wo 20097122390 A2 I 0K OO0 AR AR

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /g5 I M)EVAN 00010110 0 A
International Bureau S,/ )
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
8 October 2009 (08.10.2009) PCT WO 2009/122390 A2
(51) International Patent Classification: (74) Agents: AGMON, Jonathan et al.; Soroker-Agmon, Ad-
GO6F 17/28 (2006.01) vocates & Patent Attorneys, Nolton House, 14 Shenkar
(21) International Application Number: Street, 46725 Herzliya Pituach (IL).
PCT/IL2008/000439 (81) Designated States (unless otherwise indicated, for every
. - kind of national protection available). AE, AG, AL, AM,
(22) International Filing Date: AO, I{T, AU, Ai BA, BB, BG, B}{, BR, BW, BY, BZ.
30 March 2008 (30.03.2008) CA., CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
(25) Filing Language: English EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
o . HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
(26) Publication Language: Enghsh KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
(71) Applicant (for all designated States except US): COR- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
RELSENSE LTD. [IL/IL]; 1 Sapir Street, P.O. Box NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, $G,
12382, 46733 Hertzlia Pituach (IL). SK, SL, SM, 8V, 8Y, TJ, TM, TN, TR, TT, TZ, UA, UG,
US,UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors; and . L
(75) Inventors/Applicants (for US only): SHACHAM, Lanir (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Naftaly [IL/IL]; 2 Ben-Haim Street, 47261 Ramat-
Hasharon (IL). ELIAS, Oren Shlomo [IL/IL]; 32 Shevet
Menashe Street, 46684 Herzeliya (IL). UKELSON, Ja-
cob [IL/IL]; 21 Dov Gruner Street, 69498 Tel Aviv (IL).
SOMECH, Sam [IL/IL]; 17 Amos Street, 52233 Ramat
Gan (IL). BOLOTINSKY, Anton [IL/IL]; 7 Geulim
Street, 52552 Ramat Gan (IL).

[Continued on next page]

(54) Title: APPARATUS AND METHOD FOR TRACKING REQUESTS IN A MULTI THREADED MULTI TIER COMPUT-
ERIZED ENVIRONMENT

(57) Abstract: The subject matter discloses a method and apparatus

(220 (240 (260 for associating requests and responses in a multi-tier computerized
environment, comprising for each tier, detecting incoming and out-
going data flow; sending the detected data to a processing module;
for each two neighboring tiers, comparing incoming data of one tier
222 242 262  and outgoing data of the other tier; associating incoming requests of
‘ ‘ ‘ one tier to outgoing requests of the other tier. The association may
____T ____ P———‘ use an ad-hoc ID. The subject matter also discloses a computerized
Tcp apparatus detecting data and sending the data to a central storage
outside the multi-tier environment when the data is used to match
PACKET requests and responses. Another object of the subject matter is a
CHANNEL method for associating an incoming request and outgoing response
or outgoing requests in a multi-threaded computerized environment.
STORAGE STORAGE |- STORAGE |«
225J 245J \265
) 280
270—| CENTRAL
STORAGE [®™] MATCHER
Fig. 2



WO 2009/122390 A2 0000 OO A AR A AR A

Published:

—  without international search report and to be republished
upon receipt of that report (Rule 48.2(g))



10

20

25

WO 2009/122390 PCT/IL2008/000439
APPARATUS AND METHOD FOR TRACKING REQUESTS IN A MULTI
THREADED MULTI TIER COMPUTERIZED ENVIRONMENT

RELATED APPLICATIONS
This application is related to PCT application number PCT/IL2007/001062,

titled apparatus and method for tracking transaction related data.

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to tracking transaction related data within a
computerized device in general, and to tracking transaction related data in a multi-

tier computerized environment, in particular.

DISCUSSION OF THE RELATED ART

A complex, multi-tier computerized network environment makes it
difficult to keep track of a single transaction as it spans across multiple tiers. A
tier can be a software or hardware module that executes an application. An
example for such multi-tier computerized environment can comprise a HTTP tier,
such as a web portal, and servers, databases; packaged and homegrown
applications.

A transaction sent by.a user preferably requires resources of several tiers,
and in many cases generates several requests. Such requests are sent to tiers for
retrieving or modifying data stored in such tiers. For exarhple, retrieving data
according to a query sent from a user, or updating data in case a user performs an
action via the multi-tier computerize environment.

One solution for tracking requests and responses of a single transaction is
to add a tag to a parent request, the first request of a transaction, and maintain the
same tag for other requests generated by the parent request. This solution requires
a tagging module that is complex to implement, install and can be perceived as

intrusive therefore raise concern with users and system administrators. More so, it

-1-



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439
may influence the entire tier or client machine in case of a malfunction. Further,
the tag is added to the packet headers related to requests and responses and thus
handles deeper layers of the operating system, network or communication
protocol.

