Title: AN APPARATUS AND METHOD FOR MONITORING A VASCULAR ACCESS OF A PATIENT

Abstract: In the apparatus and method for monitoring a vascular access (6) of an extracorporeal circuit (5; 10) of a patient, a control and calculation unit (17) varies a flow rate of a blood pump (9) predisposed to cause blood to circulate in the extracorporeal circuit. The control and calculation unit receives the pressure values in the blood withdrawal line (5) and the blood return line (10) from two pressure sensors (8, 12); the pressure values are a series of different values of the blood flow rate. The control and calculation unit processes the data gathered by means of a mathematical model which describes the variation of pressure in the vascular access as a function of the flow rate, in order to determine the blood flow rate in the vascular access. The invention detects the presence and location of a stenosis at the vascular access of a patient subjected to a hemodialysis treatment.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
Title: “An Apparatus and method for monitoring a vascular access of a patient”

DESCRIPTION

Background of the Invention.

The invention relates to a system for monitoring vascular access in a patient undergoing extracorporeal blood treatment.

Specifically, though not exclusively, the invention can be usefully applied in the field of extracorporeal treatment for kidney failure.

Setting up an extracorporeal blood treatment, such as for example hemodialysis therapy, requires blood circulation in an extracorporeal circuit connected to the cardiovascular circuit of the patient through a vascular access.

The blood, taken from the patient and sent through an extracorporeal circuit, is subjected to a treatment, generally passing through a treatment unit (for example a dialyzer filter) and thereafter returned to the patient. The vascular access is where the blood is removed from the cardio-vascular system of the patient and returned to the system.

One of the vascular accesses most commonly used in hemodialysis therapy is the Cimino-Brescia artero-venous fistula access. Other vascular access types are known, however. For reasons of simplicity the present description will make reference to the artero-venous fistula as an example of vascular access, without excluding other types of vascular access from the claimed field of protection.

In an extracorporeal treatment the blood is usually taken from the vascular access by an arterial needle fluidly connected to the extracorporeal circuit. After having passed through the treatment unit, the blood is sent back to the vascular access.

CONFIRMATION COPY
through a venous needle. Generally blood circulation in the extracorporeal circuit is performed by a positive displacement pump, generally peristaltic.

One of the problems of extracorporeal blood treatment is monitoring the efficiency of the vascular access.

A parameter indicative of this efficiency is the blood flow rate which the vascular access can supply. This flow rate is usually greater than the blood flow rate through the extracorporeal circuit. For example, in normal conditions the blood flow rate at the vascular access is about 800–1200 ml/minute, while the blood flow rate in the extracorporeal circuit varies between 100 and 700 ml/minute.

The flow rate at the vascular access can diminish due to a vascular pathology, such as, for example, a stenosis, i.e., a narrowing of the blood passage section, or for example due to a drop in cardiac output. The presence and location of a stenosis at the vascular access should be determined as soon as possible in order to prevent the stenosis degenerating into a thrombosis (occlusion of the blood vessels).

A reduced-efficiency vascular access can lead to the undesirable phenomenon of recirculation of blood during treatment. Recirculation consists in the presence during treatment of blood flow proceeding in an opposite to the desired direction, i.e. from the return zone of the treated blood (venous needle) to the supply zone of the blood to be treated (arterial needle). Flow recirculation therefore consists in return (in the extracorporeal circuit) of blood which has already been subjected to treatment, with a consequent diminution in treatment efficiency.

Various systems have been proposed for monitoring vascular access and, more generally, the cardiovascular system of a patient subjected to extracorporeal blood treatment.
EP 1 044 695 A2 teaches a method for determining the blood flow rate in a vascular access during hemodialysis treatment. The method varies the blood flow rate of the extracorporeal circuit and measures the arterial and venous pressures in the extracorporeal circuit during the above-cited flow rate variations. The operations are carried out in two different conditions: first with the vascular access open, in which a part of the blood flow passes through the vascular access between the withdrawal needle and the return needle, and then when the vascular access is closed, in which the vascular access flow between withdrawal needle and return needle is zero. According to the method of EP 1 044 695 A2, vascular access blood flow rate, with the vascular access open, is judged to be equal to the blood pump flow rate at which the difference of arterial pressure (or venous pressure) in the two different situations is zero.

This method has the drawback that it is necessary to intervene mechanically on the fistula to interrupt blood flow.

WO 00/18451 teaches a method for determining the flow in a fistula of a patient using an extracorporeal blood flow circuit, such as for example a hemodialysis circuit, in which the blood flows from a withdrawal point in the fistula to a return point in the fistula. The method varies the blood flow rate in the extracorporeal circuit and takes a reading of a signal which can be correlated with the fistula flow rate downstream of the withdrawal point. The blood flow rate upstream of the withdrawal point is evaluated at equal the blood flow rate obtaining in the extracorporeal circuit when the fistula blood flow rate downstream, read with the above-described signal, is zero. WO 00/18451 includes an embodiment in which the signal which can be correlated to the fistula blood flow downstream of the withdrawal point is generated by an ultrasonic sensor which operates directly on the patient’s vascular access.
The use of a sensor to directly measure the blood flow rate in the fistula tract comprised between the withdrawal needle and the return needle leads to a certain constructional complication, as well as some discomfort for the patient.

EP 1 020 199 A2 teaches a method for detecting the presence of a stenosis in a vascular access during extracorporeal blood treatment. The method includes the use of at least one pressure sensor predisposed in the extracorporeal circuit along the arterial line upstream of the blood pump. A stenosis can be calculated from the entity of the pressure pulse measured by the pressure sensor.

A pressure sensor can be placed on the arterial line too downstream of the blood pump and upstream of a dialyzer, and a further pressure sensor can be placed on the venous line downstream of the dialyzer. The method also includes a reading of the pressure pulse frequency and use of that frequency as a signal entity correction factor. The pressure pulse frequency signal can be corrected by means of a function depending on the blood pump flow rate.

The data deductible from the method described in EP 1 020 199 A2 is however limited: in particular, the method provides only a general indication of the hemodynamic state of the fistula, signalling the presence of a stenosis, but it cannot gather more detailed data, such as for example the vascular access blood flow rate or the location of any stenoses found.

US 5,830,365 teaches a method for determining some hemodynamic parameters, among which the blood flow rate in a fistula during an extracorporeal blood treatment. The method involves the alteration of at least one chemical-physical characteristic of the blood in the venous line of the extracorporeal circuit, and recording the change which occurs in the arterial line following this alteration. The alteration can be a change in the
concentration of an indicator, or a change in the temperature or pressure. In a specific embodiment use is made of a hemodialysis machine provided with a dialyzer where a dialysis solution containing an indicator flows and the concentration change of the indicator in the venous and arterial lines of the extracorporeal circuit connected to the dialyzer is registered. In the venous line the concentration of the indicator increases by effect of back-filtration through the dialyzer. In the arterial line the concentration of the indicator increases by effect of recirculation in the fistula. The change of concentration in the arterial and venous lines is read by ultrasonic sensors. Alteration (in this case the change in concentration) is performed in two stages: first when the blood flows in the normal direction through the extracorporeal circuit, then when the blood flows in the opposite direction. The method includes the use of a device for inverting the blood flow direction in the extracorporeal circuit. According to the method taught in US 5,830,365 the change in concentration measured in the first stage enables calculation of recirculation at normal flow rate, while the change in concentration measured in the second stage enables calculation of recirculation when the flow is inverted. The two calculated values thus enable a calculation of various hemodynamic parameters among which the blood flow rate in the fistula.

However the alteration of the chemical-physical properties of the blood and the inversion of the flow during the course of extracorporeal treatment lead to various drawbacks: a constructional complication, a delay in carrying out the treatment, an invasive intervention on the blood, quite removed from the course of normal treatment.

WO 02/04044 teaches a method for identifying problems in arterial flow during an extracorporeal blood treatment in which the blood is transferred, by means of a positive displacement pump, from the vascular access of a patient to a blood treatment
device through an arterial line and then sent by the treatment device to the vascular access through a venous line of the extracorporeal circuit. The method consists in measuring the amplitude of the periodic variations in pressure in the venous line induced by the rotation of the blood pump, by comparing the variations with a threshold value and generating a control signal if the threshold value is exceeded. WO 02/04044 further describes another method according to which, during a dialysis treatment, the amplitude of the periodical variations of the pressure of the dialysis fluid (and not the venous line) is measured. The result is compared with a threshold value and if the threshold value is exceeded a control signal is generated.

The methods described in WO 02/04044 are not however able to provide data relating to the blood flow rate at the vascular access.

US 6,221,040 discloses a system for monitoring a vascular access during a dialysis treatment in which the pressures in both the arterial and venous branches of the extracorporeal blood system are monitored by pressure sensors. A computer unit generates first and second characteristic values for the integrity of the vascular access from measured arterial and venous pressures. An analyser unit analyses the integrity of the vascular access by comparing the first and second characteristic values to first and second ranges of predetermined values. Calculating a sum of the venous and arterial pressure generates the first characteristic value, and calculating a difference between the venous and the arterial pressure generates the second characteristic value.

The object of US 6,221,040 is to provide a monitoring system that allows detection of the venous cannula slipping out of the vascular access as well as detection of a blood leak in the venous branch of the extracorporeal circuit. It is not directed to determination of fistula flow.
US 5,866,015 and EP 0 773 035 disclose a method for determining hemodynamic parameters during an extracorporeal hemotherapy, including the steps of measuring the blood temperature in the arterial branch of the extracorporeal circuit, varying the blood flow in the extracorporeal circuit, storing the values of the extracorporeal blood flow and the measured values of the blood temperature, and determining a value of the blood flow from the stored sequence of value pairs of blood temperature and of extracorporeal blood flow, at which value, after it is exceeded, the amount of the change in the blood temperature within a specific blood flow interval is greater than a predetermined limiting value. The fistula flow is inferred from the determined blood flow value.

The method is based on the fact that the measuring curve existing in discrete measured values is able to be represented by two subfunctions, the first subfunction indicating the blood temperature as a function of the extracorporeal blood flow for blood flow values smaller than the fistula flow or equal to the fistula flow, and the second subfunction indicating the blood temperature as a function of the blood flow for blood flow values greater than or equal to the fistula flow. The intersection of the two subfunctions indicates the point where the extracorporeal blood flow equals fistula flow. Thus, from the "break point" of the characteristic function curve, i.e., from the discontinuity in the rise of the curve, the point is able to be defined where fistula recirculation begins, i.e., where blood flow equals fistula flow.

In addition to measuring temperature, the concentration of a blood constituent (hematocrit) can also be measured, as can the density, speed of sonic propagation, optical density, and conductivity or viscosity.

The blood characteristic to be measured must have a different value in the venous branch of the extracorporeal circuit than it
does in the blood flowing to fistula. It is assumed that the blood characteristic, preferably the temperature, is kept constant in the venous branch of the extracorporeal circuit while the measured values are recorded. If this characteristic is not constant, a regulating device to keep the characteristic in the venous branch constant must be provided. In the case of a temperature measurement, for example, this can be realized as a temperature controller.

Another drawback of this method is that the delivery rate of blood pump, which predetermines the extracorporeal blood flow, is increased starting from a lower value to an upper limiting value which must be greater than the fistula flow to be expected. Fistula flows can only be determined within the adjustable blood flow range. Therefore the fistula flow is not determinable if it is equal to or greater than the upper limiting value of the adjustable blood flow range.

The prior art comprises the scientific publication entitled: "On-line dynamic measurement of fistula pressure during hemodialysis for detection of access stenosis and bad needle placement", Abstract from the 24th EDTNA-ERCA Conference, Prague, 5-8 July 1997, page 23, authors Polaschegg, Techert and Wizemann.

According to this publication it is possible to calculate the pressure of a vascular access by measuring the pressure in an extracorporeal blood circuit connected to the vascular access, with the aim of detecting any stenoses in the access itself.

In a scientific publication entitled "Dynamic pressure measurement for detection of blood access stenosis", published in the EDTNA-ERCA Journal, 1998, XXIV, 4, on pages 39-44, authors Polaschegg, Techert and Wizemann, more detail is given on monitoring problems in a patient’s vascular access. The method is based on the determination of the venous and arterial
pressures (upstream of the blood pump) in an extracorporeal blood circuit connected to the vascular access to be monitored. The method comprises a preliminary stage in which, through in vitro tests in which the extracorporeal circuit is not connected to a real vascular access, fluid resistances in the arterial and venous lines of the extracorporeal circuit are calculated. During a second stage the extracorporeal circuit is connected to the real vascular access of the patient in order to initiate an extracorporeal treatment. During the extracorporeal treatment the venous and arterial pressures are calculated in the extracorporeal circuit. As the venous and arterial pressures in the extracorporeal circuit are known, as are the fluid resistances in the arterial and venous lines of the extracorporeal circuit, the pressures in the vascular access can be calculated. The dynamic measurement at different flow rates and the comparison with static measures enables stenoses at the vascular access to be identified.

The scientific publication entitled "Pressure drops in cannulas for hemodialysis", author H.D. Polaschegg, published in The International Journal of Artificial Organs, Vol. 24, No. 9, 2001, pp. 614-623, relates to a method for determining a fall in pressure in an arterial or venous line in hemodialysis, with which the vascular access pressures can be determined starting from the pressures measured in the extracorporeal circuit of the hemodialysis machine.

