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COMPLEX SIGNAL DECOMPOSITION AND MODELING

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S.
Provisional application serial no. 60/187,949 filed March 9, 2000.

BACKGROUND OF THE INVENTION
1. Field of the Invention

M P e P e P P

The present invention relates to process modeling and monitoring, especially
using complex or periodic signals. Moreover, the invention relates to complex
signal decomposition, modeling and classification for use in monitoring the
operational state of any machine, process or signal. More particularly, a complex
signal can be classified using the present invention for health monitoring or for

information rectification.

2. Description of the Related Art

Well known conventional modeling and analysis methods use several sensors
measuring operational system parameters to monitor equipment or processes -
generically “systems”. The related signals from sensors can be observed directly to
understand how the system is functioning. Alternatively, for unattended operation,
methods are well known for comparing real-time sensor signals against stored or
predetermined thresholds in an automated fashion. When the signals exceed those
thresholds, an exception condition or an alarm is generated, thus requiring human
intervention only when a sensor datum value exceeds a corresponding threshold.
sSuch methods focus on using the instantaneous value of sensors and other
parameters to describe the current state of a system, but do not take advantage of
time-domain information locked up in the sensor signals. It would be useful to take
advantage of such time-domain information to better monitor the system, and even

determine what operational state (among many acceptable states) the system is in.
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In the field of vibration analysis, methods are known for examining the
power spectral density function from an accelerometer or acoustic pickup to provide
means for monitoring rotating or cyclic equipment. Typically, frequencies of
Interest are examined, and thresholds (lower or upper limit) are placed on the power
level expected for these frequencies. If a threshold is pierced, this is indicative of an
unsatistactory operating condition or a developing problem. A great deal of work is
involved in identifying the frequencies of interest and expected power levels for
each particular piece of equipment that is monitored in this fashion. Problem
diagnosis is also typically very specific to the kinds of indications presented with the
appearance of the particular problem, and must be worked out specifically for each
machine. It would be useful to have an empirical data-driven way of determining
the health or the operational state of a machine based on one or more vibration or
acoustic signals.

In a different technical area, digital data transmission is frequently
accomplished - whether over a cable (e.g. Cat. 5, coaxial cable, etc.) or through radio
transmission (e.g. broadcast, digital telecommunication, an IEEE 802.11b interface) -
by modulation of an analog carrier signal. Further, to improve data transmission
rates, the data being transmitted is compressed and encoded onto the transmission
signal carrier, typically as sinusoidal waves encoding binary data in the phase and
amplitude of the wave. Presently, well-known data encoding and transmission
techniques include quadrature amplitude modulation (QAM) and discrete multitone
(DMT). Well-known methods for extracting such encoded data include frequency
filtering, signal decomposition and wavelet analysis.

However, during transmission these types of signals can suffer from
attenuation and interference due to noise or transmission media deterioration, for
example. In some cases, noise and signal degradation is sufficient to all but
obliterate the original transmitted signal, making it impossible to extract the data
encoded therein using prior art techniques. Accordingly, when noise or degradation

is high, it would be useful to be able to reconstruct a meaningful signal from the
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noisy and/or attenuated signal that is being received. This essentially amounts to
determining which of a finite set of détagrams an attenuated signal most closely
resembles. There is a need for a signal analysis method that may be applied to a
single complex signal to extract an original signal.

One empirical model-based monitoring technique known in the art is
described in U.S. Patent No. 5,764,509 to Gross et al.

In this technique, multiple sensor signals
measuring physically correlated parameters are modeled in an empirical technique
to provide estimates of those values. Discrepancies between the estimates and the
actual values from the sensors indicate a developing process or machine failure, or
sensor failure. The model generates the estimates using a reference library of
selected historic snapshots of sensor values representative of known operational
states, However, the described embodiments therein do not utilize the time domain
information in the sensor signals, and instead usually treat the data in distinct and

disconnected time-contemporaneous snapshots. It would be useful to provide the -

kind of empirical modeling of Gross et al. for use with time domain information.
What is needed is a way of using a complex signal as an input to a multivariate
modeling system such as that of Gross et al.

Where time domain information is locked up in one or more sensor or
parameter signals detected from an instrumented process or machine, what is
needed is a way to model the process or machine with the time-domain signal for
one or more acceptable and identifiable states of operation, and to do so without
investing a great deal of time and effort in coming up with first-principles equations
that approximate those states. What is further needed is a way to categorize or

classify system operational states based on a complex signal.

SUMMARY OF THE INVENTION
The present invention achieves the above needs by using an empirical

modeling engine in combination with a complex signal decomposition technique,
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extracting multivariate information from at least one single complex signal. The
extracted components are provided as individual inputs to the empirical modeling
engine. The empirical modeling engine compares the extracted component inputs
against expected values to derive more information about the actual or originating
signal or about the state of the system generating the signal.

A complex signal or parameter, such as a time varying electrical signal (e.g., a
electrocardiogram), is decomposed into multiple related signals by band notch
filtering, wavelet analysis or other means. The multiple signals essentially form
multivariate inputs to an empirical modeling engine, which generates signal
estimates in response to the inputs. The modeling engine utilizes a stored reference
set of prior known multivariate snapshots to generate the estimates. The estimates
and the actual signals are compared in a sensitive statistical test to detect deviations
between them, indicative of an unrecognized operational state. Alternatively, the
empirical modeling engine compares the multivariate input snapshot to the
snapshots in the reference set to determine which reference set snapshots are most
similar to the input. A classification associated with the stored reference snapshots
having the highest similarity is selected as the classification of the inputs, and the
operational state represented by the complex signal is thus determined from a finite
set of such known states represented in the reference set. Accordingly, not only can
operational states of a system providing the complex signal be categorized, but also
original datagrams can be reconstructed from degraded encoding carrier waves for
digital data transmission, thereby affording greater range and accuracy.

