ABSTRACT

Methods for promoting healthy body weight and improving a variety of related physiological factors, including serum serotonin levels, serum leptin levels, fat oxidation, cholesterol levels, and body mass index, in persons or other mammals, include administering to those persons or other mammals effective amounts of hydroxycitric acid or a combination of hydroxycitric acid, chromium and gymnemic acid, which work synergistically to further promote healthy body weight and improve these physiological factors.

IC: A61K 3/704; A61K 31/555; A61K 31/19

U.S. Cl: 514/33; 514/164; 514/574
COMPOSITIONS INCORPORATING (–)-HYDROXYCITRIC ACID, CHROMIUM, AND GYMNEMIC ACID, AND RELATED METHODS FOR PROMOTING HEALTHY BODY WEIGHT AND IMPROVING RELATED HEALTH FACTORS

[0001] This application claims the benefit of U.S. Prov.

cisional Patent Application Serial No. 60/343,473, filed Dec.

[0002] The present invention relates generally to com-

positions and related methods for promoting healthy body

weight, including reducing excess body weight or maintain-

ing healthy body weight, and improving related health

factors, such as cholesterol levels and body mass index, in

persons and other mammals.

[0003] Excess body weight is becoming more prevalent

worldwide at an alarming rate, both in developing and
developed countries. Approximately 61 percent of adults

in the U.S. are overweight (i.e., having a body mass index

(BMI) of greater than 25 kg/m²), while more than 26 percent

of U.S. adults are obese (i.e., having a BMI of greater than

30 kg/m²). Obesity is the second leading cause of premature

death in the U.S. Approximately 300,000 Americans die

each year from complications caused by obesity. According

to the World Health Organization, there are over 300 million

obese adults worldwide. Environmental and behavioral

changes brought about by economic development, modern-

ization and urbanization have been linked to the global rise

in obesity in adults and children, the true health conse-

quences of which may not be fully known for years to come.

Consumption of western-style diets, low levels of physical

activity and sedentary lifestyles generally have been impli-

cated in the worldwide trend of weight gain.

[0004] Increase in body weight results from an imbalance

between energy intake and expenditure in a person, mani-

fested by excessive expansion of adipose tissue mass in the

person. Obesity leads to a number of poor health factors.

In particular, obesity increases the risk of high blood pressure,

hypertension, type II diabetes, arthritis, elevated cholesterol,

and cancer. Although 30–40% of obese people claim they are

trying to lose or maintain body weight, their success rate is

low. Dietary approaches for the management of excess body

weight have been unsuccessful due to improper caloric

restriction and/or lack of physical exercise. Low caloric diets

can provide for temporary weight loss, but they have not

proven themselves as long-term solutions for people trying
to lose or maintain weight. Drugs that suppress appetite,

reduce food intake, increase energy expenditure and/or

affect nutrient partitioning or metabolism have potential
efficacy in reducing body weight. Unfortunately, these also

frequently are accompanied by adverse side effects, some of

which are life threatening.

[0005] High blood cholesterol, high blood triglyceride

levels, and obesity are all indicators of increased risk for

heart disease and other health maladies. In particular, high

levels of total cholesterol, LDL cholesterol or triglycerides,
as well as low levels of HDL cholesterol, all are risk factors

for various cardiovascular diseases. These conditions are

exacerbated by many factors, including poor diet, lack of

exercise and obesity. Prevalence for obesity can be reflected

in excessive eating and also by genetic factors. One method

for reducing appetite, and therefore excessive eating, is by

raising serotonin levels in a person. Increased brain levels of

serotonin, an important neurotransmitter involved in proper

brain function, including regulation of sleep and mood, have

also been linked with appetite suppression. Also, a known

biomarker for genetic propensity of a person toward obesity

is serum leptin, a hormone encoded by the gene that regu-

lates body weight. Leptin binds to receptors in the brain,

where it activates signals that inhibit food intake and

increase energy expenditure. Studies have shown that

plasma leptin levels are higher in overweight than in non-

overweight individuals, and higher in women than in men.

[0006] The methods described above to treat obesity in

humans may be applicable to treating other mammals as

well, including animals commonly kept as pets, such as dogs

eats. Excess body weight has reached epidemic propor-
tions in, and is the most common nutritional disorder among

pets. It is estimated that 50% of pets (or roughly 60 million

animals) in the United States are overweight or obese (a

weight ten percent over ideal body weight is considered

overweight, and a weight twenty percent over ideal body

weight is clinically defined as obese). An extra five pounds

on a dog that should weigh 17 pounds or an extra three

pounds on a cat that should weight 10 pounds is comparable
to an extra 50 pounds on a person who should weight 170

pounds. Overweight pets are at higher risk of developing

health problems such as heart disease, skeletal problems,
brathing problems, diabetes and arthritis. Traditionally,

weight management in veterinary medicine relies on one or

more recommendations. A veterinarian may prescribe high

fiber/reduced calorie diets, or advocate other dietary changes

focusing on a decrease in overall caloric intake. Another

method to manage pet weight is to increase exercise.

Un-treated obesity can be a devastating condition for a pet,

and instituting an obesity-management program will add

quality years to a pet’s life.

[0007] Various methods exist for treating obesity and the

other related health factors discussed above, such as

improved diet, increased exercise, and various medications.

These, however, have not been entirely effective treatments.

Diet modification and increased exercise can be difficult for

some individuals to maintain for an extended period, and

medications introduce the possibility of negative side

effects.

