US 20060041841A1

United States

(19)
12 Patent Application Publication (i) Pub. No.: US 2006/0041841 A1l
Parasu 43) Pub. Date: Feb. 23, 2006
(54) APPARATUS AND METHOD FOR Publication Classification
CONTACTING A CUSTOMER SUPPORT
LINE ON CUSTOMER’S BEHALF AND (51) Int. CL
HAVING A CUSTOMER SUPPORT GO6F 17/00 (2006.01)
REPRESENTATIVE CONTACT THE (52) US. Cli e vnevesevecenees 715/513
CUSTOMER
(76) Inventor: Nagendran Parasu, Richmond, VA 57) ABSTRACT
(US)
Correspondence Address: Amethod is provided in an application server configured for
LEON R TURKEVICI-i responding to hypertext transport protocol (HTTP) requests.
2000 M STREET NW The method includes storing, in response to a first HT'TP
“TH FLOOR request, an XML document that specifies for a user, a call
WASHINGTON. DC 200363307 number of a second party. The stored XML document is
N N, retrieved based on a second HTTP request by the user. A first
(21) Appl. No.: 11/251,767 HTML document is generated based on the retrieved XML
’ document. The first HTML document has instructions
(22) Filed: Oct. 18, 2005 including the call number for accessing the second party. A
second HTML document is generated based on a prescribed
Related U.S. Application Data input received from the second party. The second HTML
document has instructions for connecting the second party
(63) Continuation of application No. 09/577,320, filed on with the user. Hence, a user may speak with a called party
May 24, 2000, now Pat. No. 6,973,617. without ever having to remain on hold.
56 E‘ 423
60
== /
. Application
Fat Clients
64
56 44 /
42b
D Web
==\ Server ™50
o Application
Thin Clients 82 I Proxy Browser } Server
\ & ((| Application
\ 62 66 68
180
= 184
180 (
8 ¢
Skinny Clients i
18~
18f

Tiny Clients

US 2006/0041841 A1

Patent Application Publication Feb. 23,2006 Sheet 1 of 6

: m_:m_n_ Sjua1D Auty
S 181
S~ag
(] stusil) Auuiyg
)¢ D
v 9B
P8l -
99 ¢9 !
S
uoneoddy v V %f
e
SETSELS 195mo.g ?O&J 8 Sjusl|) U
uoneo;ddy
J9AIBS ==
3
oM QS/_DT ‘
9
oo/ A
uonedddy SIuRlD ,f
egy—=~" ~-96

US 2006/0041841 A1

308)45)u] 105 Uoneaddy X | 00 72 8inbi4
3seqejeq 82In0say § uoneoyddy |46
_ uoljeI8u8S) uoIedady INX Txmm b6
i =

05— SUOROUNS B LONED||ddY JNX =

Patent Application Publication Feb. 23,2006 Sheet 2 of 6

sabed INX/INLH dtweukQ sjusy) Auuys
5100 g6 _ 18n13S uoneolddy 3 gam 26 131358129 001 101D T TNX - _
juswdojanag| 99 P9 mm paseguasmoig P\
.) 28l
) 29 -~
18 08 'S3211185 = a8 05 \\p.\.w
Juswabeuep A 1IOMISN 081
M N1Sd 7
9. .wmgawm Em%m 9 y 98 _me%mmommmw_m/ P
A10)930Q Ansibay , 43SMmoJ iId
< 297 femdied faainosay 010p] <98
pl 'SBOINBS T 05 mm/ 4 “_Mmao_m |l
A10}2811Q (8907 PHe A |
¢/ 'sannies [| acy
suweN uewoq Bbg = M ‘._I_U -
0L ‘sadinisg buiyig 68 —
9 UONlRONUBYINY] y,
28 /8

SUETE]

Patent Application Publication Feb. 23,2006 Sheet 3 of 6 US 2006/0041841 A1

<?xml version="1.0"7>
<IDOCTYPE DOCUMENT |
<IELEMENT DOCUMENT (Menu Variables, Options)>
<IELEMENT MenuVariables (#PCDATA)*>
<IATTLIST MenuVariables name CDATA #REQUIRED
value CDATA #REQUIRED
<IELEMENT Options (#PCDATA)*>
<IATTLIST Options name CDATA #REQUIRED .
value CDATA #REQUIRED
text CDATA #IMPLIED>»_11¢
>
<DOCUMENT> '/106b
104b —~ <MenuVariables name="MenuName” value="Main Menu"/>
104¢ —~ <MenuVariables name:'DefauHPrompt"/—106(:
value="AUD_MAIN_MENU_PROMPT wav"/>

<MenuVariables name="Components” value=""/>

<MenuVariables name="Conditions” value=""/> r106d
104d —1~ <MenuVariables name="Faliback” value="LOGOUT_CLEANUP . .xmi"/>

L , . . . 4 106e
104e <MenuVariables name="Type value="MENU"/> 1061
104f _+ <MenuVariables name="InputMask” value=StandardMenu"/>
. A~

