
(19) United Stat (S
US 20110276584A1

(12) Patent Application Publication (10) Pub. No.: US 2011/0276584 A1
Cotner et al. (43) Pub. Date: Nov. 10, 2011

(54) MULTI-TENANCY IN DATABASE (52) U.S. Cl. 707/769; 707/783; 707/E17.005;
NAMESPACE 707/E17.014

(57) ABSTRACT
(75) Inventors: Curt L. Cotner, Santa Clara, CA

(US); Namik Hrle, Boeblingen Database systems are presented including: a database; a data
(DE) base instance of the database, where the database instance

includes a set of instance database objects, and where the
database instance is accessible by an instance user; and a

(73) Assignee: International Business Machines database tenant associated with the database instance, where
Corporation, Armonk, NY (US)

(21) Appl. No.: 12/777,011

(22) Filed: May

Publication Classification

(51) Int. Cl.
G06F 7/30

42

BAAAS

10, 2010

(2006.01)

the database tenant includes a set of tenant database objects,
where the database tenant provides access to the database
instance by the tenant user, Such that the instance user and the
tenant user may independently access the database instance
without affecting one another where each of the instance user
and the tenant user are configured with independent accessi
bility. In some embodiments, systems further include: an
instance production table associated with the database
instance and a tenant production table associated with the
database instance.

M 4.

44

ATA3AS STANCE

36
AABASE EAM

OAAEASE
ENAT

AAEASE
ENA

Ross Ross, Database tenant tenant usern tenant user tenant user

43

AM SE

ENA SR 2

EAN SER

SANCE SER

SANCE SER Instance users:instance user

US 2011/0276584 A1 Nov. 10, 2011 Sheet 1 of 6 Patent Application Publication

US 2011/0276584 A1 Nov. 10, 2011 Sheet 2 of 6 Patent Application Publication

Patent Application Publication Nov. 10, 2011 Sheet 3 of 6 US 2011/0276584 A1

304 - CREAE AABASE ENANE

302 -- CREAE AABASE NSANCE

CAE A3:

OOOOOOOOOOOO 5 CURRENTENANT? es

CREAE ENANT PRODUCTION ABE

al CREAE NSANCE ROCC ABE

AS AELE

SOR

US 2011/0276584 A1 Nov. 10, 2011 Sheet 5 of 6 Patent Application Publication

„* **

are a was brash a tarash trar awh sawa w if its as a haw, witt is a A as

Patent Application Publication Nov. 10, 2011 Sheet 6 of 6 US 2011/0276584 A1

8. M

SAR

RECEVE OUERY

TENANT DATABASE OBJECT?

802 -

AST CBEC

F.G. 6

US 2011/0276584 A1

MULT-TENANCY IN DATABASE
NAMESPACE

BACKGROUND

0001 Increasingly, the people cost of managing IT infra
structure has become a dominant cost element in a customer's
enterprise IT budget. In the case of database systems, people
cost is significantly influenced by the number of database
instances the IT organization has to manage. The term, data
base instance is typically used to describe a complete data
base environment, including the RDBMS software, table
structure, stored procedures and other functionality. The term
is most commonly used when administrators describe mul
tiple instances of the same database. In an IT organization,
database instances have hardware infrastructure needs (CPU,
memory, disk space, etc.) that add additional costs. There may
be many scenarios where an IT organization might be able to
realize significant savings if the organization was able to run
their workload with a greatly reduced number of database
instances.
0002 For example, FIG. 1 is an illustrative represent of a
prior art database system 100 employing multiple database
instances 104 of database 102. As may be appreciated, cus
tomers may deploy numerous test and development database
instances 104. Often, these systems are shared by multiple
developers or testers, and also by multiple independent
projects (i.e. user 108). If a given project or projects are going
to make disruptive database schema changes to database
objects shared across projects, the database administrator
(DBA) is forced to create a different database instance for
each project in order to prevent the disruptive schema changes
from impacting other users of the development or test system
thus potentially creating many database instances.
0003. In addition, when customers create shared test sys
tems, they typically do not grant any special administrative
privileges to the individual developers on that system, since
the developer might misuse those privileges and impact the
other developers that run on that same database system. This
issue makes it difficult to deploy some of the more advanced
application development and tuning Solutions—solutions
which can help the developer automate many activities Such
as: creating tables and indexes, tuning SQL queries, testing
out database server SQL hints, comparing database access
paths from one system to another, etc. However, developers
generally can’t exploit these solutions because they don't
have the required database security privileges on the shared
test system.
0004 Furthermore, cloud computing is currently a hot

