Office de la Propriete Canadian CA 2415583 A1 2003/0/7/04

Intellectuelle Intellectual Property
du Canada Office (21) 2 41 5 583
v organisime An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2002/12/31 (51) CLInt."/Int.CI.” GOBF 15/16
(41) Mise a la disp. pub./Open to Public Insp.: 2003/07/04 (71) Demandeur/Applicant:
(30) Priorité/Priority: 2002/01/04 (10/039,036) US MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
WILT, NICHOLAS P., US;
NEN:, SAMEER A US
BEDE, JOSEPH S., III US

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : METHODES ET SYSTEME DE GESTION DES RESSOURCES DE CALCUL D'UN COPROCESSEUR DANS
UN SYSTEME INFORMATIQUE

54) Title: METHODS AND SYSTEM FOR MANAGING COMPUTATIONAL RESOURCES OF A COPROCESSOR IN A
COMPUTING SYSTEM

Object
E] @ 110¢

Computing . =1]
Device | / =R
110a Computmg Device
Object Computing
110d ™= | Communications Device
Network/Bus \ 110e

5
2|

D ~—10a /%HQQQ\:%—

-
- - v-— —r . ———

N
=
na

[— P.v
Server Object g;}_: . 1;:/;
Database 20 |
S -

(57) Abrége/Abstract:

Systems and methods are provided for managing the computational resources of coprocessor(s), such as dgraphics
processor(s), In a computing system. The systems and methods lllustrate management of computational resources of
coprocessors to facilitate efficient execution of multiple applications in a multitasking environment. By enabling multiple threads
of execution to compose command buffers In parallel, submitting those command buffers for scheduling and dispatch by the
operating system, and fielding interrupts that notify of completion of command buffers, the system enables multiple applications
to efficiently share the computational resources available in the system.

g
ey . RN

S '\'l'.'.

AU

: "..
KT
e
A

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

10

CA 02415583 2002-12-31

>4

Abstract

Systems and methods are provided for managing the computational resources of
coprocessor(s), such as graphics processor(s), in a computing system. The systems and
methods 1llustrate management of computational resources of coprocessors to facilitate
efficient execution of multiple applications in a multitasking environment. By enabling
multiple threads of execution to compose command buffers in parallel, submitting those
command buffers for scheduling and dispatch by the operating system, and fielding interrupts
that notify of completion of command buffers, the system enables multiple applications to

efficiently share the computational resources available in the system.

10

15

20

25

30

CA 02415583 2002-12-31

-1-

Methods and System for Managing Computational Resources
of a Coprocessor in a Computing System

Copyright Notice and Permission:
A portion of the disclosure of this patent document may contain material that is

subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent files or records, but otherwise reserves all copyright
rights whatsoever. The following notice shall apply to this document Copyright © 2001,
Microsoft Corp. |

Field of the Invention:
The present mvention relates to systems and methods for managing computational

resources of coprocessors in a computing system.

Background of the Invention:

Beginning with the first time-sharing system in the mid-1960s, operating systems
(OSs) have implemented numerous methods of allowing multiple applications to share
computational resources of a computer without knowledge of one another. By allocating
small “time slices’ to each application, and interrupting when a ‘time slice’ has expired, a
computer can present each application with the illusion that it is running alone on the
computer. For example, two applications could be running on a system with 1 millisecond
time slices. In such a case, each application would run somewhat less than half as fast (due to
the overhead needed to swap between the two) than if they were running on the computer
alone, each getting about 500 time slices per second. Longer time slices involve less
overhead, but also result in a coarser granularity of execution, making the system less suitable
for timing-sensitive applications.

An enormous amount of work has gone into developing various abstractions such as
virtual memory, processes, and threads that interact to provide applications with software
models that enable the computational resources of the central processing unit (CPU) to be
shared. However, these abstractions have not yet been augmented so that they can apply to

the management of computational resources in graphics processing units (GPUs) as well as

host microprocessors.

10

15

20

235

30

CA 02415583 2002-12-31

2

In this regard, 1n the last few years, graphics processors have become significantly
more functional. The number of transistors in PC graphics chips has grown far faster than
Moore’s Law would suggest, 1.e., the number of transistors in graphics chips has grown from
about 200,000 1n 1995 to about 60,000,000 transistors in 2001. The computational power of
these chips has also increased with the number of transistors; that 1s, not only can graphics
chips process more data, but they can also apply more sophisticated computations to the data
as well. As a result, today, the graphics chip(s) in a computer system can be considered a
computational resource that cornplements the computational resources of the host
microprocessor(s).