104g—+ <MenuVariables name="Images" value=""/> 106g ’,_1063
104a—{~ <MenuVariables name="Text" value="To get your messages,

pressi. To logout, press '9"/>114a1/ 2/11433

112a— <Options name="1""value="MENU:ACT_GET_VOICE_MESSAGES.xm!"
. text="Access your messages."/> .114b2 F 114b3
112b— <Options name="2" value="SOUND:AUD_MAIN_MENU_HELP.wav"
114bq text="Access your messages."/>

112¢ —4 <Options name="'9" value="DECISION:LOGOUT_CLEANUP xml"
114c4"text="Send a message."/> k114c2 \114(:3
</DOCUMENT> '
L100

Figure 3

US 2006/0041841 A1

Patent Application Publication Feb. 23,2006 Sheet 4 of 6

 ainbi4 el

: 1X8] MBN
|| vN_‘J
27 ﬁ\l— 1dwold ejeseuss :)

U8} 1IMIBND 8q M Bweu awes ay) Aq sajy Bunsix3g :butusem
'MOJ8q JX8) POIISEp By} pue SWEU B Jojus Jdwoid Mau e 8)esd 0]

| :awen a4

6
Bof @oj

BgoL
\

_ w e |:sabeuw 1801
L ~ nuapplepuels | :ysewindu
9001 = NN3N]:edAL °80!
G0 |t WX dANYI11N090T | H08A|[e S ~——+—P8()}
_ |:suompuod

_ |:sjusuodwod

: x8]
N ﬁ' 6. ssaid 1noboj oy / 5 | J—= rem 1dn0dd N3N NIYW-ONY] 1dwoid)inejeq + 280}
- \ ;w_woa ‘sabessaw Jnok job o) a1 80t : \V Suon IR e weNnusy N
eg0} -~ 990}~ 9801 —
copl| mumi
Syl SOPhi P9~ _ vl g} |
_ . 7 C WX dnNNY310_1N0907] T_zo_wawo_ 991
_ | [T _nem gI13H NNIW NIYW_aNY | [[ANNOS r |- q9tL
_] [wx'S39vSSIW 30I0A 139 10v] [afonaw | [|= gl
:uoido Jo uoljdiiosaq fmmv: fmmm: [UsYe] UOIOY :adA) //mEmz/_
SSBUEUD WX BT BUiABS JnouTm TWX PE0IaY TWX BUISINs ue usdg TAX meu € siead legy | B9}
P9zl —" N 29z, 2921~
[1deooy || | [»- nusp uew]:swen nusy [WX NINIW NIV QNYY 8IBIS JusLing
/ —qg0})

a%01—" 100 | JuBW

dojerad TNX 02 ol

Patent Application Publication Feb. 23,2006 Sheet 5 of 6 US 2006/0041841 A1
Web Server oy
(Apache)
//66
83 Web Server Interface
)EML (PHP) =
Brownie |= > 1L
Registry XML | Tag t '_}U“q‘ 225
Parser (Lmpiemen :—Logic L 226
220 230 F——
App. :_Proc_};»/ 228
C:::::::::D Runtime o
Appl. 224 ™
Document " = 68
D?)‘(ar\;’f)se Libraries ("API" , "DLL")
9

AR

IMAP | LDAP | SMTP

| (|

240 242 244

Figure 5

Patent Application Publication Feb. 23,2006 Sheet 6 of 6 US 2006/0041841 A1

ﬁ3rowser Sends a Request for a HTML Form to Create a New XML {V300

l
[T\pplication Server Outputs HTML Form to Browser }310

User Inputs a Customer Support Call Number,
User's Call Number on the Form ~— 320
I
User Inputs Digits Corresponding to Menu 330

Options and/or Account Numbers on Form

l
Completed Form Sent to the Application Server 340
|
Application Server Inserts Input Applications as XML Tags L350
into an XML Document and Stores XML Document
|
Browser Sends HTTP Request for Voice Application L 360
Operation of Stored XML Document

- |
Application Server Generates HTML Page with XML Tags and

Outputs HTML Form to the Proxy Server 370
I
Proxy Browser Parses the HTML Page and XML Tags
for Application Parameters —380
Proxy Browser Causes Telephony Device to 390
Call Customer Support Line

|
rProxy Browser Causes Prompt Sequence to be Dialeﬂ» 400

-l

-
Proxy Browser Plays Generic or Personalized Message "Your Important
Customer Would like to Speak with You. To Connect, Press 1" ~—410

|
rWait 2 Seconds for Input }\-420

No 430
Input

Yes

Proxy Browser Sends Response to Application 44
Server and Call is Bridged — 440

Figure 6

US 2006/0041841 Al

APPARATUS AND METHOD FOR CONTACTING A
CUSTOMER SUPPORT LINE ON CUSTOMER’S
BEHALF AND HAVING A CUSTOMER SUPPORT
REPRESENTATIVE CONTACT THE CUSTOMER

BACKGROUND OF THE INVENTION
[0001] 1. Field of the Invention

[0002] The present invention relates to generating and
executing voice enabled web applications within a hypertext
markup language (HTML) and hypertext transport protocol
(HTTP) framework.