The scientific publication entitled "Extracorporeal pressure monitoring and the detection of vascular access stenosis", authors Kleinekoft, Kraemer, Rode and Wizemann, published in The International Journal of Artificial Organs, Vol. 25, No. 1, 2002, pp. 45-50, presents a method for identifying the presence of stenoses in a vascular access, even where the stenosis is located between the withdrawal needle and the return needle. The method comprises measuring the static pressures in the arterial and venous lines of an extracorporeal circuit and in calculating
the pressures at the vascular access at the withdrawal point and the return point. These pressures, which correspond to the pressures which would be measured by two pressure sensors directly connected to the withdrawal and return needles, are used in order to identify the presence of a stenosis. A knowledge of the pressures both at the point of withdrawal and at the point of return of the vascular access provides more accurate indications and enables a first approximate localization of the stenosis, especially enabling to detect if the stenosis is in venous tract or is located between the needles.

The method described here is not however able to determine the blood flow rate in the vascular access.

The publication entitled "Utility of intra-access pressure monitoring in detecting and correcting venous outlet stenoses prior to thrombosis", in Kidney International, Vol. 47 (1995), pages 1364-1373, authors Besarab, Sullivan, Ross, Moritz, teaches a method for deriving the pressure internally of the vascular access (intra-access pressure) from the pressure measured in the hemodialysis machine, as a function of the type of needle used, the blood flow rate of the hemodialysis machine, and the hematocrit of the blood. Other methods for determining the pressure at the vascular access are cited or described in the following publications:

- "Dynamic venous access pressure ratio test for hemodialysis access monitoring", in American Journal of Kidney Disease, Vol. 40, No 4 (October), pages 760-768, 2002, authors Frinak, Zasuwa, Dunfee, Besarab, Yee.

An abstract entitled "A novel model-based method for monitoring the hemodialysis vascular access", published in the Journal of the American Society of Nephrology, 2001, Vol. 12, N. A1513, pages 294A-295A, authors Lodi, Monari, Fava, Paolini, Grandi, Galato, Cavalcanti, cites a mathematical model based on the hemodynamic description of the vascular access which enables the arterial and venous pressures at the vascular access to be calculated and also the flow in vascular access starting from extracorporeal arterial and venous pressures. The model, which includes three parameters (resistance to flow of the anastomosis, resistance between arterial and venous access, the resistance which expresses the efficiency of venous circulation drainage), was used to analyse the data gathered during a normal hemodialysis therapy operation. The abstract states that the extracorporeal venous and arterial pressures were measured after having set four different flow rates on the blood pump and that the above-cited parameters included in the mathematical model were calculated using the mathematical model.

Summary of the Invention.

The present invention provides a system for controlling vascular access adequacy during an extracorporeal blood treatment.

An aim of the invention is to enable calculation of some hemodynamic parameters at the vascular access. Knowledge of these parameters enables both regulation of the blood pump flow
rate operation in the extracorporeal circuit and intervention in case of detection of a pathological situation in the vascular access.

A further aim of the invention is to enable evaluation of the blood flow circulating in the vascular access of a patient during an extracorporeal blood treatment.

A further aim of the invention is to make available a system for evaluating vascular hydraulic resistance in various tracts of the patient’s vascular system. In particular, an aim of the invention is to evaluate vascular resistance upstream of the blood withdrawal zone from the vascular access, downstream of the blood return zone, and in the tract of vascular access comprised between the withdrawal zone and the return zone.

An advantage of the invention is that it provides indicative values of the efficiency of the vascular access simply, automatically, using devices (such as for example pressure transducers, blood pump, drainage pump) which are normally already present in machines for extracorporeal blood treatment. A further advantage is that the invention enables monitoring of the vascular access at any time during the extracorporeal blood treatment.

A further advantage of the invention is that the monitoring procedure does not cause extra stress to the patient. The procedure can be carried out by means of variations in the blood pump or the drainage pump flow rates, or both, within flow rate intervals which are normally compatible with the extracorporeal treatment the patient undergoes. The intervals can be those normally used during the course of therapy.

These aims and others besides are all attained by the invention as it is characterised in one or more of the appended claims.

In a special function of the invention, a mathematical model is
used which contains at least two parameters in which a first parameter relates to the hemodynamics of the vascular access, and a second parameter relates to the blood flow rate in the extracorporeal circuit.

5 The mathematical model comprises a third parameter relating to at least one blood characteristic: this characteristic can be any physical, chemical or physical-chemical property thereof which characterises the blood in a vessel and which can be related to the blood flow rate in that vessel. A peculiarity of the invention is that the mathematical model used describes the relationship between the selected blood property (physical, chemical or physical-chemical) and the blood flow rate in the vessel. In particular the mathematical model describes the relationship in the vascular access. For example, the mathematical model can describe the fluid-dynamic situation of the vascular access; the model can describe a relationship between the difference of pressure at two points of the vascular access and the flow rate crossing the points. Apart from the pressure it is also possible to select other properties (physical, chemical or physical-chemical) of the blood which are influenced by the flow rate, such as, for example: the difference in induced potential, speed of sound, optical characteristics, temperature, concentration of an indicator, and so on.

20 According to the invention, the monitoring of the vascular access is performed by varying the flow rate of at least one fluid (for example blood or the product of ultrafiltration), which runs either in the extracorporeal circuit or in at least one hydraulic line (for example an ultrafiltration line) connected to the extracorporeal circuit.

The monitoring can be carried out by varying both the above-cited flows.
The monitoring determines the values of at least one characteristic of the blood, in at least one zone of the blood circulation path, and at least two different values of the flow rate of the fluid.

As mentioned above, the cited characteristic of the blood can be a physical, chemical or chemical-physical one. In an embodiment of the invention, among the various characteristics of the blood that depend on blood flow, the selected characteristic to be used is the pressure.

The monitoring procedure involves calculating one or more of the hemodynamic parameters of the vascular access contained in the mathematical model, using the values of the blood characteristic determined previously during the course of the procedure.

In an embodiment of the invention, a multiplicity of values of the blood characteristic is determined; then the said hemodynamic parameters are calculated, by means of the mathematical model, using approximation algorithms (of known type). The algorithms can be chosen, for example, from those which enable determination of the value of the hemodynamic parameter, by virtue of which the blood characteristic values calculated using the mathematical model, at different flow rate values, are those which are closest to the blood characteristic values which were previously determined during the course of the procedure, at the same flow rate values.

In an embodiment of the invention, the mathematical model used is descriptive of the pressure variation at the vascular access: it comprises at least one hemodynamic parameter relative to at least one characteristic of the vascular access; at least one parameter relative to the blood characteristic; and at least one parameter relative to the blood flow rate in the extracorporeal circuit.

The hemodynamic parameter can be relative to at least one of the
following characteristics of the vascular access: the blood flow rate upstream of a withdrawal zone of the blood from the access, the blood flow rate between the withdrawal zone and a blood return zone at the access, the blood flow rate downstream of the blood return zone, the vascular hydraulic resistance upstream of the blood withdrawal zone from the access, the vascular hydraulic resistance between the blood withdrawal zone and the blood return zone, and the vascular hydraulic resistance downstream of the blood return zone.

In a further embodiment of the invention, the monitoring procedure includes determining the values assumed by the blood characteristic in at least two zones of the blood circulation path (where the blood circulation path comprises both the intracorporeal circuit and the extracorporeal circuit) and at least two different flow rate values of one fluid (blood or the product of ultrafiltration).

In a further embodiment of the invention, the monitoring procedure includes determining the values assumed by the blood characteristic in at least one zone of the blood circulation path and at least two different flow rate values of two fluids (blood and the product of ultrafiltration).

In a further embodiment of the invention, the monitoring comprises a measuring stage of a blood characteristic, in a zone of the extracorporeal circuit arranged downstream of the blood withdrawal zone, or in a zone arranged upstream of the blood return zone, or in both above zones. The monitoring includes determining the blood characteristic in the vascular access, in the withdrawal zone, or in the return zone, or in both zones, by means of one or more mathematical models describing the variation of the said blood characteristic between the zones of withdrawal and return in the vascular access and the measuring zones in the extracorporeal circuit. The mathematical models can be, in particular, models descriptive of the variation of the
said blood characteristic in the passage through the arterial or venous needles. In an embodiment of the invention, these mathematical models comprise at least one parameter which is relative to the blood flow, or at least one parameter relative to the hematocrit of the blood, or both said parameters. In particular the mathematical models can be represented by one or more interpolating formulas of experimental data; the formulas can be, for example, second-order polynomials with one or more parameters chosen between the flow rate and the hematocrit of the blood.

In a special operation of the invention, at regular time intervals the monitoring procedure determines the values assumed by the blood characteristic in at least one zone of the blood circulation path during the flow rate change, evaluates the variation of the blood characteristic, selects the values assumed by the blood characteristic when the variation has exceeded a threshold limit value, and uses the selected values to calculate the value of the blood characteristic at the vascular access.

In a further special operation of the invention, at regular time intervals the monitoring procedure determines the values of the blood characteristic in two different zones of the blood circulation path during flow rate change, compares the variation of the blood characteristic detected in a first zone of the blood circulation path and the variation of the characteristic detected in a second zone thereof, selects the values of the blood characteristic when the difference between the variations has exceeded a threshold limit value, and uses the selected values in calculating the value of the blood characteristic at the vascular access.

In another characteristic of the invention, in calculating the value of the characteristic of the vascular access, the monitoring procedure considers the values of the blood
characteristic in a stationary blood flow situation, i.e. after having kept the flow rate constant for a determined period of time.

The monitoring procedure is applied by means of a machine for blood treatment in an extracorporeal circuit, in particular for a machine for treatment of kidney failure, predisposed to perform one or more of the following therapies: hemodialysis, hemodiafiltration, pure ultrafiltration, plasmapheresis.

The machine is provided with a timer for carrying out the monitoring procedure at least once during the extracorporeal treatment.

The monitoring procedure can be initiated on command of an operator, or automatically at a predetermined moment during the treatment.

The extracorporeal circuit can be included in the complex of fluid distribution lines, of the disposable type, normally removably associated and used in a machine for treatment of renal failure.

The machine is normally equipped with pressure transducers operating in the blood withdrawal line, before the blood pump, and in the blood return line, after the blood treatment unit.

Further characteristics and advantages of the present invention will better emerge from the detailed description that follows, of a specific embodiment of the invention, illustrated purely in the form of a non-limiting example in the figures of the drawings.

Brief Description of the Drawings.

The description will be made herein below with reference to the appended figures of the drawings, here given by way of non-
limiting illustration, in which:

- figure 1 is a diagram of a machine for an extracorporeal blood treatment provided with a monitoring device of the vascular access according to the invention;

- figure 2 is a diagram of blood flow in a patient connected up to the machine of figure 1;

- figure 3 is an electrical diagram which describes by analogy the circulation of extracorporeal and intracorporeal blood of the patient subjected to the extracorporeal treatment with the machine of figure 1;

- figure 4 shows a diagram of the relation between ΔP_x and q_x, where $\Delta P_x = P_{vr} - P_{vf}$ (difference between arterial pressure in the vascular access P_{vr} and venous pressure in the vascular access P_{vf}) and q_x is the extracorporeal flow rate of the blood;

- figure 5 is a diagram of the relation between $(P_{vf} - P_v)$ e q_{uf}, where $(P_{vf} - P_v)$ is the difference between the venous pressure in the vascular access P_{vf} and the systemic venous pressure P_v, and q_{uf} is the ultrafiltration flow rate.

Detailed Description.

The machine illustrated in figure 1 is a machine for hemodiafiltration comprising a unit for an extracorporeal blood treatment (a filter for hemodiafiltration 1) having two chambers 2, 3 separated by a semipermeable membrane 4. A first chamber 2 has an inlet which is connected to an arterial line 5 (blood withdrawal line from the patient) of an extracorporeal blood circuit. The arterial line 5 is connectable with a vascular access 6 of a patient by means of an access tool constituted in the example by an arterial needle N_A. The arterial line 5 is provided with a pressure sensor 8 and a positive displacement...
pump 9 for blood circulation along the extracorporeal circuit in the direction of the arrow 7.

The first chamber 2 has an outlet connected to a venous line 10 (blood return line to the patient) of the extracorporeal blood circuit. The venous line 10 is connectable to the vascular access 6 of the patient by means of an access tool constituted in the illustrated embodiment by a venous needle \(N_v \). The venous line 10 is provided with a pressure sensor 12.

The second chamber 3 of the filter 1 has an inlet connected to a supply line 14 of a fresh treatment fluid (dialysis liquid) and an outlet connected to a discharge line 15 of a discharge fluid (the dialysis liquid and the ultrafiltered liquid). The supply line 14 is provided with a supply pump 13 of the fresh treatment fluid. The discharge line 15 is provided with a drainage pump 16 for the circulation of the discharge fluid in the direction of the arrow 11.

The dialysis machine further comprises a control and calculation unit 17 connected to a screen and also to a keyboard through which the user communicates to the control and calculation unit the setting values for machine operation. One of the setting values which the control and calculation unit 17 receives from the user is the blood flow rate \(q_b \) in the arterial blood withdrawal line 5. The control and calculation unit 17 can control the speed of the blood pump 9 in order to have the predetermined value of flow rate \(q_b \). The control and calculation unit 17 can be connected to at least one measuring device, able to provide information relating to the effective blood flow rate in the arterial line. The measuring device can comprise, for example, a flowmeter, or an encoder connected to the rotor of a blood pump. The control and calculation unit 17 is further connected to the pressure sensors 8 and 12 and receives therefrom the signals indicating the detected pressure.
The control and calculation unit 17 controls the operation of the various motor devices of the machine, in particular the blood pump 9 and drainage pump 16, according to the instructions received from the user and the programmed algorithms contained in its memory.

The machine can further comprise sensors (of known type and not illustrated) for detecting the blood viscosity upstream and downstream of the treatment unit 1. The sensors can comprise, for example, measuring devices for the blood hematocrit level.

