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METHOD FOR COMPRESSED SENSING OF STREAMING DATA AND
APPARATUS FOR PERFORMING THE SAME

FIELD OF INVENTION

[0001] The present invention is directed to a method for compressed sensing of
streaming data and to the means for performing the same. More specifically, some
embodiments include a method of compressed sensing of streaming data that employs a
recursive algorithm for performing compressed sensing on streaming data, and an
apparatus or system or computer program product capable of performing the method

for compressed sensing of streaming data.

BACKGROUND OF INVENTION

[0002] In the field of signal processing, the signals of interest can be represented
sparsely by using few coefficients in an appropriately selected orthonormal basis.
Exemplarily, the Fourier basis is used for bandlimited signals or wavelet bases for
piecewise continuous signals, such as images. While a small number of coefficients in
the respective bases are enough to represent such signals, the Nyquist/Shannon
sampling theorem suggests a sampling rate that is at least twice the signal bandwidth.
Such a sampling rate is known in the art as the Nyquist rate. In many cases, the

indicated sampling rate is much higher than the sufficient number of coefficients.

[0003] Recently, the Compressed Sensing (CS) framework was introduced aiming
at sampling the signals not according to their bandwidth, but rather in accordance with
their information content, that is, the number of degrees of freedom of the signal. This
paradigm for sampling suggests a lower sampling rate compared to the classical
sampling theory for signals that have sparse representation in some given basis. Typical

signals that arise naturally in astronomy and biomedical imaging fit this model.
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SUMMARY OF THE INVENTION

[0004] The present invention proposes in accordance with one of its embodiments a
computer-implemented method for sensing streaming data, comprising recursively
sampling an input stream of data using overlapping windowing to obtain at least one
previous measurement regarding said input data stream, and employing said at least one

previous measurement for obtaining a subsequent measurement.

[0005] In accordance with another embodiment of the present invention is proposed
a system for sensing streaming data, including a plurality of modules, each module
comprising a computer readable medium having thereon computer executable
instructions for recursively sampling an input stream of data using overlapping
windowing to obtain at least one previous measurement regarding said input data
stream, and employing said at least one previous measurement for obtaining a

subsequent measurement.

[0006] In accordance with yet another embodiment of the present invention is
proposed a computer readable storage medium having recorded thercon a computer
program for sensing streaming data, the computer program comprising an algorithm
capable of recursively sampling an input stream of data using overlapping windowing to
obtain at least one previous measurement regarding said input data stream, and
employing said at least one previous measurement for obtaining a subsequent

measurement.

[0007] In accordance with a further embodiment of the present invention, it is
proposed an apparatus for performing compressed sensing of streaming data,
comprising a recursive sampler arranged for recursively sampling an input stream of
data using overlapping windowing to obtain at least one previous measurement
regarding said input data stream, and a unit employing the at least one previous

measurement for obtaining a subsequent measurement.
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[0008] In accordance with one embodiment of the present invention, sensing of
streaming data is a compressed sensing of streaming data, and the method for sensing
streaming data employs a recursive scheme for performing sampling. The step of
employing at least one previous measurement for obtaining a subsequent measurement
comprises processing an input stream of data sampled during the step of recursive

sampling via recursive estimation.

[0009] In accordance with another embodiment of the present invention, the
method and means proposed by the invention involve inputting information regarding
the data stream regarding a previous estimate obtained during a previous estimate
obtention step, the previous estimate obtention step being prior to the recursive
sampling step. The method further comprises performing count estimation based on
information obtained during a data stream support detection step and calculating a least
squares estimation (LSE) value for a data stream support set based on data obtained
during said recursive estimation step. Further, the method comprises in accordance with
another embodiment of the invention an averaging step, wherein the calculated least
squares estimation value, the count estimation value, and the previous estimate to
calculate an averaged value are averaged to obtain an averaged value. The averaged

value is employed to obtain a new estimate for the streaming data.

[0010] In accordance with yet another embodiment of the present invention, the
method proposed by the present invention further comprises the step of analyzing a
computational complexity of the compressed sensing of streaming data and estimating
an error degree of the method for sensing streaming data. The method further comprises
obtaining convergence in an iterative optimization algorithm to decode a new window,
the obtaining step comprising leveraging an overlapping window structure employed by
the step of overlapping windowing and a signal estimate regarding the previous
window. The method further yet comprises averaging signal estimates obtained from a
plurality of windows, performing support set detection, and signal amplitude estimation.
A voting scheme for robust support estimation in the presence of a high measurement

noise may be as well applied in accordance with the present invention.
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BRIEF DESCRIPTION OF DRAWINGS

[0011] Further objects and advantages of the invention will be appreciated from the

following description, taken in conjunction with the included drawings, of which:

[0012] Fig. 1 is a block diagram of the method for sensing streaming data in
accordance with one embodiment of the present invention;

[0013] Fig. 2 represents the average processing time for recursive compressed
sensing versus a ‘naive approach’ over a single time window;

[0014] Fig. 3 represents the results of support set estimation using LASSO;

[0015] Fig. 4 represents error plots for a) averaged estimates, b) debiased and
averaged estimates and c) estimates obtained by voting and averaging, and

[0016] Fig. 5 represents error plots for averaged LASSO estimate and ‘voting and

averaging’ on streaming data.

DETAILED DESCRIPTION OF THE INVENTION

[0017] The following description of the presently contemplated best mode of
practicing the invention is not to be taken in a limiting sense, but is made merely for the
purpose of describing the general principles of the invention. The scope of the invention

should be determined with reference to the claims.

[0018] Although much progress has been made in the field of Compressed Sensing,
a recursive algorithm for performing compressed sensing on streaming data still remains
unaddressed. The computational complexity and the stability of signal estimation from
noisy samples by applying compressed sensing on an input stream through successive

windowing has not yet been addressed in the art.

[0019] As will be appreciated by one skilled in the art, aspects of the present
invention may be embodied as a system, method or computer program product.
Accordingly, aspects of the present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including firmware, resident software,

micro-code, etc.) or an embodiment combining software and hardware aspects that may

4
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all generally be referred to herein as a "circuit,” "module” or "system." Furthermore,
aspects of the present invention may take the form of a computer program product
embodied in one or more computer readable medium/media (i.e., data storage

medium/media) having computer readable program code recorded thereon.

[0020] Any combination of one or more computer readable medium/media may be
utilized. The computer readable medium may be a computer readable signal medium or
a computer readable storage medium. A computer readable storage medium may be, for
example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared,
or semiconductor system, apparatus, or device, or any suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of the computer readable
storage medium would include the following: a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory (ROM), an ecrasable
programmable read-only memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an optical storage device, a
magnetic storage device, or any suitable combination of the foregoing. In the context of
this document, a computer readable storage medium, i.c., data storage medium, may be
any tangible medium that can contain, or store a program for use by or in connection

with an instruction execution system, apparatus, or device.

[0021] A computer readable signal medium may include a propagated data signal
with computer readable program code embodied therein, for example, in baseband or as
part of a carrier wave. Such a propagated signal may take any of a variety of forms,
including, but not limited to, electro-magnetic, optical, or any suitable combination
thereof. A computer readable signal medium may be any computer readable medium
that is not a computer readable storage medium and that can communicate, propagate,
or transport a program for use by or in connection with an instruction execution system,

apparatus, or device.

[0022] Program code embodied on a computer readable medium may be
transmitted using any appropriate medium, including but not limited to wireless,

wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
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[0023] Computer program code for carrying out operations for aspects of the
present invention may be written in any combination of one or more programming
languages, including an object oriented programming language such as Java, Smalltalk,
C++ or the likes and conventional procedural programming languages, such as the "C"
programming language or similar programming languages. The program code may be
executed entirely on the user's computer, partly on the user's computer, as a stand-alone
software package, partly on the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter scenario, the remote computer
may be connected to the user's computer through any type of network, including a local
area network (LAN) or a wide area network (WAN), or the connection may be made to
an external computer (for example, through the Internet using an Internet Service

Provider).