In accordance with some known architectures, two or more threads may
operate within a single tier. For example, a listener-worker model, in which one
thread receives a request and delegates the request to another thread that executes
it, generates additional requests or sends the request to another tier. Other
architectures may comprise additional threads, for example, another thread that
receives responses from other tiers and sends a response to the tier from which the
request was sent. Figure 1A shows three tiers as implemented as known in the art,
Tierl (110), Tier2 (120) and Tier3 (130). A communication channel (not shown)
connects Tierl (110) and Tier2 (120) and two communication channels (not
shown) connect Tier2 (120) and Tier3 (130). In case two IIOP requests are
received by Tier2 (120) that generates three SQL requests sent to Tier3 (130), it is
unobvious to determine which IIOP request generated the second SQL request.
Associating requests generated during the handle of other requests to the request
that generated them without tagging data fields in packets related to the requests
and responses is hence a long felt need. Other technical problems addressed are
methods for determining resource consumption of requests and the time spent by
each tier or thread on each request.

US patent No. 7,051,339 provides for track and measurement of tasks
related to a transaction by tagging each data related to transactions, such as
requests and responses. The disadvantages of tagging are disclosed above. US
patent No. 6,714,976 discloses tracking transactions in a client-server
environment. For example, detecting data in the client side, and compare the
detected data to data in the server side. The solution disclosed in US patent No.
6,714,976 might not be suitable for a multi-tier computerized environment. US
patent publication number 2006/015512 discloses tracking data in a multi-tier

computing environment by assigning two agents on each tier, one agent for
22



WO 2009/122390 PCT/IL2008/000439
detecting data related to requests and another agent communicates with agents of
neighboring tiers and send the data fields detected by the first agent. This solution
requires another communication channel for the transmission of data related to
request and requires another module for each tier. Additionally, the solution
requires two agents in each tier, for different purposes, one for detecting and the
other for processing data and transmits it to agent of other tiers.

It is desirable to provide a method and apparatus for associating several
requests to the same transaction without the need to add or modify modules within
the kernel, therefore to operate seamlessly within the user space, hence remove
the need for a kernel space agent. Further, it is desirable to associate requests and
responses using only one agent in each tier, and to associate requests in a multi-
threaded environment. Another technological problem is to associate requests
without modifying request data or response data, whether in the packet level or
the byte stream level, and without adding additional communication interactions

between the tiers by using more agents.



10

20

25

WO 2009/122390 PCT/IL2008/000439
SUMMARY OF THE PRESENT INVENTION
The disclosed subject matter provides for methods and apparatus for
associating requests and responses without using another module in the tiers
besides the parsing modules or another detecting element. The subject matter
also discloses a method for associating requests and responses in case more than
one thread operates in the tiers. |

It is one object of the subject matter to disclose a method of associating
requests and responses in a multi-tier computerized environment, comprising for
each tier, detecting incoming and outgoing data flow; sending the detected data to
a processing module; for each two neighboring tiers, comparing incoming data of
one tier and outgoing data of the other tier, and associating incoming requests of
one tier to outgoing requests of the other tier.

In some embodiments, the method further comprises a step of
determining resource éonsumption of a request. In some embodiments, the
method further comprises a step of determining resource consumption of a
transaction. In some embodiments, an agent residing within the tier performs
detecting incoming and outgoing data flow. In some embodiments, an agent
residing outside the tier performs associating incoming requests of one tier to
outgoing requests of a neighboring tier.

It is another object of the subject matter to disclose an apparatus for
associating requests and responses in a multi-tier computerized environment,
comprising at least one parsing unit, for parsing incoming and outgoing data flow
between tiers; a central storage for receiving and storing the incoming and
outgoing data flow parsed by the at least one parsing unit; a processing unit for
associating outgoing data from one tier and incoming data of another tier.

In some embodiments, the at least one parsing unit resides within each’
tier. In some embodiments, the processing module is connected to the at least one

parsing units. In some embodiments, the processing module resides outside the

tiers.



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439

It is another object of the subject matter to disclose a method of
associating an incoming request and outgoing response in a multi-threaded
computerized environment comprises: detecting the incoming request; after
executed by a working thread, detecting the outgoing response transmitted to a
sending tier from which the request was sent to an executing tier; associating the
incoming request and the outgoing response according to the communication
channel using which the response was transmitted.

In some embodiments, the method further comprises a step of detecting
data associated with outgoing child requests generated by the working thread
executing the request and detecting incoming responses to the child requests. In
some embodiments, the association is performed using an ad-hoc ID contained
within the outgoing response and a value contained within the sending tier that
receives the outgoing response. In some embodiments, the value is a serial
number of an event performed after the step of establishing the communication
channel. In some embodiments, the value is a serial number of a countable event
executed within the tier. In some embodiments, the value is a function of a hash
code or a CRC process.

It is another object of the subject matter to disclose a method for
associating an incoming request and outgoing request of a request executed in a
multi-threaded tier, comprising: detecting the incoming request; detecting
incoming data flow related to the communication channel via which the incoming
request was transmitted to the tier; detecting the outgoing request; detecting the
thread that handles the outgoing request; detecting outgoing data flow related to
the communication channel via which the outgoing request was transmitted from
the tier; comparing data fields detected in both the incoming request and the
outgoing request.