The control and calculation unit is programmed to carry out, automatically or by request of the user, a series of operations which enable the vascular access to be monitored.

Figure 2 shows the patient’s blood circulation subjected to extracorporeal treatment with the machine of figure 1. The vascular access 6, through which the extracorporeal blood circuit is connected to the cardio-vascular circuit of the patient is, in the embodiment, a fistula of the Cimino-Brescia type. In figure 2 H indicates the patient’s heart, P denotes the pulmonary circuit, V denotes the vascular system (or systemic circuit, or intravascular circuit or intracorporeal circuit). The arterial line 5 and the venous line 10 are connected at one end to the vascular access 6 and at the other end to the dialysis filter 1.

Figure 3 shows an electrical diagram which, by analogy, describes the blood circulation of the patient subjected to the extracorporeal blood treatment.

The legend to figure 3 is as follows.

Quantities controlled by the control unit 17:

\[q_b \] blood pump flow rate [ml/min]

\[q_{df} \] ultrafiltration flow rate [ml/min]
Known quantities (measurable directly or indirectly or determinable from indirect measurements using a mathematical model):

\[P_{en} \text{ extracorporeal arterial pressure [mmHg]} \]

\[P_{vn} \text{ extracorporeal venous pressure [mmHg]} \]

\[E_{art} \text{ hydrostatic pressure related to the height level difference between the pressure sensor 8 in the arterial line of the extracorporeal circuit and the arterial needle } N_a \text{ [mmHg]} \]

\[E_{ven} \text{ hydrostatic pressure related to the height level difference between the pressure sensor 12 in the venous line of the extracorporeal circuit and the venous needle } N_v \text{ [mmHg]} \]

\[R_{en} \text{ hydraulic resistance of the extracorporeal arterial line [mmHg \cdot \text{min/ml}]} \]

\[R_{vn} \text{ hydraulic resistance of the extracorporeal venous line [mmHg \cdot \text{min/ml}]} \]

\[P_{af} \text{ vascular access arterial pressure [mmHg]} \]

\[P_{vf} \text{ vascular access venous pressure [mmHg]} \]

\[P_a \text{ mean systemic arterial pressure (MAP) [mmHg]} \]

\[P_v \text{ venous pressure (venous return pressure) [mmHg]} \]

Unknown quantities to be determined:

\[q_a \text{ blood flow rate at the vascular access, upstream of the arterial access [ml/min]} \]

\[q_f \text{ blood flow rate of artero-venous anastomosis in the vascular access tract comprised between the arterial access and the venous access, } (q_f = q_a - q_b) \text{ [ml/min]} \]

\[q_v \text{ blood flow rate downstream of the venous access, } (q_v = q_a -} \]
\(q_{uv} \) [ml/min]

\(R_d \) hydraulic resistance upstream of the vascular access [mmHg·min/ml]

\(R_f \) hydraulic resistance between the arterial access and the venous access [mmHg·min/ml]

\(R_v \) hydraulic resistance downstream of the vascular access [mmHg·min/ml]

In the diagram of figure 3 the extracorporeal blood circuit is traced in bold line, while the intracorporeal circulation in the vascular access is drawn in thin line.

The nodes where the extracorporeal circuit meets with the vascular access are the zones where pressures \(P_{af} \) e \(P_{vf} \) are determined (either directly measured or calculated).

Various methods are known, based on mathematical models, for calculating pressures \(P_{af} \) e \(P_{vf} \) from known pressures \(P_{as} \) e \(P_{vm} \) in the extracorporeal circuit. Some of these methods are described in the scientific publications cited in the present description. Herein below details will be given of a method founded on a new mathematical model based on the electrical diagram represented in figure 3.

In the following a mathematical model is shown, also based on the electrical diagram of figure 3, representative of the hemodynamics of the vascular access of an extracorporeal blood circuit in which the blood is removed from the patient through an arterial needle, is made to circulate through the extracorporeal circuit and is returned through a venous needle.

The mathematical model describes the variation of pressure in the vascular access as a function of the blood flow rate.

The mathematical model is expressed in the following three
equations which can be derived from the electrical diagram represented in figure 3.

\[q_a = \frac{P_a - P_{af}}{R_d} \]

\[P_{af} - P_v = R_f \cdot (q_a - q_b) \]

\[P_{af} - P_v = R_v \cdot (q_a - q_{af}) \]

where, as mentioned herein above, the symbols have the following meanings:

\(q_a \) = blood flow rate at the vascular access 6 (fistula), upstream of the withdrawal point of the arterial needle \(N_a \)

\(q_b \) = blood flow rate in the arterial line 5 of the extracorporeal circuit

\(P_a \) = mean systemic arterial pressure measured at patient’s arm

\(P_{af} \) = arterial pressure in the vascular access 6, i.e. the pressure in the vascular access (in the embodiment, with a Cimino-Brescia fistula, this is a tract of arterialized vein) at the point of withdrawal of the arterial needle \(N_a \)

\(R_d \) = resistance of the tract of arterialised vein comprised between the anastomosis and the point of withdrawal of the arterial needle \(N_a \)

\(P_v \) = venous pressure in the vascular access 6, i.e. the pressure in the fistula at the return point of the venous needle \(N_v \)

\(R_f \) = vascular resistance of the tract of fistula comprised between the two needles \(N_a \) and \(N_v \) and representing the resistance between the two points at which \(P_{af} \) and \(P_v \) are determined
P_v = venous pressure of the blood in the distal venous branch; the P_v value can be unknown during the extracorporeal treatment; in this case it can be placed at a constant physiological value (e.g. P_v = 0)

R_v = vascular resistance in the venous branch of the blood return zone at the zone where venous pressure P_v is evaluated; where P_v = 0, the resistance R_v represents total venous resistance, i.e. the vascular resistance met by the blood in returning from the venous needle N_v to the heart H, which constitutes an indicative value of the drainage efficiency of the venous circulation

q_uf = ultrafiltration flow rate (in case of hemodiafiltration, q_uf is the difference between the discharge fluid flow rate in the discharge line 15 and the fresh dialysis fluid flow rate in the supply line 14).

The pressures in the above-indicated mathematical model relate to atmospheric pressure. The arterial and venous pressures P_a and P_v in the vascular access are measurable directly, for example using pressure sensors operating directly on the vascular access 6 in proximity or internally of the arterial and venous needles N_a and N_v.

As previously mentioned, the pressures P_a and P_v are also determinable indirectly using a mathematical model which includes, among its parameters, pressures P_an and P_vn (arterial and venous pressures) measured in the extracorporeal circuit by the pressure sensors 8 and 12. The prior art comprises various mathematical models usable for calculating pressures P_a and P_v when pressures P_an and P_vn are known. Some of the above-cited prior art contains examples of so-usable mathematical models.

There follows a further example of a mathematical model usable for determining the intravascular pressures of the blood starting from the easily-measurable values of the extracorporeal
blood pressures.

Determination of P_{af} **and** P_{vf} **with** P_{an} **and** P_{vn} **known.**

The mathematical model used comprises the two equations which can be derived from the electrical diagram of figure 3:

\[P_{af} = P_{am} + E_{ar} + R_{am} \cdot q_b \]

\[P_{vf} = P_{vm} + E_{vm} - R_{vm} \cdot (q_b - q_{af}) \]

Resistances R_{an} and R_{vn} can be considered equal, with satisfactory approximation, to the hydraulic resistance of the arterial needle N_a and, respectively, the venous needle N_v; it is therefore assumed for the sake of simplicity that the whole drop in pressure in the arterial and venous lines is concentrated at the respective needles.

To calculate the hydraulic resistance R of a needle, the following mathematical model is used: it makes use of an equation which connects the hydraulic resistance of the needle with the blood flow rate and the blood hematocrit.

\[R = \left(A_2 \cdot q_b^2 + A_4 \cdot q_b + B_2 \cdot Hct^2 + B_4 \cdot Hct + B_6 \right) \cdot R_{Poiseuille} \]

where

- $q_b = \text{blood flow rate}$
- $Hct = \text{blood hematocrit}$
- $R_{Poiseuille} = \frac{8 \cdot L}{\pi \cdot r^4}$
- $L = \text{length of needle}$
- $r = \text{radius of internal section of the needle}$

$R_{Poiseuille}$ is the theoretical hydraulic resistance calculated using the Hagen-Poiseuille law for a liquid with viscosity equal to
A₂, A₁, B₂, B₁ and B₀ are coefficients characteristic of each needle, the value being obtained by means of experimental preliminary laboratory testing, by measuring the fall of pressure through the needle with different blood and hematocrit flow rates. In experimental tests the flow rate was varied within a range from 0 to 500 ml/minute, while the hematocrit was varied within a range from 30 to 45%. The coefficients differ for a same needle according to blood flow direction, that is whether the needle is used as an arterial needle or as a venous needle. These preliminary in vitro tests serve to experimentally characterise the needles which will then be used for the extracorporeal blood treatment. The tests include simulation of the extracorporeal treatment (for example dialysis) using a machine for performing the treatment (for example a dialysis machine) with an extracorporeal circuit lacking the device for effecting the treatment (for example lacking a dialyzer filter), causing bovine blood to circulate, exiting from a container and returning thereto. The blood is kept at a constant temperature of 37°C. The blood hematocrit is measured. The machine and the circuit used in the tests can be the same as those illustrated in figure 1.

At intervals of about 1 minute the blood pump flow rate q_b is changed, starting from a zero flow rate q_{b0} = 0 ml/minute and increasing it by 50 ml/minute up to a maximum flow rate of 500 ml/minute (q_{b1}=50ml/min, q_{b2}=100ml/min, ..., q_{bi}=i\cdot50ml/min, ..., q_{bN}=500ml/min). In general, the flow rate q_b assumes N different values q_{bi} with i = 0, 1, 2, ..., N (N ≥ 3).

At each interval pressures P_{smi} and P_{vmi} are measured using the pressure sensors placed along the extracorporeal circuit. From each pressure value measured, P_{smi} and P_{vmi}, we subtract the hydrostatic pressure due to the different blood level in the container with respect to the point of measurement of the
pressure on the machine. From pressures P_{a_i} and P_{v_i} we can
deduce the pressure falls of the corresponding needles ΔP_{a_i} and
ΔP_{v_i}, with $i = 0, 1, 2, \ldots, N (N \geq 3)$.

The same operations are repeated, each time controlledly
changing the value of the hematocrit in the bovine blood. The
blood flow rate values q_b are the same each time, i.e. $q_b = q_{bi}$,
with $i = 0, 1, 2, \ldots, N$.

The hematocrit can be varied by dilution with physiological
solution (in this case the hematocrit diminishes each time). For
each series of operations the value of the hematocrit is
measured. Purely by way of an example, the operations can be
performed with the following hematocrit values: about 44%, about
42%, about 40%, about 38%, about 36%, about 34%, about 32 %. In
general the value of the hematocrit Hct assumes M different Hct_j
values with $j = 1, 2, \ldots, M$ (with $M \geq 2$).

Thus, for each needle we obtain a number $N \cdot M$ of values ΔP_{a_i} and
ΔP_{v_i} with $i = 0, 1, 2, \ldots, N$ (with $N \geq 3$) e $j = 1, 2, \ldots, M$ (with
$M \geq 2$).

A processor calculates the hydraulic resistances of the needle,
normalised with respect to the Poiseuille resistance, for one of
the hematocrit values (for example $Hct = Hct_1$) according to the
equation:

$$R_{a_i} = \frac{\Delta P_{a_i}}{q_{bi} \cdot R_{Poiseuille}}$$

$$R_{v_i} = \frac{\Delta P_{v_i}}{q_{bi} \cdot R_{Poiseuille}}$$

in which

R_{a_i} = resistance of the arterial needle at flow rate $q_b = q_{bi}$ and
with hematocrit $Hct = Hct_1$
\(R_{\text{v11}} \) = resistance of the venous needle at flow rate \(q_b = q_{\text{bi}} \) and with hematocrit \(\text{Hct} = \text{Hct}_1 \).

\(\Delta P_{\text{a11}} \) = pressure drop on the arterial needle at flow rate \(q_b = q_{\text{bi}} \) and with hematocrit \(\text{Hct} = \text{Hct}_1 \).

\(\Delta P_{\text{v11}} \) = pressure drop on the venous needle at flow rate \(q_b = q_{\text{bi}} \) and with hematocrit \(\text{Hct} = \text{Hct}_1 \).

Hence we obtain two series of values \(R_{\text{a11}} \) and \(R_{\text{v11}} \) of resistances (one arterial and the other venous) corresponding to a determined hematocrit value (in the example \(\text{Hct} = \text{Hct}_1 \)), with \(i = 0, 1, 2, \ldots, N \), with \(N \) = number of times we determine \(\Delta P_{\text{a11}} \) and \(\Delta P_{\text{v11}} \) at different flow rates \(q_{\text{bi}} \).

Each of the two series of values (\(R_a \) and \(R_v \)) is interpolated by the processor using a second-order polynomial:

\[
R = A_2 q_b^2 + A_1 q_b + b_0
\]

and we thus obtain, for each type of needle, a pair of coefficients \(A_2 \) and \(A_1 \) for each flow direction (i.e. we obtain a pair of coefficients which characterise the arterial needle and a pair of coefficients which characterise the venous needle). Coefficient \(b_0 \) depends on the blood hematocrit value.

Coefficients \(B_2 \), \(B_1 \) and \(B_0 \) are obtained as follows.

Let us for a moment consider only one blood flow direction through the needle: for example, the arterial needle.