[0024] Aspects of the present invention are described below with reference to
flowchart illustrations and/or block diagrams of methods, apparatus (systems) and
computer program products according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These computer program instructions
may be provided to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus to produce a machine,
which executed via the processor of the computer or other programmable data
processing apparatus, creates means for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks.

[0025] These computer program instructions may also be stored in a computer
readable medium that can direct a computer, other programmable data processing
apparatus, or other devices to function in a particular manner. The computer program
instructions may also be loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational steps to be performed on the
computer, other programmable apparatus or other devices to produce a computer

implemented process such that the instructions which execute on the computer or other



WO 2015/038648 PCT/US2014/054993

programmable apparatus provide processes for implementing the functions/acts

specified in the flowchart and/or block diagram block or blocks.

[0026] Throughout the following description, capital boldface letters denote

matrices (e.g., A) and boldface lowercase letters denote vectors (e.g., x).

[0027] In the following x, is used to denote the i entry of vector x, and a; is used

to denote the i column of matrix A.

[0028] The i sample vector, such as the i window of the input stream, or the ith

sampling matrix is denoted by superscript (e.g., X or 49).

[0029] The inner product between two vectors a and b is denoted as

(a,b) =a'b.
[0030] |S| is indicative for the cardinality of a set S.

[0031] E.[] is indicative of the conditional expectation E_[.]= E[|x]

[0032] In the field of compressed sensing, frequently used terms to characterize
either vectors or matrices are “k-sparsity”, “mutual coherence”, “restricted isometry
property” and “generic k-sparse model”. In the following said terms are elaborated upon

briefly to illustrate their intended meaning through this document.

[0033] For a vector x € R" its support is defined as supp (x) = {i X # 0}.

[0034] For the same vector x € R” its pseudonorm I is defined as ||x| |0 = |supp(x)

B

wherein xg is the cardinality of the support.

[0035] A vector x is sparse if and only if
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[, <%
[0036] Typically k << n, n being the number of columns of matrix A.

[0037] Exemplarily if x=[00030-10050], xeR",

x||0 =3, and x is 3

sparse.

[0038] For a matrix 4 R™" the mutual coherence is defined as the largest
normalized inner product between any two different columns of the matrix A, as

follows:

|<"f"’f>

u(A)= max ———a——.
13i,j£n,z'¢j|| ” || ||

@), -lla,|,

[0039] For a matrix 4 R™", and given 0<k<n, the matrix A is said to satisfy the

restricted isometry property (RIP) if there exists o, € [0,1] such that;
(1=, <l < (1 8, ).

[0040] This condition should be valid for all x e R"k-sparse vectors, where o,

needs to be sufficiently small.

[0041] Random matrices, such as Gaussian, Bernoulli, randomly selected rows
from DFT matrices are known to have been used as matrices for compressed sensing in
the literature, since they satisfy the restricted isometry property with high probability.

Examples of matrices satisfying the restricted isometry property are:

a) n random vectors sampled from the m-dimensional unit sphere,
b) random partial Fourier matrices obtained by selecting m rows from the n
dimensional Fourier matrix uniformly at random,

¢) random Gaussian matrices having 4; ;~N(0,1/m),

8
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d) random Bernoulli matrices where 4, ;e {X/%’_X/Z} with equal
probability.

[0042] For the last two cases, matrix A satisfies a prescribed o, for any
k<cm/ log(%) with a probability larger or equal than 1—2¢ ™, where ¢; and ¢, are

constants that only depend on ¢, .

[0043] Further terms employed thought this document are defined in the following:

[0044] “Recursively” is employed to indicate that the procedure is performed by
repeating items in a self-similar way. In mathematics and computer science, the term
refers to a method of defining functions in which the function being defined is applied
within its own definition. Specifically, this defines an infinite number of instances
(function values), using a finite expression that for some instances may refer to other
instances, but in such a way that no loop or infinite chain of references can occur. The
term is also used more generally to describe a process of repeating objects in a self-
similar way. Recursion is the process a procedure goes through when one of the steps of
the procedure involves invoking the procedure itself. A procedure that goes through

recursion is said to be “recursive”.

[0045] In signal processing, a window function (also known as an apodization
function or tapering function) is a mathematical function that is zero-valued outside of
some chosen interval. For instance, a function that is constant inside the interval and
zero elsewhere is called a rectangular window, which describes the shape of its
graphical representation. When another function or waveform/data-sequence is
multiplied by a window function, the product is also zero-valued outside the interval: all
that is left is the part where they overlap, the "view through the window". Applications
of window functions include spectral analysis, filter design, and beamforming. In
typical applications, the window functions used are non-negative smooth "bell-shaped"
curves, though rectangle, triangle, and other functions can be used. A more gencral
definition of window functions does not require them to be identically zero outside an

interval, as long as the product of the window multiplied by its argument is square
9
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integrable, and, more specifically, that the function goes sufficiently rapidly toward
zero. When the length of a data set to be transformed is larger than necessary to provide
the desired frequency resolution, a common practice is to subdivide it into smaller sets
and window them individually. To mitigate the "loss" at the edges of the window, the

individual sets may overlap in time.
[0046] If x is a linear vector x € R” and y € R™is the vector of obtained samples
y=Ax (1)

with 4 € R™ being the sampling (sensing) matrix, the present invention proposes a
method and means to recover x when m << n. The system denoted with equation (1) is
an underdetermined linear system. In accordance with compressed sensing, the main

result is that if x is k-sparse and k <c, /log(n/ k), a solution to this undetermined linear

system is possible.

[0047] Problem Py stated bellow should be solved in order to find the sparsest
vector x that leads to the measurement y. This problem is, Non-deterministic
Polynomial-time hard or NP-hard, requiring search over all subsets of columns of A. As
it is known from the art, a problem A is NP-hard if and only if there is an NP-complete
problem L that is polynomial time Turing-reducible to H (i.e., L <tH). In other words,

L can be solved in polynomial time by an oracle machine with an oracle for H.

[0048] Problem Py is stated as
minimize |x, subjectto Ax =y

[0049] Since problem P, is in general NP-hard, this problem has to be
‘approximated’ by tractable methods. Two convex optimization problems are used for

recovering sparse vectors from linear measurements.

[0050] A first optimization problem is referred to as “Basis Pursuit” wherein

solving problem Py is equivalent to solving the 1; minimization problem BP:
10



WO 2015/038648 PCT/US2014/054993

minimize |x, subjectto Ax=y

for all k-sparse vectors x, if A satisfies the restricted isometry property (RIP) with
0,; < V2-1 , the aforementioned problem is equivalent to Py. The optimization problem

(BP) is called Basis Pursuit. Since (BP) can be recast as a linear program, solving (BP)
is more computationally efficient, e.g., via interior point methods, as opposed to solving
problem (Py) which is generally intractable for large instances.

[0051] A second optimization problem is referred to as the Least Absolute
Selection and Shrinkage Operator (LASSO). In the presence of noise, the measurement
model y=Ax becomes:

y=Axt+w; (2)

where we R™ represents additive measurement noise.

[0052] In this setting, a variant of Basis Pursuit may be applied, namely the Basis
Pursuit Denoising (BPDN), best known as LASSO in the statistics literature, as:

minimize |x]| subject to ||4x—y|, <& 3)

where & R’ is chosen appropriately to account for the additive noise in the

measurements.

[0053] As known in the art, by duality, the problem can be posed equivalently as an

unconstrained optimization problem:
c e 2
minimize ||Ax - y” Tt /1||x|| ' 4)

where A is the regularization parameter that controls the trade-off between sparsity and

reconstruction error.

