(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 August 2008 (28.08.2008)

(10) International Publication Number WO 2008/103688 A1

(51) International Patent Classification: C22C 29/00 (2006.01) C22C 9/00 (2006.01) C22C 1/04 (2006.01)

(21) International Application Number:

PCT/US2008/054348

(22) International Filing Date:

20 February 2008 (20.02.2008)

(25) Filing Language: English

(26) Publication Language: English

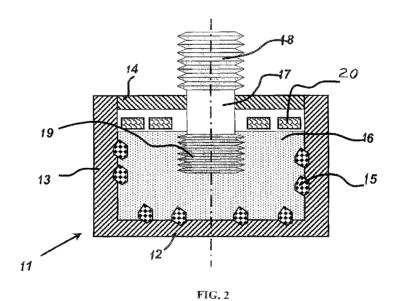
(30) Priority Data:

11/709,558 22 February 2007 (22.02.2007)

(71) Applicant (for all designated States except US): KEN-NAMETAL INC. [US/US]; 1600 Technology Way, P.O. Box 231, Latrobe, Pennsylvania 15650-0231 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WATWE, Arunkumar S. [US/US]; 2455 Lee Boulevard, Apt. 7, Cleveland Heights, Ohio 44118 (US). KELLEY, Harold E. [US/US]; 3514 N. Dixieland Road, Rogers, Arkansas 72756 (US).


- (74) Agents: SMITH, Matthew W. et al.; 1600 Technology Way, P.O. Box 231, Latrobe, Pennsylvania 15650-0231
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: COMPOSITE MATERIALS COMPRISING A HARD CERAMIC PHASE AND A CU-NI-SN INFILTRATION AL-LOY

(57) Abstract: Composite materials comprising a hard ceramic phase (16) and an infiltration alloy (20) are disclosed. The hard ceramic phase (16) may comprise a carbide such as tungsten carbide and/or cast carbide. The infiltration alloy (20) is Cu-based and comprises Ni and Sn. The infiltration alloy (20) may further include Nb, and may be substantially free of Mn. The composite material may be heat treated in order to improve its mechanical properties. For example, the composition of the Cu-Ni-Sn infiltration alloy (20) may be selected such that its hardness, wear resistance, toughness and/or transverse rupture strength are improved after the composite material is solutioned and aged at elevated temperatures.

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

COMPOSITE MATERIALS COMPRISING A HARD CERAMIC PHASE AND A CU-NI-SN INFILTRATION ALLOY

FIELD OF THE INVENTION

[0001] The present invention relates to composite materials comprising a hard ceramic phase infiltrated with a metal alloy, and more particularly relates to the use of a Cu-Ni-Sn infiltration alloy which is susceptible to heat treatment and demonstrates improved properties.

BACKGROUND INFORMATION

[0002] Infiltration alloys are used with hard ceramics such as WC or cast carbides in drilling bit and other cutting tool applications. To make such composite materials, a mold is filled with a mixture of ceramic powder and infiltration alloy powder, heated above the liquidus temperature of the infiltration alloy, and cooled to obtain a composite material. Examples of cutting tools comprising such composite materials are disclosed in U.S. Patent Nos. 5,589,268, 5,733,649 and 5,733,664 which are incorporated herein by reference.

[0003] A conventional infiltration alloy comprises copper, manganese, nickel and tin. When such a Cu-Mn-Ni-Sn alloy is used in composite materials that are brazed to steel shanks of drill bits, a twist-off type of failure tends to occur at the interface between the composite material and the steel shank.

[0004] Another conventional infiltration alloy comprises copper, manganese, nickel and zinc. The use of such a Cu-Mn-Ni-Zn infiltration alloy may reduce or eliminate the above-noted twist off failure, but may also cause a drop in erosion resistance.

[0005] There is a need for a composite material comprising an infiltration alloy with improved erosion resistance and toughness.

SUMMARY OF THE INVENTION

[0006] The present invention provides composite materials comprising a hard ceramic phase and a Cu-based infiltration alloy. The hard ceramic phase may comprise carbides, borides, nitrides and oxides. Suitable carbides include tungsten carbide, tantalum carbide, niobium carbide, molybdenum carbide, chromium carbide, vanadium carbide, zirconium carbide, hafnium carbide, titanium carbide and cast carbides. Borides such as titanium diboride and other refractory metal borides may be used.

[0007] The Cu-based infiltration alloy may be a spinodal alloy which comprises Ni and Sn, and may optionally comprise Nb. In one embodiment, the Cu-Ni-Sn infiltration alloy is substantially free of Mn. The composite material may be heat treated in order to improve its mechanical properties. For example, the composition of the infiltration alloy may be selected such that its hardness, wear resistance, toughness and/or transverse rupture strength is improved after the composite material has been solutionized and aged at elevated temperatures. The composite materials are suitable for use in cutting tools and the like.

- **[0008]** An aspect of the present invention is to provide a composite material comprising a hard ceramic phase, and a metal phase comprising a heat treated Cu-based infiltration alloy comprising Ni and Sn.
- [0009] Another aspect of the present invention is to provide a method of making a composite material comprising infiltrating an alloy into hard ceramic particles wherein the infiltration alloy consists essentially of Cu, Ni and Sn.
- **[0010]** A further aspect of the present invention is to provide a method of heat treating a composite material comprising providing a composite material including a hard ceramic phase and an infiltration alloy comprising Cu, Ni and Sn, and thermally aging the composite material.
- [0011] These and other aspects of the present invention will be more apparent from the following description.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0012] Fig. 1 is an isometric view of a cutting bit including a composite material of the present invention.
- [0013] Fig. 2 schematically illustrates a fixture for consolidating composite materials in accordance with an embodiment of the present invention.
- [0014] Fig. 3 is a flow diagram illustrating a method of forming and heat treating a composite material comprising a hard ceramic phase and an infiltration alloy in accordance with an embodiment of the present invention.

DETAILED DESCRIPTION

[0015] A composite material comprising a hard ceramic phase and a Cu-based infiltration alloy is provided. In accordance with an embodiment of the present invention, the

infiltration alloy is a spinodal Cu-Ni-Sn alloy. Such a spinodal Cu-Ni-Sn alloy may optionally contain Nb, and may be substantially free of Mn. The infiltration alloy may also be substantially free of Zn. The Cu-Ni-Sn alloy is heat treated to improve the properties of the composite material.

- **[0016]** Fig. 1. is an isometric view of a cutting bit 5 including a cutting head 6 made of a composite material of the present invention comprising a hard ceramic phase and a heat treated Cu-Ni-Sn infiltration alloy. Discrete diamond elements 7 may be bonded at the forward surface of the cutting head 6.
- [0017] Suitable hard ceramic materials for use in the composite materials of the present invention include carbides, borides, nitrides and oxides. Suitable carbides for use as the hard ceramic phase include tungsten carbide, tantalum carbide, niobium carbide, molybdenum carbide, chromium carbide, vanadium carbide, zirconium carbide, hafnium carbide, titanium carbide and cast carbides. Suitable borides include titanium diboride and other refractory metal borides. Tungsten carbide may be particularly suitable as the hard ceramic phase.
- [0018] In accordance with an embodiment of the present invention, the infiltration alloy is a spinodal Cu-Ni-Sn alloy that has been subjected to thermal aging. As used herein, the term "spinodal" means a microstructure formed when an alloy having a miscibility gap is homogenized or solutionized above the miscibility gap and then cooled to a temperature within or below the miscibility gap, followed by thermal aging which forms constituents having different compositions with different lattice parameters that provide strain hardening. The resultant thermally aged spinodal microstructure exhibits at least one improved mechanical property such as increased hardness, wear resistance, toughness and/or transverse rupture strength. In comparison with precipitation strengthened alloys, the improved mechanical properties achieved by heat treating composites comprising the present spinodal infiltration alloys are a result of strain hardening caused by the very fine regions of identical crystal structure but different lattice parameters. The fineness of the spinodal structures is characterized by the distance between regions of different latice parameters, which is on the order of from about 50 to about 1,000 Angstroms.
- [0019] The amount of copper contained in the Cu-Ni-Sn infiltration alloy typically ranges from about 60 to about 90 percent, for example, from about 80 to about 85 weight percent. As a particular example, the amount of copper may be about 82 weight percent.

[0020] The amount of Ni contained in the infiltration alloy typically ranges from about 5 to about 25 weight percent, for example, from about 8 to about 12 weight percent. As a particular example, the Ni content may be about 10 weight percent.

- [0021] The amount of Sn contained in the infiltration alloy typically ranges from about 4 to about 20 weight percent, for example, from about 5 to about 12 weight percent. As a particular example, the Sn may comprise about 8 weight percent of the infiltration alloy.
- [0022] In accordance with an embodiment of the present invention, the infiltration alloy may additionally contain Nb. The amount of Nb contained in the infiltration alloy is typically from 0 to about 5 weight percent, for example, from about 0.1 to about 1 weight percent. As a particular example, the amount of Nb may be about 0.2 weight percent.
- [0023] In an embodiment of the present invention, the infiltration alloy is substantially free of Mn. As used herein, the term "substantially free" means that an element such as Mn is not purposefully added as an alloying addition to the infiltration alloy, and is only present in the infiltration alloy up to trace amounts or as an impurity.
- [0024] The relative amounts of the hard ceramic powder and infiltration alloy powder may be selected in order to produce the desired ratio of ceramic phase and infiltration alloy phase in the final composite material. The hard ceramic phase is typically the most predominant phase of the composite material on a weight percentage basis. In one embodiment, the hard ceramic phase may comprise from about 60 to about 80 weight percent of the composite material, while the infiltration alloy may comprise from about 20 to about 40 weight percent of the composite. As a particular example, the hard ceramic phase may comprise about 67 weight percent of the composite and the infiltration alloy may comprise about 33 weight percent of the composite.
- [0025] In addition to the above-noted hard ceramic and infiltration alloy phases, the composite material may optionally include at least one additional phase. For example, the additional phase may comprise iron, 4600 steel, tungsten, cobalt, nickel, manganese, silicon, molybdenum, copper, zinc, chromium, boron, carbon, complex carbide eta phase materials, nitrides and/or carbonitrides. Eta phase materials are of the formula M₆C or M₁₂C where M is a combination of carbide-forming metals such as Co, Fe, Ni and W, e.g., Co₃W₃C. Such optional additional phases may be present in the infiltration alloy in a total amount of up to about 5 weight percent.

[0026] Fig. 2 schematically illustrates a fixture for consolidating composite materials of the present invention. The production assembly shown in Fig. 2 includes a carbon mold, generally designated as 11, having a bottom wall 12 and an upstanding wall 13. The mold 11 defines a volume therein. The assembly further includes a top member 14, which fits over the opening of the mold 11. It should be understood that the use of the top number 14 is optional depending upon the degree of atmosphereic control one desires.

[0027] A steel shank 17 is positioned within the mold before the powder is poured therein. A portion of the steel shank 17 is within the powder mixture 16 and another portion of the steel shank 17 is outside of the mixture 16. Shank 17 has threads 18 at one end thereof, and grooves 19 at the other end thereof.

[0028] Referring to the contents of the mold, a plurality of discrete diamonds 15 are positioned at selected positions within the mold so as to be at selected positions on the surface of the finished product. The ceramic matrix powder 16 is a carbide-based powder, which is poured into the mold 11 so as to be on top of the diamonds 15. Once the diamonds 15 have been set and the ceramic matrix powder 16 poured into the mold, a Cu-Ni-Sn infiltration alloy 20 of the present invention is positioned on top of the powder mixture 16 in the mold 11. Then the top 14 is positioned over the mold, and the mold is placed into a furnace and heated to approximately 1,200°C so that the infiltration alloy 20 melts and infiltrates the powder mass. The result is an end product wherein the infiltration alloy bonds the ceramic powder together, the matrix holds the diamonds therein, and the composite is bonded to the steel shank.

[0029] Fig. 3 schematically illustrates a method of forming and heat treating a composite material comprising a hard ceramic phase and an infiltration alloy in accordance with an embodiment of the present invention. Hard ceramic powder is mixed with Cu-Ni-Sn infiltration alloy powder and consolidated. Consolidation may be performed in a mold by heating the powder mixture above the liquidous temperature of the infiltration alloy. During the consolidation step, temperatures of from about 1,170 to about 1,210°C are typically used, for example, a consolidation temperature of about 1,200°C may be suitable. The consolidation temperature is held for a sufficient period of time to allow melting of the infiltration alloy powder and bonding of the hard ceramic powder, such that a dense composite material is formed. The consolidation temperature may typically be held for a

duration of from less than 1 minute to more than 5 hours. As a particular example, the consolidation temperature may be held for about 30 minutes.

[0030] The consolidated composite material may be cooled, e.g., to room temperature, followed by solutionizing at elevated temperatures, e.g., from about 650 to about 900°C. As a particular example, the solutionizing temperature may be about 825°C. Solutionizing at such elevated temperatures may typically be performed from 0.5 to 24 hours, for example, about 1.5 hours.

[0031] After the solutionizing step, the composite may be cooled to ambient temperature by any suitable means such as air cooling. The solutionized and cooled composite material may then be thermally aged at a temperature and time sufficient to increase at least one mechanical property of the composite. For example, thermal aging temperatures may range from about 100 to about 600°C, typically from about 300 to about 400°C. Typical thermal aging times may be from 0.5 to 24 hours, for example, about 5 hours. After the thermal aging step, the composite may be cooled by any suitable means such as air cooling.

[0032] Infiltration alloys listed in Table 1 were prepared. Alloy A is a Cu-Ni-Sn-Nb infiltration alloy in accordance with an embodiment of the present invention. Alloy B is a Cu-Mn-Ni-Zn alloy which is provided for comparison purposes.

<u>Table 1</u>
Infiltration Alloy Compositions

Alloy	Description			Content	(wt. %)		
		Cu	Mn	Ni	Sn	Zn	Nb
A	Spinodal Alloy	81.8	0	10	8	0	0.2
В	Cu-Mn-Ni-Zn Alloy	53	24	15	0	8	0

[0033] Alloys in Table 1 were made in the form of roughly ¼ inch shots (Alloy A) or ½ inch cubes (Alloy B). Graphite molds were used to make infiltrated test specimens containing either an alloy or a mixture of 33% alloy and 67% P90 WC matrix powder comprising 67% macrocrystalline WC (-80 + 325 mesh) and 31 % of cast carbide (-325 mesh).

[0034] The test specimens were made by heating the filled molds to 1,200°C under hydrogen, holding at the temperature for 30 minutes, and cooling to room temperature. The specimens were used to determine impact toughness, B611 wear number, and transverse rupture strength (TRS). In the case of the spinodal alloy A, the following heat treatment was used on a number of specimens to assess the effectiveness of this treatment in improving the alloy properties: solutionize at 825°C; hold for 1.5 or 5 hours; water quench or air cool; age at 350°C for 5 hours; and air cool. Results of the tests are listed in Table 2.

<u>Table 2</u>
Effect of Heat Treatment and Comparison Between Alloy A and Alloy B Infiltrated Carbides

	A	A	A	
Alloy	(as cast)	(1.5 hr/WQ)	(5 hr/AC)	В
Hardness (HV) (100% Alloy)	111	251	602	140
Impact Toughness (ft-lb)	1.96	2.51	2.8	2.6
B611 wear Number	0.63	0.8	0.78	0.65
TRS (ksi)	95.5	146.9	130	90

[0035] In accordance with an embodiment of the present invention, hardness of the spinodal Alloy A may be dramatically increased by heat treatment. In this embodiment, air cooling may be just as effective as water quenching. The TRS of the Alloy A sample was raised after 1.5 hours of solutionizing and aging. The TRS of the Alloy A sample is almost equal after 5 hours of solutionizing and aging.

[0036] In accordance with embodiments of the present invention, it is possible to heat treat a spinodal infiltration alloy to surpass both the wear resistance and TRS of conventional Cu-based infiltration alloys. Drilling bits made with the present spinodal infiltration alloys can be readily heat treated to obtain optimum combinations of service properties.

[0037] Whereas particular embodiments of this invention have been described above for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

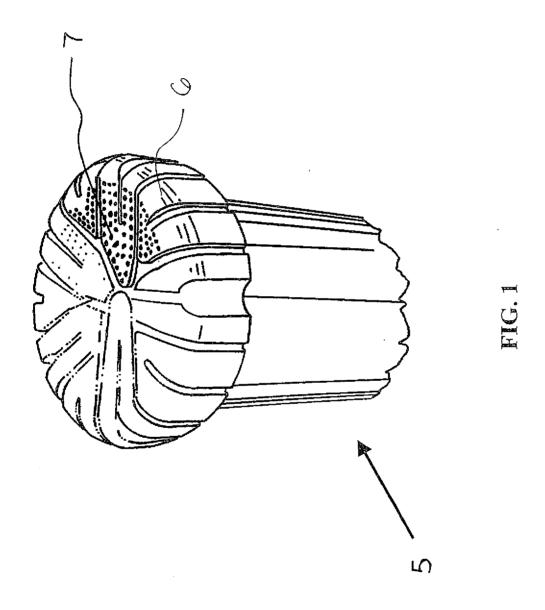
CLAIMS:

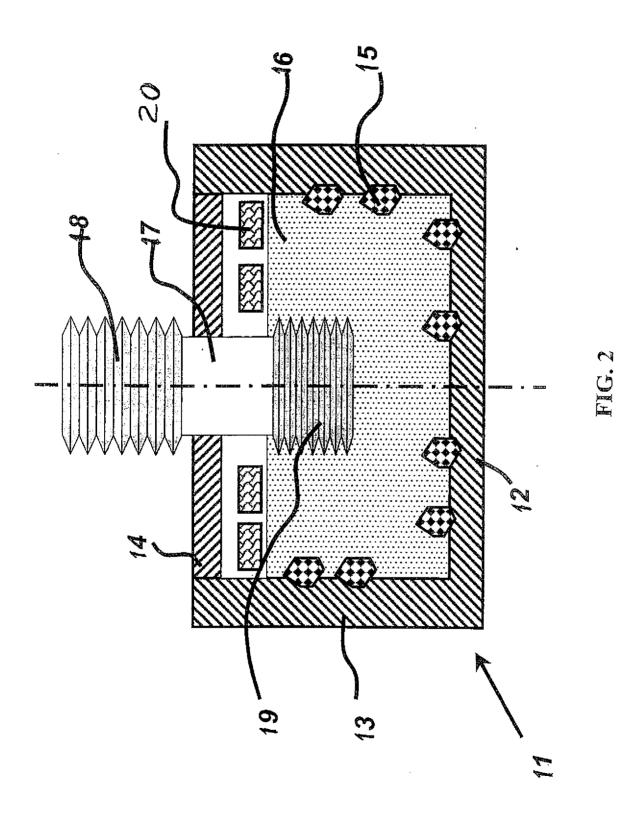
1. A composite material comprising:

a hard ceramic phase; and

a metal phase comprising a heat treated Cu-based infiltration alloy comprising Ni and Sn.

- 2. The composite material of Claim 1, wherein the heat treated Cu-based infiltration alloy is a spinodal alloy.
- 3. The composite material of Claim 1, wherein the Ni comprises from about 5 to about 25 weight percent of the heat treated Cu-based infiltration alloy, and the Sn comprises from about 4 to about 20 weight percent of the heat treated Cu-based infiltration alloy.
- 4. The composite material of Claim 1, wherein the Ni comprises from about 8 to about 12 weight percent of the heat treated Cu-based infiltration alloy, and the Sn comprises from about 5 to about 12 weight percent of the heat treated Cu-based infiltration alloy.
- 5. The composite material of Claim 1, wherein the heat treated Cu-based infiltration alloy further includes Nb.
- 6. The composite material of Claim 5, wherein the Nb comprises from about 0.1 to about 1 weight percent of the heat treated Cu-based infiltration alloy.
- 7. The composite material of Claim 1, wherein the heat treated Cu-based infiltration alloy comprises from about 8 to about 12 weight percent Ni, from about 5 to about 12 weight percent Sn, and from about 0.1 to about 1 weight percent Nb.
- 8. The composite material of Claim 1, wherein the heat treated Cu-based infiltration alloy is substantially free of Mn.
- 9. The composite material of Claim 1, wherein the hard ceramic phase comprises from about 60 to about 80 weight percent of the composite material, and the infiltration alloy comprises from about 20 to about 40 weight percent of the composite material.
- 10. The composite material of Claim 1, wherein the hard ceramic phase comprises at least one carbide selected from tungsten carbide, tantalum carbide, niobium carbide, molybdenum carbide, chromium carbide, vanadium carbide, zirconium carbide, hafnium carbide and titanium carbide.


11. The composite material of Claim 10, wherein the carbide comprises WC.


- 12. The composite material of Claim 1, further comprising at least one additional phase.
- 13. The composite material of Claim 12, wherein the at least one additional phase comprises iron, 4600 steel, tungsten, cobalt, nickel, manganese, silicon, molybdenum, copper, zinc, chromium, boron, carbon, carbide eta phase materials, nitrides and/or carbonitrides.
 - 14. The composite material of Claim 1, further comprising Co.
- 15. The composite material of Claim 1, wherein the composite material has been subjected to thermal aging at a temperature of from about 100 to about 600°C for a time of from about 0.5 to about 24 hours.
- 16. A method of making a composite material comprising infiltrating an alloy into hard ceramic particles, wherein the infiltration alloy consists essentially of Cu, Ni and Sn.
- 17. The method of Claim 16, wherein the Ni comprises from about 5 to about 25 weight percent of the infiltration alloy, and the Sn comprises from about 4 to about 20 weight percent of the infiltration alloy.
- 18. The method of Claim 16, wherein the infiltration alloy further includes Nb.
- 19. The method of Claim 18, wherein the infiltration alloy comprises from about 8 to about 12 weight percent Ni, from about 5 to about 12 weight percent Sn, and from about 0.1 to about 1 weight percent Nb.
- 20. The method of Claim 16, wherein the infiltration alloy is substantially free of Mn.
- 21. The method of Claim 16, wherein the hard ceramic phase is a carbide comprising from about 60 to about 80 weight percent of the composite material.
- 22. The method of Claim 16, further comprising thermally aging the composite material.
- 23. The method of Claim 22, wherein the thermal aging is performed at a temperature of from about 100 to about 600°C for a time of from about 0.5 to about 24 hours.

24. A method of heat treating a composite material comprising:

providing a composite material including a hard ceramic phase and an infiltration alloy comprising Cu, Ni and Sn; and thermally aging the composite material.

- 25. The method of Claim 24, wherein the thermal aging is performed at a temperature of from about 100 to about 600°C for a time of from about 0.5 to about 24 hours.
- 26. The method of Claim 24, wherein the thermal aging is performed at a temperature of from about 300 to about 400°C.
- 27. The method of Claim 24, wherein the composite material is solutionized and cooled prior to the thermal aging.
- 28. The method of Claim 24, wherein the Ni comprises from about 5 to about 25 weight percent of the infiltration alloy, and the Sn comprises from about 4 to about 20 weight percent of the infiltration alloy.
- 29. The method of Claim 24, wherein the infiltration alloy further includes Nb.
- 30. The method of Claim 29, wherein the infiltration alloy comprises from about 8 to about 12 weight percent Ni, from about 5 to about 12 weight percent Sn, and from about 0.1 to about 1 weight percent Nb.
- The method of Claim 24, wherein the infiltration alloy is substantially free of Mn.

KG-2311PC

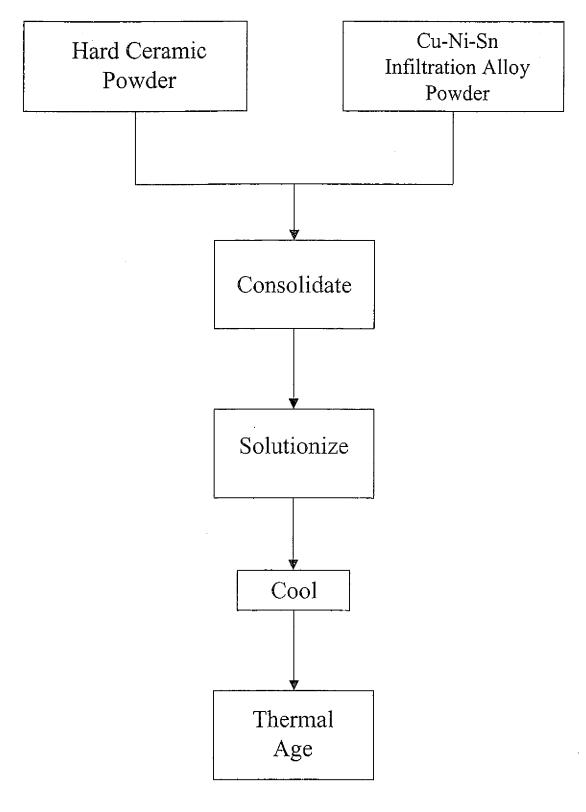


FIG. 3

International application No.

PCT/US2008/054348

A. CLASSIFICATION OF SUBJECT MATTER

C22C 29/00(2006.01)i, C22C 1/04(2006.01)i, C22C 9/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 8 B22D 19/14, B22F 3/00, B24D 3/02, B32B 9/00, C22C 1/05, C22C 26/00, C22C 29/00.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Korean Utility models and applications for Utility models since 1975.

Japanese Utility models and applications for Utility models since 1975.

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) eKIPASS (KIPO internal) & keywords: infiltrant, copper alloys, nickel, tin, and similar terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5589268 A (KELLEY; HAROLD E. et al.) 31 December 1996 See the abstract; column 3, line 25 - column 4, line 27; examples; claims 1, 7, 8.	1 - 31
Y	US 5733664 A (KELLEY; HAROLD E. et al.) 31 March 1998 See the abstract; column 3, line 33 - column 4, line 56; examples; claims 1, 26, 27.	1 - 31
Y	US 4327156 A (DILLON; KENNETH R. AND GARDNER; RICHARD N.) 27 April 1982 See the abstract; column 10, lines 11 - 45; column 13, lines 55 - 66.	1 - 31
A	US 2002-0096306 A1 (TRENT N. BUTCHER et al.) 25 July 2002 See the abstract; paragraph [0028].	1 - 31
A	US 5976205 A (ANDREWS; RICHARD M. et al.) 2 November 1999 See the abstract; claim 1.	1 - 31

	Further documents are	listed in the	continuation	of Box	C.
1	1 dittier decaments are	noted in the	Comminantion	OI DOM	٦

See patent family annex.

- * Special categories of cited documents:
- 'A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- 'L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- 'P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- "&" document member of the same patent family

Date of the actual completion of the international search
16 JUNE 2008 (16.06.2008)

Date of mailing of the international search report

16 JUNE 2008 (16.06.2008)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office Government Complex-Daejeon, 139 Seonsa-ro, Seogu, Daejeon 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

LEE, SUNG JOON

Telephone No. 82-42-481-5530

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2008/054348

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5589268 A	31.12.1996	AU 1996-50211 A1 BR 9607548 A CA 2203882 AA CN 1172506 A DE 69616534 C0 EP 0820533 A1 KR 10-1998-0700445 A RU 2141001 C1 US 5733649 A US 5733664 A W0 96-23907 A1 ZA 9600582 A	21.08.1996 07.07.1998 08.08.1996 04.02.1998 06.12.2001 28.01.1998 30.03.1998 10.11.1999 31.03.1998 31.03.1998 08.08.1996
US 5733664 A	31.03.1998	AU 1996-50211 A1 BR 9607548 A CA 2203882 AA CN 1172506 A DE 69616534 C0 EP 0820533 A1 KR 10-1998-0700445 A RU 2141001 C1 WO 96-23907 A1	21.08.1996 07.07.1998 08.08.1996 04.02.1998 06.12.2001 28.01.1998 30.03.1998 10.11.1999 08.08.1996
US 4327156 A	27.04.1982	AU 1981-71795 A1 BR 8108588 A CA 1181615 A1 EP 0051634 A1 ES 502019 A5 IT 8148441 A0 JP 57-500788 T2 KR 10-1983-0005947 A US 4327156 A W0 81-03295 A1 ZA 8103124 A	07. 12. 1981 06.04. 1982 29.01. 1985 19.05. 1982 30.04. 1982 11.05. 1981 06.05. 1982 14.09. 1983 27.04. 1982 26. 11. 1981 26.05. 1982
US 2002-0096306 A1	25.07.2002	US 6581671 BB	24.06.2003
US 5976205 A	02.11,1999	AT 269779 E AU 1997-48139 A1 BR 9713559 A CA 2272258 A1 CN 1239451 A DE 69729653 C0 EP 0946332 A1 ES 2225957 T3 JP 2000-516156 KR 10-2000-0057351 A NZ 335752 A TW 394724 A WO 98-24593 A1	15.07.2004 29.06.1998 14.03.2000 11.06.1998 22.12.1999 29.07.2004 06.10.1999 16.03.2005 05.12.2000 15.09.2000 27.04.2001 21.06.2000 11.06.1998