The processor also calculates the resistances \(R_a \) of the arterial needle for the other hematocrit values \(\text{Hct} = \text{Hct}_j \) (\(j = 2, \ldots, M \)), at different blood flow rates \(q_b = q_{\text{bi}} \) (\(i = 0, 1, 2, \ldots, N \)), thus obtaining various series of values:

\[
R_{\text{aij}} = \frac{\Delta P_{\text{aij}}}{q_{\text{bi}}} \frac{1}{R_{\text{Poiseuille}}}
\]
These values of R_a are interpolated, for each hematocrit value Hct, according to the blood flow rate q_b, using a second order polynomial:

$$R_{al2} = A_2q_b^2 + A_1q_b + b_2 \quad \text{for Hct} = \text{Hct}_2$$

$$R_{al3} = A_2q_b^2 + A_1q_b + b_3 \quad \text{for Hct} = \text{Hct}_3$$

$$\vdots$$

$$R_{alM} = A_2q_b^2 + A_1q_b + b_M \quad \text{for Hct} = \text{Hct}_M$$

with $i = 0, 1, 2, \ldots, N$ (with $N \geq 3$), in order to obtain a series of values b_j ($j = 1, 2, \ldots, M$).

In substance, exemplifying the above-mentioned process step by step, for $j = 1$ the processor interpolates values R_{al1} (for Hct = Hct$_1$) according to the equation

$$R_{al1} = A_2q_b^2 + A_1q_b + b_1$$

and thus determines b_1.

Then it interpolates values R_{al2} for $j = 2$ (for Hct = Hct$_2$) following the equation

$$R_{al2} = A_2q_b^2 + A_1q_b + b_2$$

and determines b_2, and so on up until $j = M$, thus obtaining M values of b_j.

At this point the processor makes a further interpolation, using the values of b_j according to the equation

$$b = B_2\text{Hct}^2 + B_1\text{Hct} + B_0$$

and thus determines coefficients B_2, B_1 and B_0.

The same series of interpolations is effected using the data relating to the venous needle.
Hereafter we report some examples of values of the coefficients A_2, A_3, B_2, B_3 and B_6 experimentally obtained.

With a needle having the following characteristics: gauge = 15 (internal diameter = 1.6mm), length = 28mm, the following is obtained:

$A_2(\text{arterial}) = -0.00004$, $A_3(\text{arterial}) = 0.0351$,

$B_2(\text{arterial}) = 0.0192$, $B_3(\text{arterial}) = -0.9398$,

$B_6(\text{arterial}) = 21.059$, $R_{\text{Poiseuille}} = 0.022$

$A_2(\text{venous}) = -0.000026$, $A_3(\text{venous}) = 0.0266$, $B_2(\text{venous}) = 0.0403$,

$B_3(\text{venous}) = -2.2937$, $B_6(\text{venous}) = 41.969$, $R_{\text{Poiseuille}} = 0.022$

With a needle having the following characteristics: gauge = 16 (internal diameter = 1.4mm), length = 33mm, the following is obtained:

$A_2(\text{arterial}) = -0.00004375$, $A_3(\text{arterial}) = 0.0309$,

$B_2(\text{arterial}) = 0.0081$, $B_3(\text{arterial}) = -0.3226$,

$B_6(\text{arterial}) = 8.3882$, $R_{\text{Poiseuille}} = 0.0442$

$A_2(\text{venous}) = -0.00002875$, $A_3(\text{venous}) = 0.0193$,

$B_2(\text{venous}) = 0.0037$, $B_3(\text{venous}) = 0.0487$,

$B_6(\text{venous}) = 1.4565$, $R_{\text{Poiseuille}} = 0.0442$.

The control and calculation unit 17 memory is preloaded with the coefficient values A_2, A_3, B_2, B_3 and B_6 of the most commonly used needles (the memory contains two series of coefficients for each needle, one for each blood flow direction, i.e. a series relating to a needle's use as an arterial needle and as a venous needle). The control and calculation unit 17 recognises the needle used in the extracorporeal treatment time by time and
consequently in the calculation of \(P_{af} \) and \(P_{vf} \) uses the coefficients relating to the needle being used. Recognition of the needle can be automatic (for example by means of an identification system associated to the needle) or can be user-guided.

Thus a mathematical model is defined, usable by the control and calculation unit 17 for determining the pressures in the vascular access by measuring the pressure in the extracorporeal circuit.

Herein below some operative methods are defined by means of which a processor in the control and calculation unit 17 of the machine can monitor the vascular access during an extracorporeal treatment.

First monitoring procedure.

15 In this first operative mode \(q_b \) is varied at \(q_{uf} = \) constant (= 0), while \(P_{an} \) and \(P_{vn} \) are measured.

The operative mode is now described step by step.

a. Determine values \(P_{af1} \) and \(P_{vf1} \) of the arterial pressure and, respectively, the venous pressure in the vascular access (fistula) at a known blood pump flow rate \(q_{bd1} \).

b. Save and store values \(q_{bd1}, P_{af1} \) and \(P_{vf1} \) in a memory.

c. Change the blood pump flow rate to a known value \(q_{bd2} \). At the same time the ultrafiltration flow rate \(q_{uf} \) is kept constant.

d. Keep the blood pump flow rate at \(q_{bd2} \) for a determined period of time (for example about ten seconds) to let the system become stable.

e. Determine values \(P_{af2} \) and \(P_{vf2} \) of the arterial pressure and,
respectively, of the venous pressure in the vascular access (fistula) at blood pump flow rate q_{lo}.

f. Save and store values q_{lo}, P_{af} and P_{vf}.

g. Steps c-f can be repeated for a desired number of times so as to save and store a series of values q_{li}, P_{afi}, P_{vfi}, with $i = 1, 2, 3, \ldots, N$, where N is an integer number greater than 1.

h. Calculate R_f and q_a using the values stored in the memory and the mathematical model expressed by the equation

$$P_{af} - P_{vf} = R_f \cdot (q_a - q_b)$$

i. Save and store the values calculated for R_f and q_a.

j. Calculate R_v using at least a part of the stored values and the mathematical model expressed by the equation

$$P_{vf} - P_v = R_v \cdot (q_a - q_v)$$

k. Save and store the calculated value for R_v.

l. Calculate R_d using at least a part of the stored values and the mathematical model expressed in the equation

$$q_a = \frac{P_a - P_{af}}{R_d}$$

where P_a (mean systemic arterial pressure or MAP) is measured at the patient’s arm in known ways and the measured value of P_a is transmitted to the control and calculation unit.

m. Save and store the value calculated for R_d.

The calculation of R_f and q_a in point h can be done in the following way.
The stored values of Q_{bi}, P_{afi} and P_{vfl}, with $i = 1, 2, \ldots, N$ (with $N \geq 2$), are introduced into the equation

$$P_{af} - P_{af} = R_f \cdot (q_a - q_b)$$

so as to obtain a system of N equations with 2 unknowns q_a and R_f.

$$\Delta P_{f1} = R_f \cdot (q_a - q_{b1})$$

$$\Delta P_{f2} = R_f \cdot (q_a - q_{b2})$$

$$\ldots$$

$$\Delta P_{fN} = R_f \cdot (q_a - q_{bN})$$

where $\Delta P_{fi} = P_{afi} - P_{vfi}$ with $i = 1, 2, \ldots, N$ ($N \geq 2$).

The unknown quantities q_a and R_f can be determined by calculating the optimal solution of the above-indicated equation system.

If $N = 2$ the system has an analytical solution.

If $N > 2$ the two unknowns q_a and R_f can be determined using an optimisation algorithm.

For example the processor calculates the two values, one q_a and the other R_f, for which the corresponding values of ΔP_f calculated by the above-indicated system of equations are the closest to the ΔP_{fi} values previously determined at point e.

The following calculation procedure can be used. Using the values stored in memory, Q_{bi}, P_{afi} and P_{vfl}, by means of a mathematical interpolation algorithm previously stored in memory the processor determines a linear equation which approximates the relation between ΔP_f and q_b. Then the value of q_b at $\Delta P_f = 0$ is calculated, using the above-indicated linear equation. The value of q_b at $\Delta P_f = 0$ is assumed to be equal to the flow rate q_a of the vascular access. The value of q_a thus determined is
stored in memory. Further, the processor calculates the value assumed by ΔP_f at $q_b = 0$, once more using the same linear equation. The value of ΔP_f at $q_b = 0$ is assumed to be equal to the product of $R_f \cdot q_a$. At this point, using the previously-stored value of q_a, the value of R_f can be calculated with a simple quotient.

Graph $\Delta P_f - q_b$ of figure 2 illustrates this mode of procedure. The points in figure 2 represent the determined values ΔP_{f1} of ΔP_f according to the blood pump flow rate q_b. The straight line interpolating the various points is the graphic representation of the linear mathematical relation which connects ΔP_f with q_b.

The interpolation method can be any known linear interpolation method. The straight line of interpolation intersects the horizontal axis (q_b) at q_a and the vertical axis (ΔP_f) at $R_f \cdot q_a$.

Another way of calculating q_a and R_f is based on the description of the relation between q_b and ΔP_f using a non-linear mathematical relation (for example a polynomial of a degree greater than one), derived by the processor with an interpolation method using the values stored in the memory q_{b1}, P_{f1} e P_{v1}. After having derived this non-linear relation, the value assumed by q_b at $\Delta P_f = 0$ is assumed to be equal to the flow rate q_a of the vascular access. The value of q_a thus determined is stored in memory. Further, the processor calculates the value assumed by ΔP_f at $q_b = 0$, using the above-cited non-linear equation as well. The value of ΔP_f at $q_b = 0$ is assumed to be equal to the product of $R_f \cdot q_a$. At this point, using the previously-stored value of q_a it is possible to calculate, by a simple division, the value of R_f. This value represents, in the embodiment, the value of hydraulic resistance R_f at point $q_b = 0$ (i.e. at zero blood flow rate in the extracorporeal circuit).

At point c., the blood pump flow rate is varied from q_{b1} to q_{b2} so that, in consequence of the change of flow rate $q_{b2} - q_{b1}$, the
The pressure difference $\Delta P_f = P_{af} - P_{vf}$ varies significantly in absolute value and sufficiently to be appreciated (for example at least 2 mmHg), i.e. so that

$$|\Delta P_{f1} - \Delta P_{f2}| \geq 2 \text{ mmHg},$$

where

$$\Delta P_{f1} = P_{af1} - P_{vf1} \text{ and}$$

$$\Delta P_{f2} = P_{af2} - P_{vf2}.$$

The same occurs for each flow rate change from q_{bi} to $q_{bi(1+i)}$. The values of q_{bi} are selected so that the difference between the minimum value and the maximum value of q_{bi} does not exceed a predefined value (for example about 600 ml/min) in order that q_a and R_r can be considered as constant in the calculation with good approximation.

At point c. the ultrafiltration flow rate q_{uf} is kept constant = 0.

At point j. the resistance R_r is calculated assuming $q_{uf} = 0$. The R_r stored in memory can be one of the estimated R_{vi} or the mean value of the estimated R_{vi}.

$$R_{vi} = \frac{P_{vi} - P_r}{q_a}$$

At point l. the resistance R_d stored in the memory can be one of the R_{di} calculated with equation (1) or the mean value of the calculated R_{di}.

$$R_{di} = \frac{P_a - P_{vi}}{q_a}$$

Second monitoring procedure.

In the second operative mode q_{uf} is changed to $q_d = \text{constant (not}$
zero), while P_{sa} and P_{va} are measured.

The operative mode is now described step by step.

a. Determine values P_{sa1} and P_{va1} of the arterial pressure and, respectively, of the venous pressure in the vascular access (fistula) at a known ultrafiltration flow rate q_{uf1} at a predetermined blood pump flow rate q_b.

b. Save and store values q_{uf1}, P_{sa1} and P_{va1}.

c. Change the ultrafiltration flow rate to a known value q_{uf2}. At the same time the blood pump flow rate q_b is kept constant and equal to the initial flow rate of point a.

d. Keep the ultrafiltration pump flow rate at value q_{uf2} for a determined period of time (for example about ten seconds) to let the system become stable.

e. Determine values P_{sa2} and P_{va2} of the arterial pressure and, respectively, the venous pressure in the vascular access (fistula) at ultrafiltration flow rate q_{uf2} of the blood pump.

f. Save and store values q_{uf2}, P_{sa2} and P_{va2}.

g. Steps c-f can be repeated for a desired number of times so as to save and store a series of values q_{ufi}, P_{sa1}, P_{va1}, with $i = 1, 2, 3, \ldots, N$, where N is an integer number greater than 1.

h. Calculate q_a and R_v using the values stored in the memory and the mathematical model expressed in the equation

$$P_{vf} - P_v = R_v \cdot (q_a - q_{vf})$$

i. Save and store the values calculated for R_v and q_a.

j. Calculate R_f using at least a part of the stored values and
the mathematical model expressed in the equation

$$P_{af} - P_{sf} = R_f \cdot (q_a - q_b)$$

k. Save and store the calculated value for R_f.

l. Calculate R_f using at least a part of the stored values and the mathematical model expressed in the equation

$$q_a = \frac{P_a - P_{af}}{R_f}$$

m. Save and store the value calculated for R_f.

At point c., the ultrafiltration flow rate is changed from q_{u1} to q_{u2} so that, in consequence of the change in flow rate $q_{u2} - q_{u1}$, the difference of pressure $\Delta P_{vf} = P_{vf} - P_v$ significantly varies in absolute terms sufficiently to be appreciated (for example at least 3 mmHg), i.e. so that

$$|\Delta P_{vf1} - \Delta P_{vf2}| \geq 3 \text{ mmHg},$$

where

$$\Delta P_{vf1} = P_{vf1} - P_v \quad \text{and}$$

$$\Delta P_{vf2} = P_{vf2} - P_v$$

The same can be said for each flow rate change from q_{u1} to $q_{u(t+1)}$.