[0008] One dietary supplement known for promoting

weight loss is (–)-hydroxy citric acid (HCA). HCA is an

organic acid similar to citric acid that is found in citrus

fruits, such as oranges and lemons, but that has remarkably
different properties from citric acid. HCA has been shown to

reduce appetite, inhibit fat synthesis, and decrease body

weight in persons consuming it, without stimulating the

central nervous system of those persons. Therefore, ingestion

of HCA will not cause nervousness, rapid heart rate,
high blood pressure, or insomnia associated with dietary

stimulants such as ephedra (Ma-Huang), caffeine or phenyl-

propanolamine. Furthermore, in acute toxicity tests, HCA

has been show to be even safer than citric acid. HCA

predominantly is present in the fruit rind of plants in the

genus Garcinia, such as Garcinia cambogia (of the family

Guttiferae), a tree native to South and Southeast Asia. The

dried fruit rind, also known as Malabar Tamarind, is exten-
sively used in Southern India for culinary purposes. The

fruit exhibits a distinctive sour taste and has been used for
centuries to make meals more “filling.”
HCA has been sold as a dietary supplement since 1994, but research on HCA and its effects stretches back over 30 years. In 1969, researchers demonstrated that HCA is a competitive inhibitor of ATP-citrate lyase, the enzyme responsible for catalyzing the extramitochondrial cleavage of citrate to oxaloacetate and acetyl-CoA, a building block of fatty acid synthesis. ATP-citrate lyase is important in maintaining the acetyl-CoA pool for fatty acid and cholesterol biosynthesis, particularly during the hyperlipogenic nutritional state produced by high carbohydrate feeding. HCA has been shown to be a highly effective inhibitor of fatty acid synthesis by rat liver in vivo. HCA is theorized to reduce food consumption in humans by diverting carbohydrates away from fat synthesis and towards the synthesis of stored energy in the form of glycogen. Increased glycogen levels in the liver and muscles are believed to send a satiety signal to the brain that the body is “full,” resulting in reduced appetite and food intake.

Another possible mechanism of action may be HCA’s ability to stimulate serotonin release and inhibit its reuptake in the body. Serotonin (5-HT), a vital neurotransmitter, is involved in a wide range of behavioral functions in the body, including mood, sleep and appetite control. Studies have shown that serotonin affects eating behavior and body weight. Increased plasma levels of serotonin are associated with decreased food intake, reduced weight gain and increased energy expenditure. Another benefit of increasing serotonin levels in the body may be in addressing many of the emotional issues overweight people face, including binge eating and depression. It is well established that serotonin and peptides such as neuropeptide Y are involved in the regulation of eating behavior. It is not certain that HCA’s ability to curb appetite and reduce food intake derives from these mechanisms. However, as stated above, HCA produces its effects without stimulating the central nervous system, avoiding the related disadvantages of this.

Another possible mechanism of action may be HCA’s ability to down-regulate the obesity regulatory gene as determined by serum leptin levels. Leptin is a 167 amino acid protein hormone encoded by the gene that regulates body weight. Synthesized and secreted by adipocytes (fat cells), leptin binds to receptors in the brain, where it activates signals that inhibit food intake and increase energy expenditure. When receptor-binding activity is diminished, a condition called “leptin resistance,” plasma leptin levels increase and the leptin loses its ability to inhibit food intake and increase energy expenditure. As stated previously, studies show that plasma leptin levels are higher in overweight than in non-overweight individuals, and higher in women than in men. Leptin is synthesized and secreted by adipocytes, is present in the bloodstream in amounts related to the amount of fat in the body, and acts primarily on the brain to regulate food intake. Leptin has been shown to be able to modulate insulin secretion and action through these receptors. These findings confirm earlier observations of higher leptin levels in obese individuals than in lean individuals.

Another possible mechanism of action may be HCA’s ability to increase fat oxidation. Fat metabolites are products of fat degradation. Following exercise or other fat “burning” processes, fat tissue breaks down into small molecular components, including malondialdehyde, formaldehyde, acetaldehyde and acetone. Increased urinary levels of fat metabolites indicates increased fat degradation or “burning.” While the majority of studies on HCA have focused on its mechanism of action at the metabolic level, until recently, no studies have investigated its effect on neurotransmitters associated with the control of appetite, hormones associated with the regulation of body weight, nor fat oxidation. Recent studies on the effect of HCA on serum serotonin levels, serum leptin levels, and fat oxidation, are discussed below.

The potential of HCA as an inhibitor of lipogenesis has been examined, and it was demonstrated that HCA curbs appetite, reduces food intake and inhibits fat synthesis. Oral administration of HCA has been shown to significantly depress in vivo lipogenic rates in a dose-dependent manner in the liver, adipose tissue and small intestine. This hepatic inhibition has been shown to be significant for the 8-hour period when control animals demonstrated elevated rates of lipid synthesis. The kinetics of in vivo hepatic lipogenesis reduction were identical after acute or chronic administration of HCA. However, in relevant studies rates of lipogenesis were depressed after chronic administration of HCA for 30 days, thus HCA may help prevent “fat rebound,” a common occurrence where most diets fail, resulting in fat regain once the diet is discontinued. Rats receiving HCA consumed less food than the untreated controls, but this decreased caloric intake was not responsible for the drug-induced depression of hepatic lipogenesis, as shown by studies using pair fed rats. In these studies, an acute oral dose of HCA (2.63 mmoles/kg equivalent to roughly 594 mg/kg body weight) given prior to a standardized synthetic meal caused a significant decrease in liver lipogenesis (roughly 70%) for up to 8 hours after the meal. The production of lipids declined not only in the liver, but in the other tissues in which fats are formed from carbohydrates (i.e., small intestine and adipose tissues).