11
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[0054] A theorem useful in developing the recursive scheme for performing

compressed sensing on streaming data is the theorem regarding error of LASSO that
states that if A satisfies the restricted isometry property (RIP) with §,, < V2 -1 the

solution x, to equation (3) abides by the formula of:

x*—x”zSCO-”x—xk"l/\/erCl-c? (5)

wherein C, -||x—xk||1 /+Jk is indicative of model mismatch and C,-o 1s indicative of

noise. Cyo and C; are constants, where xi is the vector x with all but the largest k
components set to 0. In other words, x, is the vector obtained by preserving k-many

elements of x having highest magnitude.

[0055] In particular, if x is k-sparse and &,, < V2 —1 then

x*—x"zSCl-c?.

[0056] The theorem states that the reconstruction error is upper bounded by the sum
of two terms: the first is the error due to model mismatch, and the second is proportional

to the measurement noise variance.
[0057] The key is that the assumption on the isometry constant is satisfied with

high probability by matrices obtained from random vectors sampled from unit sphere,

random Gaussian matrices and random Bernoulli matrices if

m 2 C, log(n/k)

where C is a constant depending on each instance.

[0058] In the art it was showed that the error of LASSO can be used for near ideal

support detection. To state the result characteristic for the near ideal support detection, a

generic k-sparse model is defined.

12
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[0059] If x € R" denotes a k-sparse signal and Ix := supp(x) is its support set, the

signal x is said to be generated by a generic k-sparse model if:

1) Support I < {1,2,...,n} of x is selected uniformly at random, and |/_|= &, and

[X

2) Conditioned on Ix, signs of non zeros are equally likely to be -1 and 1.

[0060] The support set of the k-sparse signal may be detected as follows:

[0061] Assuming that y(A)S G logn for a constant cl > 0, x is generated from a

generic k-sparse model and

k< C%AHQ 1 for a constant c2.
togr

[0062] If, for Ix = supp(x),

rlrel}n|xl| > 80@

the LASSO estimate obtained by choosing A =4c4/2logn for measurements where
w~N(@, 1)

obeys:

supp( x )=supp(x)

sgn( x,) =sgn(x;) forie I,

with probability at least

13
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T B S R O(;j
nl 2zlogn n n'et )
[0063] For the sampling matrix having elements

A, ,~N(0,1/m)
the operator norm is ||A||2~1/n/m ,

thus the sparsity condition in the theorem becomes & < cl%gn .

[0064] In order for this inequality to be satisfied, the value for m needs to be

m=chklogn.

[0065] Furthermore, for random Gaussian matrices
u(A)~,[2log %1 the condition on the coherence is satisfied if m > 0(10g3 n)

[0066] Combining the bounds, it is required that m be
m> min{O(klog n), 0(10g3 n)}

[0067] Orthogonal Matching Pursuit (OMP) is a greedy algorithm aiming at
recovering sparse vectors x from noiseless measurement y = Ax. The algorithm outputs
a subset of columns of A, by iteratively selecting the column minimizing the residual
error of approximating y by projecting to the linear span of already selected columns. It

is shown that OMP recovers k-sparse signals from noiseless measurements if the mutual

coherence of the measurement matrix A satisfies u(A4) < 1

[0068] There are algorithms developed for LASSO, inspired by proximal

algorithms for non-smooth convex optimization: ISTA is a proximal gradient method,

14
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FISTA is an accelerated proximal gradient method, and SALSA is an application of the

alternative direction method of multipliers.

[0069] For error defined as G(x;) - G(x«) where G(x) is the objective function of
LASSO in equation (4) and x« = arg minG(x), the error decays as 1/t for ISTA, 1/t* for
FISTA and 1/t for SALSA where t is the number of iterations. In the art is also known
a Newton-type method for non-smooth convex optimization, in which the convergence
rate is no worse than 1=t>, but is locally quadratic.

[0070] The signal of interest is an infinite sequence, {x,} , as is the case when

i=0,1,...
dealing with streaming data. For such a signal of interest the ith window taken from the

streaming signal is defined as

x(l’) = [xl_le...xM,l]T

[0071] If x% is known to be sparse, the tools surveyed above are applicable to
recover the signal portion in each window, hence the data stream. However, the

involved operations are costly, and an efficient online implementation is uncertain.

[0072] Therefore, in accordance with the present invention, a method for efficiently
sampling and recovering streaming data is proposed. Such a method is a recursive
compressed sensing method, and it will be described in detail bellow. As it will be
shown in detail further in this document, the method of the invention exhibits low
complexity in both the sampling and estimation parts, which makes its algorithms

suitable for an efficient online implementation.

[0073] With {x;} is indicated the infinite sequence {xl. }z':O,l , and with x” € R" the

un

ith window of length n.

[0074] A dynamical model with input in R is represented as

15



WO 2015/038648 PCT/US2014/054993

0 0 .. 0 0
0 0 1 0 0
B I T b S (6)
0 0 0 0
10 0 0 0 | 1]
[0075] The method of the present invention allows the design of a robust low-

complexity sliding-window algorithm which provides estimates {fcl} using successive

measurements y(i) of the form
y& = AD 3O 7

where {A(”} is a sequence of measurement matrices. The design of a robust low-
complexity sliding-window algorithm is possible if {xl.} is sufficiently sparse in each

window, namely if

”x(l' )”0 <k for each i, where k <<n or if this condition is respected with sufficiently high

probability.

[0076] If A? satisfies the restriction isometry property with &,, <2 —1, the
methods reviewed earlier in this document may be applied to progressively estimate
{x(i ) } Running such algorithm online is costly and therefore, it is desirable to design an

alternative to such a method that at best may be qualified as ad-hoc.

[0077] In accordance with the present invention, the signal overlap between
successive windows is leveraged, consisting of recursive sampling (an encoding step)

and recursive estimation (a decoding step) as follows:
[0078] Regarding the step of recursive sampling: To avoid a matrix multiplication

for each y(i), A(i) is designed such that y(i) can be reused in computing y(i+1) with

minimal computation overhead, :

16
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@+ _ @)
yl _f(yl 7xz'+n7xz')

[0079] Regarding the step of recursive estimation: In order to speed up the

convergence of an iterative optimization scheme, use is made of the estimate

corresponding to the previous window, £V, to derive a starting point, £ of the

estimation procedure of £

~) _ A1) ~@)
x[(l)] —g(xl i )

[0080] In the following both steps of recursive sampling and recursive estimation

will be described in more detail.
[0081] Regarding the step of recursive sampling, a recursive sampling scheme

featuring minimal computational overhead is proposed. In the first iteration, t = 0, there

is no prior estimate, therefore what is computed is

YO = AO 5O
[0082] A sequence of sensing matrices A? recursively is chosen as:
A" =[aa’0 aPa’ |=4"P (8)

where ¢ is the Ith column of A®), and P is the permutation matrix:

0 - 01
1 - 00
P= .
0 1 0
[0083] The following lemma ensures the success of this encoding scheme: If A©

satisfies the restrictive isometry property for given k with constant o, , then A? ag
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defined in equation (8) above satisfies as well the restrictive isometry property, for the

same k, and 9, .

[0084] It follows from equation (8) that A” = A”P'  and A® is obtained by
reordering the columns of A9, By definition, the restrictive isometry property depends

only on ||x||0, and is insensitive to permutations of the entries of x, equivalently

permutations of the columns of A©.

(1 1)+

[0085] Given the particular recursive selection of AY is computed as:

1
G+ _ G+ G+ G+ _ i+1) G+ _ @) @ @) a¥ =
=4 —meazl Z +zazl + X4, Z L X" —xa” + X, a

i+n ﬂ

(

16}
i “1

= y(i) + (xz'+n X )al(i)'
[0086] When the signal of interest comprises noise, the noisy measurements are

noted as
3O = pO 4 5D where HO = 405
[0087] Therefore,

b(z+1) _ A(z+1) (i+1) _ b(z) + (x (i)

in X )Cl
[0088] By substituting the value of b in the equation for y* what is obtained
is:

y(m) — pUTD D) 0 (x

i+n

—x)a? + WD = 3O 4 (x

i+n

— X, )al(l') + D @

[0089] By defining 2 == w — ", 7z and 2" are independent if {w(i)} is an

independent increment process.
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[0090] The particular selection of the sampling matrices {A(i)}i:O,l,_, given in

equation (8) satisfies the condition
AD D — 4O piy®

[0091] By defining v as v := P%Y  recursive sampling can be viewed as
encoding v by using the same measurement matrix A”. With the particular structure
of x® given in equation (6), all of the entries of v and v are equal except v .