topic. For database systems, the concept behind cloud com
puting is that a cloud provider can provide database services
to applications and end users by deploying virtualized data
base instances on demand. FIG. 2 is an illustrative represen
tation of a prior art cloud computing system 200 employing
multiple database instances 202 of a database cloud 206. With
current technology, database cloud computing often requires
a unique physical instance 202 for each cloud user group 204
so that the different cloud user groups can be isolated from
one another. If a cloud provider has to take this approach, it
will be relatively expensive to support large numbers of cloud
user groups, since the infrastructure requirements for a full
database instance (even when virtualized) are high.
0005 Still further, SAPTM offers an option to consolidate
databases for multiple SAPTM components called multiple
components-one database (MCOD). MCOD can signifi

Nov. 10, 2011

cantly reduce the number of required database instances
resulting in savings across the board. However, many current
database management systems (DBMSs) do not generally
have appropriate support for MCOD. Namely, once multiple
components share the same database they lose ability to be
efficiently individually backed-up, recovered, cloned, etc.
This is a major obstacle for wider use of MCOD. As such, the
actual exploitation of this useful option remains limited.

BRIEF SUMMARY

0006. The following presents a simplified summary of
some embodiments of the invention in order to provide a basic
understanding of the invention. This Summary is not an exten
sive overview of the invention. It is not intended to identify
key/critical elements of the invention or to delineate the scope
of the invention. Its sole purpose is to present some embodi
ments of the invention in a simplified form as a prelude to the
more detailed description that is presented below.
0007 Database systems are presented including: a data
base; a database instance of the database, where the database
instance includes a set of instance database objects, and
where the database instance is accessible by an instance user;
and a database tenant associated with the database instance,
where the database tenant includes a set of tenant database
objects, where the database tenant provides access to the
database instance by the tenant user, Such that the instance
user and the tenant user may independently access the data
base instance without affecting one another where each of the
instance user and the tenant user are configured with inde
pendent accessibility. In some embodiments, systems further
include: an instance production table associated with the
database instance for storing a portion of the set of instance
database objects, the instance production table accessible by
the instance user and the tenant user; and a tenant production
table associated with the database instance for storing the set
of tenant database objects, the tenant production table acces
sible by the tenant user, where the set of tenant database
objects correspond with a portion of the set of instance data
base objects. In some embodiments, operations performed
utilizing the database tenants are configured for accessing the
database instance without changing the database instance. In
Some embodiments, the set of instance database objects is
accessible by the tenant user.
0008. In other embodiments, methods for providing multi
tenancy in a database system for users associated with a
database instance of a database utilizing an electronic com
puting device are presented including: causing the electronic
computing device to create the database instance, the data
base instance configured for providing a set of instance data
base objects, and where the database instance is accessible by
an instance user; and a database tenant associated with the
database instance, where the database tenant includes a set of
tenant database objects, where the database tenant provides
access to the database instance by the tenant user, Such that
the instance user and the tenant user may independently
access the database instance without affecting one another
where each of the instance user and the tenant user are con
figured with independent accessibility.
0009. In other embodiments, computing device program
products for providing multiply privileged access with a data
base for a number of users utilizing a database instance of the
database utilizing an electronic computing device are pre
sented including: a computer readable medium; first pro
grammatic instructions for creating the database instance, the

