环外径模腔4、圆环内径成形组件5、上模套6与下模套3构成一个内部密闭高度可自适应变化的环形空间，并且该环形空间就是等静压圆环零件成形模腔；上模套6上密闭设有抽真空系统装置8。

如图3所示，本实施例的圆环内径成形组件5用于成形圆环零件内圆柱面，由轴向退出心轴和径向退出定位套组成，其中轴向退出心轴含上下两部分，与径向退出定位套锥度配合，能分别向上和向下退出；径向退出定位套由两个对称的径向退出滑块和两个对称的成形定位块组成，径向退出滑块能沿两个对称成形定位块之间的导向面向内滑动并取出，之后两个成形定位块也能从压制而成的圆环内圆柱面取出。由于径向退出滑块和成形定位块组成的径向退出定位套外圆柱面经一次组合加工成形，能使压制获得的圆环零件内圆柱面具有较高的尺寸、形貌精度。

如图1所示，本实施例的上模套6和下模套3通过抱紧装置7压紧形成封闭的内部空间，避免高压传压介质进入模具内部，为粉末材料等静压制成形环环零件提供了高压密闭环境。使圆环外径模腔受到的外部压力与其内部受到的压力处于平衡状态，圆环外径模腔的两部分刚性半圆环在压制过程中始终处于抱紧状态。上、下模套均放置在圆环外径模腔4与圆环内径成形组件5之间形成的环形空间内，并分别与组成环形空间的圆柱面具有滑动配合，对环形空间的形状和尺寸具有较高的约束和定位作用，从而对圆环零件的上、下端面成形具有控制作用。

如图1所示，抱紧装置7为上、下模套接口部位的密封连接提供压紧力，同时为圆环外径模腔4的两个对称刚性半圆环提供抱紧力，使模具在抽真空和等静压压制过程中均处
于抱紧密封状态，保证模具内部与外部空气和等静压环境的隔离。

如图1所示，抽真空系统装置8上设有与抽真空设备的真空管相连接的接口，抽真空系统装置8上设有真空阀，并且在抽真空系统装置8内部设有隔离透气网格板。真空阀是在进行抽气时控制系统和真空阀的接口，防止粉末进入真空阀，但能通过气体的隔离透气网格板，以及阀门开关结构，能够实现成形模具内部产品材料与外部等静压液体的隔离。本发明的真空阀可以设置于上模套6利于抽真空的任何位置，真空阀的数量可根据实际抽真空需求进行选取。

如图4、图7所示，下模套3的下部设有若干个定位孔和定位柱，中心定位支撑台2上部对应下模套3的定位孔设有定位柱，中心定位支撑台2上部对应下模套3的定位柱设有定位孔。下模套3与中心定位支撑台2通过定位孔、定位柱匹配定位连接。

如图7所示，中心定位支撑台2的下部设有模具支撑底座组件1，模具支撑底座组件1的中心具有定位内孔，中心定位支撑台2的下部安装在模具支撑底座组件1的定位内孔上。中心定位支撑台2放置于模具支撑底座组件1的定位内孔之上，二者共同实现模具底部的支撑定位作用，使圆环外径模腔4和圆环内径成形组件5之间形成的环形空间具有相对固定的位置。其中，中心定位支撑台2的上部结构形状与下模套3的下部外表面轮廓形状具有高度匹配性，能够对下模套及其上的作用力产生很好的支承定位作用，例如，中心定位支撑台2的中心部件放置的下模套中心定位孔，而圆环内外径成形组件的下端部就装在该孔的内，实现圆环内外径成形组件在模具内部的支承定位；另外，模具支撑底座组件1对圆环外径模腔2具有支承和定位作用。

如图2所示，圆环外径模腔4由两个对称的半圆环模腔构成，两个半圆环模腔通过若干个定位销固定。圆环外径模腔4是由刚性材料制作的，能够保持圆柱形。本实施例的圆环外径模腔4用于成形粉末材料圆环外圆柱面，由两个对称的刚性半圆环通过四个圆柱定位销固定，并经一次组合加工成形。其中圆柱定位销一端与刚性半圆环过盈装配，另一端与另一个刚性半圆环间隙装配，保证了两个刚性半圆环间良好的定位精度和拆装方便性。由于圆环外径模腔的圆柱内表面具有较高的尺寸、形貌精度，能使得制备的圆环零件外圆柱面不进行机械加工也满足产品要求。

如图6所示，模具支撑底座组件1、中心定位支撑台2上设有起吊装置9，起吊装置9用于模具的吊装搬运等。

一种等静压圆环零件及其成形方法，其成形方法步骤如下：

第一步：向等静压圆环零件成形模具内填充成形所需的粉末材料，再利用加热设备对该模具及装填的粉末材料进行整体加热；

第二步：在等静压圆环零件成形模具外部添加密封装置，利用密封装置实现在抽真空过程中，以及在上模套6和下模套3压制圆环零件的过程中粉末材料与模具外部介质之间的隔离；通过等静压圆环零件成形模具的抽真空系统装置8对模具内部的粉末材料进行抽真空处理，并根据圆环零件的尺寸精度和性能要求，确定相应的等静压压力和温度控制曲线；

第三步：将等静压圆环零件成形模具放置在等静压设备里进行压制成形操作，并使得粉末材料在压制过程中发生致密化变形；

第四步：将压制成形的圆环零件从等静压圆环零件成形模具中取出。
[0048] 根据等静压压制过程分析，可知影响圆环零件等静压成形形状，尺寸精度和综合
机械性能的主要因素包括以下内容：材料的初始温度，成形模具内部型腔形状，尺寸精度，
密封效果和抽真空状态。特别是在压制过程中对圆环外径和内径的精密控制，压制冲头在
等静压压制过程中对圆环上端面成形的控制效果，以及在压制过程中等静压环境的温度和
压力环境。针对以上影响因素，主要采取了以下几方面的的技术方法和措施：
[0049] ⑴粉体材料装填在模具里，整体加热到一定温度，但低于材料的熔化温度，需确保
粉料被加热的温度与等静压力匹配，使粉体材料在压制过程中能够发生凝密化变形，压
制成形的圆环零件内部均匀，综合性能优越；
[0050] ⑵压制圆环零件的模具型腔是一种厚度尺寸自适应变化的刚性圆环空间，该模具
型腔能够精密成形圆环各表面。其中模具型腔顶部的冲头随等静压力的作用能够自适应向
下移动，冲头本身具有一定的刚性，能够保证压制圆环零件的厚度尺寸符合设计要求；
[0051] ⑶圆环零件的外圆柱面尺寸和形状在压制过程中由两个对称的刚性半圆环组成
的圆柱内表面确定，使压制的圆环零件外圆柱面具有很高的尺寸和形状精度，外圆柱面可
免加工；
[0052] ⑷圆环零件的内圆柱面尺寸和形状由圆环内径成形组件的外圆柱面确定，使压制
的圆环零件内圆柱面具有很高的尺寸和形状精度，在压制完成后，圆环内径成形组件能够
从成形后的圆环零件内部取出。
[0053] ⑸采用快速拆装的弹性密封结构，使组成模具型腔的刚性零件在抽真空和等静压
压制过程中均能实现可靠密封。
[0054] 以上所述仅为本发明的较佳实施例而已，并不用以限制本发明，凡在本发明的精
神和原则之内所作的任何修改，等同替换和改进等，均应包含在本发明的保护范围之内。
图1