In one experiment, rats were given various amounts of HCA over a thirty day period (in amounts of 2.63, 1.32, 0.66 or 0.17 mmoles/kg/day) once daily, or 0.33 mmoles/kg twice daily, to demonstrate the effect on body weight gain in growing rats. A dose-related reduction in weight gain was observed in the rats treated with HCA. The decreases were significant at concentrations of 2.63 mmol/kg once daily or 0.33 mmol/kg twice daily. Thus, one-fourth the amount of HCA was required to reduce weight gain when administered in two divided doses as compared to a single dose. However, no significant reductions were observed with the single daily administration of 0.17, 0.66 and 1.32 mmol/kg. This suggests that HCA is rapidly metabolized in the body and that divided doses are more effective than a single dose at inhibiting lipogenesis. Recent studies also have shown that HCA-induced increases in energy expenditure may account, at least in part, for the observed inhibitory effect of HCA on body weight gain in rats.

A particularly preferred HCA composition, marketed under the name Super CitriMax® (and also designated HCA-SX) by InterHealth Nutraceuticals of Benicia, California, incorporates a unique form of HCA bound to the minerals calcium and potassium. HCA-SX is described and claimed in published Patent Cooperation Treaty Application WO 99/03464, herein incorporated by reference. This HCA-SX composition contains approximately 60% by weight of HCA, 11% by weight of calcium and 16% by weight of potassium, with the remaining 13% consisting of water and...
other naturally occurring constituents of the natural Garcinia fruit rind. This is in contrast to other, more common forms of HCA, which are not bound to potassium, but instead are bound only to calcium. As a result of being bound also to potassium, HCA-SX is virtually completely water-soluble, and it is more bioavailable than regular HCA compositions incorporating only calcium. HCA-SX is also significantly less hygroscopic than HCA compositions bound only to potassium, contains 60% HCA—twenty percent more HCA than that typically found in HCA compositions geared toward weight loss—and contains less than one percent sodium, which is of particular benefit to people who have high blood pressure or are on a sodium-restricted diet. HCA-SX also is virtually tasteless, odorless and, in solution, colorless, and does not have the aftertaste associated with other HCA compositions, making it ideal for use in functional foods and beverages.

[0016] As stated above, HCA-SX is highly bioavailable and easily retained by obese subjects. Using a new rapid and accurate high performance liquid chromatographic mass spectrometric method for measuring blood levels of HCA, scientists recently found that blood levels of HCA-SX increased for at least 2 hours and remained in the blood for more than 4 hours after ingestion. Absorption rates varied among subjects. In a separate experiment, the same investigators found that absorption of HCA-SX peaked two hours after administration, and that the compound remained in the blood for more than nine hours after ingestion. Eating a full meal shortly after taking HCA-SX reduced its absorption by about 60%. HCA-SX was detectable in urine, and therefore its concentration could be used to determine relative HCA absorption.

[0017] As discussed above, serotonin affects eating behavior and body weight. Increased plasma levels of serotonin are associated with decreased food intake, reduced weight gain and increased energy expenditure. Researchers have shown that HCA-SX increases the release and availability of serotonin from rat brain cortical slices ex vivo, with optimal concentrations at 300 micromolar, as compared to concentrations of 10, 30, 100 and 1,000 micromolar, indicating an optimal effective dose of HCA-SX. Subsequently, human clinical studies have, for the first time, shown that effective doses of HCA-SX significantly increase serum serotonin levels. Because serotonin has been implicated in the regulation of eating behavior and body weight regulation, appetite suppression induced by administration of HCA could be mediated by this serotonin.

[0018] As discussed above, leptin is a biomarker for the gene that regulates body weight. Leptin is present in the bloodstream in amounts related to the amount of fat in the body, and acts primarily on the brain to regulate food intake and energy expenditure. Leptin levels are higher in overweight than in non-overweight individuals. Recently, human clinical studies have, for the first time, shown that effective doses of HCA-SX significantly reduce serum leptin levels and, thus, may down-regulate the genetic propensity of a person toward obesity.

[0019] As discussed above, a possible mechanism of action may be HCA’s ability to increase fat oxidation. Enhanced oxidation of fat, including adipose tissue and triglycerides, is the primary source of the fat metabolites malondialdehyde, formaldehyde, acetaldehyde and acetone. Recently, human clinical studies have shown that effective doses of HCA-SX significantly increase fat oxidation as determined by increases in urinary metabolites malondialdehyde, formaldehyde, acetaldehyde and acetone, and thus may increase fat degradation or “burning.”

[0020] Another dietary supplement known for use in regulating appetite and modifying body composition is chromium. Chromium is an essential trace element required for normal protein, fat and carbohydrate metabolism. Chromium levels are known to decrease with age, and marginal chromium deficiencies appear to be widespread. Chromium is important for energy production and plays a role in regulating appetite, reducing sugar cravings and increasing lean body mass. Chromium helps insulin metabolize fat, turn protein into muscle and convert sugar into energy. Chromium has been shown to reduce levels of harmful LDL cholesterol, a form of cholesterol linked to heart disease, and increase levels of beneficial HDL cholesterol. Dietary trends that show increased consumption of more highly processed foods may lead to deficiencies of chromium in persons.
consuming O—NBC. Additionally, high doses of O—NBC have been shown to be completely safe and non-toxic. In contrast, chromium picolinate has been shown to damage DNA and be mutagenic.