The software model presented by a graphics chip 1s somewhat different than the
software model presented by the host microprocessor. Both models involve context, a set of
data that describes exactly what the processor 1s doing. The contexts may contain data
registers, which contain intermediate results of whatever operation 1s currently being
performed, or control registers, which change the processor’s behavior when it performs
certain operations. On a 32-bit INTEL® processor, for example, the EAX data register is
used as an accumulator, to perform multiplications, to hold function return values, and so on.
The floating point control word (FPCW) is a control register that controls how floating point
mstructions round inexact results (single, double, or extended precision, toward positive or
negative infinity, toward zero, or toward the nearest; and so on). As a general rule, however,
graphics processors have a great deal more state in control registers than general-purpose
microprocessors. Graphics processors’ high performance stems from their pipelined, flexible
yet fixed function architecture. A great deal of control register state is needed to set up the
operations performed by the graphics processor. For example, a set of control registers may
inciude (a) the base address(es) and dimensions of one or more texture maps currently
serving as input, (b) the texture addressing and filtering modes, the blending operation to
perform between texture values and interpolated color values, (c) the tests to apply to the
alpha and Z values of the fragment to decide whether to incorporate it into the color buffer
and (d) the alpha blend operation to use when incorporating the color fragment into the color
buffer at the final rendering stage. While graphics processors contain numerous scratch
registers such as iterators that control their processing, generally it is not necessary to save
those registers during context switches because context switches are not permitted on a

granularity that requires them to be saved. In any case, even if such registers must be saved

10

15

20

25

30

CA 02415583 2002-12-31

3

during a context switch, generally they are not directly available to software applications. The
opacity of volatile register state to client software is merely one distinction between the
software model presented by graphics processors, as compared to the software model
presented by general purpose microprocessors.

To date, attempts to manage the computational resources of COprocessors, such as
graphics processors, have been ad hoc at best. Historically, there has not been much demand
for careful management of these computational resources because only one application has
been active at a time. In the context of the commercial workstation applications that 3D
acceleration hardware 1nitially was designed to accelerate, such as 3D modeling and
animation, end users typically would operate one application at a time. Even if more than one
application were active at a given time, the end user would perform a significant amount of
work on each application before switching to another and the granularity of switching
between applications was on the order of seconds or much longer. Game applications, the
second set of applications to substantially benefit from graphics hardware acceleration, also
are typically run one at a time. In fact, the DIRECTX® application programming interfaces
(APIs) in WINDOWS® specifically enable game applications to gain exclusive access to the
hardware resources in the computer system and particularly the graphics chip.

As graphics chips become more functional, it is reasonable to expect the number of
active applications that demand significant computational resources from them to increase,
and for the granularity of switching between these applications to become finer. In some
areas, this trend 1s already evident. For example, video decoding acceleration such as
hardware-accelerated motion compensation (“mocomp”) and integer discrete cosine
transform (“IDCT™) has been added to most graphics chips in the 2001 timeframe. Since it is
possible to launch a video playback application and run other applications at the same time,
playing back video and running any other application that demands computational resources
from the graphics processor will require careful management of those fesources, to ensure
that the video playback and other application(s) both deliver a high quality end user

experience,

Other potential sources of increased demand for graphics processors’ computational

resources include the composition of multiple applications’ output, and imi)roved utilization

of hardware acceleration by 2D graphics APIs such as GDI (graphical developer mterface) or

GDI+. In short, the need for efficient and effective management of computational resources

10

15

20

25

30

CA 02415583 2002-12-31

4

of graphics processor(s) in a computing system will only be increasing, along with the
increasing power, flexibility and speed of the graphic processors themselves and along with
Increasing number of applications making simultaneous use of the computational resources of

the graphics processors.

Summary of the Invention:

et P A e S P

In view of the foregoing, the present invention provides systems and methods for
managing the computational resources of coprocessor(s), such as graphics processor(s), in a
computing system. The systems and methods 1llustrate management of computational
resources of coprocessors to facilitate efficient execution of multiple applications in a
multitasking environment. By enabling multiple threads of execution to compose command
buffers in parallel, submitting those command buffers for scheduling and dispatch by the
operating system, and fielding interrupts that notify of completion of command buffers, the
system enables multiple applications to efficiently share the computational resources
available 1n the system.

