RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

(1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 479 260

PARIS

A1

DEMANDE DE BREVET D'INVENTION

₂₀ N° 81 05965

- Procédé de séparation et de récupération de la coproporphyrine et de l'uroporphyrine d'un bouillon de culture.
- (51) Classification internationale (Int. Cl. 3). C 12 P 17/16; C 12 N 1/06.
- (33) (32) (31) Priorité revendiquée : Japon, 25 mars 1980, nº 036 882/80.

 - Déposant : Société dite : NIPPON OIL COMPANY, LTD, société de droit japonais, résidant au Japon.
 - (72) Invention de : Ichiro Kojima, Kenji Maruashi et Yasuo Fujiwara.
 - 73 Titulaire : Idem (71)
 - Mandataire : Cabinet Armengaud Jeune, Casanova, Akerman, Lepeudry, 23, bd de Strasbourg, 75010 Paris.

La présente invention concerne un procédé simple et efficace, intéressant à l'échelle industrielle, pour séparer et récupérer la coproporphyrine et l'uroporphyrine d'un bouillon de culture.

Plus précisément, ce procédé est caractérisé en ce que :

- (1) on ajuste entre 2,5 et 4 le pH de la phase liquide d'un bouillon de culture contenant de la coproporphyrine et de l'uroporphyrine pour former un précipité solide contenant ces deux substances, précipité que l'on recueille,
- (2) on prépare une solution aqueuse alcaline de ce précipité dont on ajuste le pH au-dessus de 4 mais pas à plus de 6 pour former un précipité solide contenant la coproporphyrine, et on recueille ce précipité, et
- (3) on ajuste entre 1 et 4 le pH du liquide qui reste après que l'on a recueilli ce précipité pour former un précipité solide contenant l'uroporphyrine, précipité que l'on recueille.

Les porphyrines sont des substances connues,

très répandues dans les tissus de divers organismes, et
qui ont une grande importance comme constituants de la
protéine du hème impliquée dans des actions physiologiques
comme le transport de l'oxygène et une action catalytique
sur des réactions d'oxydo-réduction au sein des organismes,

et dans des applications médicales elles ont une intéressante
activité physiologique dans le réglage du fonctionnement
de certains organes, améliorant la fonction hépatique par exemple.

En général, les porphyrines sont obtenues

30 par extraction à partir d'hémoglobine du sang ou par culture de microorganismes pouvant les fabriquer. Mais il n'est
pas toujours facile de bien les isoler d'autres composants
des tissus qui coexistent avec elles, et en particulier,
si elles sont produites dans des organismes comprenant des
cellules microbiennes, il se forme parfois en même temps

35 à la fois de la coproporphyrine et de l'uroporphyrine, et
il est donc intéressant de pouvoir les séparer et les
récupérer d'une manière efficace.

On connaît déjà certaines méthodes pour séparer et récupérer la coproporphyrine ou l'uroporphyrine d'un milieu aqueux contenant l'une ou l'autre des deux, mais à ce jour onn'en connaît aucune pour séparer et récupérer efficacement les deux d'un milieu qui les contient.

Les méthodes connues consistent par exemple à soumettre le milieu aqueux à une extraction avec un solvant tel qu'un mélange d'acide acétique et d'acétate d'éthyle, et à transformer la porphyrine extraite en 10 son ester méthylique que l'on soumet à une chromatographie d'adsorption avec un adsorbant comme l'alumine (voir les publications J. Chromatog., 5 (1961) 277-299; et Biochem. J., 62 (1966), 78), ou bien à traiter le milieu aqueux avec une résine échangeuse d'ions (Journal 15 of the Agricultural Chemical Society of Japan, 50, (1976), 41-47), ou encore à dissoudre le milieu aqueux dans du chloroforme puis à filtrer la solution et à verser le filtrat dans un grande quantité de méthanol pour faire une recristallisation.