In some embodiments, the method further comprises a step of
associating between the incoming request and the outgoing request according to
the detected data. In some embodiments, the method further comprises steps of

detecting an incoming response, detecting the communication channel via which
.



WO 2009/122390 PCT/IL2008/000439

the incoming response was transmitted to the tier and detecting the thread that
sent the incoming response. In some embodiments, the method further comprises
a step of detecting an outgoing response and the thread ID of the thread that

handled the outgoing response.

-6-



WO 2009/122390 PCT/IL2008/000439
BRIEF DESCRIPTION OF THE DRAWINGS
Exemplary non-limited embodiments of the disclosed subject matter will
be described, with reference to the following description of the embodiments, in
conjunction with the figures. The figures are generally not shown to scale and any
s sizes are only meant to be exemplary and not necessarily limiting. Corresponding
or like elements are designated by the same numerals or letters.
Fig. 1A shows a multi-tier computerized environment, according to
some embodiments of the prior art;
Fig. 1B shows a multi-tier computerized environment, according to
10 some embodiments of the disclosed subject matter;
Figure 2 shows a computerized environment according to some
exemplary embodiments of the subject matter;
Figures 3A and 3B show multi-threaded tiers within a multi-tier
computerized environment, according to some exemplary embodiments of the
15 disclosed subject matter; and,
Figure 4 shows a flowchart of the method for associating requests
within a multi-tier computerized environment, according to some exemplary

- embodiments of the subject matter.



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

One technical problem addressed by the disclosed subject matter is to
track requests associated with a transaction without modifying or adding data
fields within the request. Another technical problem is to associate requests and
responses within a multi-threaded tier.

The technical solution disclosed in the subject matter comprises an
apparatus and method for associating requests related to the same transaction and
handled in a mﬁlti-tier computerized environment. A transaction is preferably a
command or request for receiving or modifying data within a data field located in
a computerized environment. For example, a transaction may refer to receiving
data associated with bank account details, or transferring money between
accounts, purchase of stocks and the like. In accordance with an exemplary
embodiment of the subject matter, the apparatus comprises at least one parsing
unit residing in at least a portion of the tiers in the multi-tier computerized
environment or in communication with one or more tiers. In an alternative
embodiment, at least one parsing unit may detect data flow related to more than
one tier. Such at least one parsing unit detects incoming and outgoing data flow of
one or more tiers. The at least one parsing unit is connected to a processing
module that associates requests and responses related to the same transaction,
based on data sent from the at least one parsing unit. Since each parsing unit is
aware of partial information regarding requests and responses, the processing
module associates the requests and responses according to predetermined
algorithms and data fields. In an exemplary embodiment of the subject matter, the
data detected by the at least one parsing unit is sent to a central storage, connected
to the processing module that uses the data within central storage to associate

requests and responses. The association further results in determining resource

~ consumption of transactions, and the time required for each request relate to the

transaction.
The disclosed subject matter also provides for associating incoming

requests and outgoing requests of the same tier in a multi-threaded environment,
-8-



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439
in which more than one thread handle the request. Such method is disclosed in
details below.

Fig. 1B shows a multi-tier computerized environment, according to some
embodiments of the disclosed subject matter. According to the disclosed example,
Tierl (410) is an HTTP server that receives HI'TP requests from a user or from
another tier (not shown). Tier2 (420) is an application server that receives requests
from Tierl (410) and sends responses to Tierl (410) after the request is processed.
Tier3 (430) is a database server that receives requests from Tier2 (420) and sends
responses to Tier2 (420) after the requests are processed. A multi-threaded tier
comprises several threads, each performs a different task in handling the request.
For example, Tierl (110) comprises two threads, a listener thread 412 and a
worker thread 414. Listener thread 412 receives a request from a neighboring tier
and delegates the request to the worker thread 414 within the tier. Worker thread
414 handles the request received from listener thread 112 and may generate
additional requests that may be sent to Tier2 (420). In some exemplary
configurations of a multi-threaded tier, worker thread 114 also receives [IOP
responses from Tier2 (420) and may send the HTTP response back to Tierl (410)
to the user (not shown). Worker thread 414 may execute the request in the tier, or
generate additional requests associated with the incoming request. Such additional
requests are also named child requests.

Tier2 (420) comprises three threads, receives requests from Tierl (410)
sends responses to Tierl (410), sends requests to Tier3 (430) and receives
responses from Tier3 (430). The three threads are listener thread 422, worker
thread 424 and worker thread 426. Listener thread 422 of Tier2 (420) receives the
request from Tierl (410), sends the request within Tier2 (420) to worker thread
424 that handles the request, and preferably sends additional requests to Tier3
(430). Worker thread 424 may also generate SQL Request 2, receive response
SQL Response 2, generate SQL Request3, receive SQL Response 3 and send the
response IIOP Respond312 to Tier 1(400). Worker thread 426 receives IIOP

request 246 from listener thread 422, generates SQL Request 1, receives SQL
9.