In various embodiments, the present invention provides methods for controlling the
computational resources of coprocessor(s) in a host computing system having a host
processor, wherein the methods include controlling one or more coprocessors of the
computing system with command buifers submitted to the coprocessor(s) by the host
processor, transmitting data back to the host computing system in response to commands in
the command butfer(s) and scheduling the transmission of the command buffer(s) by a
managing object included in the host computing system, wherein the computationzl resources
of the coprocessor(s) are simultaneously available to multiple applications instantiated on the
host computing system.

In related and other embodiments, the invention provides a computing device and
computer readable media having stored thereon a plurality of computer-executable modules
for controlling the computational resources of coprocessor(s) in a host computing system
having a host processor, the computing device and computer executable modules each
including a managing object for controlling the coprocessor(s) of the computing system with
command buffers submitted to the coprocessor(s) by the host processor and for scheduling
the transmission of the command buffers. The computing device and computer executable
modules also each include means for transmitting data back to the host computing system in

response to commands 1n the command buffer(s), whereby the computational resources of the

10

15

20

23

30

CA 02415583 2002-12-31

coprocessor(s) are simultaneously available to multiple applications instantiated on the host
computing system.

Other features and embodiments of the present invention are described below.

Brief Description of the Drawings:
The system and methods for managing the computational resources of graphics

processor(s) are further described with reference to the accompanying drawings in which:

Figure 1A 1s a block diagram representing an exemplary network environment having
a variety of computing devices 1n which the present invention may be implemented:;

Figure 1B is a block diagram representing an exemplary nonlimiting computing
device in which the present invention may be implemented;

Figure 2 illustrates an exemplary life cycle of a command buffer as it is used by
applications to send commands to a Coprocessor;

Figures 3A through 3C illustrate exemplary implementations of a driver component
that translates runtime-level commands to hardware-specific commands;

Figure 4 1llustrates an exemplary user mode driver DLL implementation of the
invention;

Figure 5 illustrates an exemplary sequence of events that occur when an application
makes application programming interface calls to perform graphics operations in exemplary
detail;

Figure 6 1llustrates an exemplary hardware consumable canonical command buffer
format in accordance with an embodiment of the invention; and

Figure 7 1llustrates an exemplary intermediate canonical command buffer format in

accordance with an embodiment of the invention.

Detailed Description of the Invention:

R eSS RS A S e~ Al e g e B e e e

Overview

As described m the background, there are many present and potential sources of
increased demand for graphics processors’ computational resources. When more than one of
these sources demands access to a graphics processor at approximately the same time, the
graphics processor may not be free to serve both sources in a way that meets the demand

satisfactorily. Thus, the present invention provides various ways to manage the scheduling

and dispatch of graphics processing requests by multiple applications in order to ensure the

CA 02415583 2002-12-31

0

computational resources of coprocessor units, such as graphics processing units, are
efficiently distnibuted to the requesting applications. Accordingly, the present invention
. provides methods and systems for controlling the computation resources of coprocessor(s) in
a host computing system, wherein the coprocessor(s) are controlled with command buffers
5 submitted by the host processor and wherein the scheduling of the transmission of the
command buffers to the coprocessor(s) 1s performed by an object, such as the operating
system, of the host computing system, making the computational resources of the

coprocessor(s) simultaneously available to multiple applications.

Glossary of Terms

- P i i

10 The following is a brief list of terms and corresponding definitions for referencing
various terms utilized in the detaiied description of the invention below.
An accelerated graphics port (AGP) is a high speed bus designed to facilitate the rapid
transmission of data from a host microprocessor to a graphics peripheral.
A command buffer 1s a stream of hardware-specific drawing commands ready for
15 consumption by graphics hardware, €.g., see the definition for token stream below.
A context 1s the hardware state utilized to execute commands by a processor. Herein,
a thread context refers to the hardware state of a host microprocessor and a hardware context
refers to the state of graphics hardware. A context 1s loaded before a stream of instructions
(on the host) or commands (on a graphics chip) can be executed.
20 A central processing uniut (CPU) includes a host microprocessor.
A device driver interface (DDI) 1s a standardized interface used by the operating
system to interact with a hardware driver.
A display list 1s a series of commands for the graphics hardware that has been
recorded so the commands can be readily ‘played back,” purportedly more efficiently than if
25 the oniginal series of commands were executed again. Display lists often are opaque to the
application, i.e., they cannot be edited, since they have been translated into a hardware-
specific form.
A dynamic link library (DLL) is a unit of executable code that can be linked into and

shared by multiple processes simultaneously. This document assumes that the code in DLLs

30 executes in user mode.