At point c. the blood flow rate in the extracorporeal circuit q_b is kept constant at a known value which is not zero.

At point h. the calculation of R_v and q_a is performed in the following way.

The stored values of q_{u1}, P_{af1} and P_{vf1}, with $i = 1, 2, ..., N$ (with $N \geq 2$), are introduced in the equation

37
\[P_{uf} - P_v = R_v \cdot (q_a - q_{uf}) \]

so as to obtain a system of \(N \) equations with 2 unknown quantities \(q_a \) and \(R_v \).

\[P_{uf1} - P_v = R_v \cdot (q_a - q_{uf1}) \]

\[P_{uf2} - P_v = R_v \cdot (q_a - q_{uf2}) \]

\[\ldots \]

\[P_{ufN} - P_v = R_v \cdot (q_a - q_{ufN}) \]

The unknown quantities \(q_a \) and \(R_v \) can be determined by calculating the optimal solution of the above-indicated equation system.

If \(N = 2 \) the system has an analytical solution.

If \(N > 2 \) the two unknowns \(q_a \) and \(R_v \) can be determined using an optimization algorithm.

A calculation procedure which can be used is the following.

Using the values stored in memory, \(q_{uf1} \) and \(P_{uf1} \), the processor determines, by means of a mathematical interpolation algorithm previously stored in memory, a linear equation which approximates the relation between \(\Delta P_{vf} \) and \(q_{uf} \) where \(\Delta P_{vf} = P_{vf} - P_v \). Then the value assumed by \(q_{uf} \) at \(P_{vf} = P_v = 0 \) is calculated, using the above-indicated linear equation. The value of \(q_{uf} \) at \(\Delta P_{vf} = 0 \) is assumed to be equal to the flow rate \(q_a \) of the vascular access. The value of \(q_a \) thus determined is stored in memory. Further, the processor calculates the value assumed by \(\Delta P_{vf} \) at \(q_{uf} = 0 \), once more using the same linear equation. The value of \(\Delta P_{vf} \) at \(q_{uf} = 0 \) is assumed to be equal to the product of \(R_v \cdot q_a \). At this point, using the previously-stored value of \(q_a \) the value of \(R_v \) can be calculated by a simple division.

The plot of \(\Delta P_{vf} \) as a function of \(q_{uf} \) in figure 5 illustrates this mode of procedure. The points in figure 5 represent the
determined values $\Delta P_{\text{vfi}} = P_{\text{vfi}} - P_v$ of ΔP_v as functions of the ultrafiltration pump flow rate q_{wfi}. The straight line interpolating the various points is the graphic representation of the linear mathematical relation which connects ΔP_v with q_{wfi}.

The interpolation method can be any known linear interpolation method. The straight interpolating line intersects the horizontal axis q_{wfi} at q_a and the vertical axis of ΔP_v at $R_v'q_a$.

At point j. (determination of R_f) the following procedure is observed.

For each of the estimated values of P_{vfi} and P_{vfi}, a corresponding value of R_{fi} is calculated using the above-indicated equation, from which it is obtained:

$$R_f = \frac{P_{\text{vfi}} - P_{\text{vfi}}}{q_a - q_{\text{wfi}}}$$

The R_f value stored at point k. can be one of the calculated values for R_{fi} or the mean value of the R_{fi} values.

At point l. (determination of R_d) the following procedure is observed.

For each of the estimated values of P_{vfi}, a corresponding value of R_{di} is calculated using the above-indicated equation:

$$R_{\text{di}} = \frac{P_a - P_{\text{vfi}}}{q_a}$$

The R_d value stored at point l. can be one of the calculated values R_{di} or the mean value of the R_{di} values.

Third monitoring procedure.

The equations which define the mathematical model of the vascular access used previously:
\[q_a = \frac{P_a - P_{af}}{R_d} \]

\[P_{af} - P_{vf} = R_f \cdot (q_a - q_b) \]

\[P_{vf} - P_v = R_v \cdot (q_a - q_{vf}) \]

can be reformulated so as to evidence the dependence of \(P_{af} \) and \(P_{vf} \) on \(P_a, q_a, q_{af} \) and \(P_v \) through the unknown parameters \(R_d, R_f \) and \(R_v \). The reformulated equations are as follow:

\[P_{af} = \frac{R_f + R_v}{R_d + R_f + R_v} \cdot P_a - \frac{R_f \cdot R_v}{R_d + R_f + R_v} \cdot q_b - \frac{R_d \cdot R_v}{R_d + R_f + R_v} \cdot q_{af} + \frac{R_d}{R_d + R_f + R_v} \cdot P_v \]

\[P_{vf} = \frac{R_v}{R_d + R_f + R_v} \cdot P_a + \frac{R_f \cdot R_v}{R_d + R_f + R_v} \cdot q_b - \frac{R_d \cdot R_f}{R_d + R_f + R_v} \cdot q_{vf} + \frac{R_d + R_f}{R_d + R_f + R_v} \cdot P_v \]

These equations can be rewritten as reported herein below.

\[P_{af} = c_{a0} \cdot P_a + c_{a1} \cdot q_b + c_{a2} \cdot q_{af} + (1 - c_{a0}) \cdot P_v \]

\[P_{vf} = c_{v0} \cdot P_a + c_{v1} \cdot q_b + c_{v2} \cdot q_{vf} + (1 - c_{v0}) \cdot P_v \]

in which:

\[c_{a0} = \frac{R_f + R_v}{R_d + R_f + R_v} \quad c_{a1} = \frac{R_f \cdot R_v}{R_d + R_f + R_v} \quad c_{a2} = \frac{R_d \cdot R_v}{R_d + R_f + R_v} \]

\[c_{v0} = \frac{R_v}{R_d + R_f + R_v} \quad c_{v1} = \frac{R_f \cdot R_v}{R_d + R_f + R_v} \quad c_{v2} = \frac{R_d \cdot (R_d + R_f)}{R_d + R_f + R_v} \]

The third operating mode (as the following fourth and fifth operating modes) calculates at least a part of the coefficients \(c_{a0}, c_{a1}, c_{a2} \) and \(c_{v0}, c_{v1}, c_{v2} \) and from these derives \(R_d, R_f \) and \(R_v \). The calculation of the coefficients is done starting from one or more known values for each of the following quantities: \(P_a, q_a, q_{af}, P_v \) and \(P_{vf} \). The quantities \(P_{af} \) and \(P_{vf} \) are known through measurement. The quantities \(P_{af} \) and \(P_{vf} \) are known by direct measurement of the pressures in the vascular access, or
by a process of calculation starting from the measurement of the pressures in the machine P_{an} and P_{vm}.

As the number of coefficients c_{a0}, c_{a1}, c_{a2}, c_{b0}, c_{b1}, c_{b2} is greater than the number of the resistances R_d, R_t and R_v, there exists a multiplicity of relations between the coefficients and the resistances. In general, knowledge of three coefficients enables a determination of the resistances.

In the third operating mode both flow rates q_b and q_{af} are varied and the arterial pressure in the machine P_{an} is measured, from which arterial pressure in the vascular access P_{af} is calculated.

In a specific embodiment in a first stage the pressure P_{an} at flow rates $q_b = 0$ and $q_{af} = 0$ is measured; in a second stage pressure P_{an} at flow rates $q_b \neq 0$ and $q_{af} = 0$ is measured; in a third stage pressure P_{an} at flow rates $q_b \neq 0$ and $q_{af} \neq 0$ is measured.

More in general, q_b at $q_{af} = \text{constant}$ (for example $= 0$) is varied and P_{an} is measured at different values of q_b. Thereafter q_{af} at $q_b = \text{constant}$ (for example $\neq 0$) is varied and P_{an} measured at different values of q_{af}.

In this third operating mode a mathematical model of the vascular access is used which is represented by one equation only:

$$P_{af} = c_{a0} \cdot P_a + c_{a1} \cdot q_b + c_{a2} \cdot q_{af} + (1 - c_{a0}) \cdot P_v$$

from which coefficients c_{a0}, c_{a1}, c_{a2} can be derived, which are sufficient by themselves for the calculation of the three resistances R_d, R_t, R_v.

In this third operating mode at least one measurement is taken of the patient's arterial pressure P_a. Further, distal venous pressure P_v is assumed to be zero; for this reason the equation used is simplified as follows:
\[\frac{P_{af}}{P_{a0}} = c_{a0} \cdot P_{a} + c_{al} \cdot q_{b} + c_{al'} \cdot q_{af} \]

The third operating mode is now described step by step.

1. Determine values \(P_{af0} \) of the arterial pressure in the vascular access (fistula) and the systemic arterial pressure of the patient \(P_{a0} \) at a known ultrafiltration flow rate \(q_{af1} = 0 \) at a predetermined blood pump flow rate \(q_{b} = 0 \).

2. Save and store values \(P_{a0} \) and \(P_{af0} \).

3. Calculate \(c_{a0} \) by means of the equation
 \[c_{a0} = \frac{P_{af0}}{P_{a0}} \]

4. Save and store value \(c_{a0} \).

5. Change the blood flow rate \(q_{b} \) to a known value \(q_{b1} \). At the same time the ultrafiltration flow rate \(q_{af} \) is kept constant and equal to the flow rate at point a. (\(= 0 \)).

6. Determine values \(P_{af1} \) and \(P_{a1} \) of the arterial pressure in the vascular access (fistula) and, respectively, of the patient at blood pump flow rate \(q_{b1} \).

7. Save and store values \(q_{b1}, P_{af1}, \) and \(P_{a1} \).

8. Steps d-f can be repeated for a desired number of times so as to save and store a series of values \(q_{b1}, P_{af1}, P_{a1} \), with \(i = 1, 2, 3, ..., N \), where \(N \) is an integer number greater than or equal to 1.

9. Determine \(c_{a1} \) by solving the system of equations:
 \[P_{af} - c_{a0} \cdot P_{a} = c_{a1} \cdot q_{bi} \]
 with \(i = 1, ..., N (N \geq 1) \)

10. If \(N = 1 \) it is sufficient to solve a linear equation with
only an unknown quantity.

If \(N > 1 \) the value of \(c_{ai} \) is found by means of an optimisation algorithm which determines the optimal solution for the above-cited system. The searched-for value can be the value of \(c_{ai} \) which minimises the error between the values of \(P_{ai} \) calculated with the above system of equations, \(P_{afi}^* \), where the asterisk * indicates that the value has been calculated, and the \(P_{afi} \) values determined by measuring a pressure correlated with \(P_{af} \). The optimisation algorithm can be, for example, a linear regression algorithm.

j. Save and store value \(c_{ai} \).

k. Change the ultrafiltration flow rate to a known value \(q_{urf} \) not zero. At the same time the blood flow rate \(q_b \) has a known value \(q_{fil} \) different to zero.

l. Determine values \(P_{af1} \) and \(P_{ai} \) of the arterial pressure in the vascular access (fistula) and, respectively, of the patient at ultrafiltration flow rate \(q_{urf} \).

m. Save and store values \(q_{fil} \), \(q_{urf} \), \(P_{af1} \) and \(P_{ai} \).

n. Steps k-m can be repeated for a desired number of times in order to store a series of values \(q_{urfj} \), \(P_{afj} \), \(P_{aj} \), with \(j = 1, 2, \ldots, M \), where \(M \) is an integer number equal to or greater than 1.

o. Determine \(c_{ai} \) by solving the following system of equations

\[
P_{aj} - c_{a0} \cdot P_{aj} - c_{ai} \cdot q_{bh} = c_{a2} \cdot q_{aj}
\]

with \(j = 1, 2, \ldots, M \) (\(M \geq 1 \))

If \(M = 1 \) it is sufficient to solve a linear equation with only an unknown quantity.
If \(M > 1 \) the value of \(c_{a2} \) is found by means of an algorithm of optimisation which determines the optimal solution for the above system. The sought-after value can be the value of \(c_{a2} \) which minimises the error between the values of \(P_{af} \) calculated using the system of equations \(P_{afj}^* \), where the asterisk * indicates that the value is a calculated one, and the values of \(P_{afj} \) determined through measuring a pressure correlated by \(P_{af} \). The optimisation algorithm can be, for example, a linear regression algorithm (as at point i. above).

p. Save and store the determined value of \(c_{a2} \).

q. Determine \(R_f, R_v \) and \(R_d \) by solving the following system of equations which express the relation between \(c_{a0}, c_{a1}, c_{a2} \) and \(R_f, R_v, R_d \).

\[
R_f = -c_{a1} \cdot \left(1 + \frac{1}{1/c_{a0} - 1} \right)
\]

\[
R_v = -c_{a2} \cdot \left(1 + \frac{1}{1/c_{a0} - 1} \right)
\]

\[
R_d = (1/c_{a0} - 1) \cdot (R_f + R_v)
\]

The value of the resistance \(R_f \) can already be determined at step j. as both \(c_{a0} \) and \(c_{a1} \) are already known.

r. Save and store the first determined values of \(R_f, R_v \) and \(R_d \).

s. Determine \(q_s \) using one of the equations of the mathematical model of the vascular access, for example:

\[
q_s = \frac{P_a - P_{af}}{R_d}
\]

t. Save and store the value calculated for \(q_s \).
In steps from 1. to n. the operation of measuring P_{aj} can be omitted; in this case the values stored and used for the calculation are the same P_{ai} values calculated at point h. at $q_b = q_{ba}$ and $q_{uf} = 0$, or at point a. at $q_b = 0$ and $q_{uf} = 0$.

5 **Fourth monitoring procedure.**

Varying q_b at $q_{uf} = \text{constant}$ (for example zero) and measuring P_{sm} and P_{vm}.