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439

respond 1, and send response IIOP Response246 to Tierl (410). The multi-thread
architecture requires less operations from each thread and enables more requests
to be handled at a given time period. The communication between Tierl (410) and
Tier2 (420) is performed via a communication channel, while the communication
between Tier2 (420) and Tier3 (430) is performed via two communication
channels (not shown). As a result, when SQL Request2 is sent from Tier2 (420) to
Tier3 (430) via communication channel 2, one cannot detect whether SQL
Request2 was generated by IIOP Request 246 or IIOP Request 312, sent from
Tierl (410) to Tier2 (420). The technical problem is to determine the parent
request of a request in a multi-threaded environment without tagging requests and
without interfering in the kernel level, especially when the communication
protocols implement asynchronous responses. The communication channel may
be any computerized entity in which one side is enabled to write data and other
side is enabled to read data. Such computerized entity may be a TCP/IP socket, a
pipe, shared memory, a file, a queue, a messaging queue and the like.

According to some exemplary embodiments of the disclosed subject
matter, the method comprises a step of detecting data sent to and from each of the
tiers. Each detected request or response is stored, partially or in its entirety in
storage associated with a tier or associated with a communication channel. In an
exemplary embodiment of the subject matter, each detected request or response is
assigned one or more values or parameters by the at least one parsing unit. For
example, the value may be a time stamp related to the time a request or response
was sent or received, a serial number or index related to the number of requests or
responses sent after a specific event, such as a protocol handshake, a
communication channel ID or thread ID that handled or generated the request or
response and the like. The value or index of the request or response is stored in
the storage. The storage may reside within the tier, or can be connected to the at
least one parsing unit. Another parameter that may be stored by the storage is an
ad-hoc ID of each request. Such ad-hoc ID is generated by the thread handling the

request, preferably when using asynchronous protocols, and is stored in the
-10-



10

20

25

30

WO 2009/122390 PCT/IL2008/000439

response to each request. Such ad-hoc ID is not generated by the application
disclosed in the subject matter, and is not implemented the same way as the
tagging method disclosed in the prior art. According to the disclosed subject
matter, the ad-hoc ID is not provided in the context of previous requests or
responses, but only in the context of the handled request or response, and is stored
in the storage and used for further associating requests and child requests. When a
request is sent from Tierl (410) to Tier2 (420), both storages of Tierl (410) and
Tier2 (420) detect the ad-hoc ID of the request. In an alternative exemplary
embodiment of the subject matter, an agent residing in the tier may determine or
assign the ad-hoc ID to the request or response. Once a response is sent from tier2
(420) to Tierl (410), it is logged in both storages of Tierl (410) and Tier2 (420).
As a result, the time elapsed between the request was sent from Tierl (410) and
the associated response was sent from tier2 (420) can be determined as a function
of the time measured by both Tierl (410) and Tier2 (420).

The data stored in the storages of Tierl (410) and Tier2 (420) is sent to a
central storage where the requests are associated by the ad-hoc ID, the tiers' 1D,
timestamps, communication channels ID and the like. Hence, one can determine
the requests related to a specific transaction and the resource consumption of the
different requests. Resource consumption of requests can be measured from the
initiation of a request, until the specific tier receives a response or sends back a
response. The measurement of resourée consumption may be achieved by
inquiring the operating system using common APIs detecting the thread’s current
resource consumption profile, such as for example CPU.consumption during a
time period, number of bytes read/written to I/O devices, consumption of RAM
memory, how much bytes were read/written to the network and the like. Another
parameters logged in the storages that facilitates determining resource
consumption is the timestamp of which a request is sent and the response is
received, which allows measuring the time spent in each tier and between tiers in
the communication channel. In some exemplary embodiments of the disclosed

subject matter, the accuracy of time detected in more than one tier is limited to the
-11-



20

25

30

WO 2009/122390 PCT/IL2008/000439

differences between the clocks in the more than one tier. In other embodiments,
the methods further comprise a step of synchronizing the clocks of the more than
one tier.

Figure 2 shows a computerized environment according to some exemplary
embodiments of the subject matter. The computerized environment comprises
three tiers, 220, 240 and 260. According to the example of figure 2, when a
transaction is sent to the computerized environment, it is received at tier 220.
When a request is received at tier 220, the request is logged by parser 222 with
parameters associated with the request. Such parameters may be the time the
request was sent or received, ad-hoc ID of the request, a hash-code value of the
request characters, a hash-code value of the request parameters or combination, a
result of a CRC function applied over the request characters or the request
parameters or combination. Other parameters may be parts of the protocol which
can be associated with a single request instance, a communication channel ID
from which a request or response was received at a tier, a counter ID indicating
the number of previous requests received or sent by tier 220, IP: port of the source
or destination of the request, whether the request is incoming or outgoing and the
like.

When a response is received at tier 220 or sent from the tier 220, similar
parameters are detected by parser 222 and stored in storage 225. In a preferred
embodiment of the disclosed subject matter, data fields within the requests are not
modified when requests are transmitted between tiers. Additionally, no data fields
are added to the request, as performed when using a tagging module. Parsers 222,
242 and 262 may reside in the user's space, and may reside in the kernel space,
according to the preferences and specifications of the tiers and the computerized
environment.