[0024] Previous studies also have shown the effectiveness of O—NBC in promoting weight loss. In a prior study, young obese women consuming 400 micrograms of chromium as O—NBC per day, in combination with exercise, experienced significant weight loss over an eight-week study period. In contrast, no change in weight was observed in subjects who exercised and consumed chromium in the form of chromium picolinate or a placebo. Also, subjects who consumed chromium picolinate and did not exercise experienced significant weight gain during the study period.

In another study, overweight African-American women consuming 600 mcg of chromium daily as O—NBC for 8 weeks had a significant loss of body fat and sparing of muscle compared with a prior placebo period of the same duration. Increased fat loss also was observed among women who were randomized to consume O—NBC first, followed by placebo, suggesting a carry-over effect of the supplementation on fat loss. No adverse effects were observed from ingestion of O—NBC on the women in these studies.

[0025] Other known dietary supplements include plants in the genus Gymnema, such as Gymnema sylvestre, a traditional Ayurvedic herb known to balance elevated blood sugar levels. The active ingredients in Gymnema sylvestre, gymnemic acid and gymnarin, have molecular structures similar to that to glucose and possess a number of health benefits. Gymnarin has the ability to fill fat bud receptors and reduce the sweet taste of sugary foods, thus greatly reducing the craving for sweets. Gymnemic acid helps increase the production of insulin by stimulating the production of new insulin-producing cells, called beta-cells, in the pancreas. Gymnemic acid also facilitates insulin release from the beta-cells into the blood stream by increasing beta-cell membrane permeability. Gymnemic acid also inhibits the absorption of sugar molecules in the intestines during digestion, thus reducing increases in blood sugar levels. Finally, consumption of Gymnema sylvestre also has been shown to significantly lower cholesterol in animal models.

[0026] Each of the materials described above are known to exhibit weight control and/or other health promoting properties in persons or other mammals consuming them. However, individually, none provide all of the weight control and health promoting properties described above. It is apparent from the above that a need exists for improved methods and compositions for controlling body weight and improving the health condition of persons or other mammals prone to excess body weight, including improvement of body mass index (an indicator of healthy body weight), serum leptin levels, serum serotonin levels, and the cardiovascular risk factors total cholesterol, LDL cholesterol, HDL cholesterol and triglycerides. The present invention fulfills this need and provides further related advantages.

SUMMARY OF THE INVENTION

[0027] The present invention resides in a composition comprising hydroxycitric acid, chromium, and gymnemic acid. In preferred aspects of the invention, the hydroxycitric acid is bound to calcium and potassium. The hydroxycitric acid in the composition preferably is derived from a plant of the genus Garcinia, most preferably Garcinia Cambogia. The chromium in the composition preferably is niacin-bound chromium, and more preferably oxygen-coordinated niacin-bound chromium. The gymnemic acid in the composition preferably is derived from a plant of the genus Gymnema, most preferably Gymnema sylvestre. The composition may be in the form of a pill, tablet, capsule, lozenge, gum, liquid, powder, food, beverage or other orally administered form.

[0028] The present invention also resides in related methods for increasing serotonin level, decreasing leptin level, or increasing fat oxidation in a person or other mammal, incorporating identifying a person or other mammal that can benefit from increased serotonin level, decreased leptin level and/or increased fat oxidation, and administering to the person or other mammal a composition comprising hydroxycitric acid in an amount sufficient to provide the required effect. Preferred aspects of the method incorporate administration of hydroxycitric acid in forms as described above. The method preferably incorporates administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid daily, and more preferably approximately 2,700 milligrams to approximately 2,800 milligrams. In the method, the composition preferably is administered daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals, preferably orally. In preferred aspects of the method, the composition also incorporates chromium and gymnemic acid in forms as described above. Preferably, the method incorporates administering approximately 10 micrograms to approximately 1,000 micrograms of chromium and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily, and more preferably approximately 400 micrograms of chromium and approximately 100 milligrams of gymnemic acid daily.

[0029] The present invention also resides in related methods for providing the following effects in a person or other mammal: reducing excess, or maintaining healthy, body weight or body mass index; decreasing appetite and reducing food intake; and/or decreasing total cholesterol, LDL cholesterol and/or triglyceride levels, and/or increasing HDL cholesterol levels. The methods incorporate identifying a person or other mammal suffering, or at risk for suffering, from excess body weight, excess body mass index, elevated total cholesterol level, elevated LDL cholesterol level, elevated triglyceride level and/or reduced HDL cholesterol level; and administering to the person or other mammal a composition incorporating hydroxycitric acid, chromium and gymnemic acid in an amount sufficient to provide the required effect. The hydroxycitric acid, chromium and gymnemic acid preferably are in the forms described above. Preferably, the composition administered incorporates approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid, approximately 10 micrograms to approximately 1,000 micrograms of chromium, and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily, and more preferably approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxycitric acid, approximately 400 micrograms of chromium, and approximately 100 milligrams of gymnemic acid daily. Preferably, the method incorporates administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals, preferably orally.
The present invention resides compositions incorporating (−)-hydroxycitic acid (HCA), chromium and gymnemic acid. The present invention also resides in methods for controlling body weight and improving the above-discussed health factors of persons or other mammals, including increasing serum serotonin levels, reducing serum leptin levels, increasing fat oxidation, reducing food intake, lowering body mass index (BMI), and improving cardiovascular risk factors by decreasing elevated total and LDL cholesterol, increasing HDL cholesterol and reducing elevated triglyceride levels. The methods include identifying a person or other mammal who is, or is at risk for being, overweight, or who would benefit from the above-described physiological changes, and administering to the person or other mammal a composition comprising sufficient amounts to effect the changes. The present invention also resides in a composition which, when administered to a person or other mammal, provides for the above-described psychological changes, the composition comprising a salt of HCA and other selected components.