In this case too we calculate at least a part of the coefficients c_{a0}, c_{a1}, c_{a2} and c_{v0}, c_{v1}, c_{v2} from which R_u, R_v and R_t are obtained. The calculation of the coefficients is done starting from the knowledge of one or more values for each of the following quantities: P_b, q_b, q_{uf}, P_r, P_{af} and P_{vf}. The quantities P_a, q_b, q_{uf}, P_r are known by measurements. The quantities P_{af} and P_{vf} are known by direct measurement of the pressures in the vascular access, or by means of a calculation process which uses the measured values of pressures P_{sm} and P_{vm} in the extracorporeal circuit.

In the fourth operating mode the measures were taken at $q_{uf} = 0$ and we use a mathematical model which includes both equations of P_{af} and P_{vf} which in this case are simplified into the following formulation:

$$P_{af} = c_{a0} \cdot P_a + c_{a1} \cdot q_b + (1 - c_{a0}) \cdot P_r$$

$$P_{vf} = c_{v0} \cdot P_a + c_{v1} \cdot q_b + (1 - c_{v0}) \cdot P_r$$

In the fourth operating mode the processor determines the four coefficients c_{a0}, c_{a1}, c_{v0}, and c_{v1} and from these it calculates the three resistances R_u, R_v, R_t.

In the fourth operating mode the pressures P_{af} and P_{vf} in the vascular access are determined, either by direct measuring or by measuring pressures P_{sm} e P_{vm} in the extracorporeal circuit and calculating P_{af} and P_{vf} by means of a mathematical model. The
pressures P_{af} and P_{vf} are determined at different values of the blood flow rate q_b. In the fourth operating mode, the arterial and venous pressures P_a and P_v of the patient are also considered in the calculation of the coefficients.

As coefficients c_{af}, c_{a1}, c_{v0}, and c_{v1} are greater in number than resistances R_a, R_f and R_v, there exists a multiplicity of relations between the coefficients and resistances. In general the knowledge of three coefficients enables determination of the resistances. It has been found that the most precise determination of the resistances R_a, R_f and R_v is obtained by using the three coefficients, c_{a0}, c_{a1}, and c_{v0}.

The fourth operating mode is now described step by step.

a. Determine pressures P_{af}, P_{vf}, P_a, and P_v with the blood pump flow rate and the ultrafiltration flow rate at nil ($q_b = 0$ and $q_{uf} = 0$).

b. The values thus determined, P_{af0}, P_{vf0}, P_{a0} and P_{v0}, are stored in memory.

c. The processor calculates c_{a0} and c_{v0} by means of the equations:

$$c_{a0} = \frac{P_{af0} - P_{v0}}{P_{a0} - P_{v0}}$$

$$c_{v0} = \frac{P_{vf0} - P_{v0}}{P_{a0} - P_{v0}}$$

d. Change the blood flow rate to a known value $q_b = q_{b1} \neq 0$.

e. Determine at least one value of P_{af}, P_{vf}, P_a and P_v when $q_b = q_{b1}$.

f. Save and store values P_{af1}, P_{vf1}, P_{a1} and P_{v1} above-determined.

g. Repeat steps from d. to f. for a predetermined number of
times N in order to obtain a series of values \(q_{i1}, P_{a1i}, P_{v1i}, \)
\(P_{a1}, \) and \(P_{v1} \) with \(i = 1, 2, \ldots, N (N \geq 1) \).

h. Calculate \(c_{ai} \) as a solution for the system of equations

\[
P_{a1} - c_{a0} \cdot P_{a1} - (1-c_{a0}) \cdot P_{v1} = c_{ai} \cdot q_{ai}
\]

If \(N = 1 \) the solution is immediate. If \(N > 1 \) the solution is obtainable with an optimization algorithm, such as for example a linear regression algorithm.

i. Save and store the value of \(c_{ai} \).

j. Determine resistances \(R_d, R_f, \) and \(R_v \) by solving the following equations which express the relation between \(c_{ai}, \)
\(c_{a0}, \) \(c_{v0} \) and \(R_d, R_f, R_v :\)

\[
R_d = \frac{c_{ai}}{c_{v0} - c_{a0}}
\]

\[
R_f = \frac{c_{ai}}{c_{a0} - 1}
\]

\[
R_v = \frac{c_{ai} \cdot c_{v0}}{(c_{a0} - c_{v0}) \cdot (c_{a0} - 1)}
\]

k. Save and store values \(R_d, R_f, \) and \(R_v \) above-determined.

l. Determine the flow rate of the vascular access \(q_a \) using one of the equations of the mathematical model, for example the second:

\[
P_{a1} - P_{v1} = R_f \cdot (q_a - q_b)
\]

At point e., determination of the value of \(P_v \) can be performed in two ways.

The first consists in considering \(P_v \) constant \((P_v = P_{v0}) \) during variation in the blood flow rate \(q_b \), thus ignoring the variations in the venous pressure \(P_v \) which actually occur during
the various operative stages. Consequently the system of equations of point h. can be rewritten in the following way:

\[P_{a_d} - c_{a_0} \cdot P_{a_1} - (1 - c_{a_0}) \cdot P_{v_0} = c_{a_1} \cdot q_{bl} \]

The second way consists in considering the variations in \(P_v \) to be proportional to the variations in the arterial pressure \(P_a \), thus:

\[P_{v_1} = P_{v_0} \cdot \frac{P_{a_1}}{P_{a_0}} \]

This is equivalent to assuming resistances \(R_d \), \(R_e \) and \(R_v \) to be constant during variation of \(q_b \).

In this case the equation of point h. is:

\[P_{a_d} - c_{a_0} \cdot P_{a_1} - (1 - c_{a_0}) \cdot P_{v_0} \cdot \frac{P_{a_1}}{P_{a_0}} = c_{a_1} \cdot q_{bl} \]

Note that by substituting, in the above equation, \(c_{a_0} \) with the expression

\[c_{a_0} = \frac{P_{a_0} - P_{v_0}}{P_{a_0} - P_{v_0}} \]

as in point c. of the present operating mode, the following equation is obtained:

\[P_{a_d} - c_{a_0} \cdot P_{a_1} = c_{a_1} \cdot q_{bl} \]

which is the same equation that appears at point i. of the third operating mode, in which the contribution of \(P_v \) was ignored.

Fifth monitoring procedure.

The fifth operating mode is similar to the third, with the difference that, instead of determining \(P_{a_1} \), \(P_{v_1} \) is determined.
Briefly, the fifth operating mode consists in varying the blood flow rate q_b while maintaining the ultrafiltration rate q_{uf} constant, in varying the ultrafiltration rate while keeping the blood flow rate q_b constant, and in determining the venous pressure in the vascular access P_v at various values of the above-mentioned flow rates. The processor determines the resistances R_d, R_f and R_v and the flow rate q_a in the vascular access by calculating the coefficients c_{v0}, c_{v1}, c_{v2} using the equation

$$P_v = c_{v0} \cdot P_e + c_{v1} \cdot q_b + c_{v2} \cdot q_{uf} + (1 - c_{v0}) \cdot P_v$$

and the operative stages cited for the third operative mode.

The resistances are calculated by solving the following system of equations:

$$c_{v0} = \frac{R_v}{R_d + R_f + R_v}$$

$$c_{v1} = \frac{R_f \cdot R_v}{R_d + R_f + R_v}$$

$$c_{v2} = \frac{R_v \cdot (R_d + R_f)}{R_d + R_f + R_v}$$

The flow rate of the vascular access q_a is calculated as in the third operative mode.

Note that, by means of the second monitoring procedure, q_a and R_v can be derived by determining two or more values for the venous pressure alone (P_{va} in the machine or P_{vf} in the fistula), with the equation

$$P_v - P_e = R_v \cdot (q_a - q_{uf})$$

while for the calculation of the values of R_f and R_d, the values of arterial pressure (P_{fa} or P_{fa}) are also used, as well as the
other two equations of the mathematical model:

\[q_a = \frac{P_a - P_{af}}{R_d} \quad \text{and} \quad P_{af} - P_{vf} = R_f \cdot (q_a - q_b). \]

Similarly a further monitoring procedure can be formulated on the basis of which the values of \(q_a \) and \(R_d \) are calculated, determining two or more values of only the arterial pressure (\(P_{an} \) in the machine or \(P_{af} \) in the fistula), using the equation

\[q_a = \frac{P_a - P_{af}}{R_d} \]

while for calculating the values of \(R_f \) and \(R_v \), the values of the venous pressure (\(P_{vn} \) or \(P_{vf} \)) are also used, as well as the other two equations of the mathematical model:

\[P_{vf} - P_v = R_v \cdot (q_a - q_{vf}) \quad \text{and} \quad P_{af} - P_{vf} = R_f \cdot (q_a - q_b). \]

In all of the above-described modes, the measurements are taken with the system in a steady state. For example, the various measurements are taken after a certain time interval (for example about ten seconds) after the blood flow rate or the ultrafiltration rate has been changed.

Two numerical examples of the application of the invention are now reported.

First example.

This example uses the above-described first monitoring procedure, applied to the apparatus of figure 1.

Direct measurement of pressures \(P_a, P_{af}, P_{vf} \) were taken at different flow rate values \(q_b \). The measurements taken are reported in the following table.

<table>
<thead>
<tr>
<th>(q_b)</th>
<th>(P_a)</th>
<th>(P_{af})</th>
<th>(P_{vf})</th>
<th>(\Delta P_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(ml/min) (mmHg) (mmHg) (mmHg) (mmHg)
300 100 51 42 9
200 52 41 11
100 54 40 14
400 51 42 9
500 50 43 7

The equation of the straight line interpolating points ΔP_r is as follows (see figure 4, where ΔP_r is a function of q_a):

ΔP_r = 0.016 \cdot (925 - q_a)

From which the following values are calculated

R_t = 0.016 \text{ mmHg min/ml}

q_a = 925 \text{ ml/min}

From the third equation of the mathematical model used (assuming \(P_v = 0 \)) we have \(q_{b1} = 300 \text{ ml/min} \):

\[
R_v = \frac{P_{v1}}{q_a} = 0.045 \text{ mmHg min/ml}
\]

Given \(P_a = 100 \text{ mmHg} \), for \(q_{b1} = 300 \text{ ml/min} \) we obtain:

\[
R_d = \frac{P_a - P_{d1}}{q_a} = 0.053 \text{ mmHg min/ml}
\]

Second example.

The second example uses the fourth monitoring procedure.

In the following the values of the pressure measured at different blood pump flow rates are reported.
\[q_0 \quad P_s \quad P_{af} \quad P_{vf} \quad P_v \]

<table>
<thead>
<tr>
<th>(ml/min)</th>
<th>(mmHg)</th>
<th>(mmHg)</th>
<th>(mmHg)</th>
<th>(mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>120</td>
<td>62</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>118</td>
<td>59</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>117</td>
<td>57</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>114</td>
<td>53</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>

From these values we obtain:

\[
c_{a0} = \frac{P_{af0} - P_{v0}}{P_s - P_{v0}} = 0.52
\]

\[
c_{v0} = \frac{P_{vf0} - P_{v0}}{P_s - P_{v0}} = 0.29
\]

By applying a linear regression algorithm to the following equation:

\[P_{af} - c_{a0} \cdot P_{af} - (1 - c_{a0}) \cdot P_{vf} = c_{a1} \cdot q_s \]

the following value for coefficient \(c_{a1} \) was found:

\[c_{a1} = -0.0155 \]

After which the following resistance values were found:

\[R_d = 0.069 \text{ mmHg min/ml} \]

\[R_f = 0.032 \text{ mmHg min/ml} \]

\[R_v = 0.042 \text{ mmHg min/ml} \]

From this we calculated:

\[q_s = \frac{P_{af0} - P_{vf0}}{R_f} = 842 \text{ ml/min} \]
CLAIMS

1. An apparatus for monitoring a vascular access associated to an extracorporeal blood circuit, comprising:
 - at least a first pump (9, 16) predisposed for circulation of a fluid in at least one of the extracorporeal blood circuit and an at least one fluid transport line (15) cooperating with the circuit;
 - a memory, containing a mathematical model of the vascular access (6) comprising:
 o at least a first parameter relating to at least one characteristic (Rd, Rf, Rv, qa, qf, qv) of the vascular access;
 o at least a second parameter relating to at least one characteristic (P) of the blood; and
 o at least a third parameter relating to a flow rate (qa, qf) of the fluid moved by the first pump (9; 16);
 - a control and calculation unit (17) connected to the memory and to the first pump (9, 16) and programmed to perform a monitoring procedure which comprises the following operating stages:
 o varying the flow rate of the first pump (9; 16);
 o receiving the signals corresponding to the values (Psa, Psa, Psv, Pva) assumed by the characteristic (P) of the blood in at least one zone of the blood circulation path and with at least two different values of the flow rate (qa, qf) of the first pump (9; 16);
 o storing in memory the values of the characteristic of the blood and the corresponding values of the flow rate of the first pump (9; 16);
 o processing the values stored in memory by means of the
mathematical model, in order to determine at least one value of the characteristic of the vascular access.

2. The apparatus of claim 1, wherein the second parameter relates to a physical property or a chemical property or a chemical-physical property of the blood which property has a correlation with the blood flow rate, the mathematical model describing the correlation.

3. The apparatus of claim 1 or 2, wherein the mathematical model describes a relationship between the difference of the said characteristic (P) of the blood at two points of the intracorporeal blood circulation path and the blood flow rate flowing between the said two points.

4. The apparatus of any one of the preceding claims, wherein the first parameter is relative to at least one fluid-dynamic characteristic of the vascular access, the mathematical model being a fluid-dynamic model of the vascular access.