US 2011/0276584 A1

database instance configured for providing a set of instance
database objects, where the database instance is accessible by
an instance user; second programmatic instructions for cre
ating a database tenant associated with the database instance,
where the database tenant includes a set of tenant database
objects, where the database tenant provides access to the
database instance by the tenant user, Such that the instance
user and the tenant user may independently access the data
base instance without affecting one another where each of the
instance user and the tenant user are configured with inde
pendent accessibility.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0010. The present invention is illustrated by way of
example, and not by way of limitation, in the figures of the
accompanying drawings and in which like reference numer
als refer to similar elements and in which:
0011 FIG. 1 is an illustrative representation of a prior art
database system employing multiple database instances of a
database;
0012 FIG. 2 is an illustrative representation of a prior art
cloud computing system employing multiple database
instances of a database;
0013 FIG. 3 is an illustrative flowchart of a method for
providing multi-tenancy in a database system in accordance
with embodiments of the present invention;
0014 FIG. 4 is an illustrative representation of a database
system utilizing multi-tenancy in accordance with embodi
ments of the present invention;
0015 FIG. 5 is an illustrative representation of a database
cloud system utilizing multi-tenancy in accordance with
embodiments of the present invention; and
0016 FIG. 6 is an illustrative flowchart of a method for
processing a query in a multi-tenancy environment in accor
dance with embodiments of the present invention.

DETAILED DESCRIPTION

0017. As will be appreciated by one skilled in the art, the
present invention may be embodied as a system, method or
computer program product. Accordingly, the present inven
tion may take the form of an entirely hardware embodiment,
an entirely software embodiment (including firmware, resi
dent Software, micro-code, etc.) or an embodiment combin
ing Software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module’ or “system.” Fur
thermore, the present invention may take the form of a com
puter program product embodied in any tangible medium of
expression having computer usable program code embodied
in the medium. Any combination of one or more computer
usable or computer readable medium(s) may be utilized. The
computer-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appara
tus, device, or propagation medium. More specific examples
(a non-exhaustive list) of the computer-readable medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CDROM), an optical storage
device, a transmission media Such as those Supporting the

Nov. 10, 2011

Internet oran intranet, or a magnetic storage device. Note that
the computer-usable or computer-readable medium could
even be paper or another suitable medium upon which the
program is printed, as the program can be electronically cap
tured, via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a suitable manner, if necessary, and then stored in a com
puter memory. In the context of this document, a computer
usable or computer-readable medium may be any medium
that can contain, store, communicate, propagate, or transport
the program for use by or in connection with the instruction
execution system, apparatus, or device. The computer-usable
medium may include a propagated data signal with the com
puter-usable program code embodied therewith, either in
baseband or as part of a carrier wave. The computer usable
program code may be transmitted using any appropriate
medium, including but not limited to wireless, wireline, opti
cal fiber cable, RF, etc.
0018 Computer program code for carrying out operations
of the present invention may be written in any combination of
one or more programming languages, including an object
oriented programming language such as Java, Smalltalk, C++
or the like and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer, partly on the user's computer,
as a stand-alone software package, partly on the user's com
puter and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN) or
a wide area network (WAN), or the connection may be made
to an external computer (for example, through the Internet
using an Internet Service Provider).
(0019. The present invention is described below with ref
erence to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow
chart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro
cessing apparatus, create means for implementing the func
tions/acts specified in the flowchart and/or block diagram
block or blocks.
0020. These computer program instructions may also be
stored in a computer-readable medium that can direct a com
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable medium produce an article of
manufacture including instruction means which implement
the function/act specified in the flowchart and/or block dia
gram block or blocks.
0021. The computer program instructions may also be
loaded onto a computer or other programmable data process
ing apparatus to cause a series of operational steps to be
performed on the computer or other programmable apparatus
to produce a computer implemented process Such that the
instructions which execute on the computer or other program