Ces méthodes ont l'inconvénient de mettre en oeuvre des opérations compliquées et de ne pas donner une bonne récupération de la porphyrine, et de plus, elles ne peuvent être appliquées efficacement à la séparation et à la récupération à la fois de la coproporphyrine et 25 de l'uroporphyrine d'un milieu contenant les deux substances.

20

30

La présente Demanderesse savait que Arthrobacter hyalinus et Arthrobacter pascence, ainsi que leurs mutants ou variants, peuvent fabriquer aussi bien la coproporphyrine que l'uroporphyrine, et elle a entrepris des recherches en vue de mettre au point une méthode efficace de séparation de ces deux substances par une opération simple, à partir d'un bouillon de culture de ces microorganismes qui les produisent. Ces recherches ont abouti à la découverte que la coproporphyrine et l'uroporphyrine peuvent être séparées et 35 récupérées individuellement d'un tel bouillon de culture les contenant toutes les deux, par une opération simple consistant à recueillir la phase liquide du bouillon, à ajuster son pH entre des limites spécifiées pour former un précipité contenant les deux porphyrines, puis à redissoudre ce précipité dans des conditions de pH également spécifiées et à ajuster le pH de la solution entre des limites spéci-5 fiées pour reformer un précipité.

Ces études ont montré qu'en ajustant le pH de la phase liquide entre 4 et 2,5, on peut précipiter facilement et sélectivement la coproporphyrine et l'uroporphyrine qu'elle contient; qu'en redisolvant dans une solution alcaline aqueuse 10 le précipité solide ainsi obtenu contenant un mélange des deux substances et en ajustant le pH de la solution au-dessus de 4 mais pas à plus de 6, de préférence entre 4,2 et 6, on peut précipiter efficacement et sélectivement la coproporphyrine; et enfin qu'en ajustant entre 4 et 1 le pH du li15 quide résiduel, on peut précipiter efficement aussi l'uroporphyrine.

La présente invention apporte ainsi un procédé simple et efficace, avantageusement applicable à une échelle industrielle, pour séparer et récupérer les deux porphyrines d'un 20 milieu contenant à la fois ces deux substances.

Le bouillon de culture contenant de la coproporphyrine et de l'uroporphyrine, qui est traité par le présent procédé, peut être tout bouillon de culture contenant ces deux porphyrines, aucune limitation spéciale n'étant imposée 25 au type et à la nature des microorganismes qui les produisent, non plus qu'aux conditions de culture et autres facteurs. Ce peut être par exemple un bouillon contenant de la coproporphyrine et de l'uroporphyrine formées par co-culture d'une souche d'un microorganisme fabriquant la coproporphyrine 30 et d'une souche d'un microorganisme fabriquant l'uroporphyrine, simultanément ou dans un ordre quelconque, ou encore un mélange d'un bouillon de culture d'une souche d'un microorganisme donnant la coproporphyrine et d'un autre bouillon de culture d'une souche d'un microorganisme donnant l'uro-35 porphyrine, mais cependant ce sera de préférence un bouillon de culture d'une souche d'un microorganisme pouvant donner à la fois ces deux porphyrines, et en particulier une souche

appartenant au genre Arthrobacter.

Un tel microorganisme pouvant fabriquer à la fois la coproporphyrine et l'uroporphyrine est choisi parmi Arthrobacter hyalinus (souche FERM-P N° 3125, ATCC 31263, DSM DSM 867), Arthrobacter pascens (souche ATCC 13346, IFO 12139), ou leurs mutants ou variants, tous ces microorganismes étant bien connus et capables de produire à la fois la coproporphyrine III et l'uroporphyrine III.

Des exemples de microorganismes connus pouvant donner
10 essentiellement la coproporphyrine III seule sont Rhodopseudomonas spheroides (souche ATCC 17023), Micrococcus lysodeikticus
(IFO 3333, ATCC 4698), Staphylococcus epidermidis (IFO 3762,
IFO 12993, ATCC 14990), Saccharomyces cerevisiae (IFO 0203,
ATCC 18824), Bacillus cereus (ATCC 14579), Streptomyces
15 griseus (ATCC 23345, IFO 3102), Streptomyces olivaceus
(ATCC 3335), Mycobacterium smegmatis (IFO 3082), Corynebacterium diphtheriae (ATCC 19409) et Corynebacterium simplex
(ATXX 6946).