Parser 222, as well as parsers 242, 262 from tiers 240, 260 may perform
several parsing methods, either complicated parsing methods or shallow parsing.
Suggested parsing methods may be Top-down parsing, such as recursive descent

parser, LL parser, packrat parser, or bottom-up parsing methods such as
-12-



15

20

25

30

WO 2009/122390 PCT/IL2008/000439
precedence parser, BC (bounded context) parsing or LR parser and the like.
Storages 225, 245 and 265 may be any kind of memory, such as RAM, ROM,
flash, magnetic memory, and the like. Storages 225, 245 and 265 may reside
within the tiers, or communicate with the tiers. Each storage communicates with
the tiers and with central storage 270 and transmits data detected by the associated
parser to the central storage 270. For example, storage 225 of tier 220 receives
data from parsing unit 222 and sends the data to central storage 270. In some
exemplary embodiments of the subject matter, storage 225 sends all the data fields
to central storage 270. Alternatively, the data sent from the storages 225, 245 and
265 to central storage 270 is provided only upon a query from central storage ‘270.'
For example, central storage 270 requests only data related to some requests, data
related only to data flow during a time period, data ;elated only to requests
associated with a specific entity or the like.

In some exemplary embodiments of the disclosed subject matter, central
storage 270 and a processing module (not shown) reside in a server-like module
of the computerized environment, while the tiers and the storages associated with
the tiers reside at a client-like module of the computerized environment. As such,
the server side is connected to many client sides, each resides in each tier. In a
preferred embodiment of the subject matter, processing module (not shown)
comprises matching unit 280. According to some exemplary embodiments of the
disclosed subject matter, matching unit 280 associates outgoing requests from tier
N and the incoming requests to tier N+1, for example, outgoing requests from tier
220 and incoming requests to tier 240. According to one exemplary embodiment
of the subject matter, implementation of matching between data received from
several tiers is performed by storing the requests and responses related to each tier
in a separate sequence, and assign a unique value to each request or response.
Such unique values may be based on a time stamp, IP:port, counter ID,
communication channel ID, request ID, ad-hoc ID, message queue ID, file ID, file
type ID, correlation ID, result of a hash code function, CRC function result and

the like. An example of a sequence may be incoming requests to tier N+1, while
-13-



20

25

WO 2009/122390 PCT/IL2008/000439
another sequence may contain outgoing responses from tier N+1, compared to a
sequence containing incoming responses to tier N. As noted above, variety of
parameters may be used in associating elements within the sequences, as listed
above.

Matching unit 280 allows association of several requests to one another or
to a transaction using the data detected by parsing units as disclosed above while
avoiding the tagging module as disclosed in the prior art. Matching unit 280
associates outgoing requests from tier N and incoming requests to tier N+1. The
association is performed by comparing parameters related to data fields of the
requests or to packets that contain the requests. Such parameters may be time
stamp, IP:port, counter ID, communication channel ID, request ID, ad-hoc ID,
message queue ID, file ID, file type ID, correlation ID, result of a hash code
function, CRC function result and the like. Association of a request received at
tier N and requests generated as a result of handling the previously received
request requires monitoring of thread activity, communication channels used, the
way a request is handled by a thread and the like. In some exemplary
embodiments of the disclosed subject matter, a thread-to-thread table is utilized to
correlate the data based on the communication channel being used, the ad-hoc ID
if exists and the like.

According to computerized environments disclosed in the prior art, an
agent residing within the tier adds or modifies data fields of the request, and
determines the relations between requests and the child requests. Such agent is
complex to provide in the client side within the tiers, and is more difficult to
install, maintain, and is perceived as more intrusive, and may affect the entire tier
or client machine in case of a malfunction. According to one exemplary
embodiment of the disclosed subject matter, the processing of data fields
associated with requests and responses sent from storages 225, 245, 265 is only
performed in matching unit 280. In an alternative embodiment of the disclosed

subject matter, the data is sent from the tiers to matching unit 280 that stores the

-14-



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439
received data in central storage 270 and retrieves such data when required to
associate requests.

According to some exemplary embodiments of the subject matter,
matching unit 280 matches incoming request of tier N+1 and outgoing requests of
tier N using parameters stored in storages 225, 245, 265 such as the timestamp of
each request, ad-hoc ID, the unique ID of the request as determined using hash
functions or CRC functions and alike and the like. Such data is received from both
tier N and tier N+1, and matched by matching unit 280. Matching unit 280
compares data stored in storage associated with tier N with data stored in storage
associated with tier N+1 and matches incoming requests of tier N+1 and outgoing
requests of tier N as noted above. In case one of the storages has more indexes,
for example in case a request was not received at tier N+1, or a request received
more than once, or values of parameters of the request that are used within the
sequence are identical for different requests, several algorithms may be used by
matching unit 280. This problem is also named sequence alignment episode
matching problem, and may be solved using any method known to a person
skilled in the art. One solution may be synchronizing the sequences using a
Longest Common Subsequence (LCS) algorithm. Another solution may be LCS-
Delta algorithm.