The HCA used in the compositions preferably is in a form incorporating both calcium and potassium, to provide for superior solubility, bioavailability, and commercial utility. In preferred methods of the present invention, the composition administered also incorporates chromium, preferably from oxygen-coordinated niacin-bound chromium, and Gymnema sylvestre extract, providing gymnemic acid and gymnemic. Preferably, the method involves administering a composition incorporating approximately 10 to 5,000 milligrams, and more preferably 2,700 to 2,800 milligrams, of HCA daily to a person or other mammal who would benefit from the physiological changes discussed above. The preferred composition to be administered also can incorporate approximately 10 to 1,000 micrograms, and most preferably 400 micrograms, of elemental chromium daily, preferably from oxygen-coordinated niacin-bound chromium, and approximately 10 to 1,000 milligrams, and most preferably 400 milligrams, Gymnema sylvestre extract providing approximately 5 to 500 milligrams, and most preferably 100 milligrams, of gymnemic acid daily.

The methods of the present invention provide for the safe, effective and convenient reduction of excess body weight and resulting reduction in body mass index (BMI), or maintenance of healthy body weight and healthy BMI, in persons or other mammals. Besides these effects, administration of the compositions also provides for reducing serum leptin levels, increasing serum serotonin levels, reducing food intake, increasing fat oxidation, decreasing elevated total and LDL cholesterol, increasing HDL cholesterol, and reducing elevated triglyceride levels in persons or other mammals that would benefit from such effects.

It has been surprisingly found that compositions incorporating the components discussed above increase serum serotonin levels, reduce serum leptin levels and increase fat oxidation. It has also been surprisingly found that optimal concentrations of HCA exist for maximizing serum serotonin levels, a possible mechanism for decreasing appetite and reducing food intake. Another surprising finding is that compositions incorporating the components described above provide for superior improvement in reducing excess body weight and improving the related health factors described herein than was expected based on the previously known properties of the components. Specifically, the combination of HCA, chromium and gymnemic acid was shown to reduce body weight, lower body mass index, increase serum serotonin levels, reduce food intake, reduce serum leptin levels, increase fat oxidation, decrease harmful total and LDL cholesterol, increase beneficial HDL cholesterol and lower triglyceride levels significantly greater than HCA alone.

Preferred administration of the composition is orally, in three equally-divided doses roughly 30 to 60 minutes before meals administered daily. The composition also can include inert ingredients or diluents, such as sugar, maltodextrin, cellulose, or other inert ingredients commonly used in food and beverage products. The composition may be in various forms such as dietary supplements, including pill, tablet, capsule, lozenge, gum, food, liquid, or powder. The composition also may be incorporated into food or beverage products, including bars, shakes, gums, beverages, or other processed or prepared food or beverage products, or any other orally administrable form.

Use of the methods and compositions of the present invention is illustrated in the Example below.

Example

The effects of administering compositions within the scope of the methods of the present invention were tested. A double-blind, placebo-controlled human clinical trial was conducted using a composition incorporating: the HCA-SX extract described above (Super CitriMax™, supplied by InterHealth Nutraceuticals of Benicia, California); and HCA-SX extract in combination with chromium (ChromMate®, supplied by InterHealth), and Gymnema sylvestre extract (also supplied by InterHealth).

82 moderately obese human subjects completed the study. All subjects were placed on a daily diet of 2,000 kcal. All food was prepared and delivered to the subjects, and all food intake was strictly supervised by trained dieticians. All subjects also underwent a 30 minute walking exercise program, five times a week, which was supervised by a trained exercise specialist. The subjects were randomly divided into three groups. The subjects in the first group were given a placebo. The subjects in the second group was given a daily dose of 4,667 mg of Garcinia cambogia extract (providing 2,800 mg HCA per day). The subjects in the third group were given a daily dose of 4,667 mg of a combination of Garcinia cambogia (2,800 mg HCA), 4 mg of niacin-bound chromium (providing 400 mcg of elemental chromium), and 400 mg of Gymnema sylvestre extract (providing 100 mg gymnemic acid). The subjects received their respective compositions in three equally-divided doses 30 to 60 minutes before breakfast, lunch and dinner for eight weeks. These dosage levels of HCA were determined by extrapolation of successful earlier animal trials, as well as review of optimal micromolar concentrations of HCA in vivo brain tissue resulting in maximum serotonin release. Changes in body weight, lipid profile (triglycerides, LDL, HDL and total cholesterol), obesity gene level (determined by serum leptin level), serum serotonin levels, body mass index, fat metabolites (urinary malondialdehyde, formaldelyhde, acetaldelyhde and acetone levels) and appetite control were assessed in the persons. These changes were averaged to produce figures for analysis.
Results of the testing are shown in Table 1 below.

Results of Administration of Compositions

<table>
<thead>
<tr>
<th>Tested Factor</th>
<th>Placebo</th>
<th>HCA-SX</th>
<th>HCA-SX + chromium + gymnemic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pounds</td>
<td>3.5</td>
<td>10.0</td>
<td>12.8</td>
</tr>
<tr>
<td>% change</td>
<td>1.9</td>
<td>5.0</td>
<td>6.5</td>
</tr>
<tr>
<td>LDL Cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>3.0</td>
<td>-14.5</td>
<td>-22.6</td>
</tr>
<tr>
<td>% change</td>
<td>2.8</td>
<td>-13.0</td>
<td>-19.0</td>
</tr>
<tr>
<td>HDL Cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>-0.7</td>
<td>2.7</td>
<td>6.2</td>
</tr>
<tr>
<td>% change</td>
<td>-2.7</td>
<td>9.0</td>
<td>21.4</td>
</tr>
<tr>
<td>Total Cholesterol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>1.1</td>
<td>-12.4</td>
<td>-16.6</td>
</tr>
<tr>
<td>% change</td>
<td>1.0</td>
<td>-7.4</td>
<td>-9.7</td>
</tr>
<tr>
<td>Triglycerides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>0.3</td>
<td>-12.9</td>
<td>-22.6</td>
</tr>
<tr>
<td>% change</td>
<td>0.3</td>
<td>-10.0</td>
<td>-19.0</td>
</tr>
<tr>
<td>Serum Leptin Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ng/ml</td>
<td>0.4</td>
<td>-12.2</td>
<td>-15.4</td>
</tr>
<tr>
<td>% change</td>
<td>1.0</td>
<td>-4.0</td>
<td>-8.2</td>
</tr>
<tr>
<td>Serum Serotonin Level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mg/dl</td>
<td>20.1</td>
<td>119.1</td>
<td>149.3</td>
</tr>
<tr>
<td>% change</td>
<td>10.9</td>
<td>48.5</td>
<td>70.4</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kg/m²</td>
<td>-0.7</td>
<td>-2.4</td>
<td>-3.2</td>
</tr>
<tr>
<td>% change</td>
<td>-2.0</td>
<td>-7.0</td>
<td>-9.2</td>
</tr>
<tr>
<td>Excreted Fat Metabolites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% change</td>
<td>3.5</td>
<td>36.2</td>
<td>42.8</td>
</tr>
<tr>
<td>Acetone</td>
<td>8.8</td>
<td>68.1</td>
<td>52.7</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>12.6</td>
<td>60.6</td>
<td>65.3</td>
</tr>
<tr>
<td>Malonaldehyde</td>
<td>38.1</td>
<td>64.4</td>
<td>73.0</td>
</tr>
<tr>
<td>Aandehyde</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Intake Reduction</td>
<td>grams per day (average)</td>
<td>257</td>
<td>386.2</td>
</tr>
<tr>
<td>% change</td>
<td>0</td>
<td>11.4</td>
<td>17.2</td>
</tr>
</tbody>
</table>

Discussion

The data from the study show that administration of the specified levels of HCA extract results in: significant weight loss; decreases in body mass index (an index of obesity health risk); reductions in triglycerides, LDL and total cholesterol (cardiovascular risk factors); increases in beneficial HDL cholesterol; increases in excretion of fat metabolites (indicating increased fat oxidation or “burning”); decreases in serum leptin levels (a biomarker of the obesity gene); increases in serum serotonin levels (a mechanism of appetite control and eating behavior); and, reductions in food intake. Further, the composition incorporating all three components (HCA-SX, chromium and gymnemic acid) resulted in even greater improvement in all of the tested factors than use of the composition incorporating HCA-SX alone.

A number of interesting findings are observed from the results presented above. The constituents of the compositions demonstrated multifaceted activities, which collectively resulted in a number of health benefits. Also, none of the constituents activated the central nervous system, demonstrating the relative safety of the compositions over, for example, ephedra-containing weight management formulas. HCA-SX exhibited its predominant effect on the biochemical regulation of leptin, which is an integral key component of obesity regulatory genes. Serotonin level also was modulated by HCA-SX alone, but it was more effectively modulated by the combination of HCA-SX, chromium, and gymnemic acid. The effect of serotonin level modulation was reflected in the reduced appetite in the study subjects.

An examination of the lipid profile data clearly shows that HCA-SX alone lowers LDL and triglyceride levels and increases HDL levels, however, the combination of HCA, chromium and gymnemic acid exhibited even greater changes in these key components. Also, a high correlation exists between increased fat oxidation and enhanced excretion of urinary lipid metabolites with a dramatic reduction in the triglyceride level. Glyceral is a product of the metabolism of triglycerides by adipose tissue and other brown tissues that possess a high glycerol kinase level. Glycerol kinase can activate the breakdown of triglycerides to glycerol, leading to enhanced formation of formaldehyde via microsomal metabolism. This indicates that the compositions of the present invention can provide for enhanced biochemical induction of glycerol kinase, which can serve to enhance two important biochemical functions: biochemical reduction of triglyceride levels, and fat oxidation.

Although the invention has been disclosed in detail with reference only to the preferred embodiments, those skilled in the art will appreciate that additional methods and compositions can be made without departing from the scope of the invention.

We claim:

1. A composition comprising hydroxycitric acid, chromium, and gymnemic acid.
2. A composition as defined in claim 1, wherein the hydroxycitric acid is bound to calcium and potassium.
3. A composition as defined in claim 1, wherein the composition of hydroxycitric acid comprises hydroxycitric acid is derived from a plant of the genus Garcinia.
4. A composition as defined in claim 3, wherein the plant is Garcinia cambogia.
5. A composition as defined in claim 1, wherein the chromium comprises niacin-bound chromium.
6. A composition as defined in claim 5, wherein the chromium comprises oxygen-coordinated niacin-bound chromium.
7. A composition as defined in claim 1, wherein the gymnemic acid is derived from a plant of the genus Gymnema.
8. A composition as defined in claim 7, wherein the plant is Gymnema sylvestre.
9. A composition as defined in claim 1, wherein the composition is in the form of a pill, tablet, capsule, lozenge, gum, liquid, powder, food, beverage or other orally administered form.
10. A method for increasing serotonin level in a person or other mammal comprising:

identifying a person or other mammal that can benefit from increased serotonin level; and

administering to the person or other mammal a composition comprising hydroxycitric acid in an amount sufficient to increase serotonin level in the person or other mammal.