Des exemples de microorganismes connus 20 pouvant donner l'uroporphyrine III seule sont Propionibacterium granulosum (ATCC 25564) et Propionibacterium acnes (ATCC 6919).

Dans les exemples ci-dessus, l'abréviation FERM-P désigne le Fermentation Research Institute, Agency of 25 Industrial Science et Technology, Japon; ATCC désigne l'American Type Culture Collection, U.S.A.; IFO, l'Institute for Fermentation, Osaka, Japon; et DSM, la German Collection of Microorganisms.

Ces microorganismes cités à titre d'exemples repré-30 sentent des souches disponibles qui ont été déposées sous les numéros indiqués auprès des organismes désignés, où l'on peut les obtenir facilement.

Les microorganismes ci-dessus pouvant donner à la fois la coproporphyrine III et l'uroporphyrine III sont par-35 ticulièrement préférables pour obtenir le bouillon dont on part dans l'exécution du présent procédé, car tandis que des souches appartenant à d'autres genres fabriquent la coproporphyrine III à une teneur de 10 à 40 mg par litre du bouillon de culture, et l'uroporphyrine III à une teneur de 4 mg/litre, les microorganismes qui sont cités en exemples plus haut fabriquent la coproporphyrine III à la teneur de 500 mg/litre (soit environ 10 fois plus) et l'uroporphyrine III à la teneur de 100 mg/litre (soit 25 fois plus).

On peut obtenir la phase liquide du bouillon 10 de culture des microorganismes en éliminant du bouillon les cellules microbiennes et autres matières solides, par exemple en les séparant par centrifugation.

On peut effectuer la culture en choisissant les conditions de pH optimales et autres conditions de cul15 ture appropriées, connues pour les souches de microorganismes qui ont été citées en exemples, dont la température optimale. Par exemple, pour obtenir un bouillon particulièrement propre à l'exécution du présent procédé, on pourra prendre une souche capable de fabriquer à la fois la copropor20 phyrine et l'uroporphyrine, appartenant au genre Arthrobacter, et opérer à une température d'environ 20 à 40°C et a un pH de l'ordre de 4 à 9,5, la durée de culture pouvant être par exemple d'environ de 2 à 30 jours.

Des exemples de sources d'azote appropriées

25 sont la liqueur de macération de maïs, un extrait de levure
ou de viande, des peptones, des amino acides, des hydrolysats
de protéines, de la farine de poisson, des sels d'ammonium;
des nitrates et l'urée, que l'on peut employer en associations
de deux d'entre eux ou plus. Des exemples de sources de car
30 bone sont des glucides, alcools, hydrocarbures et le son, pouvant être aussi employés en combinaisons diverses, et des exemples de matières minérales sont des sels de l'acide phosphorique, de magnésium, de zinc, calcium, manganèse, molybdène
et cuivre, pouvant également être utilisés en combinaisons.

5

Dans le procédé selon cette invention, on ajuste entre 4 et 2,5, de préférence entre 3,8 et 2,8, le pH de la phase liquide du bouillon de culture contenant la coproporphyrine et l'uroporphyrine, pour précipiter une matière solide contenant un mélange de ces deux substances, précipité que l'on recueille, par exemple en le séparant par centrifugation, filtration ou décantation.

Des exemples d'acides pouvant servir à ajuster le pH comprennent des acides minéraux tels que les acides sulfurique, chlorhydrique, nitrique ou phosphorique, et des acides organiques comme les acides formique, acétique, oxalique et lactique.