[0092] For the recursive estimation of the signal of interest an estimate for
£ = [fcl(fjl) . fcl(f;l)] is found by leveraging the estimate % = [fc(” £ ]

AR |

[0093] In an iterative algorithm, convergence speed depends on the distance of the
starting point to the optimal solution. To attain accelerated convergence, the overlap

between the windows is leveraged and the following starting point is used:
0 _ [ge-npe-n 26D
x[(l)] = [le XX Ex<z>1> [xz'+n—1 ]]T

where £V for j=2, ..., n-1 is the portion of the optimal solution based on the previous

window. This is referred to as ‘warm start’ in the optimization literature. By choosing
the starting point as such, the expected number of iterations for convergence is reduced.
This will be actually demonstrated in a later portion of this document where the

quantitative results are specifically discussed.

[0094] In the following the sparse signals of interest are discussed as they are in a

given orthonormal basis.

[0095] So far in this document it was implicitly assumed that for a given ne Z~,

windows x® of length n obtained from the sequence {x;} satisfy the sparsity constraint

||x(l')||0 <k, Vi.In general, it might be the case that x® is not sparse itself, but can be

sparsely represented in a properly selected basis.
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[0096] x” € R"is sparsely representable in a given orthonormal basis @ as

x? = ®a”, where o is sparse.

[0097] Assuming a common basis for the entire sequence {x;} over windows of

size n, what is obtained is:
3O = 40D = gOD g

[0098] For the compressed sensing estimation to carry over, A”7® needs to satisfy
the restricted isometry property. The restricted isometry property is satisfied with high
probability for the product of a random matrix A®” and any fixed matrix. In this case the
@

LASSO problem for recovering the signal in the sparsity basis, a*’ is expressed as:

e ; ; 2 .
ninimize "A(Z)CD at —y”2 + /1"0:(”"1

where the input signal is given by x” = ®a® .

[0099] The problem that needs to be solved is how to find a recursive update for
a“Vbased on o so as to have a good initial estimate for accelerated convergence in

a”)].

(i+1)

recursive estimation, as E [a

[00100]  Using equation (6) what is obtained is:

[ )
where 0On.1 is vector of length n-1 having all elements set to 0.

[00101]  Since x” = ® ', it is obtained:
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x,=x"=[110,,]®a"" and

Xy = x;fjll) = [On—l | l]q)a(iﬂ)'

[00102]  Left multiplying both sides by ¥ = @ 'in the previous equation, it follows:

_ : , 0

P[0+ (e - -

=¥[[®a? +1//n71((¢571)Ta(”1) —(¢OT)T05(”) (11)

where H: = P’ is the permutation matrix given in equation (9), and

[00103] (¢T )T and (@TJ)T arc the first and the last rows of the orthonormal basis @,

0

respectively.

[00104] The Fourier basis is of particular interest for ® since an efficient update
rule can be derived for such basis. The Recursive Sampling for Fourier Basis is as

follows:

[00105] If dis the n x n inverse Discrete Fourier Transform (IDFT) matrix with

entries
D, = PR J;

.
where @w:=e ” ,in such case:

a"=Q a +y, ((CDQ1 )Ta(”” - (CDg)Ta(”) (12)

where Q is the n x n diagonal matrix with (Q,),, =0 ", and ¥=0"is the

orthonormal Fourier basis.
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[00106] In this particular case, the equation (11) simplifies to equation (12) since
circular shift in the time domain corresponds to multiplication by complex exponentials

in the Fourier domain, as WYII=Q ¥ and Y& =1.

[00107]  From the above it may be seen that although the number of computations for
calculating o™ based on o is O(n?) in general, for Fourier basis it is O(n) since the

matrix that multiplies o is diagonal.

(i+1)

a(”] is

used as the starting point in the iterative LASSO solver for warm start, in order to attain

[00108]  As shown carlier, in the presence of noise, the estimate of £ [a

accelerated convergence.

[00109] One way to improve error variance is by averaging the estimates obtained

from successive windows. Using the estimates £, the average estimate, X, is defined
» » i

for the ith entry of the streaming signal, i.e. x;, as:

SR — Py (13)
0,7

mln{z +1 n} ,,fﬂ}
where we average n many estimates for i > n-1 and i+1 many estimates fori<n - 1.

[00110]  Considering i > n-1 for notational simplicity, what is further obtained is:

LS af 4L e o)] -6y

j =i—n+1 nj:z' n+

where (a) follows from Jensen’s inequality applied to x”. The inequality implies that the

reconstruction error can only be lowered by averaging the estimates.

[00111]  In the following, the expected 1,-norm of the reconstruction error |)_c - xl.|2 is

analyzed, by expanding the equation and using
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Cov[)%ﬁ.flj S ] =0 for j7k.
[00112]  For notational convenience the case i > n - 1 is considered, the case i <n -1

being similar.

. 2
St |-(e i n) el s e ]
n

j=i—n+1

Ex[('fz _xz')z]:Ex Ll

n
[00113]  The resulting equality is the so called bias-variance decomposition of the
estimator. It is seen that as the window length is increased the second term approaches

zero and the reconstruction error asymptotically converges to the square of the bias of

LASSO.

[00114] In the following the algorithm proposed in accordance with the present

invention will be discussed.

[00115] In general, the least absolute selection and shrinkage operator (LASSO)
yields a biased estimator as it maps R™— R" where m < n. If the overlaps between
windows are utilized by averaging the LASSO estimates directly, the reconstruction
error does not go to zero due to bias. On the other hand, least squares estimation (LSE)
is an unbiased estimator for an overdetermined system; as shown above in this
document, LASSO can be used for estimating the support set of the signal on which
LSE can be subsequently applied. Based on these observations, a two-step estimation

procedure is proposed for recovering the sampled signal to reduce the estimation error.
First, the LASSO estimates % are obtained, which are then used as input to a de-
biasing algorithm. For de-biasing, the LSE is performed on the support set of the
LASSO estimate to obtain X", which gives an unbiased estimator of the true non-
zeroes of the signal when ”x(i)”0 <m and support is identified correctly. Subsequently
the de-biassed estimates obtained over successive windows are averaged. The block

diagram of the method and the pseudocode for the algorithm can be seen in the adjoined

figures and Algorithm 1 below, respectively.
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[00116]  Algorithm 1 Recursive compressed sensing:

Input: A € R™, {x}, 23>0

Output: estimate {¥}

1. support selection counts: {v} <« {0}, signal estimate: {X} <« {0}

2. fori=0, 1,2, ... do

) r
3. X« (xl.xl.+1 .. .xHH)
4, PP — A% 1w Pencoding

e ) ) N
5. F argmln”A(l)x - y(l)" + ﬂ,”x"1 > LASSO

xeR” 2

6. I < sup p(fc(” ) I> support estimation
7. V,,; < v, +1p> increase count of selection in support

o . . 2
8. ¥ «arg ml‘rll‘”A}”x - y(””2 > LSE on support set

xeR

9. ¥« ((v}” —~ 1)® 0+ X (”) > update average estimates where the zero crossed

operators denote element-wise multiplication and division respectively

10. A9 « 4" VP > for recursive sampling
11.  end.

[00117] A block diagram of the method for sensing streaming data in accordance
with one embodiment of the present invention is represented in figure 1. A method
according to this embodiment comprises the step of recursively sampling an input
stream of data using the steps of overlapping windowing to obtain at least a previous
measurement, and employing said previous measurement for obtaining a subsequent
measurement. More precisely, the method comprises the step of recursive sampling 102
of an input stream of data. The data sampled during the step of recursive sampling 102
is processed via a recursive estimation step 104. Information regarding a previous
estimate, obtained during a previous estimate obtention step 116 previous to the
recursive sampling is as well imputed during the step of recursive estimation 104. The
data obtained during the step of recursive estimation 104 is utilized during the step of
support detection 106, as described above in connection with step 6 of the recursive

sampling algorithm. The information processed as the result of the support detection
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step may be used for count estimation, as shown in step 110 of figure 1 and as
corresponding to step 7 of the recursive sampling algorithm. The information obtained
in step 106 is utilized during the step 108 of calculating the LSE on the support set, as
described above in connection with step 8 of the recursive sampling algorithm.
Subsequently the LSE on the support set and the estimation count are averaged in step
112, as described above in connection with step 9 of the recursive sampling algorithm.
In accordance with an embodiment of the method, the previous estimate obtained
during the step 116 is as well averaged in step 112. A new estimate is obtained in step

114, as described above in connection with step 10 of the recursive sampling algorithm.

[00118] The method according to one such embodiment is as well capable of

analyzing the computational complexity and estimation error of the method.

[00119]  More precisely, in the following the complexity and error variance of the
method are analyzed, and a voting algorithm for more robust support detection is

introduced.

[00120]  The block diagram of figure 1 representing one embodiment of the method

may be extended to a method comprising variable overlap between successive windows.

[00121]  What is taken under consideration is a generalization in which sensing is

performed via recurring windowing with 0 <7 <# overlaps.

[00122] If A< R™" denotes the sampling matrix, i denotes the window index, and n;
is the sampling efficiency, that is the ratio of total samples taken until time (n + 1) to the
number of entries sensed. For one window, the sampling efficiency is m/n since

sampling matrix is 4 € R™" .

[00123] By the end of ith window, n+ (i —1), elements have been recovered while

having taken im samples. The asymptotic sampling efficiency is:

5 :=limy, = lim— =

n
o o+ (i-1)
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[00124]  If instead the encoding used in en encoding using a rank-t update, i.e., by
using the matrix obtained by circular shifting the sampling matrix t times, the
asymptotic sampling efficiency becomes:

m+(i—Dr
m——=
o p+(i—-1r

[00125] In the latter case, the recursive sampling approach is asymptotically
equivalent to taking one sample for each time instance. The benefit of such approach
lies in noise suppression. By taking overlapping windows each element is sensed at

minimum | »/7 |-many times, hence collaborative decoding using multiple can be

used to increase estimation accuracy.

[00126] The application of LASSO to signal support estimation was discussed
earlier in this document. Further in this document a method utilizing the estimated
support over successive windows for more robust support detection in high
measurement noise is introduced. When the signal magnitudes are not high enough to
stand above the noise level, the aforementioned support detection mechanism may miss
nonzero positions (false negative) or detect false support (false positive). Therefore the
support detection theorem discussed earlier in this document could use a smaller
regularization constant, A, to detect support for lower minimum nonzero values with a
cost of reducing the success probability. Assuming that the false positives are randomly

distributed on the set {0,. R 1}\supp(x(i)) for all i, by introducing a threshold on the

minimum number of times a position needs to be detected as support, we can decrease

the false positives in low signal to noise regime.
[00127] By introducing a ‘voting machine’ the obtained two step algorithm with

voting may be represented within the support detection block 106 in Figure 1. The two
step algorithm works by solving LASSO as

20 _ argmin[”A(f)x — y(z')"2 + ﬂ,”x" j .
xeR" 2 1
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[00128]  If & is set as > 0, the indices where absolute value of £ is greater than &,

are found to estimate the support of x?; in the ith window

50— i) £

The sequence containing the votes is defined as {v,} and the number of times an index i
is used in the least squares estimation (LSE) as {Ll}. At the beginning of the algorithm
the {v,} and the {Z,} are set to zero. For each window, votes on the positions that are in

the set are added, the set being indicated by S as v +1 , where the

NRES| <V

NRES|
subscript S +i is used to translate the indices within the window to global indices on

the streaming data. By applying threshold &, € Z" on the number of votes {Vl.}, the

indices that have been voted sufficiently many times to be accepted as non-zeros are

found and they are stored in
Sg) = {] Vi Z 52}

[00129]  The threshold &, 1is chosen so that |Sg)|<m, hence yielding an

overdetermined system for the LSE. The overdetermined least squares problem is

solved based on these indices,

o . . 1 . .
FO (A(Z(Z)TA(” ) AOT 0
g

(@) ()
S Sy S

[00130]  where ASLZ) is the matrix obtained by extracting columns of A? indexed by

the set Sg). Then in order to perform averaging of the least squares estimates, the

number of recoveries is incremented for the entries used in LSE procedure as

L

S 1 <L

5041 +1.
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) Q) ,
[00131]  The vector X is in R|Sg | and the vector x € R” is generated by setting the

elements indexed by the S¢ to the least squares estimate as x, =¥ and all the other

indexes to 0. Then the average estimates are updated as:

—1_ 1. .
< Xt % forj=0, 1, ...,n-1.

i i

[00132] The estimation error variance and the computational complexity of the

method according to one embodiment is analyzed in the following.

[00133] Before the analysis of the estimation error variance of the two step RCS

method is made, the following lemma is introduced:

[00134] Lemma 5.1: Denoting the solution to LASSO in equation (4) by v, its

support setby 7= supp(f)), and the least squares solution restricted to columns 4,

by

2
P

V= argmin”Av -y
veR"
v

‘=0

the following equation is satisfied:

~ A
|§ < (”VI||1 N 1)5

”A[ (‘71 - ‘;1) ‘;1
[00135] Independent of the selected support, the following holds for LASSO

estimation and least squares applied on the support of LASSO estimate:

N . 2 . 2
v=ar mln"Av - || + l"v” =ar mln”Av - || + l”v”
g veR” y 2 1 g veR™ y 2 1

v
=0

~ . A 2
v =arg 1’1’111;1” \ y"2
veR

v
I°=0
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where 7 =supp(v). The optimality conditions of LASSO yield:

n A n
A[T (y - A[VI) = ESgn(Vl) (15)

[00136]  where sgn(v) is the sign function extended to vectors. Normal equations

read
A[TA[V[ = AzTy
[00137]  Therefore :
o o NG T NG
”A[ (Vl( = VE )XE =(v, — V[)T A[TA[ (Vl - V[) = (Vl -V )T ESgn(Vl ) < (”VI "1 -

@ A
=(¥1, - 161,)5

~

V;

20
1)5_

where (a) follows from equation (15) and normal equations, (b) follows from

97 sgn(®,) =%, |, and
v/ sgn(v,)< [,
and (c) follows since V. =v . =0.

I

[00138] If it is assumed that noise is uncorrelated irrespective of the support

detection, i.e.,

Cov[w(i),w(j )|A7.,A = O] for i#j where Ai denotes the event that the support detection

succeeds in the ith window,
4, = {supp(x") = supp(x"")
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[00139] The following theorem gives an upper bound on the reconstruction error

variance of the proposed two-step algorithm.

[00140]  In accordance with the theorem regarding Error Variance for the proposed
algorithm, under the conditions discussed above in connection with support detection
and under the assumption that the noise is uncorrelated irrespective of the support

detection for fixed k and n, the following condition is valid:

-y o’ P(AC)H ﬂmf}i)” B x§)|) NGO
El® - x, P ]< Pay - %f ) E[ B Gt

where

1 |1| c
PAH>1-2 ——+ | ———— and
) Lwﬂﬁlogn " nj an

P(4°)=1-P(4).