Direct memory access (DMA) is a hardware feature that enables a peripheral to read

or write directly from host-accessible memory.

10

15

20

25

30

CA 02415583 2002-12-31

7

A deferred procedure call (DPC) is a routine called by an operating system, such as
WINDOWS®, that typically executes in response to an interrupt, but runs at a slightly lower
priority than an interrupt service routine (see ISR below). As a rule, interrupt service routines
should do the minimum processing needed to resolve the interrupt and queue a DPC to do
other work needed to respond to the interrupt.

A graphics processor is a hardware peripheral designed to accelerate drawing
commands for graphics, such as bit block transfers (BLTs) and 3D graphics primitive
drawing processes such as triangle rasterization. In this regard, a graphics processor may be
contrasted with the more general and clumsy resources of the host microprocessor.

A host microprocessor 1s a processor that executes the operating system and/or
applications being run 1n the operating system. The host microprocessor(s) 1n a system
contrast with graphics processors or other computational resources in the system.

An interrupt 1s a hardware feature that enables a peripheral to divert a host
microprocessor from 1ts current process and transfer control to a special location in memory.
The operating system uses this mechanism to call driver code known as an interrupt service
routine (ISR) to respond to the interrupt.

An mterrupt service routine (ISR) 1s a function, typically in a device driver, that is
called by the operating system when the hardware controlled by the driver signals an
interrupt, e.g., see also DPC.

Just-in-time (JIT) compiling 1s a compilation process that introduces an extra step in
the translation from source code to object code. In this regard, the source code is translated
into readily compilable, hardware-independent intermediate language that is transmitted to a
client computer, where it is compiled “just in time” into object code that can run on the client.

Kernel mode 1s a privileged processor mode that allows system code to have direct
access to hardware resources.

A process 1s a logical division of labor in an operating system. In WINDOWS®, a
process comprises a virtual address space, an executable program, one or more threads of
execution, some portion of the user’s resource quotas, and the system resources that the
operating system has allocated to the process’s threads.

A resource 1s a synchronization primitive that can grant non-exclusive access to

multiple threads, or exclusive access to a single thread.

10

15

20

25

30

CA 02415583 2002-12-31

A synchronization primitive is an object that can be used to synchronize multiple
threads’ access to shared resources, such as critical sections, mutexes, semaphores or events.

A thread is an executable entity that comprises a program counter, a user-mode stack,
a kernel-mode stack and a set of register values.

A token stream is a stream of hardware-independent tokens that describe a series of
drawing operations. A token stream can be translated by a hardware-specific software
component, such as a driver, into a command buffer or other sertes of hardware commands.

A user mode is a mode of the host microprocessor that does not allow code to directly

access hardware resources.

Exemplary Networked and Distributed Environments

One of ordinary skill in the art can appreciate that a computer or other client or server
device can be deployed as part of a computer network, or 1n a distributed computing
environment. In this regard, the present invention pertains to any computer system having
any number of memory or storage units, and any number of applications and processes
occurring across any number of storage units or volumes, which may make request to
coprocessor resources. The present invention may apply to an environment with server
computers and client computers deployed 1n a network environment or distributed computing
environment, having remote or local storage. The present invention may also be applied to
standalone computing devices, having programming language ‘functionality, interpretation
and execution capabilities for generating, receiving and transmitting information in
connection with remote or local services.

Distributed computing facilitates sharing of computer resources and services by direct
exchange between computing devices and systems. These resources and services include the
exchange of information, cache storage, and disk storage for files. Distributed computing
takes advantage of network connectivity, allowing clients to leverage their collective power
to benefit the entire enterprise. In this regard, a variety of devices may have applications,
objects or resources that may make requests for coprocessing resources managed by the
techniques of the present invention.