Le précipité séparé peut être essentiellement formé de coproporphyrine et d'uroporphyrine, qui sont 15 assez sélectivement séparées des sources de carbone et d'azote, des matières minérales et autres impuretés que peut contenir la phase liquide du bouillon.

On redissout ensuite ce précipité pour en préparer une solution alcaline aqueuse, avec toute substance 20 alcaline permettant de dissoudre à la fois la coproporphyrine et l'uroporphyrine, à des concentrations capables de dissolution, des exemples préférés étant les hydroxydes et carbonates de sodium et de potassium ainsi que le carbonate de calcium.

Le pH de la solution aqueuse alcaline est ensuite ajusté à plus de 4 mais pas au-dessus de 6, de préférence entre 4,2 et 6 et mieux encore entre 4,4 et 4,8, ce qui précipite sélectivement la coproporphyrine, et on recueille ce précipité la contenant. On peut ainsi séparer et récupérer une coproporphyrine très pure. L'acide servant à ajuster le pH peut être choisi parmi ceux qui ont été indiqués plus haut pour précipiter les deux porphyrines, et on peut recueillir le précipité par exemple en le séparant par filtration, centrifugation ou par toute autre méthode de séparation solide-liquide.

Le pH du liquide résiduel, après que l'on a séparé la coproporphyrine, est alors ajusté entre 4 et 1, de préférence entre 3,8 et 1,4, ce qui précipite une matière solide contenant l'uroporphyrine. En séparant ce précipité, on obtient ainsi une uroporphyrine d'assez grande pureté. Pour cette précipitation, l'acide servant à ajuster le pH peut être également choisi parmi ceux qui ont été indiqués plus haut, et le précipité peut être séparé de la même manière que ci-dessus.

- Le présent procédé permet de séparer, c'està-dire de fractionner, d'une manière facile et efficace, avec de bons rendements, la coproporphyrine et l'uroporphyrine de la phase liquide d'un bouillon de culture contenant ces deux substances, dont la purification est ainsi rendue aisée.
- 15 Les deux composants individuels ainsi récupérés peuvent être ensuite encore purifiés par des méthodes usuelles. On peut par exemple les transformer en leurs esters méthyliques avec un mélange de méthanol et d'acide sulfurique, et soumettre les esters à une chromatographie sur une co-
- 20 lonne d'alumine, de gel de silice ou autres, ou encore faire bouillir individuellement les esters méthyliques dans un solvant tel que le benzène, le toluène, la pyridine, le dichloroéthane ou le tétrahydrofuranne, et la porphyrine ainsi purifiée précipite par refroidissement.
- 25 Dans le procédé selon l'invention, on peut aussi précipiter la coproporphyrine par ajustement du pH après deux précipitations répétées, ou plus, du mélange des deux porphyrines, avec redissolution du mélange.

Les exemples qui suivent illustrent plus spécifi-30 quement le présent procédé.

EXEMPLE 1 :

On inocule Arthrobacter hyalinus (souche FERM P. N°.3125) dans un Erlenmeyer de 500 ml contenant 200 ml d'un milieu de culture stérilisé qui comprend, par litre 35 d'eau désionisée, 10 g de glucose, 1 g d'extrait de levure, 3 g de peptone, 3 g de nitrate d'ammonium, 0,4 g de phosphate monopotassique, 1,5 g de phosphate dissodique, 5 g de sulfate de magnésium, 10 mg de sulfate de manganèse, 10 mg de

sulfate de zinc, 200 ug de sulfate de cuivre, 10 ug de trioxyde de molybdène et 5 g de carbonate de calcium, on cultive à 30°C pendant 3 jours tout en secouant et on ajoute ensuite tous les deux ou trois jours une solution aqueuse à 50 % de glucose. Après 17 jours de culture, les concentrations des produits sont de 200 mg/litre pour la coproporphyrine III et de 89 mg/litre pour l'uroporphyrine III.