[0003] 2. Description of Related Art

[0004] The evolution of the public switched telephone
network has resulted in a variety of voice applications and
services that can be provided to individual subscribers and
business subscribers. Such services include voice messaging
systems that enable landline or wireless subscribers to
record, playback, and forward voice mail messages. How-
ever, the ability to provide enhanced services to subscribers
of the public switched telephone network is directly affected
by the limitations of the public switched telephone network.
In particular, the public switched telephone network oper-
ates according to a protocol that is specifically designed for
the transport of voice signals; hence any modifications
necessary to provide enhanced services can only be done by
switch vendors that have sufficient know-how of the existing
public switched telephone network infrastructure.

[0005] An IP network, such as the World Wide Web, the
Internet, or a corporate intranet, provides client-server type
application services for clients by enabling the clients to
request application services from remote servers using stan-
dardized protocols, for example hypertext transport protocol
(HTTP). The web server application environment can
include web server software, such as Apache, implemented
on a computer system attached to the IP network. Web-based
applications are composed of HTML pages, logic, and
database functions. In addition, the web server may provide
logging and monitoring capabilities.

[0006] In contrast to the public switched telephone net-
work, the open standards-based IP network has enabled the
proliferation of web based applications written by web
application developers using ever increasing web develop-
ment tools. Hence, the ever increasing popularity of web
applications and web development tools provides substantial
resources for application developers to develop robust web
applications in a relatively short time and an economical
manner. However, one important distinction between tele-
phony-based applications and web-based applications is that
telephony-based applications are state aware, whereas web-
based applications are stateless.

[0007] In particular, telephony applications are state aware
to ensure that prescribed operations between the telephony
application servers and the user telephony devices occur in
a prescribed sequence. For example, operations such as call
processing operations, voicemail operations, call forward-
ing, etc., require that specific actions occur in a specific
sequence to enable the multiple components of the public
switched telephone network to complete the prescribed
operations.

[0008] The web-based applications running in the IP net-
work, however, are state-less and transient in nature, and do

Feb. 23, 2006

not maintain application state because application state
requires an interactive communication between the browser
and back-end database servers accessed by the browsers via
a HTTP-based web server. However, an HTTP server pro-
vides asynchronous execution of HTML applications, where
the web applications in response to reception of a specific
request in the form of a URL from a client, instantiate a
program configured for execution of the specific request,
send an HTML web page back to the client, and terminate
the program instance that executed the specific request.
Storage of application state information in the form of a
“cookie” is not practical because some users prefer not to
enable cookies on their browser, and because the passing of
a large amount of state information as would normally be
required for voice-type applications between the browser
and the web application would substantially reduce the
bandwidth available for the client.

[0009] Commonly-assigned, copending application Ser.
No. 09/480,485, filed Jan. 11, 2000, entitled Application
Server Configured for Dynamically Generating Web Pages
for Voice Enabled Web Applications (Attorney Docket
95-409), the disclosure of which is incorporated in its
entirety herein by reference, discloses an application server
that executes a voice-enabled web application by runtime
execution of extensible markup language (XML) documents
that define the voice-enabled web application to be
executed. The application server includes a runtime envi-
ronment that establishes an efficient, high-speed connection
to a web server. The application server, in response to
receiving a user request from a user, accesses a selected
XML page that defines at least a part of the voice application
to be executed for the user. The XML page may describe any
one of a user interface such as dynamic generation of a menu
of options or a prompt for a password, an application logic
operation, or a function capability such as generating a
function call to an external resource. The application server
then parses the XML page, and executes the operation
described by the XML page, for example dynamically
generating an HTML page having voice application control
content, or fetching another XML page to continue appli-
cation processing. In addition, the application server may
access an XML page that stores application state informa-
tion, enabling the application server to be state-aware rela-
tive to the user interaction. Hence, the XML page, which can
be written using a conventional editor or word processor,
defines the application to be executed by the application
server within the runtime environment, enabling voice
enabled web applications to be generated and executed
without the necessity of programming language environ-
ments.

[0010] Hence, web programmers can write voice-enabled
web applications, using the teachings of the above-incorpo-
rated application Ser. No. 09/480,485, by writing XML
pages that specify respective voice application operations to
be performed.

[0011] When using a public switched telephone network to
call a customer support line, typically the caller or customer
is placed on hold and the call is placed in a queue. When the
caller reaches the top of the queue, often after waiting 15-20
minutes, the call is answered by the customer service
representative. Hence, the caller wastes time and network
resources in trying to contact the support representative.

US 2006/0041841 Al

[0012] Conventional callback systems have been
employed to call a caller back when the called party is
available. However, such systems must be present at the
called party’s premises and require knowledge of the public
switch telephone network to implement.

SUMMARY OF THE INVENTION

[0013] There is a need for an arrangement that enables
voice applications to be implemented on an IP packet
switched network using the open standards-based flexibility
of the IP network.