Fig. 1A provides a schematic diagram of an exemplary networked or distributed
computing environment. The distributed computing environment comprises computing
objects 10a, 10b, etc. and computing objects or devices 110a, 110b, 110c, etc. These objects

may comprise programs, methods, data stores, programmable logic, etc. The objects may

10

15

20

25

30

CA 02415583 2002-12-31

9

comprise portions of the same or different devices such as PDAs, televisions, MP3 players,
televisions, personal computers, etc. Each object can communicate with another object by
way of the communications network 14. This network may itself comprise other computing
objects and computing devices that provide services to the system of Fig. 1A. In accordance
with an aspect of the invention, each object 10 or 110 may contain an application that might
request coprocessing resources of a host system.

In a distributed computing architecture, computers, which may have traditionally been
used solely as clients, communicate directly among themselves and can act as both clients
and servers, assuming whatever role 1s most efficient for the network. This reduces the load
on servers and allows all of the clients to access resources available on other clients, thereby
increasing the capability and efficiency of the entire network. The management of
coprocessing resources in accordance with the present invention may thus be distributed
among clients and servers, acting to manage specialized coproccessing in a way that is
efficient for the entire network.

Distributed computing can help businesses deliver services and capabilities more
efficiently across diverse geographic boundaries. Moreover, distributed computing can move
data closer to the point where data is consumed acting as a network caching mechanism.
Distributed computing also allows computing networks to dynamically work together using
intelligent agents. Agents reside on peer computers and communicate various kinds of
information back and forth. Agents may also initiate tasks on behalf of other peer systems.
For instance, intelligent agents can be used to prioritize tasks on a network, change traffic
flow, search for files locally or determine anomalous behavior such as a virus and stop it
before 1t affects the network. All sorts of other services may be contemplated as well. Since
highly specialized coprocessing resources may in practice be physically located in one or
more locations, the management of applications requesting the use thereof is of great utility
in such a sjrstem. '

It can also be appreciated that an object, such as 110c¢, may be hosted on another
computing device 10 or 110. Thus, although the physical environment depicted may show
the connected devices as computers, such illustration is merely exemplary and the physical
environment may alternatively be depicted or described comprising various digital devices

such as PDAs, televisions, MF3 players, etc., software objects such as interfaces, COM

objects and the like.

10

15

20

25

30

CA 02415583 2002-12-31

10

There are a varniety of systems, components, and network configurations that support
distributed computing environments. For example, computing systems may be connected
together by wireline or wireless systems, by local networks or widely distributed networks.
Currently, many of the networks are coupled to the Internet, which provides the infrastructure
for widely distributed computing and encompasses many different networks.

In home networking environments, there are at least four disparate network transport
media that may each support a unique protocol such as Power line, data (both wireless and
wired), voice (e.g., telephone) and entertainment media. Most home control devices such as
light switches and appliances may use power line for connectivity. Data Services may enter
the home as broadband (e.g., either DSL or Cable modem) and 1s accessible within the home
using either wireless (e.g., HomeRF or 802.11b) or wired (e.g., Home PNA, Cat 5, even
power line) connectivity. Voice traffic may enter the home either as wired (e.g., Cat 3) or
wireless (e.g., cell phones) and may be distributed within the home using Cat 3 wiring.
Entertainment media may enter the home either through satellite or cable and is typically
distributed in the home using coaxial cable. IEEE 1394 and DVI are also emerging as digital
interconnects for clusters of media devices. All of these network environments and others
that may emerge as protocol standards may be interconnected to form an intranet that may be
connected to the outside world by way of the Internet. In short, a variety of disparate sources
exist for the storage and transmission of data, and consequently, moving forward, computing
devices will require ways of sharing data, such as data accessed or utilized incident to the
processing of data by a graphics chip. '

The Internet commonly refers to the collection of networks and gateways that utilize
the TCP/IP suite of protocols, which are well-known in the art of computer networking.
TCP/IP 1s an acronym for “Transport Control Protocol/Interface Program.” The Internet can
be described as a system of geographically distributed remote computer networks
interconnected by computers executing networking protocols that allow users to interact and
share information over the networks. Because of such wide-spread information sharing,

remote networks such as the Internet have thus far generally evolved into an open system for

which developers can design software applications for performing specialized operations or

services, essentially without restriction.