[00141]  To demonstrate the validity of the theorem stated above, the following three

conditions need to be satisfied:
[00142]  The first condition is:

Given m, and k where k<m, for mxk matrix A where 4, N (0,1/m), the singular values

5,(A)>...> s5,(A) satisfy the condition:
max{P(s1 (A)> 1+ Jk/m + t),P(sk(A) <1— Jk/m - t)}< exp(— mt’* /2)
[00143]  The second condition is:

P(A.)z1—3£ : 1L

1
L Hlo .
l nl A2rlogn n J [n”"gzj
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[00144] By the union bound,

N e1op(fas |p1o2 L M) __¢
P(QAL-)—l P(QA)ZI 2[m+nj pecc

[00145] Y is defined as the Lasso estimate. It is obtained by least squares applied

on the support of Lasso, .

[00146] The LASSO estimate is defined, v, and the estimate is obtained by least

squares applied on the support of LASSO, v as:

~(i 1 / 2
P =arg rvlgilernl”AV - y(l)”z + ﬂ“”"”1

~(i . NIA
7 = arg m1n| |Av - y(””
veR" 2

where I = supp(?").

[00147]  In the event where the support in all n consecutive windows is correctly

detected,

A1ﬂ- . .ﬂAﬂ , the ordinary least squares estimate is

~(i r o
v = (A[m A[o') ) A[my(l) .

[00148] The matrix A, 4

4,18 invertible since the singular values of 4, are

nonzero with high probability.

[00149]  From standard LSE, E [V(i )]: vf()) and COV[V(”]= UQ(A[(Q)T A[(i)) )71.
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[00150]  For any fixed entry, such as v, , =x, ; which is the first entry in the signal

that is estimated n times, given 4" == A4,U... 4

} zE[m—vm R o TR UM

:0:

m ~k log (n/k)

[00151]  This value for m decreases as almost 1/n hence the reconstruction variance

goces to zero in the case where the support detection succeeds in n consecutive windows.

[00152] In the third place, it is important to know happens in the complement of
n C

previous case, [nA] .
i=1

For 7 and ¥ the lemma above yields:

5

A(l)

. ~ )12
S0 _ o0 )
|G < (], -

[00153]  Therefore:

e s < 527 -

N
Vi

| A
1 2‘1—«/k/mi

[00154]  Using the triangle inequality we get an upper bound for the "2-norm of the

difference between LSE estimate on the support set and the true signal:

(i

(>|)
1

ot

s o g L
ol sl o -l = S

NG HlI?
21— fk/m) "=
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(16, 17)

[00155] By combining these results what is obtained is:

L

Il
(=4

i

n— 2 14 14
E[(anl R )2]: EK% ( Vs )j } < E{%;(V”(Z)l V1) } S%l; E[”V(i) - v(i)"j

[00156] The equation above is obtained by substituting inequality 17, using
probabilities for 4, and (A{f )C , and noting that v, v, and v can be interchanged with x,

X and X respectively.

[00157] In the following the computational complexity of the recursive compressed

sensing algorithm will be analyzed.

[00158] If i is the window index, A" € R™"is the sampling matrix, and T is
indicative of the sliding step the number of sliding slots between successive windows,

by the end of the ith window n+(i-1)t entries have been recovered.

[00159]  The first window is sampled by A®x”. This requires O(mn) basic

operations, such as additions and multiplications. After the initial window, sampling of

the window

N R
z‘r z‘r+1 z‘r+n1

is achieved by recursive sampling having rank t update with complexity O(mr). Thus
by the end of the ith window, the total complexity of sampling is 0(mn)+ O(mr)i , for

an average complexity of O(m T) for recursive sampling.

[00160]  The other contribution to computational complexity stems from the iterative
solver. The expected complexity attributes to the iterative solver which can be

calculated as the number of operations in each iteration times the expected number of
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iterations for convergence. While the former depends on the particular algorithm the
later is a function of the distance of the starting point to the optimal solution, which is

bound to the case of using recursive estimation as follows:

[00161]  Using:
[x(z 1 x*n 11)0T]T

[00162]  As the starting point, what is obtained is:

£(1)
Ho] ~ X

-1 _ 1)" Nk +C, "x(z) x(z)" Ik

((z>) X0 ]|

[00163]  The validity of the statement made above is proven as follows:
e = [ &g X II)OTJ [xif))D x ]T

CRSRNORRNG
e = [xff,)D x 07 JT T [x*g)D x JT

[00164]  Taking the norm and using triangle inequality yields:

” '(i+1)

<l

(z) X0 ]|

[00165]  With view to the theorem that provides the error of Lasso, what is obtained

is:

”e'(M)

<G =2k + G x| K+ 06 + ||[x,5fj,. @ ]| (18)
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[00166] The exact computational complexity of each iteration depends on the
algorithm. Minimally, iterative solver for LASSO requires multiplication of sampling
matrix and the estimate at the iteration which requires O(mn) operations. In an
algorithm where the cost function decays sublinearly (e.g., 1/t%), as in FISTA, the

number of iterations required for obtaining % such that G(£)— G(x.)< &

[~ =,
N

£

where x« is the optimal solution, is proportional to , where x[0] is the

starting point of the algorithm. From this bound, it is seen that average number of
iterations is proportional to the Euclidean distance of the starting point of the algorithm

from the optimal point.

[00167]  For the sequence {x,}. ,, where "x(”"OSk and max
sdyees J=0,..,n—

xﬁf')|S C for all i

where C>0 is constant, the expected number of iterations for convergence of algorithms

where cost function decays sublinearly is 0(\/;) for noiseless measurements and

0(\/; )+ O(\/Z ) for 1.1.d. measurement noise.
[00168] The above statement is true since: Since x is k-sparse, the terms

”x(H) —~ xff’””l and ”x(i) —~ x,(f)”1 drop in accordance with equation 18.

[00169] By |x]|<C,itis obtained

[0, ..x2], < vz

[00170]  With noisy measurements, the term C,o is related to the noise level. Since
noise has distribution N (0,6°T), with high probability & =2 (m+Av2m) thus

50(«/%) by the conditions advance by the theorem concerned with the error in
LASSO. Using this result in equation (18), it is found that the expected number of
iterations is 0(«/? )+ O(«/Z ) in the noisy case.
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[00171] In the above analysis, the average complexity is O(mr) for recursive

sampling and O(mn) for optimization algorithm (minimally). For recovering each
component of the input stream and not leaving out elements, 7 <#, thus it is seen that

complexity of iterative optimization dominates the average complexity.

[00172] By using the condition m > Cklog%) for random vectors sampled from
unit sphere, random Gaussian matrices and random Bernoulli matrices to satisfy the
condition 9§,, < V2 -1. The following tablel shows average computational complexity

for various sparsity classes on k.

k Computational Complexity
o(1) O(nlogn)

O(logn) O(nlogn-log(n/logn))
O(/n) O(n*'* logn)

O(n) O(n’)

EXPERIMENTAL RESULTS

[00173]  The data used in the simulations are generated from the random model:

(x) 3 (1—p)5(x)+$ if x e[—l,l]

0

(19)

with p = 0.05 unless stated otherwise.

[00174]  The measurement model is
PO = 4O 430

with w” ~N (0, 6> I)

where o >0
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and the sampling matrix is

A(O) c Rmxn

where m is six times the expected number of nonzero entries in one window, i.e., m =

6pn, and where n is equal to the window length.

[00175] Tt has been experimentally shown what is the speed gain achieved by RCS
by comparing the average time required to estimate a given window while using FISTA,
the accelerated proximal gradient method, for solving LASSO. RCS is compared
against so called ‘naive approach’, where the sampling is done by matrix multiplication
in each window and FISTA is started from all zero vector. The average time required to
recover one window in each case is shown in Figure 2. As it may be observed in figure
2 the average processing time for RCS is below the processing time required by other

methods.