[0014] There is also a need for an arrangement that
enables voice applications to be implemented using HTTP
and HTML open standards, enabling development of voice
applications by individuals that do not have expertise in the
public switched telephone network. For example, there is a
need for arrangement that enables voice applications to be
designed by web programmers.

[0015] There is also a need for an arrangement that
enables voice applications to be implemented using an IP
network.

[0016] There is also a need for an arrangement that
enables an application server to call a second party on behalf
of a caller, to call back the caller when the second party is
available, and to bridge the calls connecting the second party
and the caller so that the caller need not wait on hold in order
to speak with the second party.

[0017] These and other needs are attained by the present
invention, where an application server is configured for
executing an executable voice application. The application
server includes an application runtime environment which
generates a first hypertext markup language (HTML) docu-
ment based on an XML document. The first HTML docu-
ment has instructions including the call number for access-
ing the second party. The application runtime environment
generates a second HTML document based in a prescribed
input received from the second party. The second HTML
document has instructions for connecting the second party
with the user. A storage medium is configured for storing the
XML document.

[0018] According to one aspect of the present invention, a
method is provided in an application server configured for
responding to hypertext transport protocol (HTTP) requests.
The method includes storing, in response to a first HT'TP
request, an XML document that specifies for a user, a call
number of a second party. The stored XML document is
retrieved based on a second HTTP request by the user. A first
HTML document is generated based on the retrieved XML
document. The first HTML document has instructions
including the call number for accessing the second party. A
second HTML document is generated based on a prescribed
input received from the second party. The second HTML
document has instructions for connecting the second party
with the user. Hence, a user may speak with a called party
without ever having to remain on hold.

[0019] Additional advantages and novel features of the
invention will be set forth in part in the description which
follows and in part will become apparent to those skilled in
the art upon examination of the following or may be learned
by practice of the invention. The advantages of the present

Feb. 23, 2006

invention may be realized and attained by means of instru-
mentalities and combinations particularly pointed out in the
appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] Reference is made to the attached drawings,
wherein elements having the same reference numeral des-
ignations represent like elements throughout and wherein:

[0021] FIG. 1 is a block diagram illustrating a novel
paradigm that enables unified voice messaging services and
data services to be provided via an IP network using browser
audio control according to an embodiment of the present
invention.

[0022] FIG. 2 is a diagram illustrating in further detail
implementation of voice applications on the IP network of
FIG. 1 according to an embodiment of the present invention.

[0023] FIG. 3 is a diagram illustrating an XML document
configured for defining a voice application operation for the
application server of FIGS. 1 and 2.

[0024] FIG. 4 is a diagram illustrating a browser display
of a form for user entry of voice application parameters.

[0025] FIG. 5 is a diagram illustrating in detail the appli-
cation server of FIGS. 1 and 2 according to an embodiment
of the present invention.

[0026] FIG. 6 is a flow diagram illustrating a method of
providing user callback according to an embodiment of the
present invention.

BEST MODE FOR CARRYING OUT THE
INVENTION

[0027] The disclosed embodiment is directed to an
arrangement for providing unified voice messaging services
and data services via an IP network using a web browser
having audio control for voice enabled web applications.
The ability to provide unified voice messaging services via
an IP network enables existing web servers on the World
Wide Web or in corporate intranets to support telephone
applications on a scalable and economic platform. More-
over, providing unified voice messaging services via an IP
network enables use of open standards that permits web
programmers to use existing web programming techniques
to design and implement voice telephone applications.

[0028] FIG. 1 is a block diagram illustrating an architec-
ture that provides unified voice messaging services and data
services via an IP network using browser audio control
according to an embodiment of the present invention. As
shown in FIG. 1, each of the clients (tiny clients, skinny
clients, thin clients and fat clients) are able to communicate
via a single, unified architecture 60 that enables voice
communications services between different clients, regard-
less of whether the client actually has browser capabilities.
For example, the fat client 42a and the thin client 42b are
able to execute voice enabled web applications without any
hardware modification or any modification to the actual
browser; rather, the browsers 56 in the clients 422 and 42b
merely are provided with an executable voice resource
configured for providing browser audio control, described
below.

[0029] The skinny clients 18a, 185, and 18¢ and the tiny
clients 184, 18¢, and 18f also have access to the unified voice

US 2006/0041841 Al

messaging services in the unified network 60 by accessing a
proxy browser 62, configured for providing an IP and HTTP
interface for the skinny clients and the tiny clients. In
particular, browsers operate by interpreting tags within a
web page supplied via an HTTP connection, and presenting
to a user media content information (e.g., text, graphics,
streaming video, sound, etc.) based on the browser capa-
bilities; if a browser is unable to the interpreting a tag, for
example because the browser does not have the appropriate
executable plug-in resource, then the browser typically will
ignore the unknown tag. Hence, the proxy browser 62 can
provide to each of the skinny clients and tiny clients the
appropriate media content based on the capabilities of the
corresponding client, such that the cordless telephone 18a
and telephone 18c would receive analog audio signals
played by the proxy browser 62 and no text information
(unless a display is available); the fax machine 185 and
pager 18f would only receive data/text information, and the
cellular telephone 18d and the handheld computing device
18¢ would receive both voice and data information. Hence,
the proxy browser 62 interfaces between the IP network and
the respective local access devices for the skinny clients and
the tiny clients to provide access to the unified messaging
network 60.