Thus, the network infrastructure enables a host of network topologies such as

chient/server, peer-to-peer, or hybrid architectures. The “client” is a member of a class or

10

15

20

23

30

CA 02415583 2002-12-31

11

group that uses the services of émother class or group to which 1t 1s not related. Thus, in
computing, a client 1s a process, 1.€., roughly a set of instructions or tasks, that requests a
service provided by another program. The chent process utilizes the requested service
without having to “know” any working details about the other program or the service itself.
In a client/server architecture, particularly a networked system, a client is usually a computer
that accesses shared network resources provided by another computer e.g., a server. In the
example of Fig. 1A, computers 110a, 110b, etc. can be thought of as clients and computer
10a, 10b, etc. can be thought of as the server where server 10a, 10b, etc. maintains the data
that 1s then replicated in the client computers 110a, 110b, etc.

A server 1s typically a remote computer system accessible over a remote network such
as the Internet. The chient process may be active in a first computer system, and the server
process may be active 1n a second computer system, communicating with one another over a
communications medium, thus providing distributed functionality and allowing multiple
chients to take advantage of the information-gathering capabilities of the server.

Client and server communicate with one another utilizing the functionality provided
by a protocol layer. For example, Hyperteﬁ(t-Transfer Protocol (HTTP) 1s a common protocol
that 1s used in conjunction with the World Wide Web (WWW) or, simply, the “Web.”
Typically, a computer network address such as a Universal Resource Locator (URL) or an
Internet Protocol (IP) address 1s used to identify the server or client computers to each other.
The network address can be referred to as a Universal Resource Locator address. For
example, communication can be provided over a communications medium. In particular, the
client and server may be coupled to one another via TCP/IP connections for high-capacity
communication.

Thus, Fig. 1A 1llustrates an exemplary networked or distributed environment, with a
server 1n communication with client computers via a network/bus, in which the present
invention may be employed. In more detail, a humber of servers 10a, 10b, etc., are
interconnected via a communications network/bus 14, which may be a LAN, WAN, intranet,
the Internet, etc., with a number of client or remote computing devices 110a, 110b, 110c,
110d, 110e, etc., such as a portable computer, handheld computer, thin client, networked
appliance, or other device, such as a VCR, TV, oven, light, heater and the like in accordance

with the present invention. It is thus contemplated that the present invention may apply to any

10

15

20

235

30

CA 02415583 2002-12-31

12

computing device in connection with which it 1s desirable to manage the computational
resources of coprocessor(s).

In a network environment in which the communications network/bus 14 is the
Intemet, for example, the servers 10 can be Web servers with which the clients 110a, 110b,
110c, 110d, 110e, etc. communicate via any of a number of known protocols such as
hypertext transfer protocol (HTTP). Servers 10 may also serve as clients 110, as may be
characternistic of a distributed computing environment. Communications may be wired or
wireless, where appropnate. Client devices 110 may or may not communicate via
communications network/bus 14, and may have independent communications associated
therewith. For example, 1n the case of a TV or VCR, there may or may not be a networked
aspect to the control thereof. Each client computer 110 and server computer 10 may be
equipped with various application program modules or objects 135 and with connections or
access to various types of storage elements or objects, across which files may be stored or to
which portion(s) of files may be downloaded or migrated. Any computer 10a, 10b, 110a,
110b, etc. may be responsible for the maintenance and updating of a database 20 or other
storage element 1n accordance with the present invention, such as a database or memory 20
for storing graphics data 1. Thus, the present invention can be utilized in a computer network
environment haVing client computers 110a, 110b, etc. that can access and interact with a
computer network/bus 14 and server computers 10a, 10b, etc. that may interact with client

computers 110a, 110b, etc. and other devices 111 and databases 20.

Exemplary Computing Device
Fig. 1B and the following discussion are intended to provide a brief general

description of a suitable computing environment in which the invention may be implemented.
It should be understood, however, that handheld, portable and other computing devices and
computing objects of all kinds are contemplated for use in connection with the present
invention. While a general purpose computer is described below, this is but one example,
and the present invention may be implemented with a thin client having network/bus
interoperability and interaction. Thus, the present invention may be implemented in an
environment of networked hosted services in which very little or minimal client resources are
implicated, e.g., a networked environment in which the client device serves merely as an

interface to the network/bus, such as an object<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>