Figures 3A and 3B show multi-threaded tiers within a multi-tier
computerized environment, according to some exemplary embodiments of the
disclosed subject matter. Figure 3A shows a tier 310 comprising two threads, a
listener thread 312 and a worker thread 314. According to some exemplary
embodiments of the disclosed subject matter, an incoming request arrives to the
listener thread 312 over an existing communication channel. The ID of listener
thread 312 and the communication channel ID the request was sent upon are both
logged to the storage within the tier or associated with the tier, such as storages
225, 245, 265. The arriving request is assigned an ID by the parsing unit within
the tier where the thread executes. Such ID is different from the ad-hoc ID since it

is assigned and determined by an agent of the disclosed subject matter, not by the
-15-



15

20

25

30

WO 2009/122390 PCT/IL2008/000439
protocol implementation within the monitored application as the ad-hoc ID. This
request is then sent to a working thread 314.

If a response is returned immediately, then the association between the
request and. the respond is done according to the communication channel,
assuming a synchronous protocol. In an asynchronous protocol, the association
between the request and the respond is done according to the ad-hoc ID generated
by the protocol implementation.

In case the working thread generates additional requests, they are logged
to the storage. Outgoing requests generated by threads that handle a request are
also called child requests. In case a child request is sent to another tier, a new ID
is assigned to the child request, and the information regarding the working thread
314 that sent the child request and the communication channel used are logged to
the storage associated with the tier. In an exemplary embodiment of the subject
matter, the parser (such as 222, 242 and 262 of figure 2) assigns the new ID to the
child request. After a response is returned to the working thread 314, the working
thread 314 sends the response to the request that arfived to the listener thread 312.
This response is sent over the same communication channel that the request
arrived on, thus enabling association of the request arriving to the listener thread
312, the child requests sent by the worker thread 314, and their responses with the
response sent back by the working thread 314 over the same communication
channel. When a synchronous protocol is used, the response is sent immediately
after the request. When an asynchronous protocol is used, the association between
the request and response is done according to the ad-hoc ID generated by the
protocol implementation. Thus, an association between the arriving request and
the new generated child requests is created. In case more than one request is
received at a specific tier using an asynchronous protocol, the response to each
request carries an ad-hoc ID, in order to identify a specific request relative to the
others. Such ad-hoc ID is matched with a value associated with a specific
incoming request. For example, in case three requests are generated and sent from

one tier to another after the communication is established, each request is assigned
-16-



10

15

20

25

WO 2009/122390 PCT/IL2008/000439
a value. Such value may be a function of the ad-hoc ID, or may Be a§éociated with
the respective ad-hoc ID using an adaptive storage. For example, a numeric value
is assigned to a request, indicating the number of events that happened before the
request was sent from a tier. The ad-hoc ID of the response to that specific request
carries an ad-hoc ID associated with the numeric values of the request. In case the
communication protocol is synchronous, the association is simple since each
response corresponds to the previous request. In most cases, a response is sent on
the same communication channel used to transmit the request associated with the
response. Hence, the association may be provided by parsing data associated with
the requests and responses and parsing data flow on a specific communication
channel.

Figure 3B shows another embodiment of a multi-threaded tier 330. Tier
330 comprises listener thread 332 that receives the request and sends the request
to working thread 334. In case additional child requests are generated by working
thread 334, they are sent by worker thread 334 to a dispatcher thread 336 that
sends the actual child requests to the neighboring tier. Once a child request is sent,
a new ID is assigned to the child request, and the information regarding the
communication channel it was sent over is logged to the storage associated with
the tier. A receiver thréad 338 receives the response from the next tier. The
respond is sent over the same communication channel, and can be associated with
the request according to the order, if a synchronous protocol is used, or according
to the ad-hoc ID if an asynchronous protocol is used. Next, the response is
delegated back to the worker thread 334. Worker thread 334 sends the response to
a sending thread 340 that sends the response to the tier that generated the request
associated with the response. In accordance with the multi-threaded architecture
disclosed above, a thread-to-thread table is required to associate requests with
their child requests. Such thread-to-thread table maps the data received and sent
from each thread. Mapping is performed by tracking thread actions and hooking

data within the user space or kernel space. For example, detecting and parsing

-17-



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439

packets used to transmit data between tiers, or parsing byte stream transmitted via
threads within the same tier.