[0030] The proxy browser 62 and the web browsers 56
within the fat client 424 and the thin client 42b execute voice
enabled web applications by sending data and requests to a
web server 64, and receiving hypertext markup language
(HTML) web pages from the web server 64, according to
hypertext transport protocol (HTTP). The web server 64
serves as an interface between the browsers and an appli-
cation server 66 that provides an executable runtime envi-
ronment for XML voice applications 68. For example, the
web server 64 may access the application server 66 across a
common Gateway Interface (CGI), by issuing a function call
across an application programming interface (API), or by
requesting a published XML document or an audio file
requested by one of the browsers 56 or 62. The application
server 66, in response to receiving a request from the web
server 64, may either supply the requested information in the
form of an HTML page having XML tags for audio control
by a voice resource within the browser, or may perform
processing and return a calculated value to enable the
browser 56 or 62 to perform additional processing. In
particular, the application server 66 may either access static
XML pages, or the application server 66 may access stored
XML application pages (i.c., pages that define an applica-
tion) and in response generate new XML pages during
runtime and supply the generated XML pages to the web
server 64.

[0031] FIG. 2 is a diagram that illustrates in further detail
the network 60 of FIG. 1. As shown in FIG. 2, the
arrangement of providing browser audio control for voice
enabled web applications enables voice application services
to be implemented in a web server paradigm for many
different telephony services, including authentication and
billing services 70, domain name services 72, local directory
services 74, registry directory and event services 76, and
management services 78.

[0032] FIG. 2 also illustrates in further detail the browser
and web application server interaction. In particular, the thin
clients 42b (and fat clients 42a¢) may be configured for
accessing the web server 64 via a direct IP connection 82 to

Feb. 23, 2006

a router 84. The thin client 42b can directly access the web
server 64 for voice enabled web application services if the
thin client 42b has a browser 56 and an executable voice
resource 86, for example an executable XML aware plug-in
resource, described below, or a Java applet embedded within
a received HTML page. Alternatively, the thin client 42b
may access the web server 64 via the public switched
telephone network 10, where an IP gateway 87a includes a
voice over IP interface 88 that sends information to the
server 64 using an HTTP connection 89 via a firewall 90.

[0033] Since the skinny clients and tiny clients 18 do not
have browser resources, the skinny clients and tiny clients
18 access the proxy browser 62 via the PSTN 10 and the IP
gateway 87b. The IP gateway 87b includes both a proxy
browser 62 and a voice resource 86, enabling the IP gateway
87 the to provide all audio control service for the skinny
clients and tiny clients 18. Hence, the PSTN 10 is used
merely for transfer of analog audio signals, with intelligent
application processing being provided by the proxy browser
62. Note that if one of the telephones 18¢' is an IP telephone,
then it can access the server 64 via an IP connection 82; in
this case, the browser internal to the IP telephone 18¢' would
process only audio functions, and would ignore any tags
associated with text or image content.

[0034] As shown in FIG. 2, the web server 64, the
application server 66, and the voice web applications 68
reside within a gateserver 92. The gateserver 92 includes a
browser based XML editor tool 94 that enables a web
programmer to design voice applications using XML pages,
described below. The XML pages are stored as XML appli-
cations and functions 96, for example within a database
accessible by the application server 66. The XML pages
stored within the XML application and functions 96 may be
stored as static pages to be fetched by the web server 64 and
supplied to a browser, however the XML pages may also
define the actual application to be executed by the applica-
tion server 66 in runtime. Hence, the application server 66
may execute stored XML applications and functions 96, and
in response generate dynamic HTML having XML tags, also
referred to as HTML/XML pages.

[0035] According to the disclosed embodiment, the
browsers 56 and 62 provide audio control for voice enabled
web applications based on the HTML-XML pages supplied
by the application server 66 to the web server 64 for
transport across an HTTP connection. The application server
66 executes stored XML applications, also referred to gen-
erally as a web applications, in response to HTML requests
from the user. During execution of the stored XML appli-
cations, the application server 66 stores in a separate registry
83 (FIG. 5) a data record, also referred to as a “brownie”,
that specifies the application state for at least one XML
application instance. As described in commonly assigned,
copending application Ser. No. 09/538,899, filed Mar. 30,
2000, entitled “Apparatus And Method For Providing Server
State And Attribute Management For Multiple-Threaded
Voice Enabled Web Applications” (Attorney Docket
95-431), the disclosure of which is incorporated in its
entirety herein by reference, the “brownie” is configured for
storing user attribute information and application state infor-
mation for multiple users associated with a given voice
applications session. Hence, the application server 66 may
simultaneously and independently control voice application
operations for multiple users that may be associated accord-

US 2006/0041841 Al

ing to a prescribed application condition, for example the
possibility of bridging the users together for a phone call or
a phone conference.