5. The apparatus of any one of the preceding claims, wherein the said at least one value of the characteristic of the vascular access is determined by calculating at least one solution of the said mathematical model.

6. The apparatus of claim 5, wherein the optimal solution of the said mathematical model is calculated.

7. The apparatus of any one of the preceding claims, wherein the fluid is blood and the first pump is a blood pump (9) predisposed for circulation of blood in the extracorporeal circuit.

8. The apparatus of any one of the preceding claims, wherein:
 - the extracorporeal circuit is connected to a first chamber (2) of a blood treatment unit (1) having a second chamber
(3) separated from the first chamber (2) by a semipermeable membrane (4), the second chamber (3) having an outlet which is connected to a drainage line (15) for a discharge fluid; the first pump is a drainage pump (16) predisposed for circulation of the discharge fluid in the drainage line (15), the fluid is the discharge fluid, and the fluid transport line cooperating with the extracorporeal circuit is the drainage line (15).

9. The apparatus of any one of the preceding claims, wherein the control and calculation unit (17) is programmed for:
 - receiving signals corresponding to the values assumed by the blood characteristic at at least two different zones of the blood circulation path and for at least two different values of the flow rate of the first pump (9; 16);
 - storing in memory said values of the blood characteristic and the corresponding values of the flow rate of the first pump (9; 16);
 - processing said values stored in the memory using the mathematical model for determining at least one value of the vascular access characteristic.

10. The apparatus of any one of the preceding claims, comprising at least a second pump (9, 16) predisposed for circulation of a fluid in another of either the extracorporeal blood circuit or the fluid transport line (15) cooperating with the extracorporeal blood circuit, the mathematical model of the vascular access (6) comprising at least a fourth parameter relative to the flow rate (q_h, q_m) of the fluid made to circulate in the second pump.

11. The apparatus of claim 10, wherein the unit of control and calculation (17) is connected to the second pump (9; 16),
and wherein the monitoring procedure further comprises the following stages:

- varying the flow rate of the second pump (9; 16);
- receiving signals corresponding to the values assumed by the blood characteristic at at least one zone of the blood circulation path and for at least two different values of the flow rate of the second pump (9; 16);
- storing in the memory said values of the blood characteristic and the corresponding values of the second pump (9; 16);
- processing said stored values using the mathematical model for determining at least one value of the vascular access characteristic.

12. The apparatus of claim 10 or 11, wherein the unit of control and calculation (17) is programmed for:

- receiving signals corresponding to the values assumed by the blood characteristic at at least two different zones of the blood circulation path and for at least two different values of the flow rate of the second pump (9; 16);
- storing in the memory said values of the blood characteristic and the corresponding flow rate values of the second pump (9; 16);
- processing said stored values using the mathematical model for determining at least one value of the vascular access characteristic.

13. The apparatus of any one of the claims from 10 to 12, wherein the unit of control and calculation (17) is programmed to receive at least two signals, for at least two different values of the flow rate of the first pump and a same value of the flow rate of the second pump.
14. The apparatus of any one of claims from 10 to 13, wherein
the unit of control and calculation is programmed to
receive at least two signals, for at least two different
values of the flow rate of the second pump and a same value
of the flow rate of the first pump.

15. The apparatus of any one of claims from 10 to 14, wherein
the unit of control and calculation is programmed to
maintain the flow rate of the second pump constant during
the variation in flow rate of the first pump.

16. The apparatus of any one of the claims from 11 to 15, in
which the unit of control and calculation is programmed to
maintain the flow rate of the first pump constant during
the variation in flow rate of the second pump.

17. The apparatus of any one of the preceding claims, wherein:
- the mathematical model comprises at least one parameter
 relating to at least one characteristic \((P_s, P_v) \) of the
 systemic circulation of a patient;
- the unit of control and calculation (17) is predisposed to
 receive at least one signal corresponding to the said
 characteristic \((P_s, P_v) \).

18. The apparatus of claim 17, wherein the characteristic of
the systemic circulation of the patient is the systemic
arterial pressure \((P_a) \).

19. The apparatus of any one of the preceding claims, wherein
the extracorporeal blood circuit \((5, 10) \) is connected to
the vascular access in a blood withdrawal zone and in a
blood return zone.

20. The apparatus of claim 19, wherein the unit of control and
calculation (17) is connected to at least a first sensor
(8) predisposed to detect at least one value of the blood
characteristic in a zone which is comprised between the blood withdrawal zone and a blood pump (9), the said zone of the value detection also including the blood withdrawal zone, the unit of control and calculation (17) also emitting a signal corresponding to the value detected.

21. The apparatus of claim 20, wherein the first sensor (8) is a pressure sensor.

22. The apparatus of claim 20 or 21, wherein the first sensor (8) is predisposed to operate in the extracorporeal circuit (5, 10) upstream of the blood pump (9).

23. The apparatus of claim 20 or 21, wherein the first sensor is predisposed to operate in the blood withdrawal zone of the vascular access.

24. The apparatus of any one of claims from 20 to 23, wherein the unit of control and calculation (17) is connected to at least a second sensor (12) predisposed to detect at least one value of the blood characteristic in a zone comprised between the blood pump (9) and the blood return zone, the blood return zone being included in the said detection zone; the second sensor emitting a signal giving the value detected.

25. The apparatus of claim 24, wherein the second sensor (12) is a pressure sensor.

26. The apparatus of claim 24 or 25, wherein the second sensor (12) is predisposed to operate in the extracorporeal circuit downstream of a blood treatment unit (1).

27. The apparatus of claim 25 or 26, wherein the second sensor is predisposed to operate in the blood return zone of the vascular access.

28. The apparatus of any one of the preceding claims, wherein
the second parameter relating to at least one blood characteristic is a parameter relating to blood pressure.

29. The apparatus of claim 28, wherein the second parameter is a parameter relating to the blood pressure in a blood withdrawal zone of the vascular access (6).

30. The apparatus of claim 28 or 29, wherein the second parameter is a parameter relating to the blood pressure in a blood return zone of the vascular access (6).

31. The apparatus of any one of the preceding claims, wherein the mathematical model contained in the memory describes a pressure variation in the vascular access (6) as a function of the blood flow rate.

32. The apparatus of any one of the preceding claims, wherein the first parameter is chosen in a group comprising the parameters relating to one or more of the following characteristics of the vascular access (6): the blood flow rate \(q_a \) upstream of a blood withdrawal zone of the vascular access (6); the blood flow rate \(q_d \) between the blood withdrawal zone and a blood return zone to the vascular access (6); the blood flow rate \(q_r \) downstream of the blood return zone; vascular hydraulic resistance \(R_d \) upstream of the blood withdrawal zone; vascular hydraulic resistance \(R_r \) between the blood withdrawal zone and the blood return zone; vascular hydraulic resistance \(R_r \) downstream of the blood return zone.

33. The apparatus of any one of the preceding claims, wherein the mathematical model comprises one or more of the following equations:

\[
q_a = \frac{P_a - P_{df}}{R_d}
\]
\[\begin{align*}
P_{\text{af}} - P_{\text{af}} &= R_f \cdot (q_a - q_b) \\
P_{\text{vf}} - P_{\text{vf}} &= R_v \cdot (q_a - q_{\text{af}}).
\end{align*} \]

34. The apparatus of any one of the preceding claims, wherein the unit of control and calculation (17) is predisposed to receive the signals corresponding to values for the blood characteristic in at least a first detection zone of the extracorporeal circuit which is distant from a blood withdrawal zone from the vascular access (6).

35. The apparatus of claim 34, wherein the memory contains a second mathematical model of the variation of the blood characteristic between the blood withdrawal zone and the first detection zone; the unit of control and calculation (17) being programmed to process, using the second mathematical model, the values of the blood characteristic relating to the first detection zone, and to determine at least one value of the blood characteristic which relates to the blood withdrawal zone.

36. The apparatus of any one of the preceding claims, wherein the unit of control and calculation (17) is predisposed to receive the signals corresponding to the values of the blood characteristic in at least a second detection zone of the extracorporeal circuit, distant from a blood return zone of the vascular access (6).

37. The apparatus of claim 36, wherein the memory contains a third mathematical model for the variation of the blood characteristic between the blood return zone and the second detection zone; the unit of control and calculation (17) being programmed to process, using the third mathematical model, the values of the blood characteristic relating to the second detection zone, and to determine at least one
value of the blood characteristic which relates to the blood return zone.

38. The apparatus of claim 35 or 37, wherein at least one of the second and third mathematical models comprises at least one parameter relating to the blood flow rate.

39. The apparatus of any one of the preceding claims 35, 37, 38, wherein at least one of the second and third mathematical models comprises at least one parameter relating to hematocrit of the blood.

40. The apparatus of any one of the preceding claims 35, 37, 38, 39, wherein:
 - at least one of the second and third mathematical models comprises at least one series of experimentally-determined coefficients which are characteristic of an access tool (N_a, N_w) used for connecting the extracorporeal circuit with the vascular access (6) during a blood withdrawal or return stage;
 - the memory contains coefficients which are characteristic of a plurality of access tools (N_a, N_w) of different types and is predisposed to recognise a type of access tool used time-by-time and to use, in at least one of the second and third mathematical models, the coefficients which are characteristic of the type of access tool recognised.

41. The apparatus of any one of the preceding claims, comprising at least one device, of known type, connected to the unit of control and calculation (17), predisposed to emit a signal indicating the flow rate of the fluid sent in circulation by the first pump.

42. The apparatus of any one of the preceding claims, wherein the unit of control and calculation (17) is programmed for:
- receiving, at regular intervals, the signals relating to the values of the blood characteristics in at least one zone of the blood circulation path during the variation of flow rate of the first pump (9; 16);
- evaluating the changes in the values;
- using the blood characteristic values for a following processing operation when the variation has exceeded a threshold value.

43. The apparatus of any one of the preceding claims, wherein the unit of control and calculation (17) is programmed to:
- receive, at regular intervals, the signals relating to the values of the blood characteristic in at least two different zones of the blood circulation path during the variation of flow rate of the first pump (9; 16);
- calculate the difference between the change of the blood characteristic detected in a first zone of the blood circulation path and the change of the blood characteristic detected in a second zone of the blood circulation path;
- use for the subsequent processing the values of the blood characteristic when the difference has exceeded a threshold value.

44. The apparatus of claim 42 or 43, wherein the blood characteristic is the blood pressure and the threshold value is about 2 mmHg.

45. The apparatus of any one of the preceding claims, wherein the unit of control and calculation (17) is programmed to:
- reach a steady state after having maintained the flow rate of each pump at a constant rate for a determined period of time;
- store and process values of the blood characteristic in the
steady state.

46. The apparatus of any one of the preceding claims from 10 to 45, wherein the unit of control and calculation (17) is programmed to perform a monitoring procedure which comprises the following operative stages:

- changing the flow rate of the first pump;
- changing the flow rate of the second pump;
- receiving signals relating to the values of the blood characteristic in at least one zone of the blood circulation path, for at least two different values of the first pump flow rate and for at least two different values of the second pump flow rate;
- storing said values of the blood characteristic and the corresponding values of the first pump flow rate and the second pump flow rate;
- processing said values stored by means of the mathematical model to determine at least one value of the vascular access characteristic.

47. A machine for treatment of blood in an extracorporeal circuit, comprising a monitoring apparatus according to any one of claims from 1 to 46.

48. The machine of claim 47, predisposed to perform one or more of the following treatments:

- hemodialysis;
- hemofiltration;
- hemodiafiltration;
- pure ultrafiltration;
- plasmapheresis.

49. The machine of claim 47 or 48, comprising a timer connected to the unit of control and calculation (17), the unit of
control and calculation (17) being able to perform the monitoring procedure at least once during the extracorporeal treatment.

50. The machine of any one of claims from 47 to 49, wherein the unit of control and calculation (17) is predisposed to operate selectively in at least two operative modes:

- a first operative mode in which the monitoring procedure is started up by command of an operator;
- a second operative mode in which the monitoring procedure is started up automatically at a predetermined moment during the treatment.

51. A method for monitoring a vascular access of an extracorporeal blood circuit, comprising the stages of:

- storing in memory at least one mathematical model of the vascular access;
- varying the flow rate of at least one fluid running in at least one of the extracorporeal blood circuit (5, 10) and the at least one fluid line (15) cooperating with the extracorporeal blood circuit (15);
- determining the values of at least one blood characteristic (P) in at least one zone of the blood circulation path and at least two different values of the flow rate of the fluid;
- storing in memory said values of the blood characteristic and the corresponding values of the flow rate of the fluid;
- determining at least one value of a characteristic (R_d, R_f, R_v, q_s, q_f, q_v) of the vascular access by means of the mathematical model and the stored values.

52. The method of claim 51, wherein the mathematical model of the vascular access comprises:
at least a first parameter relating to the characteristic
\((R_d, R_e, R_v, q_d, q_e, q_v)\) of the vascular access;

- at least a second parameter relating to the blood
characteristic \((P)\); and

- at least a third parameter relating to the flow rate \((q_b, q_{in})\)
of the fluid running in at least one of the
extracorporeal blood circuit (5, 10) and the line (15)
cooperating with the extracorporeal blood circuit.

53. The method of claim 51 or 52, wherein the stage of
determining the values of a blood characteristic comprises
the following sub-stages:

- determining the values of the blood characteristic in at
least a first zone of the blood circulation path and for at
least two different values of the flow rate of the fluid;

- determining the values of the blood characteristic in at
least a second zone of the blood circulation path which is
distant from the first zone, and for at least two different
values of the flow rate of the fluid.

54. The method of claim 53, wherein the said at least two
different values of the flow rate of the fluid by which the
values of the blood characteristic in the first zone are
determined are equal to the said two values of the flow
rate by which the values of the blood characteristic in the
second zone are determined.

55. The method of any one of the preceding claims from 51 to
54, wherein:

- the said stage of variation of the flow rate of at least
one fluid comprises the sub-stages of:

 o varying the flow rate of a first fluid running in the
extracorporeal circuit (5; 10), and
o varying the flow rate of a second fluid running in a line (15) connected to the extracorporeal circuit (5; 10);

- the said stage of determining the values of at least one blood characteristic consists in determining the said values in at least one zone of the blood circulation path, and at least two different flow rate values of the first fluid, and at least two different flow rate values of the second fluid.

56. The method of any one of claims from 51 to 55, wherein the said stage of varying the flow rate of at least one fluid consists in varying the blood flow rate in the extracorporeal circuit (5; 10).

57. The method of any one of the claims from 51 to 56, wherein the values of the blood characteristic are determined in at least two different zones of the blood circulation path.

58. The method of any one of claims from 51 to 57, wherein the said stage of varying the flow rate of at least one fluid consists in varying a flow rate of a discharge fluid running in a drainage line (15) connected to the extracorporeal circuit (5; 10) by means of a semi-permeable membrane (4).

59. The method of any one of claims from 51 to 58, wherein the stage of varying the flow rate of at least one fluid consists in varying the blood flow rate in the extracorporeal circuit (5; 10), and in varying the flow rate of a discharge fluid running in a drainage line (15) connected to the extracorporeal circuit by means of a semi-permeable membrane (4).

60. The method of any one of claims from 51 to 59, wherein the
mathematical model comprises at least one parameter relating to at least one characteristic \((P_s, P_v)\) of the systemic circulation of the patient.

61. The method of claim 60, comprising a stage of determining at least one value for the said at least one characteristic \((P_s, P_v)\) of the systemic circulation of the patient, a stage of storing the said at least one value and a stage of using the said at least one value for determining the characteristic of the vascular access (6).

62. The method of claim 60 or 61, wherein the said characteristic of the systemic circulation system of the patient is the systemic arterial pressure \((P_s)\).

63. A method for monitoring a vascular access of an extracorporeal blood circuit, wherein the extracorporeal blood circuit (5; 10) is connected to a first chamber (2) of a blood treatment unit (1) having a second chamber (3) which is separated from the first chamber (2) by a semi-permeable membrane (4), and which is provided with an outlet connected to a drainage line (15) of a discharge fluid, the method comprising the stages of:

- storing in memory a mathematical model of the vascular access (6);
- varying the flow rate of the discharge fluid in the drainage line (15);
- determining the values of a blood characteristic in at least one zone of the blood circulation path and at at least two different values of the discharge fluid flow rate;
- storing in memory the said values of the blood characteristic and the corresponding values of the
discharge fluid flow rate;
- determining at least one value of the vascular access characteristic using the mathematical model and the said stored values.

5 64. The method of claim 63, wherein the values of the blood characteristic are determined in at least two different zones of the blood circulation path.

65. The method for monitoring a vascular access of an extracorporeal blood circuit, wherein the extracorporeal blood circuit (5; 10) is connected to a first chamber (2) of a blood treatment unit (1) having a second chamber (3) which is separated from the first chamber (2) by a semi-permeable membrane (4), and which is provided with an outlet connected to a drainage line (15) of a discharge fluid, the method comprising the stages of:
- storing in memory a mathematical model of the vascular access (6);
- varying the flow rate of the discharge fluid in the drainage line (15);
- varying the blood flow rate in the extracorporeal blood circuit;
- determining the values of a blood characteristic in at least one zone of the blood circulation path and at at least two different values of the discharge fluid flow rate and at at least two different values of the blood flow rate;
- storing in memory the said values of the blood characteristic and the corresponding values of the discharge fluid flow rate and the blood flow rate;
- determining at least one value of the vascular access
characteristic using the said mathematical model and the said stored values.

66. The method of any one of claims from 56 to 65, wherein the discharge fluid is a product of ultrafiltration which passes across the semi-permeable membrane (4).

67. The method of any one of claims from 56 to 66, wherein the blood characteristic is determined at at least two different values of the discharge fluid flow rate, and at a same value of the blood flow rate.

68. The method of claim 57 or 65, wherein the blood characteristic is determined at at least two different values of the blood flow rate, and at a same value of the discharge fluid flow rate, and at at least two different values of the discharge fluid flow rate, and at a same value of the blood flow rate.

69. The method of any one of claims from 56 to 68, wherein the blood flow rate is maintained constant during the variation of the discharge fluid flow rate.

70. The method of claim 57 or 65, wherein the discharge fluid flow rate is maintained constant during the variation of the blood flow rate.

71. The method of any one of claims from 52 to 70, wherein the mathematical model of the vascular access (6) comprises at least a fourth parameter relating to the flow rate \(q_b, q_d \) of a fluid which runs in one or another of the extracorporeal blood circuit (5; 10) and the drainage line (15) cooperating with the extracorporeal blood circuit (5; 10).

72. The method of any one of claims from 52 to 71, wherein the second parameter relates to a physical or chemical or
physical-chemical property of the blood, which property has a correlation with the blood flow rate, the mathematical model being a model describing the correlation.

73. The method of claim 72, wherein the blood property is the blood pressure.

74. The method of any of the claims from 52 to 73, wherein the first parameter relates to at least one fluid-dynamic characteristic of the vascular access (6), the mathematical model being a fluid-dynamic model of the vascular access (6).

75. The method of any one of claims from 51 to 74, wherein the extracorporeal blood circuit comprises a blood withdrawal line (5), connected to a blood withdrawal zone of the vascular access (6) of a patient, and a blood return line (10), connected to a blood return zone of the vascular access (6).

76. The method of claim 75, wherein the value of the blood characteristic is determined by measurement thereof in a zone of the extracorporeal blood circuit located downstream of the blood withdrawal zone.

77. The method of claim 75 or 76, wherein a blood pump (9) operates in the extracorporeal blood circuit to cause the blood to circulate, and wherein the measurement is taken upstream of the blood pump (9).

78. The method of any one of claims from 75 to 77, wherein the value of the blood characteristic is determined by measurement thereof in the blood withdrawal zone of the vascular access (6).

79. The method of any one of claims from 75 to 78, wherein the value of the blood characteristic is determined by
measurement thereof in a zone of the extracorporeal blood circuit which is upstream of the blood return zone.

80. The method any one of claims from 75 to 79, wherein the value of the blood characteristic is determined by measurement thereof in the blood return zone of the vascular access.

81. The method of any one of claims from 51 to 80, wherein a blood treatment unit (1) operates in the extracorporeal blood circuit, and wherein the value of the blood characteristic is determined by measurement performed downstream of the blood treatment unit (1).

82. The method of any one of claims from 51 to 81, wherein the mathematical model stored in the memory is a mathematical model of a change in pressure in the vascular access as a function of the blood flow rate.

83. The method of any one of the claims from 52 to 82, wherein the first parameter is chosen from the parameters relating to one or more of the following characteristics of the vascular access (6): the blood flow rate \(q_s \) upstream of a blood withdrawal zone from the vascular access (6); the blood flow rate \(q_f \) between the blood withdrawal zone and a blood return zone at the vascular access (6); the blood flow rate \(q_r \) downstream of the blood return zone; the vascular hydraulic resistance \(R_s \) upstream of the blood withdrawal zone; the vascular hydraulic resistance \(R_f \) between the blood withdrawal zone and the blood return zone; the vascular hydraulic resistance \(R_r \) downstream of the blood return zone.

84. The method of any one of claims from 51 to 83, wherein the mathematical model comprises one or more of the following
equations:
\[q_a = \frac{P_a - P_{af}}{R_d} \]
\[P_{af} - P_f = R_f \cdot (q_a - q_b) \]
\[P_{af} - P_v = R_v \cdot (q_a - q_{af}) \].

85. The method of any one of claims 51 to 84, wherein the value of the blood characteristic is determined by measuring in the extracorporeal circuit in at least a first detection zone, distant from a blood withdrawal zone at the vascular access (6).

86. The method of claim 85, wherein the memory contains a second mathematical model of the variation in the blood characteristic between the blood withdrawal zone and the first detection zone; the second mathematical model being used to determine at least one value of the blood characteristic relating to the blood withdrawal zone.

87. The method of any one of the claims from 51 to 86, wherein the said value of the said blood characteristic is determined by measurement in the extracorporeal circuit (5; 10) in at least a second detection zone, distant from the blood return zone to the vascular access (6).

88. The method of claim 87, wherein the memory contains a third mathematical model of the variation in the said blood characteristic between the blood return zone and the second detection zone; the second mathematical model being used to determine at least one value of the said blood characteristic relating to the blood return zone.

89. The method of claim 86 or 88, wherein at least one of the second mathematical model and the third mathematical model comprises at least one parameter relating to the blood flow
rate.

90. The method of any one of the claims 86, 88, 89, wherein at least one of the second mathematical model and the third mathematical model comprises at least one parameter relating to the blood hematocrit.

91. The method of any one of the claims from 51 to 90, comprising operations of:
- determining at regular intervals the values of the said blood characteristic in at least one zone of the blood circulation path during at least one flow rate variation;
- evaluating the variation in the said values;
- using, in determining at least one value of the said characteristic of the vascular access, the values of the said blood characteristic when the said variation exceeds a threshold value.

92. The method of any one of the claims from 51 to 91, comprising operations of:
- determining at regular intervals the values of the said blood characteristic in at least two different zones of the blood circulation path during at least one flow rate variation;
- calculating the difference between the variation of the said blood characteristic detected in a first zone of the blood circulation path and the variation of the said blood characteristic detected in a second zone of the blood circulation path;
- using, in determining at least one value of the said characteristic of the vascular access, the values of the said blood characteristic when the said difference has exceeded a threshold value.
93. The method of claim 91 or 92, wherein the said blood characteristic is the blood pressure and the threshold value is about 2 mmHg.

94. The method of any one of claims from 51 to 93, comprising the stages of:
- reaching a steady state after having maintained each flow rate constant for a determined period of time;
- storing and processing the values of the said blood characteristic in the said steady state.

95. A method for operating a blood treatment machine for determining hemodynamic parameters during extracorporeal blood treatment, wherein blood is sent to a blood treatment unit (2, 3, 4) via an arterial line (5) of an extracorporeal blood circuit which is connected with a vascular access (6), and is returned via a venous line (10) of the extracorporeal blood circuit; at least a pump (9, 16) being predisposed for circulation of a fluid in at least one of the extracorporeal blood circuit and an at least one fluid transport line (15) cooperating with the circuit, the method comprising the stages of:
- varying the flow rate of the said pump (9, 16);
- determining the values \((P_{at}, P_{an}, P_{vt}, P_{vn}) \) assumed by a characteristic \((P) \) of the blood in at least one zone of the blood circulation path and with at least two different values of the flow rate \((q_{ab}, q_{at}) \) of the pump (9, 16);
- storing in memory the said values of the characteristic \((P) \) of the blood and the corresponding values of the flow rate of the pump (9, 16);
- processing the said values stored in memory by calculating at least one solution of a mathematical model, in order to
determine at least one value of at least one characteristic
\((R_a, R_f, R_v, q_a, q_f, q_v) \) of the vascular access, the
mathematical model describing a relationship between the
difference of the said characteristic \((P) \) of the blood at
two points of the intracorporeal blood circulation path and
the blood flow rate \((q_a, q_f, q_v) \) flowing between the said
two points.

96. The method of claim 95, wherein the said mathematical model
comprises:

- at least a first parameter relating to the said
 characteristic \((R_a, R_f, R_v, q_a, q_f, q_v) \) of the vascular
 access;

- at least a second parameter relating to the said
 characteristic \((P) \) of the blood; and

- at least a third parameter relating to a flow rate \((q_a, q_f) \)
 of the fluid sent in circulation by the pump \((9; 16) \).

97. The method of claim 95 or 96, wherein the said blood
characteristic \((P) \) is the blood pressure.

98. The method of any one of claims 95 to 97, wherein the
number of the said processed values is greater than two and
the said at least one solution of the mathematical model is
the optimal solution.
FIG. 2

FIG. 5

\[R_{vf} - P_v = R_v \cdot q_e - R_v \cdot q_{uf} \]
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 A61M1/36 A61M1/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 1 020 199 A (POLASCHEGG HANS DIETRICH DR) 19 July 2000 (2000-07-19) paragraph '0025!' - paragraph '0030!' paragraph '0045!' figure 2</td>
<td>1-50</td>
</tr>
<tr>
<td>A</td>
<td>WO 98/17334 A (HOSPAL AG; CANINI ENRICO (IT); FAVA MASSIMO (IT); CAVICCHIOLI GIOV) 30 April 1998 (1998-04-30) page 5 - page 9, line 30</td>
<td>1-50</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

1 June 2004

Date of mailing of the international search report

11/06/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Bichlmeier, K-P

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L later document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document or to provide other special reasons (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone or in combination with one or more other documents

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is taken alone or in combination with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Further documents are listed in the continuation box C.

Patient family members are listed in annex.
Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: 51-98
 - because they relate to subject matter not required to be searched by this Authority, namely:
 - Rule 39.1(iv) PCT - Method for treatment of the human or animal body by surgery
 - Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

2. [] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. [] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1044695 A2</td>
<td>18-10-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000325471 A</td>
<td>28-11-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1020199 A2</td>
<td>19-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6623443 B1</td>
<td>23-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2239097 A1</td>
<td>30-04-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0886529 A1</td>
<td>30-12-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9817334 A1</td>
<td>30-04-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000502940 T</td>
<td>14-03-2000</td>
</tr>
</tbody>
</table>