Figure 4 shows a flowchart of the method for associating requests within a
multi-tier computerized environment, according to some exemplary embodiments
of the subject matter. On step 510, data flow within tiers is detected. The detected
data comprises both incoming and outgoing data flow. In accordance with an
exemplary embodiment of the subject matter, the detection is performed by a
parsing unit residing within the tier. In an alternative embodiment, the parsing unit
is associated with one or more communication channels instead of associated with
one or more tiers. On step 520, the detected data is sent from the at least one
parsing unit to a processing module that analyzes the detected data. According to
an exemplary embodiment of the subject matter, the processing module resides
outside the tiers and communicates with the at least one parsing unit that reside
within the tiers. On step 530, data detected from parsing unit of one tier is
compared to data detected from parsing unit of another tier. In Accordance with
exemplary embodiments of the subject matter, the comparison is performed
between outgoing data flow of one tier and incoming data flow of its neighboring
tier. For example, outgoing data flow of Tierl (410 of figure 1B) is compared to
incoming data flow of Tier 2 (420 of figure 1B). The cdmparison may be based on
request ID determined by applying a hash function, CRC function or the like over
the request characters or the request parameters or combination; or over other
parts of the protocol which can be associated with a single request instance. Other
parameters used for comparing incoming and outgoing data flow may be a
communication channel ID from which a request or response was received at a
tier, a counter ID indicating the number of previous requests received or sent by
tier 220, IP: port of the source or destination of the request, whether the request is
incoming or outgoing, the time it was sent or received by each tier and the like.
The comparison may be based on other parameters as disclosed above, or as may
be determined by a person skilled in the art. On step 540, requests are associated

using the matching unit (280, of figure 2) according to the parameters disclosed
-18-



10

20

25

WO 2009/122390 PCT/IL2008/000439
above. In case there are more outgoing requests from tier N than incoming
requests to tier N+1, or more incoming requests than outgoing requests, or in case
similar values are associated to different requests or to more than one request,
several algorithms may be implemented by the processing module, such as LCS,
or any other method used by a person skilled in the art. On step 550, the
processing module determines resource consumption of requests or transactions.
One technical effect of the subject matter is to provide association of incoming
requests of one tier and outgoing requests of another tier without modifying data
within the requests and without adding a module besides a parsing or detecting
module. This architecture and apparatus is new and unobvious and provides
simple implementation, install and modifications. This architecture does not allow
analysis of resource consumption in real time, since only the matching unit 280 is
aware of the requests associated with a single transaction, while in the tagging
method, each tier is aware of the previous requests associated with the same
transaction.

Resource consumption is determined according to the time each request
was executed within each tier, and according to the parameters related to the
thread that executed the request. Since several requests are associated to the same
transaction, a person skilled in the art can sum the resources consumed by each
request to determine the resource consumption of a transaction. Other resources
may be CPU, memory, I/O devices, and the like, are parsed by the at least one
parsing unit and sent to the central storage where the data is processed.

Time differences between tiers due to internal clock shifts is addressed by
receiving periodically actual clock value of each tier and comparing to the clock
value in the central storage, thus synchronizing time differences among tiers. Any
other method for synchronizing tiers may be provided by a person skilled in the
art.

The methods and apparatus disclosed in the subject matter may be

implemented in various operating systems, among which are windows versions,

-19-



WO 2009/122390 PCT/IL2008/000439
Linux, Solaris, mainframe, AIX, HPUX, AS400, VxWorks or any other OS and
derivatives of the above.

While the disclosure has been described with reference to exemplary
embodiments, it will be understood by those skilled in the art that various changes
may be made and equivalents may be substituted for elements thereof without
departing from the scope of the invention. In addition, many modifications may be
made to adapt a particular situation or material to the teachings without departing
from the essential scope thereof. Therefore, it is intended that the disclosed
subject matter not be limited to the particular embodiment disclosed as the best
mode contemplated for carrying out this invention, but only by the claims that

follow.

-20-



10

15

20

25

30

WO 2009/122390 PCT/IL2008/000439

CLAIMS
1.A method of associating requests and responses in a multi-tier computerized
environment, comprising
for each tier, detecting incoming and outgoing data flow;
sending the detected data to a processing module;
for each two neighboring tiers, comparing incoming data of one tier
and outgoing data of the other tier;
associating incoming requests of one tier to outgoing requests of the
other tier.
2.The method according to claim 1, further comprising a step of determining
resource consumption of a request.
3.The method according to claim 1, further comprising a step of determining
resource consumption of a transaction.
4.The method according to claim 1, wherein detecting incoming and outgoing
data flow is performed by an agent residing within the ter.
5.The method according to claim 1, wherein associating incoming requests of
one tier to outgoing requests of a neighboring tier is performed by an agent

residing outside the tier.

6.An apparatus for associating requests and responses in a multi-tier
computerized environment, comprising

at least one parsing unit, for parsing incoming and outgoing data
flow between tiers;
a central storage for receiving and storing the incoming and
outgoing data flow parsed by the at least one parsing unit;
a processing unit for associating outgoing data from one tier and
incoming data of another tier.

7.The apparatus according to claim 6, wherein the at least one parsing unit

) resides within each tier.
21-



20

25

30

WO 2009/122390 PCT/IL2008/000439

8.The apparatus according to claim 6, wherein the processing module is

connected to the at least one parsing units.

9.The apparatus according to claim 6, wherein the processing module resides

outside the tiers.

10. A method of associating an incoming request and outgoing response in a

11.

12.

13.

14.

15.

16.

multi-threaded computerized environment comprises:

detecting the incoming request;

after executed by a working thread, detecting the outgoing response
transmitted to a sending tier from which the request was sent to an
executing tier;

associating the incoming request and the outgoing response according to
the communication channel using which the response was transmitted.