[00176]  The results of experiments on the support estimation using LASSO are

discussed herewith. In the measurements x € R%,

x||0 =60, Ae R™ is generated

by a Gaussian distribution with A;;~N(0,1/m) and w has o = 0.1. As suggested in the
LASSO theorem, for these parameters, LASSO is solved with

A =4042logn , and the nonzero amplitudes of x satisfies min |x,|>3.34
i=1,2,...n 1

by sampling from U ([-3.34,- 4:34] U [3.34, 4.34]).

[00177]  In simulations, the number of samples taken is varied from the signal, m,
and the accuracy of support estimation is studied by using detection rate equal =
| detected support N true support versus | / | true support | and a false positive rate = |

detected support \ true support | / | true support | , Where | . | denotes the cardinality of
a set and \ is the set difference operator. Note that with this definition, the false positive

rate can be greater than one.
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[00178] Two methods for support detection are compared. The first method is by
solving LASSO and taking the non-zero positions as the support, and the second is by
taking the positions where the absolute magnitude of the estimate is greater than a
threshold. Figure 3 shows the resulting curves for the two methods, obtained by
randomly generating the input signal 20 times for each value of m and averaging the
resulting detection rates and false positives. As can be seen from the figure, although the
detection rate behaves similarly in both methods, the false positives can be reduced

significantly by properly adjusting the threshold on the resulting LASSO estimates.

[00179]  What is specifically illustrated in Fig. 3 is the support set estimation using
LASSO: for n = 6000, 6=0.1, min |x|>3.34, threshold & =0.01, 0.10, and 1.00. The

circle markers depict detection rate, and square markers depict false positive rate.

[00180]  As discussed in detail in the above, the LASSO method can be used together
with a voting strategy and least squares estimation to yield an unbiased estimator.
Figure 4 shows the comparison of performance of a) single LASSO estimates, b)

averaged estimates, ¢) voting strategy, and d) debiasing and averaging.

[00181]  The figure is obtained by using a fixed x € R” and taking measurements
with uncorrelated noise. It can be seen that the error does not decrease to zero for
averaged estimate, which is due to LASSO being a biased estimator, as explained earlier
in this document. Specifically Fig. 4 is a representation of error plots for a) averaged
estimates, b) debiased and averaged estimates and c) estimates obtained by voting and

averaging.

[00182]  Referring now to Fig. 5, the figure illustrates error plots for averaged

LASSO estimate and ‘voting and averaging’ on streaming data.

[00183]  Figure 5 shows a comparison between the window reconstruction error
obtained with averaged LASSO estimates and ‘voting and averaging’ algorithm on
streaming data. Data is generated randomly where an entry is selected as support with p
= 0.05 and its amplitude is drawn independently and identically distributed from

uniform distribution
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U([-1.3847,—2.3847]U[1.3847,2.3847))

to satisfy the conditions of support detection theorem, wherein n = 400, m = Snp = 100

and the sampling matrix is Gaussian. The measurements are contaminated with

w” ~N, ¢°I)

where o = 0.05, and the voting algorithm uses & = 0.5 and &, = 20. As can be seen
voting gives a reconstruction error that shows jumps due to waiting for £, votes to be

collected to use an entry in LSE. However, it also can be seen that after the position is
accepted as part of the support, the error drops instantly to lower values than simply

averaging the LASSO estimates.

[00184]  Therefore, what is proposed in accordance with one embodiment is an
efficient method for recursive sampling and iterative recovery pertinent to compressed
sensing on streaming data. The method leverages signal overlaps between successive
processing windows in obtaining a faster convergence speed for the estimates of the

signal while achieving estimation variance reduction in the presence of noise.

[00185]  Further, in accordance with another embodiment is proposed a two step
estimation procedure to approximate an unbiased estimator of the signal based on
LASSO where a) support detection is performed by solving LASSO, and b) signal
estimation is obtained by solving ordinary least squares on the estimated support set.
The computational complexity of the algorithm is O(mn) where m is the number of
samples taken and n is the window length. The convergence time is shown by

experiments to be appropriate for online implementation on streaming data.

[00186]  Therefore to summarize, embodiments include a method for compressed
sensing of streaming data that involves performing a recursive scheme for performing
compressed sensing on streaming data, that is as well capable of analyzing the
computational complexity and estimation error of the method. In accordance with one

embodiment, the input stream of data is sampled recursively via overlapping windowing
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while making use of the previous measurement in obtaining the next one. Leveraging
the overlapping window structure, the signal estimate from the previous window is
utilized, in order to achieve faster convergence in an iterative optimization algorithm, to
decode the new window. The estimation accuracy is enhanced by averaging signal
estimates obtained from multiple windows. To remove the bias of the estimator, a two
step estimation procedure is proposed in accordance with one embodiment comprising
support set detection and signal amplitude estimation. Furthermore, one embodiment
includes a voting scheme for robust support estimation in the presence of high

measurement noise.

[00187]  The simulation results obtained while employing the means according to
one embodiment for compressed sensing of streaming data show a speed up of ten times
with respect to applying traditional compressed sensing on a stream of data, while
obtaining significantly lower reconstruction error under mild conditions on the signal

magnitudes and the noise level.

[00188]  In accordance with another embodiment, means for sensing streaming data
are as well proposed. Said means for sensing streaming data comprise means for
recursively sampling an input stream of data, and means for employing previous
measurements for obtaining a subsequent measurement. The means for recursively
sampling an input stream of data are capable of using the steps of overlapping

windowing to obtain at least a previous measurement.

[00189] One embodiment includes ranging with ultra wideband signals. For
example, a device may continuously monitor return pulses to regularly transmitted
spikes (the signal emitted is periodic). Generally, the device receives a main echo, plus
added multiple echoes. If the device is moving, the main echo just slightly changes from
one period to another period, as do the multiple echoes. This is not a periodic signal,
just an almost periodic signal, and a sliding window algorithm will naturally track these
shifting echoes. In such embodiments, echo data from an acoustic sensor is thereby

transformed into range data.

[00190]  In another example, biomedical sample data may be transformed according

to methods and systems described above. For example, samples from one or more
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electrical sensors configured to receive electrical signals from a human body may be
processed according to embodiments disclose herein to reconstruct electrocardiographic
or clectroencephalographic signals. In some embodiments, the reconstructed signal may

be matched to signatures characteristic of one or more diagnostic conditions.

[00191]  In another example, sample data from a camera, photoclectric, or other pixel
array sensor (for example, configured to receive visible light or infra-red light) may be
processed as described herein. For example, using such techniques an apparatus may be

able to improve power efficiency or increase effective sensitivity of the sensor.

[00192]  In other embodiments, environmental sensor data such as temperature, wind

speed, wind direction, precipitation may be processed as described herein.

[00193]  The means of the present invention may be implemented as software means,

hardware means or a combination thereof.

[00194]  The systems and methods described above can be embodied, for example, in

a wireless modem or wireless device integrating such a modem.

[00195] It is to be recognized that depending on the embodiment, certain acts or
events of any of the methods described herein can be performed in a different sequence,
may be added, merged, or left out all together (e.g., not all described acts or events are
necessary for the practice of the method). Moreover, in certain embodiments, acts or
events may be performed concurrently, e.g., through multi-threaded processing,

interrupt processing, or multiple processors, rather than sequentially.

[00196]  Those of skill will recognize that the various illustrative logical blocks,
modules, circuits, and algorithm steps described in connection with the methods,
systems, and apparatuses disclosed herein may be implemented as electronic hardware,
computer software executed by a processor, or combinations of both. To clearly
illustrate this interchangeability of hardware and software, various illustrative
components, blocks, modules, circuits, and steps have been described above generally
in terms of their functionality. Whether such functionality is implemented as hardware

or software depends upon the particular application and design constraints imposed on
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the overall system. Skilled artisans may implement the described functionality in
varying ways for each particular application, but such implementation decisions should

not be interpreted as causing a departure from the scope of the present invention.

[00197]  Moreover, embodiments disclosed herein may be implemented or performed
with an electronic device or circuit such as a general purpose processor, a digital signal
processor (DSP), an application specific integrated circuit (ASIC), a field programmable
gate array (FPGA) or other programmable logic device, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the
functions described herein. A general purpose processor may be a microprocessor, but
in the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a
combination of computing devices, e.g., a combination of a DSP and a microprocessor,
a plurality of microprocessors, one or more microprocessors in conjunction with a DSP

core, or any other such configuration.

[00198] The steps of a method or algorithm described in connection with the
embodiments disclosed herein may be embodied directly in hardware, in a software
module executed by a processor, or in a combination of the two. A software module
may reside in RAM memory, flash memory, ROM memory, EPROM memory,
EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other
form of storage medium known in the art. An exemplary storage medium is coupled to
the processor such the processor can read information from, and write information to,
the storage medium. In the alternative, the storage medium may be integral to the
processor. The processor and the storage medium may reside in an ASIC. The ASIC
may reside in a user terminal. In the alternative, the processor and the storage medium

may reside as discrete components in a user terminal.

[00199]  Specifically in accordance with an embodiment of the present invention, an
apparatus for performing compressed sensing of streaming data, comprises a recursive
sampler arranged for recursively sampling an input stream of data using overlapping

windowing to obtain at least one previous measurement regarding the input data stream,
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and a unit employing the at least one previous measurement for obtaining a subsequent

measurement.

[00200]  The apparatus proposed in accordance with one embodiment of the present
invention comprises a recursive sampler that is based on a recursive scheme for
performing sensing. The apparatus for performing compressed sensing of streaming
data of the present invention also comprises a processing unit for processing she input

stream of data sampled during the step of recursive sampling via recursive estimation.

[00201] In accordance with the present invention, the apparatus for performing
compressed sensing of streaming data also comprises storing means for delivering the
inputting information regarding the data stream of a previous estimate obtained during a
previous estimate obtention step. Further, the apparatus for performing compressed
sensing of streaming data of the present invention comprises a counter arranged for
performing count estimation based on information obtained during a data stream
support detection step. Further yet, the apparatus of the present invention may also
comprise a calculator for calculating a least squares estimation (LSE) value for a data
stream support set based on data obtained during said recursive estimation step. A
processing unit for averaging the calculated least squares estimation value, the count
estimation value, and the previous estimate to calculate an averaged value to obtain an
averaged value is as well comprised by the apparatus proposed in accordance with one
embodiment of the present invention. An estimator for estimating an error degree of the
method for sensing streaming data is as well envisioned to be comprised by the
apparatus proposed in accordance with the present invention. In addition, a processing
unit for averaging signal estimates obtained from a plurality of windows may be as well

comprised by the apparatus proposed by the present invention.

[00202]  Various examples have been described. These and other examples are

within the scope of the following claims.
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WHAT IS CLAIMED IS:

L. A method of performing compressed sensing of streaming data, comprising:
recursively sampling an input stream of data using overlapping windowing to obtain at
least one previous measurement regarding said input data stream, and

employing said at least one previous measurement for obtaining a subsequent

measurement.

2. The method for performing compressed sensing of streaming data of claim 1,
wherein said method for sensing streaming data employs a recursive scheme for

performing said sampling .

3. The method for performing compressed sensing of streaming data of claim 1,
wherein the step of employing said at least one previous measurement for obtaining a
subsequent measurement comprises processing said input stream of data sampled during

the step of recursive sampling via recursive estimation.

4. The method for performing compressed sensing of streaming data of claim 3,
further comprising:

receiving information regarding said data stream, wherein said information
concerns a previous estimate obtained during a previous estimate obtention step, said

previous estimate obtention step being performed prior to the recursive sampling step.

5. The method for performing compressed sensing of streaming data of claim 3,
further comprising:

detecting a data stream support, and

performing count estimation based on information obtained during the data

stream support detection step.

6. The method for performing compressed sensing of streaming data of claim 3,
further comprising calculating a least squares estimation (LSE) value for a data stream

support set based on data obtained during said recursive estimation step.
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7. The method for performing compressed sensing of streaming data of claim 6,
further comprising averaging said calculated least squares estimation value, said count

estimation value, and said previous estimate to calculate an averaged value .

8. The method for performing compressed sensing of streaming data of claim 7,
further comprising employing said averaged value to obtain a new estimate for said

streaming data.

0. The method for performing compressed sensing of streaming data of claim 1,
further comprising analyzing a computational complexity of said compressed sensing of

streaming data.

10. The method for performing compressed sensing of streaming data of claim 9,

further comprising estimating an error degree of said method for sensing streaming data.

11. The method for performing compressed sensing of streaming data of claim 1,
further comprising obtaining convergence in an iterative optimization algorithm to

decode a new window.

12. The method for performing compressed sensing of streaming data of claim 11,
wherein said obtaining step comprising leveraging an overlapping window structure
employed by the step of overlapping windowing and a signal estimate regarding the

previous window.

13.  The method for performing compressed sensing of streaming data of claim 1,

further comprising averaging signal estimates obtained from a plurality of windows.

14. The method for performing compressed sensing of streaming data of claim 13,
further comprising:
performing support set detection, and

signal amplitude estimation.
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15.  The method for performing compressed sensing of streaming data of claim 1,
further comprising applying a voting scheme for robust support estimation in the

presence of a high measurement noise.

16. A system for performing compressed sensing of streaming data, including a
plurality of modules, each module comprising a computer readable medium having
thereon computer executable instructions for:

recursively sampling an input stream of data using overlapping windowing to obtain at
least one previous measurement regarding said input data stream, and

employing said at least one previous measurement for obtaining a subsequent

measurement.

17. A non-transitory computer readable storage medium having recorded thereon a
computer program for sensing streaming data,

the computer program comprising an algorithm capable of:

recursively sampling an input stream of data using overlapping windowing to obtain at
least one previous measurement regarding said input data stream, and

employing said at least one previous measurement for obtaining a subsequent

measurement.

18.  An apparatus for performing compressed sensing of streaming data, comprising:
a memory configured to store data from an input stream of sensor data; and
a processor configured to:
recursively sample an input stream of sensor data using overlapping
windowing to obtain at least one previous measurement regarding said input
data stream; and
employing said at least one previous measurement for obtaining a

subsequent measurement.
19. The apparatus for performing compressed sensing of streaming data of claim 18,

wherein said processor is configured to recursive sample based on a recursive scheme

for performing said sensing.
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20. The apparatus for performing compressed sensing of streaming data of claim 18,
wherein said processor is further configured to process said input stream of data

sampled during the step of recursive sampling via recursive estimation.

21. The apparatus for performing compressed sensing of streaming data of claim 20,
further comprising a store for delivering inputting information regarding said data

stream regarding a previous estimate obtained during a previous estimate obtention step.

22. The apparatus for performing compressed sensing of streaming data of claim 20,
wherein said processor is further configured to perform count estimation based on

information obtained during a data stream support detection step.

23. The apparatus for performing compressed sensing of streaming data of claim 20,
wherein said processor is further configured to perform a least squares estimation (LSE)
value for a data stream support set based on data obtained during said recursive

estimation step.

24, The apparatus for performing compressed sensing of streaming data of claim 23,
wherein said processor is further configured to average said calculated least squares
estimation value, said count estimation value, and said previous estimate to calculate an

averaged value to obtain an averaged value.

25. The apparatus for performing compressed sensing of streaming data of claim 24,
wherein said processor is further configured to average an error degree of said method

for sensing streaming data
26. The apparatus for performing compressed sensing of streaming data of claim 18,
wherein said processor is further configured to average signal estimates obtained from a

plurality of windows.

27.  The apparatus of Claim 18, further comprising one or more sensors configured

to measure the stream of sensor data.
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