11. A method as defined in claim 10, wherein the composition comprises hydroxycitric acid bound to calcium and potassium.

12. A method as defined in claim 10, wherein the composition comprises hydroxycitric acid derived from a plant of the genus Garcinia.

13. A method as defined in claim 12, wherein the plant is *Garcinia cambogia*.

14. A method as defined in claim 10, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid daily.

15. A method as defined in claim 14, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxycitric acid daily.

16. A method as defined in claim 10, wherein the step of administering comprises administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals.

17. A method as defined in claim 10, wherein the step of administering comprises administering the composition orally.

18. A method as defined in claim 10, wherein the composition further comprises chromium and gymnemic acid.

19. A method as defined in claim 18, wherein the composition comprises niacin-bound chromium.

20. A method as defined in claim 19, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

21. A method as defined in claim 18, wherein the composition comprises gymnemic acid derived from a plant of the genus Gymnema.

22. A method as defined in claim 21, wherein the plant is *Gymnema sylvestre*.

23. A method as defined in claim 18, wherein the step of administering comprises administering approximately 10 micrograms to approximately 1,000 micrograms of chromium and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

24. A method as defined in claim 23, wherein the step of administering comprises administering approximately 400 micrograms of chromium and approximately 100 milligrams of gymnemic acid daily.

25. A method for decreasing leptin level in a person or other mammal comprising:

identifying a person or other mammal that can benefit from decreased leptin level; and

administering to the person or other mammal a composition comprising hydroxycitric acid in an amount sufficient to decrease leptin level in the person or other mammal.

26. A method as defined in claim 25, wherein the composition comprises hydroxycitric acid bound to calcium and potassium.

27. A method as defined in claim 25, wherein the composition comprises hydroxycitric acid derived from a plant of the genus Garcinia.

28. A method as defined in claim 27, wherein the plant is *Garcinia cambogia*.

29. A method as defined in claim 25, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid daily.

30. A method as defined in claim 29, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxycitric acid daily.

31. A method as defined in claim 25, wherein the step of administering comprises administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals.

32. A method as defined in claim 25, wherein the step of administering comprises administering the composition orally.

33. A method as defined in claim 25, wherein the composition further comprises chromium and gymnemic acid.

34. A method as defined in claim 33, wherein the composition comprises niacin-bound chromium.

35. A method as defined in claim 34, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

36. A method as defined in claim 33, wherein the composition comprises gymnemic acid derived from a plant of the genus Gymnema.

37. A method as defined in claim 36, wherein the plant is *Gymnema sylvestre*.

38. A method as defined in claim 33, wherein the step of administering comprises administering approximately 10 micrograms to approximately 1,000 micrograms of chromium and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

39. A method as defined in claim 38, wherein the step of administering comprises administering approximately 400 micrograms of chromium and approximately 100 milligrams of gymnemic acid daily.

40. A method for increasing fat oxidation in a person or other mammal comprising:

identifying a person or other mammal that can benefit from increased fat oxidation; and

administering to the person or other mammal a composition comprising hydroxycitric acid in an amount sufficient to increase fat oxidation in the person or other mammal.

41. A method as defined in claim 40, wherein the composition comprises hydroxycitric acid bound to calcium and potassium.

42. A method as defined in claim 40, wherein the composition comprises hydroxycitric acid derived from a plant of the genus Garcinia.

43. A method as defined in claim 42, wherein the plant is *Garcinia cambogia*.
44. A method as defined in claim 40, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxy-citric acid daily.

45. A method as defined in claim 44, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxy-citric acid daily.

46. A method as defined in claim 40, wherein the step of administering comprises administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals.

47. A method as defined in claim 40, wherein the step of administering comprises administering the composition orally.

48. A method as defined in claim 40, wherein the composition further comprises chromium and gymnemic acid.

49. A method as defined in claim 48, wherein the composition comprises niacin-bound chromium.

50. A method as defined in claim 49, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

51. A method as defined in claim 50, wherein the composition comprises gymnemic acid is derived from a plant of the genus Gymnema.

52. A method as defined in claim 51, wherein the plant is Gymnema sylvestre.

53. A method as defined in claim 48, wherein the step of administering comprises administering approximately 10 micrograms to approximately 1,000 micrograms of chromium and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

54. A method as defined in claim 53, wherein the step of administering comprises administering approximately 400 micrograms of chromium and approximately 100 milligrams of gymnemic acid daily.

55. A method for reducing excess, or maintaining healthy body weight in a person or other mammal comprising:

- identifying a person or other mammal suffering, or at risk for suffering, from excess body weight; and

- administering the person or other mammal a composition comprising hydroxy-citric acid, chromium and gymnemic acid in an amount sufficient to reduce excess, or maintain healthy body weight, body weight in the person or other mammal.

56. A method as defined in claim 55, wherein the composition comprises hydroxy-citric acid bound to calcium and potassium.

57. A method as defined in claim 55, wherein the hydroxy-citric acid is derived from a plant of the genus Garcinia.

58. A method as defined in claim 57, wherein the plant is Garcinia cambogia.

59. A method as defined in claim 55, wherein the composition comprises niacin-bound chromium.

60. A method as defined in claim 59, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

61. A method as defined in claim 55, wherein the gymnemic acid is derived from a plant of the genus Gymnema.

62. A method as defined in claim 61, wherein the plant is Gymnema sylvestre.

63. A method as defined in claim 55, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxy-citric acid, approximately 10 micrograms to approximately 1,000 micrograms of chromium, and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

64. A method as defined in claim 63, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxy-citric acid, approximately 400 micrograms of chromium, and approximately 100 milligrams of gymnemic acid daily.

65. A method as defined in claim 55, wherein the step of administering comprises administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals.

66. A method as defined in claim 55, wherein the step of administering comprises administering the composition orally.

67. A method for reducing excess, or maintaining healthy body mass index in a person or other mammal comprising:

- identifying a person or other mammal suffering, or at risk for suffering, from excess body weight; and

- administering to the person or other mammal a composition comprising hydroxy-citric acid, chromium and gymnemic acid in an amount sufficient to reduce excess or maintain healthy body mass index in the person or other mammal.

68. A method as defined in claim 67, wherein the composition comprises hydroxy-citric acid bound to calcium and potassium.

69. A method as defined in claim 67, wherein the hydroxy-citric acid is derived from a plant of the genus Garcinia.

70. A method as defined in claim 69, wherein the plant is Garcinia cambogia.

71. A method as defined in claim 67 wherein the composition comprises niacin-bound chromium.

72. A method as defined in claim 71 wherein the composition comprises oxygen-coordinated niacin-bound chromium.

73. A method as defined in claim 67 wherein the gymnemic acid is derived from a plant of the genus Gymnema.

74. A method as defined in claim 73, wherein the plant is Gymnema sylvestre.

75. A method as defined in claim 67, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxy-citric acid, approximately 10 micrograms to approximately 1,000 micrograms of chromium, and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

76. A method as defined in claim 75, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxy-citric acid, approximately 400 micrograms of chromium, and approximately 100 milligrams of gymnemic acid daily.

77. A method as defined in claim 67, wherein the step of administering comprises administering the composition daily in three substantially equally divided doses, approximately 30 to 60 minutes before meals.

78. A method as defined in claim 67, wherein the step of administering comprises administering the composition orally.
79. A method for decreasing appetite and/or reducing food intake in a person or other mammal comprising:

identifying a person or other mammal that can benefit from decreased appetite and/or reduced food intake; and

administering to the person or other mammal a composition comprising hydroxycitric acid, chromium and gymnemic acid in an amount sufficient to decrease appetite and/or reduce food intake in the person or other mammal.

80. A method as defined in claim 79, wherein the composition comprises hydroxycitric acid bound to calcium and potassium.

81. A method as defined in claim 79, wherein the hydroxycitric acid is derived from a plant of the genus Garcinia.

82. A method as defined in claim 81, wherein the plant is Garcinia cambogia.

83. A method as defined in claim 79, wherein the composition comprises niacin-bound chromium.

84. A method as defined in claim 83, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

85. A method as defined in claim 79, wherein the gymnemic acid is derived from a plant of the genus Gymnema.

86. A method as defined in claim 85, wherein the plant is Gymnema sylvestre.

87. A method as defined in claim 79, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid, approximately 10 micrograms to approximately 1,000 micrograms of chromium, and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

88. A method as defined in claim 87, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxycitric acid, approximately 400 micrograms of chromium, and approximately 100 milligrams of gymnemic acid daily.

89. A method as defined in claim 79, wherein the step of administering comprises administering the composition daily in three substantially equably divided doses, approximately 30 to 60 minutes before meals.

90. A method as defined in claim 79, wherein the step of administering comprises administering the composition orally.

91. A method for decreasing total cholesterol, LDL cholesterol and/or triglyceride levels, and/or increasing HDL cholesterol levels, in a person or other mammal comprising:

identifying a person or other mammal that can benefit from decreased total cholesterol, LDL cholesterol and/or triglyceride levels, and/or increased HDL cholesterol levels; and

administering to the person or other mammal a composition comprising hydroxycitric acid, chromium and gymnemic acid in an amount sufficient to decrease total cholesterol, LDL cholesterol and/or triglyceride levels, and/or increase HDL cholesterol levels, in the person or other mammal.

92. A method as defined in claim 91, wherein the composition comprises hydroxycitric acid bound to calcium and potassium.

93. A method as defined in claim 91, wherein the hydroxycitric acid is derived from a plant of the genus Garcinia.

94. A method as defined in claim 93, wherein the plant is Garcinia cambogia.

95. A method as defined in claim 91, wherein the composition comprises niacin-bound chromium.

96. A method as defined in claim 95, wherein the composition comprises oxygen-coordinated niacin-bound chromium.

97. A method as defined in claim 91, wherein the gymnemic acid is derived from a plant of the genus Gymnema.

98. A method as defined in claim 97, wherein the plant is Gymnema sylvestre.

99. A method as defined in claim 91, wherein the step of administering comprises administering approximately 100 milligrams to approximately 5,000 milligrams of hydroxycitric acid, approximately 10 micrograms to approximately 1,000 micrograms of chromium, and approximately 10 milligrams to approximately 1,000 milligrams of gymnemic acid daily.

100. A method as defined in claim 99, wherein the step of administering comprises administering approximately 2,700 milligrams to approximately 2,800 milligrams of hydroxycitric acid, approximately 400 micrograms of chromium, and approximately 100 milligrams of gymnemic acid daily.

101. A method as defined in claim 91, wherein the step of administering comprises administering the composition daily in three substantially equably divided doses, approximately 30 to 60 minutes before meals.

102. A method as defined in claim 91, wherein the step of administering comprises administering the composition orally.

* * * * *