[0036] Hence, the use of a “brownie” configured for
storing attributes and state information for multiple users
enables the application server to effectively control multiple
“lines” for the proxy browser 62 controlling, for example, a
voice over IP telephony switch.

[0037] As described above, conventional application
development techniques involving writing application code
using a conventional word processor require a user to have
familiarity with executable code syntax. Although use of
XML documents to define voice application operations
eliminates the necessity of writing programming code, use
of a conventional word processor for development of the
XML documents still requires the application developer to
have substantial knowledge of XML syntax, limiting the
ability of a typical user lacking expertise in application
development or XML syntax to personalize a voice appli-
cation.

[0038] Certain development tools having direct access to
the application server 66 can be used to establish context
information used by the application runtime environment
within the application server 66 for execution application
operations based on parsing of XML documents. In particu-
lar, development tools 81 such as a graphic based develop-
ment system, a forms-based development system, an editor-
based development system, or an outline-based development
system may be used to define XML tags and procedure calls
for the application runtime environment. The development
tools 81 may be used to establish an application and resource
database 97 to define low-level operations for prescribed
XML tags, for example dynamically generating an XML
menu page using executable functions specified by a menu
rule set in response to detecting a menu tag, performing a
logical operation using executable functions specified by a
logic rule set in response to a decision tag, or fetching an
audio (.wav) file in response to detecting a sound tag.

[0039] The development tools 81 may be used to establish
an application programming interface (API) library 99 (e.g.,
a SQL interface) for the application runtime environment,
enabling the application server 66 to issue prescribed func-
tion calls to established services, such as IMAP, LDAP, or
SMTP. The library 99 may be implemented as dynamically
linked libraries (DLLS) or application programming inter-
face (API) libraries. If desired, the development tools 80
may also be used to generate an XML application as a stored
text file 95, without the use of the forms generated by the
application server 66, described below.

[0040] A user of the browser 56 typically sends a request
to the application server 66 (via the web server 64) for a
voice application operation 99, for example using an inter-
face executable by a browser 56 or 62, for accessing new
voice mail messages, new facsimile messages, new e-mail
messages, and the like. A user of the browser 56 also can
send a request to the application server 66 for creating or
modifying an XML document defining a voice application
operation, via a development tool common gateway inter-
face (CGI). In particular, the web browser 56 posts a user
input for an application operation (i.e., an HTTP request) to
a first URL for the voice application operation. In contrast,
the web browser 56 posts to another URL for accessing the

Feb. 23, 2006

development tool CGI. Accessing the application server via
the CGI enables the application server 66 to access a
selected XML document, for example the XML document
100 illustrated in FIG. 3, in order to dynamically generate
a form 102, illustrated in FIG. 4, that specifies selected
application parameters of the XML document 100. Hence,
accessing the application server by posting the user input
according to a first URL causes execution of the XML
document 100, whereas accessing the application server via
the CGI causes the application server 66 to generate a form
that specifies the contents of the XML document 100.

[0041] Hence, accessing the application server 66 via the
CGI enables the web browser to perform different operations
on the selected XML document 100, described in further
detail in commonly-assigned, copending application Ser.
No. 09/559,637, filed Apr. 28,2000, entitled “Browser-
Based Arrangement For Developing Voice Enabled Web
Applications Using Extensible Markup Language Docu-
ments” (attorney docket 95-412), the disclosure of which is
incorporated in its entirely herein by reference.

[0042] FIG. 4 illustrates the insertion of the application
parameters 106 into respective entry fields 108 by the
application server 66 for display of the form 102 by the
browser 56. As shown in FIG. 4, the application server 66
parses the XML tags 104a, 104b, 104c, . . . 104g and in
response inserts the application parameters 106a, 106D,
106¢, . . . 106g into the respective entry fields 108, 108b,
108c, . . . 108g. For example, the application server 66, in
response to detecting the XML text tag 104a, dynamically
generates an HTML document that specifies a form 102
having the entry field 1082 and including the corresponding
application parameter 106a; hence, each of the XML tags
104 has a corresponding entry field 108 within the form 102
specified by the HTML page generated by the application
server 66, including XML tags 108¢g having empty applica-
tion parameters 106g. Note that XML tags 110 used to define
the XML document attributes (and consequently the struc-
ture of the form 102) are predefined by one of the developer
workstations 81 or the browser based XML editor tool 56b
that do not rely on the form 102.

[0043] The application server 66 also parses the XML
option tags 112 for insertion of menu application parameters
114 into the respective menu entry fields 116. For example,
the application server 66 inserts the menu application
parameters 114a,, 1144a,, and 1144 into the respective menu
entry fields 116a,, 116a,, and 1164, and inserts the menu
application parameters 114c,, 114c,, and 114c; into the
respective menu entry fields 116¢,, 116¢,, and 116¢; gen-
erated by the HTML document.

[0044] The application server 66 also specifies an entry
field 118 that enables the browser user to specify the
filename 120 of the XML document (i.e., the designation
used by the application server 66 when referring to the
“current state”). In addition, the application server 66 speci-
fies an addition button 122 that enables users to add menu
options 112 to an XML document; hence, if the user enters
a new file name within the entry field 124 and presses the
addition button 122, the browser 56 posts to a prescribed
IRL to cause the application server to generate a new XML
document having a name specified in the field 124, and to
generate another HTML form having an additional menu
entry field 116 for the new prompt.

US 2006/0041841 Al

[0045] The application server also specifies within the
HTML form 102 prescribed URLs associated with com-
mand hyperlinks 126, such that posting the form 102 by the
browser 56 to a corresponding one of the URLs 126 results
in a corresponding operation performed by the application
server 66.

[0046] Hence, the HTML entry form 102 generated by the
application server 66 provides all the fields and command
functions necessary for a user to create or modify a new or
existing XML document, regardless of whether the XML
document is a menu-based XML document or a non-menu
XML document.

[0047] FIG. 5 is a diagram illustrating in detail the appli-
cation server 66 according to an embodiment of the present
invention. The application server 66 is implemented as a
server executing a conventional PHP hypertext processor
with XML parsing and processing capabilities. As shown in
FIG. 5, the server system 66 includes an XML parser 220
configured for parsing the application-defining XML docu-
ments (e.g., XML document 100) stored in the XML docu-
ment database 96, or the XML documents (i.e., “brownies™)
stored in the registry 83 and configured for specifying the
state and attributes for respective user sessions. The appli-
cation server 66 also includes a high speed interface 222 that
establishes a high-speed connection between the application
server 66 and the web server 64. For example, the PHP
hypertext processor includes a high-speed interface for
Apache Web servers.

[0048] The application server 66 also includes a runtime
environment 224 for execution of the parsed XML docu-
ments. As described above, the runtime environment 224
may selectively execute any one of user interface operation
225, a logic operation 226, or a procedure call 228 as
specified by the parsed XML document by executing a
corresponding set of executable functions based on the rule
set for the corresponding operation. In particular, the appli-
cation runtime environment 224 includes a tag implemen-
tation module 230 that implements the XML tags parsed by
the XML parser 220. The tag implementation module 230
performs relatively low-level operations, for example
dynamically generating an XML menu page using execut-
able functions specified by a menu rule set in response to
detecting a menu tag, performing a logical operation using
executable functions specified by a logic rule set in response
to a decision tag, or fetching an audio (.wav) file in response
to detecting a sound tag. Hence, the tag implementation
module 230 implements the tag operations that are specified
within the XML framework of the stored XML documents.

[0049] The application server 66 also includes a set of
libraries 99 that may be implemented as dynamically linked
libraries (DLLs) or application programming interface (API)
libraries. The libraries 99 enable the runtime environment
224 to implement the procedures 228 as specified by the
appropriate XML document.

[0050] The arrangement for executing a personalized
voice-enabled web application will now be described. As
described above with respect to FIGS. 2, 3 and 4, a user is
able to personalize his or her voice application by sending an
HTTP request to the application server 66, for example via
a CGI interface, for generation of an HTML document that
specifies the form 102 for modifying application parameters
of a prescribed XML document. The application server 66
responds to the HTTP request by accessing application
document database 72 for retrieval of the selected generic
XML document, and by generating the HTML document

Feb. 23, 2006

having the form 102 with the selected application param-
eters. Once the user modifies (i.e., personalizes) the appli-
cation parameters within the form 102 and posts the com-
pleted form 102 to a prescribed URL via the CGI interface,
the application server 66 generates a new user-specific XML
document that specifies the voice application operations as
personalized by the corresponding user, and stores the
user-specific XML document in a user-specific database.

[0051] FIG. 6 is a flow diagram illustrating the method of
executing a voice application according to an embodiment
of the present invention. The steps described in FIG. 6 can
be implemented as executable code stored on a computer
readable medium (e.g., a hard disk drive, a floppy drive, a
random access memory, a read only the memory, an
EPROM, a compact disc, etc.) where the steps to be
executed by the application server 66 and the browsers 56
and 62 are stored on computer readable media accessible by
the application server 66 and the browsers 56 and 62.

[0052] The method begins in step 300, wherein the user by
use of the browser 56, sends a request for an HTML form to
create a new XML document. The application server 66, in
response to receiving the request, outputs in step 310 an
HTML form to the browser 56. The user inputs a customer
support call number and optionally, the user’s call number
on the form in step 320. The user’s call number may
otherwise be stored in a brownie. Optionally, in step 330, the
user inputs digits corresponding to menu options and/or
account numbers which the user knows will be required
prior to speaking with the customer support representative.
The proper wait stages may also be entered to ensure the
data is processed properly. For example, the user may enter
his or her Social Security Number as 123456789 and then
press 2 to wait two seconds, and then enter his or her account
no. as 34567. The form 102 may also have a record function
so that the user can record a message to be played as an
audio (.wav) file, for example, “Your important customer,
Mary Smith would like to speak with you. To connect, press
17. Alternatively, a pre-recorded message can be created
using the editor tool 94.

[0053] The completed form 102 is sent to the application
server 66 using an HTTP post (e.g., an HTTP put to a
prescribed URL) in step 340. The application server 66 in
step 350 parses the HTML form and inserts input application
parameters as XML tags into an XML document and stores
the XML document in the database 96.

[0054] In step 360, the user employs the browser to send
a second HTTP request for the voice application operation
specified by the stored XML. In step 370, the application
server generates an HTML page with XML tags and outputs
the HTML page to the proxy browser 62. The HTML page
contains tags for dialing the second party and, if necessary,
for dialing the digits in response to the prompt sequence. In
step 380, the proxy browser 62 parses the HTML page and
XML tags for application parameters, and executes the
operations specified by the XML tags. In particular, the
proxy browser 62 sends a command to the associated
telephony device (e.g., PBX or voice over IP gateway) to
connect with the customer support line via the PSTN 10 in
step 390. In response to any prompt sequence, the digits
provided step 400 are dialed. In step 410, the proxy browser
62 plays the pre-recorded or personalized message such as
“Your important customer would like to speak with you. To
connect, press 1”. An input waiting period is provided in step
420.

[0055] Step 430 determines if an input is made and if an
input is detected, in step 440, the proxy browser send a

US 2006/0041841 Al

response to the application server which generates a second
HTML document having instructions for connecting the
second party with the user. Hence, based on the second
HTML document, the proxy browser 62 sends a command
to the telephony device to connect with the user and the call
is bridged by using the brownies as disclosed in the above-
incorporated application Ser. No. 09/538,899. If no input is
detected, the messages is played repeatedly. A time-out
period may be set to terminate the session if no input is
received, for example, in 30 minutes. Thus, in the disclosed
embodiment, a customer may speak with a customer support
representative without ever having to remain on hold. As
disclosed, the customer support line is contacted and the line
is maintained until a customer support representative indi-
cates that he or she is willing to talk to the customer and if
so, the customer is called, and the call is bridged.

[0056] While this invention has been described in connec-
tion with what is presently considered to be the most
practical and preferred embodiment, it is to be understood
that the invention is not limited to the disclosed embodi-
ments, but, on the contrary, is intended to cover various
modifications and equivalent arrangements included within
the spirit and scope of the appended claims.

1. A method in an application server configured for
responding to hypertext transport protocol (HTTP) requests,
the method comprising:

in response to a first HTP request, storing an XML
document that specifies a call number of a second party
for a user,

retrieving the stored XML document based on a second
HTTP request by the user;

based on the retrieved XML document, generating a first
hypertext markup language (HTML) document having
instructions including the call number for accessing the
second party, and

based on a prescribed input received from the second
party selectively generating a second HTML document
having instructions for connecting the second party
with the user.

2. The method according to claim 1, wherein the stored
XML document includes a call number of the user and a
prompt sequence for accessing the second party, the first
HTML document including the prompt sequence and the
second HTML document including the call number of the
user.

3. (canceled)

4. (canceled)

5. The method according to claim 1, wherein the instruc-
tions of the first HTML document include recording a voice
message indicating to the second party that the user wants to
speak with the second party.

6. A method in an application server for executing a voice
application, the method comprising:

receiving an HTTP request requesting a voice application
from a user, the voice application being specified in an
XML document including information for connecting
with a call number of the user and with a call number
of a second party,

Feb. 23, 2006

based on the XML document, generating a first hypertext
markup language (HTML) document having instruc-
tions including the call number for accessing the sec-
ond party, and

based on a prescribed input received from the second
party selectively generating a second HTML document
having instructions for connecting the second party
with the user.

7. The method according to claim 6, wherein the XML
document includes a prompt sequence for accessing the
second party, the first HTML document including the
prompt sequence.

8. (canceled)

9. (canceled)

10. The method according to claim 6, wherein the instruc-
tions of the first HTML document include recording a voice
message indicating to the second party that the user wants to
speak with the second party.

11. An application server configured for developing an
executable voice application, the application server includ-
ing:

an application runtime environment configured for gen-
erating a first hypertext markup language (HTML)
document based on an XML document, the first HTML
document having instructions including a call number
for accessing a second party, and the application runt-
ime environment generating a second HTML document
based on a prescribed input received from the second
party, the second HTML document having instructions
for connecting the second party with a user, and

a storage medium configured for storing the XML docu-

ment.

12. The application server according to claim 11, wherein
the application runtime environment inserts an application
parameter into an XML page prior to generating the HTML
document.

13. The application server according to claim 11, wherein
the application runtime environment sends the first HIML
document specifying a blank form for creation of the XML
document in response to an initial HTTP request specifying
creation of the XML document.

14. (canceled)

15. (canceled)

16. An application server for executing a voice applica-
tion, the application server comprising:

in response to a first HT'TP request means for storing an
XML document that specifies a call number of a second
party for a user,

based on the XML document, means for generating a first
hypertext markup language (HTML) document having
instructions including the call number for accessing the
second party, and

based on a prescribed input received from the second
party, means for selectively generating a second HTIML
document having instructions for connecting the sec-
ond party with the user.

#* #* #* #* #*