Briefly summarized, the invention is implemented in a computer or other
processor, having a memory for storing the reference set of snapshots of related
signal values, and associated classifications or states, determined from empirical
prior observations. An input means can be a data bus, messaging network or direct
data acquisition device. The processor is disposed to compute estimates and
compare them with the actual inputs to determine differences, or is alternatively

disposed to select the classification from the reference set with highest similarity to
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the inputs. Classification or difference detection can be output to a screen or data
file; used to send a paging message, email or fax; or made available to downstream
data processing applications in the same computer or another computing system

sharing a network or bus connection.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention are set forth in the
appended claims. The invention itself, however, as well as the preferred mode of
use, further objectives and advantages thereof, is best understood by reference to the
following detailed description of the embodiments in conjunction with the
accompanying drawings, wherein:

FIG.1 is a diagram of the general embodiment of the present invention for
signal decomposition and empirical modeling;

FIG. 2 is a diagram of an embodiment of the present invention for operational
deviation detection;

FIG. 3 is a diagram of an embodiment of the present invention for decoding
digital information that has been compressed and encoded onto a modulated analog
carrier wave that has been attenuated or degraded;

FIG. 4 illustrates 16 predetermined composite waveforms for conveying
encoded digital information; |

FIG. 5 is an example of a discrete wavelet transform on the Signal Number 4
shown in FIG. 4 using the Haar wavelet;

FI1G. 6 shows the 16 composite wavetorms of FIG. 4 with random additive

noise to emulate distortion in transmission;

FIG. 7 shows bar graphs indicating similarity values of the 16 signatures of

FIG. 4 as compared with the noisy signals of FIG. 6; and
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FIG. 8 is a flow diagram of the preferred embodiment signal comparison

method.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

T'urning now to the drawings and, more particularly, FIG. 1 generally shows
the preferred embodiment signal decomposition and modeling system 100 of the
present invention, which generally includes a signal receiver 108, a signal
decomposition module 102, a reference library 104 and an empirical modeling
engine 106. Signal receiver 108 serves to provide the complex signal to the signal
decomposition module 102, which converts the signal to a plurality of correlated
component signals. Empirical modeling engine 106 is disposed to receive the
plurality of inputs, and with reference to a set of data embodying classification
information or known operational information stored in reference library 104,
output an indication about the complex signal and the system it is drawn from.

System 100 has application to any complex signal, whether naturally
occurring, derived from a system, system operation or a process being carried out in
a system or otherwise generated, naturally or artificially and received at the signal
decomposition and modeling system 100 by an appropriate receiver 108. In
particular, the complex signal may be representative of a physical parameter of a
system, process or machine, including, for example, a biological process or system.
More particularly, the complex signal can be an electrocardiogram signal for
monitoring a heart; the current signature on the power draw of an electric motor; the
pressure transducer signal from a metal stamping machine; and so on. Further, the
complex signal may be a transmission carrier signal with information encoded
thereon such as from telecommunications transmission, e.g., quadrature amplitude
modulation (QAM) or discrete multitone (DMT) transmission. The above-described
examples of complex signals are provided for example only and not intended as a

limitation.
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T'he present invention is preferably embodied in computer software, which
may be contained on computer storage media, e.g. on a hard disk, a on a comipact
disk (CD), on a read only memory (ROM), on a floppy disk, on a digital versatile
disk Rom (DVD-ROM), etc. The invention can also be embodied in and carried out
by a microprocessor or microcontroller, with storage being generally available to
store a reference library. The inventive system, method and program product can be
used for monitoring a manufacturing process in real-time, or a signal received from
equipment that is instrumented to detect the complex signal which contains
information about the operational state of a monitored process or other equipment.
The invention can also be used for extracting information from a communications
transmission signal, for example, that is noisy or is severely degraded. In addition,
the present invention may be applied to evaluating states of a complex data stream,
as for example, stock market data, or other financial data. Further, the present
invention also has application to monitoring and classifying heart signals,
brainwaves or other important and complex biological signals.

A complex signal at receiver 108 is acquired from a real-time source or as a
frame stored in a data file. For example, a complex signal may be generated by an
accelerometer or an acoustic pick-up device that is monitoring a single physical
parameter of a process or of a piece of equipment. The complex waveform may
contain information on the operation of a vibrating or moving piece of equipment.
The real-time source can be a data acquisition card, or can comprise a messaging
socket executed as a protocol over a network, such as FieldBus, where the sensor
data has been converted to a network-accessible data socket by upstream processing.
The signal is digitized and decomposed in the Signal Decomposition Module 102.
The Signal Decomposition Module 102 may employ one of any of a number of
suitable signal decomposition techniques known in the art of signal processing.
Periodically, the complex signal is decomposed into individual signal components
forming a set of inputs that are sampled at synchronous observations to provide

snapshots, Yinput. Preferably wavelet analysis is used to decompose the complex
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signal. ~Alternatively, the complex signal may be decomposed using frequency
filters to extract an individual signal component within the bandpass of each
frequency filter. The signal may be digitized before or after decomposition, with
signal components being a digital result of decomposition. Thus, the output of the
signal decomposition module 102, Yinput, is multiple correlated signal components.
Each of these correlated components from ones of the frequency filters, for example,
may be represented as a coefficient for a corresponding frequency, the coefficients
for all of the frequencies forming the input vector, Yinput.

The reference library 104 generally contains prior data that is characteristic of
expected signal component values. This prior data can be distilled from data
collected off a real process or machine operating in known states. Alternatively, in
the case of rectifying degraded encoded communications signals, the prior data in
the reference library can be exemplary datagrams generated by algorithm. In either
case, the reference library comprises at least a plurality of snapshots or vectors, each
vector containing a like number of elements. Fach element is the value of a
component signal comprising the complex signal. Thus, if a complex signal is
decomposed in module 102 using frequency band filters, then a given vector could
comprise the amplitudes of each of the component frequency band signals at a
single observation of those component signals, and would have as many elements as
there are component signals. If the complex signal is decomposed using discrete
wavelet transform, the reference set vectors can be constituted a number of
alternative ways; for example by using the coefficients of a selected level of discrete
wavelet transform as the vector element values. In any case, according to the
invention, the reference library preferably comprises vectors having at least two
elements. Furthermore, all the vectors must have a same number of elements.
Finally, the elements in each vector must come from the same corresponding source,
e.g., the first element of each vector comes from a first component signal, and the

second element is always the value of the second component signal, and so on.
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I'ypically, historical signal component values (signature vectors) are
maintained in matrix form (designated D herein) in the reference library 104. Each
signature vector is a column (or row) of the history matrix D and represents a
previous decomposition of the complex signal at a selected period, i.e., is a snapshot
of the signal and contains an entry for each component comprising the complex
signal (see below for further disc:ussion). The set of elements in the matrix D are
referred to herein as a signal signature set. Snapshots (signature vectors) in the
signal signature set of reference library 104, typically, are derived from nominal
signals and so, are representative of expected complex signal states.

The empirical modeling module 106 periodically receives the decomposed
signal samples (i.e., signal components) Yinput as signal snapshots or data frames.
Each snapshot Yinput is compared to the data snapshots in the matrix D in the
reference library 104. The empirical modeling module 106 compares the current
signal snapshot Yinput received from the decomposition module 102 with reference
set snapshots for “similarity”. This measure of “similarity” is computed using a
similarity operator. According to the invention, the similarity operation for a pair of
snapshots or vectors being compared returns a value, typically between zero and
one, where zero represents dissimilarity and one represents completely identical
snapshots. According to one class of similarity operator that works on an element-

by-element basis, the measure of similarity is computed according to:

S=D ®Y ()
where D is the reference library set of snapshots, Yinput is the input snapshot, S is the
vector of all snapshot similarities (one for each comparison of the Yinput to a reference
snapshot) and the similarity operation is designated by the symbol &.

The similarity operation can be selected from a variety of known operators
that produce a measure of the similarity or numerical closeness of rows of the first

operand to columns of the second operand. The result of the operation as generally

applied to two matrix operands is a similarity matrix wherein the similarity value of
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the ith row and jth column is determined from the ith row of the first operand and
the jth column of the second operand (the operand above being a vector Yinput and
having only one column). The resulting element (i) is a measure of the sameness of
these two vectors. In the present invention, the ith row of the first operand generally
has elements corresponding to temporally related component values for a given
decomposition of the complex signal from the process or machine, and the same is
true for the jth column of the second operand. Effectively, the resulting array of
similarity measurements represents the similarity of a reference vector in one
operand to a current input vector in the other operand.

By way of example, one similarity operator that can be used compares the
two vectors (the ith row and jth column) on an element-by-element basis. Only
corresponding elements are compared, e.g., element (i,m) with element (1,7) but not
element (i,m) with element (n,j). For each such comparison, the similarity is equal to
the absolute value of the smaller of the two values divided by the larger of the two
values. Hence, if the values are identical, the similarity is equal to one, and if the
values are grossly unequal, the similarity approaches zero. When all the elemental

similarities are computed, the overall similarity of the two vectors is equal to the
average of the elemental similarities. A different statistical combination of the

elemental similarities can also be used in place of averaging, e.g., median.
Another similarity operator that can be used in the present invention is the
bounded area ratio test (BART) described in U.S. Patent No. 5,987,399.

- BART 1s a prior art similarity operator, wherein an
internal angle is used to gauge the similarity of two values. A right triangle is
formed for each signal component with the base (hypotenuse) of each right triangle
bounded by an expected magnitude range over all snapshots in the signal signature
set for the particular component. The right angle vertex is preferably located at a
point above the median or mean of the range, and at a height h that forms the right
angle, the right angle vertex being the apex of the right friangle. At each comparison
during system mom’toring, BART maps two points Xj and Xo to the base; one point

10
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representative of an expected component value and the second point is a current
component value. These two points are located on the base according to their

magnitude within the range of values in the signal signature set. An internal

comparison angle 0 is formed at the apex above the base by drawing a line to the

apex from each of the mapped points:

4 A 4 N\
/ L A
2 | _tan™

@ =tan™ -
\Xl/ \Xo/

(2)

The internal angle is the basis by which two values are compared for similarity, i.e.,
identical points result in a 0° angle and completely dissimilar points result in a right

angle. Then, the elemental similarity for the i#* element is:

g, =1-— (3)

As indicated above, the elemental similarities can be statistically averaged or
otherwise statistically treated to generate an overall similarity of a snapshot to
another snapshot, as is called for according to the invention.

Yet another class of similarity operator that can be used in the present
invention involves describing the proximity of one signature vector to another
vector in n-space, where 7 is the dimensionality of the vector of the current snapshot
of the monitored process or machine. If the proximity is comparatively close, the
similarity of the two vectors is high, whereas if the proximity is distant or large, the
similarity diminishes, ultimately vanishing. By way of example, Euclidean distance
between two vectors can be used to determine similarity. In a complex signal
decomposed into 20 components for example, the Euclidean distance in 20-
dimensional space between the currently monitored snapshot, comprising a 20-
element vector, and each vector in the reference library provides a measure of

similarity, as shown:

11
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= !
|
QL

]+ S

| - -

wherein X is the current snapshot, and d is a vector from the reference library, and A
and c are user-selectable constants.

It should be understood that, although specific similarity operators are
described herein, any general similarity operator may be used in the empirical
modeling engine of the present invention. The output of the empirical modeling
engine 106 of FIG. 1 can be an indication based on the similarity measures generated
for each comparison of a reference library vector to the input vector. A number of
alternatives are discussed below.

Turning now to FIG. 2, an embodiment of the invention is shown for use in
monitoring the operation of a process or machine, for detection of incipient failures,
sensor failure, or operational state change. Items identical to those of FIG. 1 are
labeled identically. The empirical modeling engine 106 generates a snapshot
Yexpected, Of estimated or expected values in response to the input snapshot Yinpu,
based on the similarity measures with the reference library 104 as discussed below.
The current decomposed snapshot Yinput is subtracted from the estimate Yexpected in
an adder 110 to yield component residual values. When the components of the
decomposed snapshot Yinput and the expected snapshot Yexpected are close, the
residuals are very nearly zero, indicating no incipient failures or state changes.
When they are different, the residuals are other than zero. Using a sophisticated
test, this difference can be ascertained even though the residuals are within the noise
band of the system. A test module 112 is provided to receive and test the residuals
to determine at the earliest determinable observation whether a deviation is
evidenced in the residuals or not. There is generally one residual for each

component signal in the model. An indication of difference between the expected

12
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values and the actual values of the component signals points to a deviation in the
Operation of the monitored process or machine as measured using the complex
signal input to receiver 108. Finally, a diagnostic lookup table 114 can optionally be
provided to output a likely failure mode is response to the pattern or deviations
detected by the test module 112 in the residuals.

I'he empirical modeling engine 106 determines expected values of the

complex signal components according to the following equation:

4 Expected =L W (5)
where W is a weight vector having as many elements N as there are columns (or

snapshots) in the reference library D 104, generated by:

N

SIS (6)
D W ()
\ /=1 /
~ —T — ¥Vl 7 —
E = (D D ) ¢ (D y inpuz) (7)

where the similarity operation is represented by the circle with the cross-hatch
inside it. The superscript “T” here represents the transpose of the matrix, and the
inverse of the matrix or resulting array is represented by the superscript “-1”.
Importantly, there must be row correspondence to like signal components for the
rows In D, Yinput and Yexpected. That is, if the first row of the reference matrix D
corresponds to values for a first component of the decomposed complex signal, the
first element of Yinput must also be the current value (if operating in real-time) of that
same first component.

Test module 112 can implement a comparison of the residuals to selected
thresholds to determine when an alert should be output of a deviation in the
complex signal from recognized states stored in the reference library. Alternatively,

a statistical test, preterably the sequential probability ratio test (SPRT) can be used to

13



10

15

20

20

CA 02401685 2002-08-23
WO 01/67623 PCT/US01/07490

determine when a deviation has occurred. The basic approach of the SPRT
technique is to analyze successive observations of a sampled parameter. A sequence
of sampled differences between the generated expected value and the actual value
for a monitored component signal should be distributed according to some kind of
distribution function around a mean of zero. Typically, this will be a Gaussian
distribution, but it may be a different distribution, as for example a binomial
distribution for a parameter that takes on only two discrete values (this can be
common In telecommunications and networking machines and processes). Then,
with each observation, a test statistic is calculated and compared to one or more
decision limits or thresholds. The SPRT test statistic generally is the likelihood ratio
In, which is the ratio of the probability that a hypothesis Hj is true to the probability
that a hypothesis Hpo is true: '

_ (y19y27"'9yn H1)
| (y19y29'“9yn Ho)

where Yr are the individual observations and Hy are the probability distributions for

3 (8)

those hypotheses. This general SPRT test ratio can be compared to a decision
threshold to reach a decision with any observation. For example, if the outcome is
ereater than 0.80, then decide H; is the case, if less than 0.20 then decide Hp is the
case, and if in between then make no decision.

T'he SPRT test can be applied to various statistical measures of the respective
distributions. Thus, for a Gaussian distribution, a first SPRT test can be applied to
the mean and a second SPRT test can be applied to the variance. For example, there
can be a positive mean test and a negative mean test for data such as residuals that
should distribute around zero. The positive mean test involves the ratio of the
likelihood that a sequence of values belongs to a distribution Ho around zero, versus
belonging to a distribution Hi around a positive value, typically the one standard
deviation above zero. The negative mean test is similar, except Hi is around zero

minus one standard deviation. Furthermore, the variance SPRT test can be to test
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whether the sequence of values belongs to a first distribution Ho having a known
variance, or a second distribution H» having a variance equal to a multiple of the
known variance.

For residuals derived for component signals from a complex signal behaving
as expected, the mean is zero, and the variance can be determined. Then in run-time

monitoring mode, for the mean SPRT test, the likelihood that Hp is true (mean is

zero and variance is ¢2) is given by:

1 20'2 Zyk

L(yl9y27"'7yn Ho)z(z;z.o_)”/ze- k=l _ (9)

and similarly, for Hi, where the mean is M (typically one standard deviation below

or above zero, using the variance determined for the residuals from normal

operation) and the variance is again 62 (variance is assumed the same):

( n A

1
| 1 Iy Z}J’A “ZZJ’kM+kZM2
L(y15y23"'9yn Hl): (2%0-)},2/2 — € : A= B - (10)

The ratio In from equations 9 and 10 then becomes:

B ]

] 2022M MR )__ (11)
[ =e

A SPRT statistic can be defined for the mean test to be the exponent in equation 11:

SPRTmean o : ZM(M Q’yk) (12)
20' k=1

The SPRT test is advantageous because a user-selectable false alarm probabﬂity ot
and a missed alarm probability  can provide thresholds against with SPRTmean can
be tested to produce a decision:

1. If SPRTmean < In(B/(1-a)), then accept hypothesis Hy as true;

2. It SPRTmean = In((1-B)/ ), then accept hypothesis H1 as true; and
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3. If In(B/(1-a)) < SPRTmean < In((1-B)/ ), then make no decision and continue
sampling.

For the variance SPRT test, the problem is to decide between two hypotheses: Ha

where the residual forms a Gaussian probability density function with a mean of

zero and a variance of Vo2 and Ho where the residual forms a Gaussian probability

density function with a mean of zero and a variance of 62. The likelihood that Hb is

true 1s given by:

L 2._
1 P 2Zyk
e e- 2Vo k=1 | (13)
(27er/ 20')n

The ratio In is then provided for the variance SPRT test as the ratio of equation 13

L(yl,y29-°'9yn HZ):

over equation 9, to provide:

1 (1 |
Vi | =
o e () (14
[ =V "¢ 7 = :
and the SPRT statistic for the variance test is then:
1 4 V — 1\ L 2 InV
SPR variance 21 Z.y koo (15)
20' \. V k=1 2

Thereafter, the above tests (1) through (3) can be applied as above:

1. 1f SPRTvariance < In(B/ (1-ct)), then accept hypothesis Ho as true;

2. If SPRTvariance = In((1-p)/ o), then accept hypothesis H» as true; and

3. It In(B/(1-a)) < SPRTvariance < In((1-B)/ ), then make no decision and continue

sampling.

Each snapshot of residuals (one residual “signal” per component signal from the
complex signal) that is passed to the SPRT test module, can have SPRT test decisions
for positive mean, negative mean, and variance for each parameter in the snapshot.
In an empirical model-based monitoring system according to the present invention,
any such SPRT test on any such parameter that results in a hypothesis other than Hp

being accepted as true is effectively an alert on that parameter. Of course, it lies
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within the scope of the invention for logic to be inserted between the SPRT tests and
the output alerts, such that a combination of a non-Hy result is required for both the
mean and variance SPRT tests in order for the alert to be generated for the

parameter, or some other such rule.

The output of the SPRT test module 112 will represent a decision for each
decomposed signal input, as to whether the estimate is different or the same. These
decisions, in turn, can be used to diagnose the state of the process or equipment
being monitored. The occurrence of some difference decisions in conjunction with
other sameness decisions can be used as an indicator of likely future machine health
or process states. The SPRT decisions can be used to index into a diagnostic lookup
database, automatically diagnosing the condition of the process or equipment being
monitored.

Generally, any statistical hypothesis test as known by those skilled in the
statistical arts can be substituted for the above-described application of SPRT. In
addition, decisioning methods known in the art such as fuzzy logic sets and neural
networks can be used to render a decision with regard to the sameness or difference
of the estimates and the actual values.

In a setup and implementation phase for the embodiment of the invention
shown in FIG. 2, nominal data from the complex signal pick-up is collected prior to
monitoring the system. That nominal data is collected under expected operating
conditions for the process or equipment and at known, acceptable or desired
operating states. The nominal data is decomposed using the same decomposition
method that will be used during monitoring, to provide periodically sampled signal
component values as signature vectors in the reference library. FEach vector
represents an observation or snapshot, that is, a time-correlated set of values, one
value from each of the decomposed components. Thus, for example, if a complex
waveform such as an electrical current signal from a monitored electrical motor is
analyzed using the invention, it may be decomposed using frequency filters to

provide three frequency-range components, say <568Hz, 58Hz to 62HZ, and >62Hz,
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for each of two polarities, providing six inputs to the model. Then the reference
library vectors comprise six-element vectors, each element being a signal amplitude
at a time-correlated moment from each of the six frequency band component signals.

The collected nominal data is not used in its entirety in the reference library.
Rather, the data is distilled down to a representative set sufficient to characterize the
population of such snapshots. One method for doing this is described in the
atorementioned U.S. Patent No. 5,764,509, and is described therein as Min-Max.
Essentially, vectors are selected for inclusion in the reference library if they contain a
minimum or a maximum value for any one of the vector elements, across the entire
nominal data set. This results in a set of vectors enumerated to no more than twice
the number of vector elements. This group of vectors can be augmented using any
number of methods with further vectors from the nominal data set.

Figure 3 shows another application of the present invention wherein the
monitoring system 120 decodes encoded data from a noisy communications signal,
e.g., a QAM or DMT signal. Elements identical to the system of Figure 1 are labeled
identically. For such a communications signal, the originally transmitted signal
comprises typically a set of superimposed sinusoidal waves, the amplitude and
period of which determines the data bits encoded in the carrier. Typically, a specific
data word length is encoded together in these superimposed waves, such that
decoding the waves at the receiving end results in a data word of the same bit
length, e.g., 16 bits. The total “vocabulary” of superimposed waves that the carrier
can take on is thus known ahead of time, and constitutes a finite set of states or
datagrams (e.g., 16 for a simple QAM). Any deviation from this is noise or
degradation present in the transmission line. The embodiment of FIG. 3
advantageously provides a computationally efficient way of finding the datagram in
the reference library that is most similar to the transmitted signal, and thus most
likely the originally intended datagram. So, in this embodiment, instead of directly
decoding the received noisy communications signal to extract encoded data, as is

done in the art, the noisy signal is compared in the empirical modeling engine 106
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with signal signature vectors from reference library 104. The signature vector that is
most closely matched by the noisy input signal is identified and the matching signal
signature set vector is decoded based on that comparison. The matched vector may

be decoded using a look up table 122, for example, and output as the decoded digital
result 124.

The output 124 can be the literal data values from the reference library or an
index into the signal signature set; or as shown in this example, the output 124 can
be an index selecting a decoded value at a location in the lookup table 122. In this
example, the similarity operation is carried out in the empirical modeling module
106 which compares input snapshots decomposed from the noisy, attenuated or
degraded complex input signal with signal signature set snapshots, i.e., signature
vectors. For each input snapshot, this comparison identifies the one reference
library snapshot that has the greatest measure of similarity to the current state of the
input signal, ie, to the current input snapshot, using the similarity operator
described above. A key value is associated with each of the signature vectors and is
linked to a lookup table, thus identifying a corresponding decoded digital value
with each signature vector. The digital value corresponding to the original signal is
output from the lookup table 122 for each match.

T'o implement the system to be used to extract data from encoded information
transmission, e.g. QAM or DMT, the reference library does not need to be populated
from empirical data, as is the case for process or machine monitoring. Instead,
because the original finite set of datagrams is known ahead of time, the reference
library can be constructed from these directly.

Figure 4 shows 16 expected signal states (e.g., encoded transmission signals)
conveying information using QAM, for example, each state corresponding to a
different one of a four bit digital code. These 16 expected states or signatures are
sampled and decomposed into component signals during a signature
characterization phase using wavelet analysis, for example. FEach state is

decomposed into wavelet coefficients that form what are referred to as Detail Levels.
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Detail level 1 includes 64 wavelet coefficients; Detail level 2 includes 32; Detail Level
3 includes 16; Detail Level 4 includes 8; and Detail Level 5 includes 4. The wavelet
coetticients from Detail Levels 3, 4, and 5 and the Approximation Level 5 yield 32
wavelet coefficients (16, 8, 4 and 4, respectively) and provide sufficient information
for characterizing each of the 16 signatures. Thus, the reference library for decoding
these datagrams can comprise 16 vectors, each having 32 elements, corresponding to
the values of the 32 wavelet coefficients. In operation, the transmission signal (the
complex signal being analyzed) is windowed and an appropriate window
representing a datagram is decomposed using the same discrete wavelet transform
into detail level 3, 4 and 5 and the approximation level 5 to provide a vector of 32
elements. This input vector is compared using the similarity operator in the
empirical modeling engine to each of the 16 reference library vectors, and the
highest similarity is designated the intended datagram.

FIG. 5 shows an example of discrete wavelet transform of the Signal Number
4 of FIG. 4. In this example, detail levels 1 and 2 are shown, but are not included in
the signal signature set or similarity analysis, so that a vector formed to represent
the Signal Number 4 in the reference library will contain 32 elements shown in FIG.
5: 16 from the detail level 3, 8 from detail level 4, four from detail level 4, and four
from approximation level 5. However, it is understood that the unused wavelet
coefficients from detail levels 1 and 2 could be included if desired. Methods are
known in the art for developing a full wavelet packet decomposition tree for a
complex signal, and ascertaining which detail levels and which approximations
contain significant information. These prior art methods can be used in conjunction
with the current invention to determine the composition of the vectors that make up
the reference library and the input snapshot. The empirical modeling engine is able
to render a similarity score for each comparison regardless of the wavelet
decomposition used, as long as just one wavelet analysis is selected for processing

the input and the reference library.
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An example of a noisy or distorted version of each signature from FIG. 4 is
shown in FIG. 6. Random additive noise has been added to the signatures in FIG. 6,
however the signals have not been attenuated. The decomposition module 102
receives these distorted complex signals ~ each encoded with one of the 16
signatures - and decomposes them. The decomposition module 102 may be
disposed to first identify a window on the complex signal for decomposition,
particularly when discrete datagrams are being carried on an essentially continuous
carrier wave. A variety of methods are known in the telecommunications arts for
achieving this windowing, such as including a start pulse and stop pulse of
particular frequency and/or amplitude to identify the window. As an alternative,
the decomposition module 102 can continuously decompose the carrier signal over a
shifting window of fixed width, and the decomposed components of each such
shifted window can be processed for similarity by the empirical modeling engine
106, such that only similarities above a minimum threshold result in identification of
a datagram. Other methods known in the art may be used in the present invention
for windowing.

T'he real-time noisy complex signal is periodically decomposed (according to
the windowing method chosen) into detail level components to produce a current
snapshot of 32 wavelet coefficients, again dispensing with detail levels 1 and 2. The
empirical modeling engine 106 compares the detail level components against stored
signal signature vectors. So, the empirical modeling engine 106 accepts each
snapshot, i.e., the wavelet coefficients in detail levels 3, 4, 5 and approximation level
5, and performs a similarity operation for that snapshot versus each of the 16
signature vectors in the reference library signal signature set. More specifically, in
each signature comparison, a pair of sets of 32 wavelet coefficients (one signal
signature vector and the decomposed snapshot from the actual input) are compared,
comparing each corresponding element in the pair. The comparison identifies the
one signature vector of the 16 in the signature set that most closely matches the

input snapshot. Then, the empirical modeling engine 106 selects the four-bit code
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corresponding to the matched signature vector from the lookup table 122 and

outputs that code as a digital output 124.

50, for example, using the bounded angle ratio test (BART) for the
comparison, a minimum and a maximum value at each end of a right triangle
hypotenuse defines the range found for a given coefficient across all 16 signatures in
the reference library. The input signal coefficients are compared for similarity,
mapping each input coefficient and a corresponding signature vector coefficient
along the particular hypotenuse according to the value of the coefficient within the
range. Line segments are drawn from each mapped point to the apex. The internal
angle between the drawn line segments is less than or equal to ninety degrees. That
Internal angle is normalized to 90 degrees and, the normalized result is subtracted
trom one to yield a similarity value between one and zero. That similarity value is a
measure of similarity for the pair of corresponding elements, one (1) indicating
identity and zero (0) indicating dissimilarity. The similarity values for all 32
components (i.e. wavelet coefficients) in each pair are averaged to provide an overall
measure of similarity between the signatures.

lurning to FIG. 7, results are shown of similarity measurements between the
noisy signals of FIG. 6 and the original datagrams of FIG. 4. Each of the 16 graphs
corresponds to one of the noise-distorted signal graphs in FIG. 6. Within each graph
are sixteen bars comprising the bar chart, one bar for each of the 16 model signals
from FIG. 4 that make up the reference library. Each bar represents the vector
similarity value of a reference library datagram to the particular noisy datagram
from FIG. 6 for that chart. In each comparison, one reference library signature is
identified as being closest to the noisy input vector. The match is indicated by an
asterisk on the bar having the highest similarity value. In each of the 16
comparisons, the preferred embodiment system automatically scored the correct
noisy input signal as being the most similar to the original reference library

signature.
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Accordingly, the system of the present invention can accurately identify the
correct reference signature from a noisy input signature, thereby, acting as a
superior filter for transmission noise to facilitate extracting correct information
content from a degraded carrier signal. The reference library may also have
associated with each vector an index for directing a lookup into a lookup table, so
that encoded digital information may be automatically extracted and decoded with a
much higher degree of accuracy than has been heretofore achieved.

FIG. 8 is a flow diagram 130 showing the steps of the preferred embodiment
of the present invention. First in step 132, a signal is received and passed to the
decomposer. Then, in step 134, the signal is decomposed into components using, for
example, wavelet decomposition or signal filters. Next, in step 136, the decomposed
signal components are compared against the signal signature set. In step 138, a
check is made to determine if additional steps are to be taken or if additional
analysis is to be done on the comparison results and, if not, in step 140 the
comparison result is output.

If additional steps are to be taken on the comparison result, then, in step 142 a
check is made to determine whether data is to be extracted from the signal, e.g.,
communication data. If it is determined that the signal contains encoded data (e.g.
the signal is a data transmission signal), then, in step 144, the signal signature vector
closest to the input snapshot is identified. In step 146 the lookup table is searched
for a digital value corresponding to the matching vector and, that corresponding
digital value is passed to the output.

If the signal is not carrying encoded data but, instead is a signal from a sensor
monitoring a system, then, in step 150, a G matrix is determined, being equivalent to

the first term from equation 7 above:

ZIZ = -(_?_ﬁl o (BT X ;mpw) (16)

G=(D' ®D) @7
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It should be noted that the G matrix may be generated prior to receiving any signal,
then stored locally, retrieved for use in step 150 and made available for subsequent
system analysis. In step 152 the expected signal is generated by multiplying the G
matrix with the similarity values vector, as per equation 5 above. In step 154 the
difference between the expected signal and the input signal is calculated. In step 156
SPRT analysis is applied to the calculated result from step 154. Finally, in step 158,
an appropriate diagnostic is run on the SPRT result.

It is contemplated that the present invention has wide application in a
number of fields, and may take many physical embodiments. In any process control
setting, the invention can embody a computer connected to a network or the process
control system, wherein the complex signal would be received by means of a data
acquisition card or a network card, and processed in the computer processor
according to software instructions in memory. The output of the computer
embodiment can be supplied to the screen of the computer, or made available via a
network connection to either downstream processing, such as in the control system
itself, or to remote viewing, as in a web browser on another computer. In another
embodiment, the invention comprises a hardware device specifically for analyzing
the complex signhal, which may be a heartbeat or an electric motor current. In this
embodiment, a processor is also typically provided in the device, along with
memory for storing the data and the model or reference data. The devicé then
preferably includes the sensor or set of sensors and their electrical signal connections
for detecting the complex signal in question. In an on-board embodiment, the
invention may comprise a set of microprocessor instructions that are part of a
broader digital signal processor (DSP) instruction set running a DSP embedded in a
machine, such as an automobile or an electric motor. In this case, receipt of the
complex signal is typically already provided for in the embedded DSP as an existing
sensor, such as a voltmeter or the like. Finally, the invention can also be practiced
off-line as a program in a standard desktop or workstation environment, where the .

complex signal is provided as a data file stored on media. Generally across these
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embodiments, the signal decomposition module can be a software-driven processor,
a DSP or other microprocessor dedicated to the task, an application-specific
integrated circuit (ASIC) customized to decompose in hardware, or even an
arrangement of simple circuit elements (such as filters) that decompose the complex
signal in its analog state, prior to any digitization for processing.

It should be appreciated that a wide range of changes and modifications may
be made to the embodiments of the invention as described herein. Thus, it is
intended that the foregoing detailed description be regarded as illustrative rather
than limiting and that the following claims, including all equivalents, are intended

to define the scope of the invention.
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What is claimed is

1. An apparatus for monitoring the operating condition of a system,
comprising:

sensor means for acquiring a time-varying signal from a single sensor and
characterizing operation of the system;

means for decomposing said time-varying signal into a pluralty of component
signhals, each component signal at least partially representing the same time period
as all of the other component signals, the component signals providing a plurality of
actual component values, at least some of the actual component values from
different component signals representing the same moment in time, the plurality of
actual component values forming an actual snapshot;

a memory for storing a plurahty of reference snapshots of component values
for known operating conditions; and

processor means responsive to the decomposing means, disposed to
generate estimates of the component values using an example-based multivariate
empirical modeling engine with reference to the actual component values in each
reference snapshot in the memory, and further disposed to generate residual values
by differencing the component values and the estimates thereof, for determination of

deviating operating conditions of the system.

2. An apparatus according to claim 1, wherein said decomposing means
uses wavelet analysis to decompose the time-varying signal into coefficients to

provide said component values.

3. An apparatus according to claim 1, wherein said decomposing means
generates a measure of power at each of a plurality of frequency ranges for the time-

varying signal to provide said component values.

4. An apparatus according to claim 1, wherein said processor means
further compares at least one said residual value to a threshoid to determine

deviating operating conditions of the system.
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5. An apparatus according to claim 1, wherein said processor means
further performs a sequential probability ratio test on successive values of at least

one said residual value to determine deviating operating conditions of the system.

0. An apparatus according to claim 1, wherein said sensor means

measures vibration of said system.

7. An apparatus according to claim 1, wherein said sensor means

measures acoustic energy given off by said system.

8. An apparatus according to clam 1, wherein said sensor means

measures electric current used in said system.

2 An apparatus according to claim 1, wheremn said sensor means

measures an electrocardiogram, and said system 1s a heart.

10. An apparatus according to claim 1, wherein said example-based
multivariate empirical modeling engine employs a similarity operation in the

generation of estimates.

11.  An apparatus according to claim 10, wherein said example-based
multivariate empirical modeling engine generates estimates y(expected) according

to:

Y expeciea = D (D ®D)" (D" @Y 1)

where y(input) is a vector of said plurality of components, D is a matrix of said

reference snapshots, and ® Is said similarity operation.

12.  An apparatus according to claim 11, further comprising a diagnostic
unit responsive to deviation determinations for generating a diagnosis of a condition

in the operation of the monitored system.
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13. A method for monitoring the operating condition of a system,
comprising the steps of:
acquiring a time-varying signal from a singie sensor characterizing operation

of the system;

periodically extracting multivariate observations comprising components
derived from said time-varying signal, each component relating to a component
sighal, each component signal at least partially representing the same moment in
time as all of the other component signals acquired from the time-carrying signal;

generating estimates for at least one of the extracted components in a said
observation, using an example-based multivariate empirical modeling engine with
reference to a stored library of multivariate observations comprised of expected
component values characteristic of acceptable operation of said system; and

differencing at least one of said component estimates with its corresponding

extracted component of said observation to produce at least one residual for

determination of deviating operating conditions of said system.

14. A method according to claim 13, wherein said extracting step uses
wavelet analysis to derive coefficients from the time-varying signal as said

components.
15. A method according to claim 13, wherein said extracting step
comprises generating a measure of power at each of a plurality of frequency ranges

for the time-varying signal to derive said components.

16. A method according to clam 13, further comprising the step of

determining whether said residual exceeds a threshold.

17. A method according to claim 13, further comprising the step of

performing a sequential probability ratio test on said residual.
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18. A method according to claim 13, wherein said time-varying signal i1s a

measure of vibration of said system.

19. A method according to claim 13, wherein sald time-varying signal Is a

measure of acoustic energy given off by said system.

20. A method according to claim 13, wherein said time-varying signal 1s a

measure of electric current used in said system.

21. A method according to claim 13, wherein said time-varying signal is an

electrocardiogram, and said system is a heart.

22. A method according to clam 13, wherein said example-based
multivariate empirical modeling engine employs a similarity operation in the

generating estimates.

23. A method according to claim 22, wherein said example-based
multivariate empirical modehng engine generates estimates y(expected) according

to:

Yespectea = D" (D7 @D) " (D" ®Y0,)

where y(input) i1s a vector of said plurality of components, D is a matrix of said

reference snapshots, and ® is said similarity operation.

24. A method according to claim 23, further comprising the step of

diagnosing a state of sald monitored system responsive to said differencing step.
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