On centrifuge à 10 000 G pendant 10 minutes

10 4 litres du bouillon de culture placés dans 20 Erlenmeyer
de 500 ml, puis on ajuste le liquide surnageant à pH 3,0
avec HCl 2N et on centrifuge à 1000 g pendant 10 minutes.
On dissout la matière ainsi séparée dans l litre d'hydroxyde de sodium aqueux 1 N, et en ajustant le pH de la solution

15 à 4,7 avec HCl 3N on obtient un précipité que l'on sépare
par centrifugation à 1000 g pendant 10 minutes, ce qui donne 790 mg de précipité, soit un taux de récupération de
99 %. Une chromatographie en couche mince de ce précipité
ne donne qu'une seule tache, et d'après le spectre d'absorp20 tion dans le visible, les spectres IR et RMN, le point de
fusion, etc., de l'ester méthylique de la substance du précipité, le produit obtenu est la coproporphyrine III.

On ajoute ensuite de l'HCl 3N au liquide surnageant qui reste après séparation de la coproporphyrine
25 III pour ajuster son pH à 2,6, ce qui forme un précipité
dont on récupère 350 mg (soit 98 %) par centrifugation à
1000 G pendant 10 minutes. Une chromatographie en couche
mince de ce précipité ne donne qu'une seule tache, et le
spectre d'absorption dans le visible, les spectres IR et
30 RMN, le point de fusion, etc, de l'ester méthylique de la
substance du précipité, montrent que le produit ainsi obtenu est l'uroporphyrine III.

On cultive Arthrobacter pascens (soughe IFO 35 12139) pendant 17 jours de la même manière qu'à l'exemple 1. La teneur en coproporphyrine III du bouillon obtenu est

EXEMPLE 2:

de 80 mg/litre, et la teneur en uroporphyrine III de 38 mg/litre.

On ajuste à 3,2 avec HCl 3N le pH de 4 litres du bouillon de culture, et en centrifugeantà 1000 G pendant

10 minutes on sépare une matière que l'on dissout dans 1 litre d'hydroxyde de sodium aqueux 1N. En ajustant le pH de la solution à 4,4 avec HCl 3N on obtient un précipité, et en séparant celui-ci par centifugation à 1000 G pendant 10 minutes on récupère 320 mg (soit 100 %) de coproporphyrine III. Au liquide surnageant on ajoute ensuite HCl 3N pour avoir un pH de 2,0, ce qui donne un précipité que 1'on sépare par centrifugation à 1000 G pendant 10 minutes. On récupère ainsi 151 mg (soit 99 %) d'uroporphyrine III.

15

REVENDICATIONS

- 1.- Procédé pour séparer et récupérer la coproporphyrine et l'uroporphyrine d'un bouillon de culture, procédé caractérisé en ce que :
- 1) on ajuste entre 2,5 et 4 le pH de la phase liquide d'un bouillon de culture contenant de la coproporphyrine et de l'uroporphyrine pour former un précipité solide contenant ces deux substances, précipité que l'on recueille,
- 10 (2) on prépare une solution aqueuse alcaline de ce précipité dont on ajuste le pH au-dessus de 4 mais pas à plus de 6 pour former un précipité solide contenant la coproporphyrine, et on recueille ce précipité, et
- (3) on ajuste entre 1 et 4 le pH du liquide

 15 qui reste après que l'on a recueilli ce précipité pour
 former un précipité solide contenant l'uroporphyrine,
 précipité que l'on recueille.
 - 2.- Procédé selon la revendication 1, dans lequel la coproporphyrine est la coproporphyrine III.
 - 3.- Procédé selon la revendication 1 ou 2, dans lequel l'uroporphyrine est l'uroporphyrine III.

20

- 4.- Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le bouillon est obtenu par culture d'une souche appartenant au genre Arthrobacter, fabri-25 cant à la fois la coproporphyrine et l'uroporphyrine.
 - 5.- Procédé selon la revendication 4 dans lequel la souche est Arthrobacter hyalinus, Arthrobacter pascens ou un mutant ou variant de l'une de ces souches.