The method according to claim 10, further comprises a step of detecting
data associated with outgoing child requests generated by the working
thread executing the request and detecting incoming responses to the child
requests.

The method according to claim 10, wherein association is performed using
an ad-hoc ID contained within the outgoing response and a value
contained within the sending tier that receives the outgoing response.

The method according to claim 12, wherein the value is a serial number of
an event performed after the step of establishing the communication
channel.

The method according to claim 12, wherein the value is a serial number of
a countable event executed within the tier.

The method according to claim 12, wherein the value is a function of a

hash code or a CRC process.

A method for associating an incoming request and outgoing request of a

request executed in a multi-threaded tier, comprising:
22



10

15

20

WO 2009/122390 PCT/IL2008/000439

17.

18.

19.

detecting the incoming request;

detecting incoming data flow related to the communication channel via
which the incoming request was transmitted to the tier;

detecting the outgoing request;

detecting the thread that handles the outgoing request;

detecting outgoing data flow related to the communication channel via
which the outgoing request was transmitted from the tier;

comparing data fields detected in both the incoming request and the
outgoing request.

The method according to claim 16, further comprises a step of associating
between the incoming request and the outgoing request according to the
detected data.

The method according to claim 16, further comprises steps of detecting an
incoming response, detecting the communication channel via which the
incoming response was transmitted to the tier and detecting the thread that
sent the incoming response.

The method according to claim 18, further comprises a step of detecting an
outgoing response and the thread ID of the thread that handled the

outgoing response.

223-



PCT/IL2008/000439

WO 2009/122390

1/5

vl b1

aSvav.lv

Vel
L ISNOJSIY | 3SNOJS3Y 3SNOJS3N
3ASNOdS3Y  ISNOJS3YH dLlH
108 1os doll doll
LR A @NF,/// R
3SNOdS3Y  ISNOJS3Y
€ ASNOJSTIY € ISNOJLSTIY doil dotl
oS 10
€1S3N03y¥ € 1S3NO3H o
K o5 oS \NNP 11—
Z ISNOdSIY ¢ ISNOJSIN
108 108
Z1S3N03Y 2z 1S3IN03IY ~7ZzLl
108 10s 1S3n03Y  1S3no3y
| 1S3ND3Y | 1S3INO3Y ~doll doll
J08 TOS| KRR .. e L ] g R S
1S3n03y 1S3N03NH 1S3Nnbay
doll doll
dilH
—~Z2¢1
-€ d3ll HIANHAS ddV-Z H311L HINEAS dLIH-| {311
0ocl 0cl oLl



PCT/IL2008/000439
2/5

WO 2009/122390

gl "bi4

vey vy
)

A I ISNOdS3d |} ISNOJS3Y 9b¢=dl 9vZ=0al 3ISNOJS3d.
10s 0s 3ISNOdS3y  ISNOJSIH dllH

doll doill
PN 9cy // % zie=ql zie=ql

3SNOdS3d  3ISNOJS3Y

€ ISNOJSIY € ISNOJSTY doll doll
108 oS
€1S3N03Y € 1S3INDIY
.......... o8 08 Rl \NNV 143 %l
Z ASNOJS3Y Z AISNOJS3Y
10S oS
Z1s3no3y  z 1S3no3y zie=ql zie=ql BYAR
10s 108 1S3nd3y¥  1S3no3y
| 1S3IND3Y | 1S3INOIY doli dol
o8 05 ovz=ql 9vz=ql
1S3N03 1S3N03d 1S3ND3Y
ey doli doll T

mm<m§<mﬂmmﬁ mm>mﬁn_<-m H3i m%ﬁmatx-v 3
0EY | 0Zv OLv



WO 2009/122390 PCT/IL2008/000439

3/5

(/220» [/240 [/260

222 262

PARSER PARSER PARSER
TCP
PACKET
CHANNEL
STORAGE

STORAGE STORAGE

225

280
Vs

MATCHER

CENTRAL .
STORAGE

270



WO 2009/122390 PCT/IL2008/000439

4/5

LISTENER-WORKER

: 310
HTTP e /
REQUEST '
saL
REQUEST 1
312~ saL
RESPONSE 1
saL
REQUEST 2
HTTP saL
RESPONSE RESPONSE 2
314

Fig. 3A

LISTENER-WORKER-DISPACHER-
RECEIVER-SENDER

332— / 330
HTTP
REQUEST
REQUEST 1
saL
REQUEST 2
saL
RESPONSE 1
HTTP saL
= CSPONSE RESPONSE 2
~——338




WO 2009/122390 PCT/IL2008/000439

5/5

510 | DETECTING INCOMING AND OUTGOING DATA FLOW

1

520 SENDING THE DETECTED DATA

1

COMPARING INCOMING DATA OF ONE TIER AND
OUTGOING DATA OF THE OTHER TIER

|

540 | ASSOCIATING INCOMING REQUESTS OF ONE TIER TO
OUTGOING REQUESTS OF A NEIGHBORING TIER

1

550 DETERMINING RESOURCE CONSUMPTION OF
REQUESTS AND TRANSACTIONS

530

Fig. 4




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings

