An impedance circuit (10) comprises an input terminal (11), a first and a second capacitive arrangement (12, 13) as well as an output terminal (14) which is coupled to the input terminal (11) by a network (17, 21) which comprises the first and the second capacitive arrangement (12, 13). The first capacitive arrangement (12) comprises a varactor circuit (40) having a varactor (41) and at least one series circuit (47, 48, 49). The at least one series circuit (47, 48, 49) comprises a capacitor (50, 52, 54) and a switch (51, 53, 55) in series connection and is coupled parallel to the varactor circuit (40). The second capacitive arrangement (13) comprises an additional capacitor (15).
Impedance circuit and method for signal transformation

The present invention relates to an impedance circuit and a method for signal transformation.

Impedance circuits may comprise a tunable capacitor so that the characteristics of the impedance circuit can be controlled by a control signal.

It is an object of the invention to provide an impedance circuit and a method for signal transformation with a high flexibility for tuning the characteristic of the impedance circuit and of the signal transformation, respectively.

This object is achieved by an impedance circuit according to claim 1 and a method for signal transformation according to claim 14. Embodiments of the impedance circuit are given in dependent claims.

An impedance circuit comprises an input terminal, a first and a second capacitive arrangement as well as an output terminal. The first capacitive arrangement comprises a varactor circuit having a varactor and at least one series
circuit having a capacitor and a switch in series connection. The at least one series circuit is coupled in parallel to the varactor circuit. The second capacitive arrangement comprises an additional capacitor. Moreover, the input terminal is coupled to the output terminal by a network. The first and the second capacitive arrangement are parts of the network.

It is an advantage of the impedance circuit that at least two alternatives for tuning the impedance characteristics are provided. The varactor circuit allows a continuous tuning of the capacitance value of the first capacitive arrangement. The series circuit of the capacitor and the switch provides a digital method for changing the capacitance value.

In a preferred embodiment, the varactor circuit and the at least one series circuit are separated concerning their control sides. A control terminal of the switch of the at least one series circuit is not directly connected to a control terminal of the varactor circuit.

In an embodiment, the impedance circuit additionally comprises a passive component. The network comprises the first and the second capacitive arrangement as well as the passive component. The passive component may have an element out of a group comprising an inductor, a resistor and a capacitor.

In an embodiment, the network is realized as a parallel circuit, a star network or a delta network. Thus, the impedance circuit can be implemented as a high pass, low pass or band pass filter.
In a further development, the second capacitive arrangement comprises an additional varactor circuit having an additional varactor and at least one additional series circuit. The at least one additional series circuit comprises the additional capacitor and an additional switch in series connection. The at least one additional series circuit is coupled in parallel to the additional varactor circuit. Thus, the capacitance value of the second capacitive arrangement can advantageously be controlled. It is an advantage of an impedance circuit comprising a first and a second capacitive arrangement which both can be tuned that a flexible matching can be achieved.

A semiconductor body can comprise the impedance circuit. The impedance circuit can be realized on a first surface of exactly one semiconductor body. The impedance circuit can be fabricated in a semiconductor technology such as gallium arsenide hetero junction bipolar transistor technology, abbreviated GaAsHBT, gallium arsenide pseudo-morphic high-electron mobility transistor technology, abbreviated GaAspHEMT, gallium arsenide bipolar field-effect transistor technology, abbreviated GaAsBiFET, silicon bipolar transistor technology, silicon complimentary metal oxide semiconductor field-effect transistor technology, abbreviated silicon CMOS FET, silicon bipolar complimentary metal oxide semiconductor technology, abbreviated silicon BiCMOS, silicon-on-insulator technology, abbreviated SOI, or a combination of these technologies. The impedance circuit is designed so that the influence of process variations of a semiconductor process on the characteristic of the impedance circuit is low.

The impedance circuit may be part of a transmitter or a receiver chain.
In an embodiment, a communication circuit comprises a power amplifier, an antenna and the impedance circuit. The impedance circuit can be advantageously designed so that the antenna matches the power amplifier. It is an advantage of the impedance circuit that it can reduce insertion loss and generation of spurious signals such as harmonic signals, intermodulation signals and noise.

In an alternative embodiment, a phase shifter comprises the impedance circuit.

A system comprising the impedance circuit can quickly be adjusted or switched, since the capacitance value of the impedance circuit can be controlled by an analog signal.

In an alternative embodiment, an oscillator comprises the impedance circuit. The impedance circuit is advantageously tuned in such a way that an oscillation frequency of the oscillator is changed in accordance with the tunable characteristic of the impedance circuit. By the impedance circuit, the oscillator is tunable in a certain frequency range and the tuning slope is approximately constant and monotonic. The impedance circuit can be designed to tune an oscillator frequency in a closed loop provided by a phase-locked loop. The impedance circuit is realized so that a quality factor of the impedance circuit is high. This results in a low value of phase noise in the oscillator.

In an embodiment, a method for signal transformation comprises providing an input signal to an input terminal of an impedance circuit. The impedance circuit has a network comprising a first and a second capacitive arrangement. The first capacitive arrangement comprises a varactor circuit.
having a varactor and at least one series circuit. The at least one series circuit comprises a capacitor and a switch in series connection and is coupled in parallel to the varactor circuit. The second capacitive arrangement comprises an additional capacitor. A first signal is supplied to the varactor circuit and a second signal is applied to the at least one series circuit. An output signal is provided at an output terminal of the impedance circuit which is coupled to the input terminal of the impedance circuit by the network.

In an embodiment, the parallel coupling of the varactor circuit and the at least one series circuit means that an AC voltage which lies across the varactor circuit also lies across the at least one series circuit. However, the varactor circuit and the at least one series circuit are controlled separately.

In one embodiment, the impedance circuit is designed for impedance matching. A signal source is connected to the input terminal of the impedance circuit. An electric load is coupled to the output terminal of the impedance circuit. The impedance circuit can provide an impedance matching of the output impedance of the signal source to the input impedance of the electric load. The impedance circuit can be advantageously designed such that a power transfer from the impedance source to the electric load is maximized. This can be achieved even in case of arbitrary complex impedances of the signal source and the electric load in a predetermined frequency range. Reflection from the load can be minimized by the impedance circuit.

In an embodiment, the impedance circuit is designed for impedance switching. The signal source provides a input
voltage to the input terminal of the impedance circuit. An output voltage is tapped off at the output terminal. The impedance circuit is implemented so that a voltage transfer from the input terminal to the output terminal is maximized.

The invention is described in more detail by referring to the embodiments and relating figures. Devices with the same structure or with the same effect are denoted by equal reference numerals. A description of a part of a circuit or a device having the same function in different figures will not be repeated in each of the following figures.

Figures 1A to 1D show exemplary impedance circuits according to the invention,

Figure 2 shows an exemplary first capacitive arrangement according to the invention,

Figures 3A to 3D show exemplary varactor circuits according to the invention,

Figures 4A and 4B show exemplary capacitance characteristics,

Figure 5 shows a communication circuit according to the invention,

Figures 6A and 6B show exemplary control circuits according to the invention,
Figure 7 shows an exemplary error correction circuit according to the invention and

Figures 8A-8D and 9A-9D show exemplary signals of the first capacitive arrangement.

Figure 1A shows an exemplary impedance circuit. The impedance circuit 10 comprises an input terminal 11, a first and a second capacitive arrangement 12, 13 and an output terminal 14. The first and the second capacitive arrangement 12, 13 couples the input terminal 11 to the output terminal 14. The impedance circuit 10 has a network in form of a parallel circuit of the first and the second capacitive arrangement 12, 13. The first capacitive arrangement 12 is tunable. The first capacitive arrangement 12 has a first and a second terminal 42, 43. The first terminal 42 is connected to the input terminal. The second terminal 43 is connected to the output terminal 14. The second capacitive arrangement 13 comprises an additional capacitor 15. An input signal SIN is provided to the input terminal 11. An output signal SOUT is tapped off at the output terminal 14. The output signal SOUT is a function of the input signal SIN and the impedance circuit 10.

Figure 1B shows a further exemplary embodiment of the impedance circuit. The impedance circuit 10 further comprises a passive component 16. The passive component 16 comprises an inductor 20. The passive component 16, the first and the second capacitive arrangements 12, 13 are arranged in a delta network 17. The delta network 17 has three paths and three terminals. A first path of the delta network 17 comprises the first capacitive arrangement 12 and a second path comprises
the second capacitive arrangement 13. The second capacitive arrangement 13 is realized as a tunable capacitor. Moreover, a third path comprises the passive component 16. The input terminal 11 is implemented as a first terminal of the delta network 17. The output terminal 14 is realized as a second terminal of the delta network 17. The first capacitive arrangement 12 couples the input terminal 11 to a further terminal 18 that is a third terminal of the delta network 17. The second terminal 43 is connected to the further terminal 18. The second capacitive arrangement 13 couples the output terminal 14 to the further terminal 18. The passive component 16 couples the input terminal 11 to the output terminal 14. The further terminal 18 is connected to a reference potential terminal 19 or to a supply voltage terminal.

The impedance circuit 10 is designed as a low pass filter. The filter characteristic can be tuned by tuning the first and the second capacitive arrangement 12, 13. The input signal SIN and the output signal SOUT are AC signals such as AC voltages that are related to the reference potential terminal 18. The output signal SOUT is provided as a filtered signal of the input signal SIN. The impedance circuit 10 advantageously attenuates signals of undesired harmonic frequencies.

Figure 1C shows an exemplary impedance circuit which is a further development of the impedance circuits shown in Figures 1A and 1B. The impedance circuit 10' is arranged in a star network 21. The star network 21 comprises three paths which couple a central node 22 to three terminals. A first path of the star network 23 comprises the first capacitive arrangement 12 and a second path comprises the second capacitive arrangement 13.
the passive component 16. A first terminal of the star network 23 is the input terminal 11 of the impedance circuit 10 and a second terminal is the output terminal 14. A further terminal 18 of the star network 21 is connected to the reference potential terminal 19 or a supply voltage terminal. Thus, the input terminal 11 is coupled to the central node 22 via the first capacitive arrangement 12. The second terminal 43 is connected to the central node 22. The central node 22 is coupled to the output terminal 14 via the second capacitive arrangement 13. The central node 22 is connected to the further terminal 18 via the passive component 16. The impedance circuit 10' is designed as a high pass filter.

In alternative embodiments of Figures 1A to 1C, the second terminal 43 is connected to the input terminal 11. In Figure 1A, the first terminal 42 is connected to the output terminal 14. In Figure 1B, the first terminal 42 is then connected to the further node 18. Moreover in Figure 1C, the first terminal 42 is connected to the central node 22.

Figure 1D shows a further exemplary impedance circuit 10''. The impedance circuit 10'' comprises at least a further capacitive arrangement 23, at least a further passive component 24, 25, at least a further input terminal 26, 27 and at least a further output terminal 28, 29. The impedance circuit 10 of Figure 1A to ID can be implemented in a tunable matching network, a tunable phase shifter or an oscillator with a tunable frequency.

Figure 2 shows an exemplary first capacitive arrangement which can be used in the impedance circuit shown in Figures 1A to ID. The second capacitive arrangement 13 of Figures 1A to ID can also be implemented such as the first capacitive
arrangement 12 shown in Figure 2. The first capacitive
arrangement 12 comprises a varactor circuit 40 that has a
varactor 41. A blocking capacitor 44 of the varactor circuit
40 is connected in series to the varactor 41. The series
circuit of the varactor 41 and the blocking capacitor 44 is
arranged between the first and the second terminal 42, 43.
The blocking capacitor 44 is connected to the first terminal
42. The varactor 41 is connected to the second terminal 43.
The varactor circuit 40 is realized as capacitive voltage
divider comprising the varactor 41 and the blocking capacitor
44. The varactor circuit 40 comprises a bias circuit 45. The
bias circuit 45 has a resistor 75. An output of the bias
circuit 45 is connected to a varactor node 46 between the
blocking capacitor 44 and the varactor 41.

Moreover, the first capacitive arrangement 12 comprises at
least one series circuit 47 to 49. The varactor circuit 40 is
connected in parallel to the at least one series circuit 47
to 49. A first, a second and a third series circuit 47 to 49
couples the first terminal 42 to the second terminal 43. The
first, the second and the third series circuit 47 to 49 form
parallel branches. The first series circuit 47 is a first
branch. The first series circuit 47 comprises a first
capacitor 50 and a first switch 51 which are arranged in
series. The second and the third series circuit 48, 49 is
implemented such as the first series circuit 47. The second
series circuit 48 comprises a second capacitor 52 and a
second switch 53. Correspondingly, the third series circuit
49 comprises a third capacitor 54 and a third switch 55. The
second and the third series circuit 48, 49 form a second and
a third branch. The first, the second and the third
capacitors 50, 52, 54 have the first, the second and the
third capacitance value C1, C2, C3, respectively. The first
capacitive arrangement 12 comprises a parallel circuit of a number \(N \) of series circuits 47 to 49. The number \(N \) can be any number larger or equal than 1. The capacitance value \(C_N \) of a capacitor of the \(N \)-th series circuit can be calculated according to the following equation:

\[
C_N = C_1 \cdot 2^{N-1}
\]

wherein the first capacitance value \(C_1 \) is the smallest capacitance value of the capacitors 50, 52, 54 of the series circuits 47 to 49. Thus, binary coding is implemented in the first capacitive arrangement 12. The smallest capacitance value \(C_1 \) can also be named the least significant bit capacitance value. The parallel circuit of the at least one series circuit 47 to 49 can also be described as switchable capacitor bank or switched capacitor array.

Furthermore, the first capacitive arrangement 12 comprises a control circuit 56. The control circuit 56 has an input 57 and a first output 58 which is connected to the varactor circuit 40. The first output 58 is coupled to the varactor node 46 via the bias circuit 45. A second output 59 of the control circuit 56 is coupled to the control terminals of the first, the second and the third switch 51, 53, 55. The second output 59 is implemented as a parallel bus terminal. The control circuit 56 comprises an analog-to-digital converter 60, abbreviated AD-converter, that couples the input 57 to the second output 59. Thus, the AD-converter 60 is arranged between the input 57 and the control terminals of the switches 51, 53, 55 of the at least one series circuit 47 to 49. The AD-converter 60 can be a full flash converter. A decoder 61 of the control circuit 56 connects an output of the AD-converter 60 to the second output 59. Moreover, the
control circuit 56 comprises a generator 62. The input 57 is coupled via the generator 62 to the first output 58. The generator 62 is also connected on its input side to the output of the AD-converter 60. A shaper circuit 63 of the control circuit 56 couples an output of the generator 62 to the first output 58. Further on, the control circuit 56 comprises an error correction circuit 64 which is coupled to the output of the generator 62. Thus, the error correction circuit 64 couples the generator 62 to the shaper circuit 63.

A control signal SC is provided to the input 57 of the control circuit 56 for controlling the first capacitive arrangement 12. The control signal SC is implemented as an analog signal. It is realized as a voltage and has a predetermined voltage range. A first and a second signal S1, S2 is generated depending on the control signal SC by the control circuit 56. The control signal SC is a linear function of a predetermined capacitance value CS of the first capacitive arrangement 12. The control signal SC is applied to the AD-converter 60 that generates a digital control signal SCD. The digital control signal SCD is supplied to the switches 51, 53, 55 via the decoder 61. In case the capacitance value C1, C2, C3 of the first, the second and the third capacitor 49, 51, 53 are designed in accordance to equation 1, the decoder 61 comprises only lines which connect the output of the AD-converter 60 to the control terminals of the switches 51, 53, 55. The output of the AD-converter 60 is realized as a terminal of a parallel bus.

The generator 62 provides a generator signal SG which depends on the control signal SC and the desired capacitance value CP which is provided by the at least one series circuit 47 to 49. The generator 62 can be implemented as a saw tooth
The generator signal S_G is an analog signal. The generator signal S_G depends on the difference between the predetermined capacitance value C_S of the first capacitive arrangement 12 and the present capacitance value C_P of the at least one series circuit 47 to 49. Thus, the generator signal S_G contains the information about the capacitance value C_V which has to be provided by the varactor circuit 40. The capacitance value C_S of the first capacitive arrangement 12 is the sum of the capacitance value C_V of the varactor circuit 40 and of the capacitance value C_P of the at least one series circuit 47 to 49, that means $C_S = C_V + C_P$. Thus, the generator signal S_G is a linear function of a predetermined value of the capacitance value C_V of the varactor circuit 40. The first and the second signal S_1, S_2 are provided so that the sum of the capacitance value C_V of the varactor circuit 40 and of the capacitance value C_P of the at least one series circuit 47 to 49 equals the predetermined capacitance value C_S of the first capacitive arrangement 12.

Since the capacitance value C_V of the varactor circuit 40 depends in a non-linear manner on the first signal S_1, the shaper circuit 73 provides the first signal S_1 so that the first signal S_1 is a non-linear function of the generator signal S_G. The error correction circuit 64 is designed for calibrating the capacitance value C_V of the varactor circuit 40. The error correction circuit 64 is realized so that the range of the capacitance value C_V of the varactor circuit 40 is equal to the capacitance value C_I of the first capacitor 50. The error correction circuit 64 reacts in real time. The error correction circuit 64 can comprises a software table. The software table is controlled in a calibration procedure by a system comprising the impedance circuit 10.
The first signal S_1 is applied to the varactor circuit 40 via the first output 58. The first signal S_1 controls the capacitance value C_{VC} of the varactor circuit 40. The first signal S_1 is an analog signal. The first signal S_1 is realized as a voltage. By the first signal S_1, a varactor voltage V_{DC} across the varactor 41 is set and, therefore, the capacitance value C_V of the varactor 41 is controlled. The bias circuit 45 inhibits that a high-frequency voltage at the varactor node 46 is applied to the first output 58. The blocking capacitor 44 having the capacitance value C_A inhibits a DC current flowing through the varactor circuit 40.

The second signal S_2 is supplied to the control terminals of the first, the second and the third switch 51, 53, 55 via the second output 59. The second signal S_2 is implemented as a digital parallel bus signal. The second signal S_2 provides a digital control of the capacitance value C_P of the parallel circuit of the at least one series circuit 47 to 49. In a first state of operation, the second signal S_2 sets the first switch 51 in a conducting state. Therefore, the first series circuit 47 obtains the first capacitance value C_I. In a second state of operation, the first switch 51 is set in a non-conducting state. Thus, the capacitance value of the first series circuit 47 is approximately zero. The second signal S_2 controls which of the capacitors 50, 52, 54 of the at least one series circuit 47 to 49 contributes to the capacitance value C_S of the first capacitive arrangement 12.

The varactor 41 and the capacitors 44, 50, 52, 54 of the first capacitive arrangement 12 can be fabricated by a semiconductor technology or a micro-electro-mechanical system technology. The switches 51, 53, 55 are realized as field-
effect transistors. The impedance circuit 10 can be realized as a single chip or as a multi chip. In case of a multi chip, the switchable capacitors 50, 52, 54 and the varactor 41 are integrated by a hybrid technology. The impedance circuit 10 is advantageously controlled by an analog circuitry. Therefore, there is no need of elaborate digital control.

The first capacitive arrangement 12 is advantageously controlled so that the first capacitive arrangement 12 has a capacitance value \(C_S \) out of a predetermined capacitance range between a minimum capacitance value \(C_{MIN} \) and a maximum capacitance value \(C_{MAX} \). Advantageously, a monotonic control of the capacitance value \(C_S \) of the first capacitive arrangement 12 can be achieved. The derivative \(dC/dV \), that is \(dC_S/dS_C \), is either positive or negative over the full range of the control signal \(S_C \). The first capacitive arrangement 12 shows a high quality factor. The quality factor is the ratio of the imaginary part of the impedance and the resistive part of the impedance of the first capacitive arrangement 12. A high quality factor results in a low insertion loss of a matching network. Further on, the first capacitive arrangement 12 shows a low distortion. The increase of the number \(N \) reduces the distortion. The number \(N \) can be selected such that a good tradeoff between the complexity of the impedance circuit 10 and the distortion caused by the impedance circuit 10 can be found.

In an alternative embodiment, the capacitance values \(C_1, C_2, C_3 \) of the first, the second and the third capacitor 50, 52, 54 are not realized according to equation 1. Thus, the decoder 61 comprises logic gates. The decoder 61 can be implemented to provide a gray-coding or a thermometer-coding. In case of gray-coding or thermometer-coding, only one switch
of the first, the second and the third switch 51, 53, 55 is actuated at one point of time. A mixture of binary coding, gray-coding or thermometer-coding can also be used.

In an alternative embodiment, the error correction circuit 64 is coupled to an output of the shaper circuit 63. The position is indicated by broken lines.

In an alternative embodiment, the bias circuit 45 comprises at least one element of a group having a diode, a transistor, a resistor 75 and an inductor such as a choke inductor.

Figures 3A to 3D show exemplary varactor circuits which are further embodiments of the varactor circuit shown in Figure 2 and which can be used in the first and the second capacitive arrangement of Figure 2. According to Figure 3A, the varactor 41 is oriented in such a way that a DC voltage at the varactor node 43 does not result in a DC current through the varactor 41. The cathode of the varactor 41 is connected to the varactor node 46. If the varactor voltage VDC is positive, a DC current can neither flow from the varactor node 46 through the blocking capacitor 44 nor through the varactor 41. Thus, the varactor 41 can be controlled in an energy-saving manner.

In the varactor circuit 40' of Figure 3B, the blocking capacitor 44 is implemented as a second varactor 70. The second varactor 70 and the varactor 41 are oriented in such a way that no DC current can flow through the series circuit of the varactor 41 and the second varactor 70. Furthermore, the varactor 41 and the second varactor 70 are oriented so that a DC potential at the varactor node 46 does neither result in a DC current through the varactor 41 nor through the second
varactor 70. By the series circuit of the varactor 41 and the second varactor 70, the characteristic of the varactor circuit 40' is more linear in comparison to the characteristic of the varactor circuit 40 of Figure 3A.

Moreover, the varactor circuit 40' comprises a third and a fourth varactor 71, 72 which are connected in series. The series circuit of the third and the fourth varactor 71, 72 is coupled in parallel to the series circuit of the varactor 41 and the second varactor 70. This parallel coupling of the two series circuits increases the capacitance value CVC of the varactor circuit 40'. The first output 58 is connected via a further bias circuit 73 to a further varactor node 74.

According to Figure 3C, the bias circuit 45 comprises a parallel circuit of a first and a second bias varactor 76, 77. The parallel circuit of the bias varactors 76, 77 is connected in series to the resistor 75. An anode of the first bias varactor 76 is connected to a cathode of the second bias varactor 77. An anode of the second bias varactor 77 is connected to a cathode of the first bias varactor 76. By the anti-parallel varactor pair 76, 77, a high impedance of the bias circuit 45 is achieved. Thus, the energy consumption for generating the varactor voltage VDC is low.

The varactor circuit 40' ' of Figure 3D comprises at least three varactors 41, 70, 71. The varactor circuit of Figures 3B to 3D comprises more than one varactor. Thus, the distortion caused by the varactor circuit 40 is reduced by cancellation effects.

Figure 4A shows an exemplary characteristic of the varactor 41. The capacitance value CV of the varactor 41 is shown dependent on the varactor voltage VDC which is a DC voltage
between the anode and the cathode of the varactor 41. The capacitance value CV is reduced by an increase of the varactor voltage VDC. The varactor 41 has the first capacitance value CV1 at a first varactor voltage VI and the second capacitance value CV2 at a second varactor voltage V2. The second voltage V2 can be a minimum voltage which is applied to the varactor 41. The first voltage VI can be a maximum voltage which is provided to the varactor 41. The capacitance value CV depends on the varactor voltage VDC according to the equation:

\[CV = \frac{K}{(\phi + VDC)^m} + C_0 \]

(2),

wherein K, \(\phi\), m and C0 are fitting parameters. Since the blocking capacitor 44 is connected in series to the varactor 41, the varactor voltage VDC is removed from the impedance circuit 10. The first capacitance value CV1 of the varactor circuit 40 depends on the first capacitance value CV1 of the varactor 41 and the capacitance value CA of the blocking capacitor 44. Similarly, the second capacitance value CV2 of the varactor circuit 40 depends on the second capacitance value CV2 and the capacitance value CA. The values CV1 and CV2 can be calculated according to the equations:

\[CV1 = \frac{CA \cdot CV1}{CA + CV1} \text{ and } CV2 = \frac{CA \cdot CV2}{CA + CV2} \]

(3, 4)

The varactor 41 and thus the varactor circuit 40 can obtain a continuous spectrum of capacitance values. The series circuit of the varactor 41 and the blocking capacitor 44 reduces the non-linearity of the varactor circuit 40. The non-linear relationship between the capacitance value VC and the
varactor voltage VDC may result in a harmonic distortion. The capacitor divider comprising the varactor 41 and the blocking capacitor 43 ensures that only a small fraction of the total high-frequency voltage swing between the first and the second terminal 42, 43 is available across the varactor 41. The distortion may be a result of the high-frequency alternating voltage across the varactor 41 and it may be not a function of the alternating current through the varactor 41. The effect of the distortion caused by the varactor 41 is reduced, since the varactor 41 is only weakly coupled to the impedance circuit 10 by means of the blocking capacitor 44 and a less voltage swing is present across the varactor 41.

Figure 4B shows an exemplary characteristic of capacitance values of the first capacitive arrangement. The capacitance value CVC of the varactor circuit 40, the capacitance value CP of the parallel circuit of the at least one series circuit 47 to 49 and the capacitance value CS of the first capacitive arrangement 12 depend on the control signal SC. The capacitance value CP is increased step-wise depending on the control signal SC. The capacitance value CP has the form of a staircase. The height of one step is equal to the first capacitance value CI. The number of steps depends on the number N of the at least one series circuit 47 to 49. The maximum value CPMAX of the capacitance value CP is achieved if all switches 51, 53, 55 are in the conducting state. Thus, the minimum capacitance value CMIN of the first capacitive arrangement 12 is the capacitance value CVC1 of the varactor circuit 40, whereas the maximum capacitance value CMAX is the sum of the value CPMAX and the capacitance value CVC2. The capacitance value CS linearly depends on the control signal SC. There are approximately no steps in the characteristic of the capacitance value CS.
The influence of the harmonic and intermodulation distortion caused by the varactor 41 is reduced by the blocking capacitor 44 and the parallel circuit of the at least one series circuit 47 to 49. Furthermore, the first capacitive arrangement 12 obtains a high quality factor. The coarse tuning of the capacitance value of the impedance circuit 10 is performed by means of the switchable capacitors 50, 52, 54 and the fine-tuning is done by the weakly coupled varactor 41. The total variation of the capacitance value CS is the sum of the variation of the capacitance value CVC of the linear block and of the variation of the capacitance value CP of the switchable block.

The capacitance value range which can be tuned be means of the varactor circuit 40 is equal or higher than each of the steps of the capacitance value CP of the parallel circuit of the at least one series circuit 47 to 49. The steps are equal to the first capacitance value CI. The voltage range of the saw-tooth of the first signal SI is chosen to change the capacitance value CVC of the varactor circuit 40 precisely with the same minimum capacitance value such as the parallel circuit of the at least one series circuit 47 to 49 is able to change.

Figure 5 shows an exemplary communication circuit in which the impedance circuit of Figures 1A to 1D can be used. The communication circuit 130 comprises a power amplifier 131, the impedance circuit 10 and an antenna 132. The impedance circuit 10 couples an output of the power amplifier 131 to the antenna 132. The impedance circuit 10 is implemented as a matching network between the power amplifier 131 and the antenna 132. The impedance circuit 10 is used in a high-frequency circuit, for example for mobile communication.
Requirements of a device for mobile communication concerning the radiated emissions can be fulfilled by the impedance circuit 10. The impedance circuit 10 achieves a low-loss impedance transformation between the power amplifier 131 and the antenna 132 under various operating conditions. The impedance circuit 10 compensates a mismatch of the power amplifier 131 to the antenna 132 and enhances the radiation efficiency of devices for mobile communication.

Figure 6A shows an exemplary embodiment of details of the control circuit 56. The AD-converter 60 comprises at least one comparator 81. The AD-converter 60 of Figure 6A is designed as a parallel converter. The AD-converter 60 comprises a first, a second and a third comparator 81 to 83. An input connection of each of the first, the second and the third comparator 81 to 83 is connected to the input 57 of the control circuit 56. A first reference source 84 is connected to a second input terminal of the first comparator 81. Correspondingly, a second reference source 85 is connected to a second input of the second comparator 82. A third reference source 86 is connected to a second input of the third comparator 83. The first, the second and the third reference voltages sources 84, 85, 86 can be implemented by a voltage divider with at least three nodes. The outputs of the comparators 81 to 83 form the output of the AD-converter 60. The decoder 61 is connected to the output of the AD-converter 60. In case the capacitance values C1, C2, C3 of the first, the second and the third capacitor 50, 52, 54 follow equation 1, the decoder 61 comprises digital circuits.

The generator 62 comprises a summation unit 88 and a subtraction unit 89. The summation unit 88 is coupled on its input side to the output terminals of the first, the second
and the third comparator 81 to 83. A first input of the subtraction unit 89 is coupled to the input 57. A second input of the subtraction unit 89 is connected to an output of the summation unit 88. An output of the subtraction unit 89 forms the output of the generator 62 and is coupled to the first output 58. A buffer 90 couples the input 57 to the first input terminal of the subtraction unit 89.

The first reference source 84 provides a first reference voltage VR1 to the second input of the first comparator 81. Similarly, the second reference source 85 provides a second reference voltage VR2 to the second comparator 82 and the third reference source 86 generates a third reference voltage VR3 for the third comparator 83. The first, the second and the third reference voltage VR1, VR2, VR3 may be tapped at the nodes of the voltage divider. The first reference voltage VR1 is smaller than the second reference voltage VR2, the second reference voltage VR2 is smaller than the third reference voltage VR3. A difference between two subsequent reference voltages is equal to the first reference voltage VR1. The difference corresponds to the first capacitance value CI of the first capacitor 50. The three comparators 81 to 83 compare the control signal SC with their corresponding reference voltage VR1, VR2, VR3 and generate a first, a second and a third comparator signal SCI, SC2, SC3. The digital control signal SCD comprises the first, the second and the third comparator signal SCI, SC2, SC3.

The summation unit 88 receives the first, second and third comparator signal SCI, SC2, SC3. The first, second and third comparator signal SCI, SC2, SC3 indicate that the control signal SC is larger than the corresponding reference voltage VR1, VR2, VR3. The summation circuit 88 adds the first,
second and third comparator signals SCI, SC2, SC3. The summation circuit 88 adds the logical values of the comparator output signals SCI, SC2, SC3. A comparator output signal with the logical value one has the voltage value of the first reference voltage VR1. A summation voltage VSUM at the output of the summation unit 88 is equal to the number of comparators with a logical value one at their output multiplied with the first reference voltage VR1. The summation voltage VSUM is equal to the highest reference voltage VR1, VR2, VR3 which is smaller than the present control signal SC. The subtraction unit 89 generates the generator signal SG which is the difference between the control signal SC and the summation signal VSUM. As indicated in Figure 6A, the summation signal VSUM is a step-wise function of the control signal SC and an increase of the control signal SC results in a saw-like generator signal SG.

In an alternative embodiment, the capacitance values C1, C2, C3 of the first, the second and the third capacitor 49, 51, 53 are equal. In that case, the decoder 61 only comprises connection lines which connect the output terminals of the first, the second and the third comparator 81 to 83 to the control terminals of the first, the second and the third switch 51, 53, 55. The output of the first comparator 81 is connected to the control terminal of the first switch 84. If for example the value of the control signal SC is larger than the first reference voltage VR1, then the first comparator signal SCI sets the first switch 84 in a conducting state.

Figure 6B shows an alternative embodiment of details of the control circuit 56. The control circuit 56 of Figures 6A and 6B can be used in the first capacitive arrangement shown in Figure 2. The AD-converter 60 is realized as a pipe-line
converter. The AD-converter 60 comprises at least one sub-circuit 94. A first sub-circuit 94 comprises a first comparator 96 and a first subtraction unit 97. A first input of the first comparator 96 and a first input of the subtraction unit 97 are coupled to the input 57. A second input of the first comparator 96 is connected to a reference voltage source 95. A second input of the first subtraction unit 97 is coupled to an output of the first comparator 96. A first buffer 98 couples the input 57 to the first input of the first subtraction unit 97.

The second sub-circuit 99 comprises a second comparator 100 and a second subtraction unit 101. Moreover, it comprises a second buffer 102. The circuit structure of the second sub-circuit 99 corresponds to the circuit structure of the first sub-circuit 94. However, a first input of the second comparator 100 and a first input of the second subtraction unit 101 are coupled to an output of the first subtraction unit 97. The output terminals of the first and the second comparator 96, 100 form the output of the AD-converter 60. The decoder 61 of Figure 6A can also used in the control circuit 56 of Figure 6B. An output of the second subtraction unit 101 forms an output of the second sub-circuit 99 and is connected to the output of the generator 62. Thus, the AD-converter 60 of Figure 6B also incorporates the generator 62.

The reference voltage source 95 generates a reference voltage VREF. The reference voltage VREF corresponds to the first capacitance value C1. The reference voltage VREF is applied to the second input of the first comparator 96 and to the second input of the second comparator 100. The control signal SC is provided to the first input of the first subtraction unit 97 and to the first input of the first comparator 96.
The first comparator signal SCI at the output of the first comparator 96 depends on a comparison of the control voltage SC and the reference voltage VREF. When the control voltage SC is higher than the reference voltage VREF, then the first comparator signal SCI has a logical value of one and a voltage that is equal to the reference voltage VREF. At this point of time, an output voltage at the output of the first subtraction unit 97 is equal to the control signal SC minus the reference voltage VREF. However, when the control voltage SC is smaller than the reference voltage VREF, the first comparator signal SCI has a logical value of zero and a voltage of 0 V is applied to the second input of the first subtraction unit 97. The output voltage at the first subtraction unit 97 is equal to the control signal SC at this point of time.

An output voltage of the first subtraction unit 97 is supplied via the input of the second sub-circuit 99 to the first input of the second comparator 100 and the first input of the second subtraction unit 101. An output voltage of the second subtraction unit 101 is the control signal SC minus two times the reference voltage VREF, if the output signal of the first subtraction unit 97 is larger than the reference voltage VREF that means if the present control signal SC is higher than two times the reference voltage VREF. The AD-converter 60 can comprise at least a further sub-circuit having the structure of the first and the second sub-circuit 94, 99. Each subsequent sub-circuit reduces its input signal by the reference voltage VREF, if its input signal is higher than the reference voltage VREF. By subsequent reducing the control signal SC with the reference voltage VREF, the AD-converter 60 determines the digital control signal SCD. The signal at the output terminal of the last subtraction unit of
the last sub-circuit which is the second sub-circuit in case of Figure 6B is equal to the generator signal SG.

When the control signal SC rises, advantageously only one of the first, the second and the third comparator signals SCI, SC2, SC3 is changed at one point of time in the control circuits 56 of Figures 6A and 6B.

Figure 7 shows an exemplary error correction circuit which can be used in the control circuit of Figure 2. The error correction circuit 64 is coupled to the varactor circuit 40. The error correction circuit 64 comprises an amplifier 110 and a first reference capacitor 111. The varactor node 46 is connected to a first input of the amplifier 110. The first reference capacitor 111 couples a second input of the amplifier 100 to the second terminal 43. A second reference capacitor 112 is connected in series to the varactor circuit 40. Correspondingly, a third reference capacitor 113 is connected in series to the first reference capacitor 111. The series circuit of the varactor 40 and the second reference capacitor 112 as well as the series circuit of the first and the third reference capacitor 111, 113 are connected in parallel between an input node 114 and the second terminal 43. Thus, the varactor circuit 40 and the first, the second and the third reference capacitor 111 to 113 are connected in a capacitive bridge configuration. The capacitance values of the first, the second and the third reference capacitor 111, 112, 113 are equal. Thus, the varactor 41 couples the first input of the amplifier 100 to the second terminal 43. The first input of the amplifier 110 is coupled via the second reference capacitor 112 and the blocking capacitor 44 to the input node 114.
Further on, an oscillator 115 has an output which is coupled to the input node 114. A buffer amplifier 116 is arranged between the oscillator 115 and the input node 114. An output of the amplifier 100 is connected to an input of an rectifier 117. The rectifier 117 comprises a rectifier diode 118, a rectifier capacitor 119 and rectifier resistor 120. The input of the rectifier 117 is coupled to an output of the rectifier 117 via the rectifier diode 118. A parallel circuit of the rectifier capacitor 119 and the rectifier resistor 117 couples the output of the rectifier 117 to the second terminal 43. A loop amplifier 121 couples the output of the rectifier 117 to the varactor circuit 40. The loop amplifier 121 is connected via the bias circuit 45 to the varactor node 46. A loop capacitor 122 is connected to the loop amplifier 121.

The oscillator 115 generates an oscillator signal VOSC which is applied to the input node 114 via the buffer amplifier 116. Thus, the oscillator signal VOSC is provided to a first path of the bridge comprising the varactor circuit 40 and the second reference capacitor 112 and also to a second path of the bridge comprising the first and the third reference capacitor 111, 113. The amplifier 110 compares a voltage across the first reference capacitor 111 with a voltage generated by the varactor circuit 40. The signal at the output of the amplifier 100 depends on the difference of the voltage across the first reference capacitor 111 and the voltage at the varactor node 46. The signal at the output of the amplifier 110 is rectified by the rectifier 117 and fed back to the varactor circuit 40. The signal at the output of the rectifier 117 is amplified by the loop amplifier 121 and applied as the first signal SI to the bias circuit 45.
If a difference between the signals at the two input terminals of the amplifier 100 is present, the first signal SI is changed until the difference between the inputs of the amplifier 100 becomes approximately zero. It is an advantage of the error correction circuit 64 that a value of the first signal SI can be determined so that the maximum capacitance value of the varactor 41 is equal to the capacitance value of the first reference capacitor 111. The error correction circuit 64 can perform an auto-calibration. The error correction circuit 64 is designed such that it is invisible to a system comprising the impedance circuit 10. A dominant pole of the error correction circuit 64 is chosen to be high enough so that calibration does not influence a system comprising the impedance circuit 10.

In an alternative, not shown embodiment, a small fraction of a high-frequency voltage which can be tapped in a system with the impedance circuit 10 is used for calibration purpose and the oscillator 115 is omitted. If the impedance circuit 10 is part of a communication circuit, an internal voltage of the power amplifier 131 can be used as the reference voltage VOSC.

In an alternative embodiment which is indicated by a broken line, the first input of the amplifier 110 is connected to a node between the varactor circuit 40 and the second reference capacitor 112. Thus, the capacitance value CVC of the varactor circuit 40 is compared to the capacitance value of the first reference capacitor 111. The capacitance value of the first reference capacitor 111 may equal to the first capacitance value CI.
Figures 8A to 8D show simulation results of the first capacitive arrangement 12. The signals are shown versus a time t. The control signal SC is a sine wave with a frequency of 100 Hz. Figure 8A shows the capacitance value CP provided by the at least one series circuit. Figure 8B illustrates the generator signal SG which has a saw-tooth form. Figure 8C shows the capacitance value CS of the first capacitive arrangement 12. Figure 8D illustrates a time derivative of the capacitance value CS shown in Figure 8C. Since the capacitance value CS shown in Figure 8C and the derivative shown in Figure 8D are continuous and have the sinus wave form, a very good matching of the varactor circuit 40 to the at least one series circuit 47 to 49 is demonstrated.

Figures 9A to 9D show exemplary simulation results which were achieved for a mismatch of 2.5% of capacitance values of different capacitors of the first capacitive arrangement 12. The mismatch results in spikes which can be seen in Figure 9D. Since the spikes have a finite length which can be designed appropriate, a spectral pollution such as noise in a transmitter or receiving channel can be kept well within system limits. As long as the derivative of the resulting signal remains to have the correct sign, which is also the case in Figures 9A to 9D, the first capacitive arrangement 12 can be used as part of a control loop.
Reference numerals

<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10, 10', 10''</td>
<td>impedance circuit</td>
</tr>
<tr>
<td>11</td>
<td>input terminal</td>
</tr>
<tr>
<td>5 12</td>
<td>first capacitive arrangement</td>
</tr>
<tr>
<td>13</td>
<td>second capacitive arrangement</td>
</tr>
<tr>
<td>14</td>
<td>output terminal</td>
</tr>
<tr>
<td>15</td>
<td>additional capacitor</td>
</tr>
<tr>
<td>16</td>
<td>passive component</td>
</tr>
<tr>
<td>10 17</td>
<td>delta network</td>
</tr>
<tr>
<td>18</td>
<td>further node</td>
</tr>
<tr>
<td>19</td>
<td>reference potential terminal</td>
</tr>
<tr>
<td>20</td>
<td>inductor</td>
</tr>
<tr>
<td>21</td>
<td>star network</td>
</tr>
<tr>
<td>15 22</td>
<td>central node</td>
</tr>
<tr>
<td>23</td>
<td>further capacitive arrangement</td>
</tr>
<tr>
<td>24, 25</td>
<td>further passive component</td>
</tr>
<tr>
<td>26, 27</td>
<td>further input terminal</td>
</tr>
<tr>
<td>28, 29</td>
<td>further output terminal</td>
</tr>
<tr>
<td>20 40, 40', 40''</td>
<td>varactor circuit</td>
</tr>
<tr>
<td>41</td>
<td>varactor</td>
</tr>
<tr>
<td>42</td>
<td>first terminal</td>
</tr>
<tr>
<td>43</td>
<td>second terminal</td>
</tr>
<tr>
<td>44</td>
<td>blocking capacitor</td>
</tr>
<tr>
<td>25 45</td>
<td>bias circuit</td>
</tr>
<tr>
<td>46</td>
<td>varactor node</td>
</tr>
<tr>
<td>47</td>
<td>first series circuit</td>
</tr>
<tr>
<td>48</td>
<td>second series circuit</td>
</tr>
<tr>
<td>49</td>
<td>third series circuit</td>
</tr>
<tr>
<td>30 50</td>
<td>first capacitor</td>
</tr>
<tr>
<td>51</td>
<td>first switch</td>
</tr>
<tr>
<td>52</td>
<td>second capacitor</td>
</tr>
<tr>
<td>53</td>
<td>second switch</td>
</tr>
</tbody>
</table>
third capacitor
third switch
control circuit
input
first output
second output
analog-to-digital converter
decoder
generator
shaper circuit
error correction circuit
second varactor
third varactor
fourth varactor
further bias circuit
further varactor node
resistor
first bias varactor
second bias varactor
first comparator
second comparator
third comparator
first reference source
second reference source
third reference source
summation unit
subtraction unit
buffer
first sub-circuit
reference voltage source
first comparator
first subtraction unit
first buffer
second sub-circuit
second comparator
second subtraction unit
second buffer
amplifier
first reference capacitor
second reference capacitor
third reference capacitor
input node
oscillator
buffer amplifier
rectifier
rectifier diode
rectifier capacitor
rectifier resistor
loop amplifier
loop capacitor
communication circuit
power amplifier
antenna
CA, CP, CS, CV, CVC capacitance value
CMAX maximum capacitance value
CMIN minimum capacitance value
CV1, CVC1 first capacitance value
CV2, CVC2 first capacitance value
C1 first capacitance value
C2 second capacitance value
C3 third capacitance value
SC control signal
digital control signal
first comparator signal
second comparator signal
third comparator signal
SIN input signal
SG generator signal
SOUT output signal
SI first signal
S2 second signal
t time
VDC varactor voltage
VOSC oscillator signal
VREF reference voltage
VR1 first reference voltage
VR2 second reference voltage
VR3 third reference voltage
VSUM summation voltage
VI first varactor voltage
V2 second varactor voltage
Claims

1. Impedance circuit, comprising:
 - an input terminal (11),
 - a first capacitive arrangement (12) which comprises
 - a varactor circuit (40) having a varactor (41) and
 - at least one series circuit (47, 48, 49) which
 comprises a capacitor (50, 52, 54) and a switch (51, 53, 55) in series connection coupled parallel to the
 varactor circuit (40),
 - a second capacitive arrangement (13) which comprises an
 additional capacitor (15) and
 - an output terminal (14) which is coupled to the input
 terminal (11) by a network (17, 21) which comprises the
 first and the second capacitive arrangement (12, 13).

2. Impedance circuit according to claim 1,
 wherein the network (17, 21) is realized as a parallel
 circuit, a delta network (17) or a star network (21).

3. Impedance circuit according to claim 1 or 2,
 wherein the varactor circuit (40) comprises a blocking
 capacitor (44) and the blocking capacitor (44) is
 connected in series to the varactor (41).

4. Impedance circuit according to claim 3,
 wherein the varactor circuit (40) comprises a bias
 circuit (45) with an output which is connected to a
 varactor node (46) between the blocking capacitor (44)
 and the varactor (41).
5. Impedance circuit according to one of claims 1 to 4, wherein the impedance circuit (10) is designed such that the capacitance value of the varactor circuit (40) varies during operation between a first capacitance value (CVC1) and a second capacitance value (CVC2), whereby the difference between the first and the second capacitance value (CVC1, CVC2) is equal to the smallest capacitance value (C1) of the at least one series circuit (47, 48, 49) if the switch (51, 53, 55) of the at least one series circuit (47, 48, 49) is in a conducting state.

6. Impedance circuit according to one of claims 1 to 5, wherein the impedance circuit (10) comprises a control circuit (56) which controls the switch (51, 53, 55) of the at least one series circuit (47, 48, 49) and controls the varactor circuit (40).

7. Impedance circuit according to claim 6, wherein the control circuit (56) comprises
- an input (57) for receiving a control signal (SC) and
- an analog-to-digital converter (60) which is coupled between the input (57) of the control circuit (56) and a control terminal of the switch (51, 53, 55) of the at least one series circuit (47, 48, 49).

8. Impedance circuit according to claim 7, wherein the control circuit (56) comprises a generator (62) which is coupled between the input (57) of the control circuit (56) and the varactor circuit (40) and is designed to provide a generator signal (SG) which depends on the control signal (SC) and the capacitance value (CP) which is provided by the at least one series circuit (47, 48, 49).
9. Impedance circuit according to claim 8,
wherein the control circuit (56) comprises a shaper

circuit (63) which is coupled between the generator (62)
and the varactor circuit (40) and has a non-linear

circuit.

10. Impedance circuit according to claim 9,
wherein the control circuit (56) comprises an error
correction circuit (64) which is coupled between the
generator (62) and the shaper circuit (63) or between the
shaper circuit (63) and the varactor circuit (40).

11. Impedance circuit according to claim 10,
wherein the error correction circuit (64) is designed for
calibrating the varactor circuit (40) by comparing the
capacitance value (CVC, CV) of the varactor circuit (40)
or of the varactor (41) with the capacitance value of a
first reference capacitor (111).

12. Impedance circuit according to one of claims 1 to 11,
wherein the second capacitive arrangement (13) comprises
- an additional varactor circuit having an additional
varactor and
- at least one additional series circuit which comprises
the additional capacitor (15) and an additional switch
in series connection and is coupled parallel to the
additional varactor circuit.

13. Communication circuit, comprising
- a power amplifier (131),
- an antenna (132) and
- the impedance circuit (10) according to one of claims 1 to 12 which couples an output of the power amplifier (131) to the antenna (132).

5 14. Method for signal transformation, comprising:
- providing an input signal (SIN) to an input terminal (11) of an impedance circuit (10), wherein the impedance circuit (10) has a network (17, 21) comprising a first and a second capacitive arrangement (12, 13), wherein the first capacitive arrangement (12) comprises
 - a varactor circuit (40) having a varactor (41) and
 - at least one series circuit (47, 48, 49) which comprises a capacitor (50, 52, 54) and a switch (51, 53, 55) in series connection and is coupled in parallel to the varactor circuit (40), and
- providing a first signal (S1) to the varactor circuit (40) and a second signal (S2) to the at least one series circuit (47, 48, 49), and
- tapping an output signal (SOUT) at an output terminal (14) of the impedance circuit (10) which is coupled to the input terminal (11) of the impedance circuit (10) by the network (17, 21).
INTERNATIONAL SEARCH REPORT

International application No:
PCT/EP2009/064855

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>INV.</th>
<th>H03H7/38</th>
<th>H03H7/01</th>
<th>H03F1/56</th>
<th>H03J3/18</th>
<th>H03J5/24</th>
</tr>
</thead>
</table>

ADD:

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H03F H03H H03J H03L H03B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-I internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/041671 A1 (VAN RUMPT HERMAN WOUTER [NL]) 4 March 2004 (2004-03-04) paragraphs [0007], [0014], [0026], [0029], [044] - [0049]; figures 1A.B.5</td>
<td>1-9, 12-14</td>
</tr>
<tr>
<td>A</td>
<td>col umn 2, l ine 36 - col umn 3, l ine 13; figures 3, 4</td>
<td>9</td>
</tr>
<tr>
<td>X</td>
<td>US 2008/290947 A1 (DAWE GEOFFREY C [US]) 27 November 2008 (2008-11-27) paragraphs [0008] - [0010], [0030], [0045], [0046], [0050], [0051]; figures 6, 10</td>
<td>1-7, 12-14</td>
</tr>
</tbody>
</table>

[X] Further (i) documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
 - "Z" document member of the same patent family

Date of the actual completion of the international search:
15 July 2010

Date of mailing of the international search report: 22/07/2010

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Maget, Judith
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2005/184828 A1 (SON MI-HYUN [KR] ET AL) 25 August 2005 (2005-08-25) paragraphs [0028], [0045], [0051] - [0058]; figures 5,7,8</td>
<td>1,2,5,6, 12,14 7-9</td>
</tr>
</tbody>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [X] Claims Nos.: 10 > 11 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

 see FURTHER INFORMATION sheet PCT/ISA/210

3. □ Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Continuation of Box II.2

Claims Nos.: 10, 11

"error correction circuit" per se, without any function given, as claimed in claim 10 is not clear. For "error correction circuit" only calibration of the varactor (circuit) is described; claim 11 and page 13, lines 25-30 and Fig. 7 with corresponding description on page 26, line 9 - page 28, line 31. For this kind of calibration it is however not deducible how the error correction circuit could be suitably coupled between shaper and varactor circuits or between generator and shaper circuits as required by claim 10: once calibrated the signal S_{in} in Fig. 7 has a fixed value, whereas signal S_{in} in Fig. 2 is used to continuously tune the varactor, to e.g. achieve an overall behaviour of the impedance circuit as explained in the context of Fig. 4B.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.2), should the problems which led to the Article 17(2) declaration be overcome.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 200404 1671 AI</td>
<td>04-03-2004</td>
<td>AT 345594 T</td>
<td>15-12-2006</td>
</tr>
<tr>
<td>AU 8970901 A</td>
<td></td>
<td></td>
<td>05-02-2002</td>
</tr>
<tr>
<td>DE 60124552 T2</td>
<td></td>
<td></td>
<td>04-10-2007</td>
</tr>
<tr>
<td>WO 0209280 AI</td>
<td></td>
<td></td>
<td>31-01-2002</td>
</tr>
<tr>
<td>EP 1182778 AI</td>
<td></td>
<td></td>
<td>27-02-2002</td>
</tr>
<tr>
<td>JP 2004505485 T</td>
<td></td>
<td></td>
<td>19-02-2004</td>
</tr>
<tr>
<td>US 7212076 BI</td>
<td>01-05-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2008290947 AI</td>
<td>27-11-2008</td>
<td>WO 2008147932 A2</td>
<td>04-12-2008</td>
</tr>
<tr>
<td>US 2005184828 AI</td>
<td>25-08-2005</td>
<td>KR 20050083251 A</td>
<td>26-08-2005</td>
</tr>
</tbody>
</table>