US 2011/0276584 A1

mable apparatus provide processes for implementing the
functions/acts specified in the flowchart and/or block diagram
block or blocks
0022 Referring now to the Figures, the flowchart and
block diagrams in the Figures illustrate the architecture, func
tionality, and operation of possible implementations of sys
tems, methods and computer program products according to
various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent
a module, segment, or portion of code, which comprises one
or more executable instructions for implementing the speci
fied logical function(s). It should also be noted that, in some
alternative implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in Succession may, in fact, be executed
Substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina
tions of blocks in the block diagrams and/or flowchart illus
tration, can be implemented by special purpose hardware
based systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.
0023 Embodiments disclosed herein introduce the con
cept of one or more tenants (i.e. multi-tenancy) in a database
object namespace. Tenancy may be utilized to implicitly
identify which set of database objects are to be used for a
given segment of the database user population. As an
example, a database table may be uniquely identified with
three tokens namely:
0024 DATABASE.SCHEMA.TABLENAME
0025. In this example, DATABASE identifies the database
system instance: SCHEMA identifies the table owner; and
TABLENAME identifies the table within that schema. With
tenancy, a namespace embodiment may be expanded to:
0026 DATABASE,TENANTSCHEMA.TABLENAME
0027. In this embodiment, DATABASE identifies the
database system instance; TENANT identifies a database ten
ant within the database system instance; SCHEMA identifies
the table owner; and TABLENAME identifies the table within
that schema. However, it should be noted that any order of the
namespace may be utilized without departing from the
present invention. For example, in one embodiment, the name
space may be:
0028 DATABASE.TABLENAME.SCHEMA.TENANT.
0029. Thus, the namespace embodiment provides addres
sability for the database tenant. Furthermore, this namespace
embodiment allows a database to store multiple production
tables in the same database instance, while still keeping the
table contents (i.e. the rows), the table layout (i.e. the table
schema definition), and the table access control rules (i.e.
grants, constraints, triggers, etc.) completely independent for
these multiple tables that bear the same name. In embodi
ments, this namespace virtualization will be largely transpar
ent to the end users, applications, and application developers,
but will provide a DBA the means to introduce isolation
between user segments when their needs are incompatible
with using a shared database object.
0030 FIG. 3 is an illustrative flowchart 300 of a method
for providing multi-tenancy in a database system in accor
dance with embodiments of the present invention. At a first
step 302, the method creates a database instance of a database.
In creating a database instance, access may be given to one or

Nov. 10, 2011

more instance users or to one or more tenant users. In addi
tion, a public database may include a set of instance database
objects which the instance users may access. In some embodi
ments, a database instance may all ready be present in which
case a step 302 is optional. At a next step 304, a database
tenant is created. In creating a database tenant, access may be
given to one or more tenant users. In embodiments, a database
tenant may include a set of tenant database objects. In other
embodiments, a database tenant may include a set of tenant
database objects corresponding with a portion of the set of
instance database objects. Thus a private database object may
or may not be a modified public database object in embodi
ments. As configured, operations performed utilizing a data
base tenant in embodiments, are configured for accessing the
database instance without changing the database instance. In
embodiments, a database tenant may be defined utilizing data
definition language (DDL). In embodiments, DDL state
ments may include: a create tenant DDL for creating the
database tenant, a drop tenant DDL for dropping the database
tenant, a grant tenant DDL for granting access to the database
tenant, and a revoke DDL for revoking access to the database
tenant. In some embodiments, a structured query language
(SQL) register and bind option for providing access to the
database tenant for tenant users.

0031. At a next step 306, the method determines whether
to create a production table. If the method determines at a step
306 not to create a production table, the method ends. If the
method determines at a step 306 to create a production table,
the method continues to a step 308 to determine whether a
current tenant is available. If the method determines at a step
308 that a current tenant is available, the method continues to
a step 310 to create a tenant production table. In embodi
ments, a tenant production table may be configured for Stor
ing a set oftenant database objects and for accessing by tenant
users. Further, in embodiments, tenant production tables may
include: table contents, table layouts, and table access control
rules. The method continues to a step 314 to determine
whether additional tables are required. Returning to a step
308, if the method determines at a step 308 that a current
tenant is not available, the method continues to a step 312 to
create an instance production table. In embodiments, an
instance production table may be configured for storing a set
of instance database objects and for accessing by instance
users and by tenant users. Further, in embodiments, instance
production tables may include: table contents, table layouts,
and table access control rules. The method continues to a step
314 to determine whether additional tables are required. If the
method determines at a step 314 that additional tables are
required, the method returns to a step 308. If the method
determines at a step 314 that no additional tables are required,
the method ends.

0032 FIG. 4 is an illustrative representation of a database
system 400 utilizing multi-tenancy in accordance with
embodiments of the present invention. As illustrated, utilizing
methods described above, database system 400 may include
database 402 from which database instance 404 may be cre
ated. Instance users 410 may access database instance 404. In
addition, tenant users 408 may access database instance 404
via database tenant 406. In embodiments, database tenants
may introduce isolation between user segments when their
needs are incompatible with using a shared database object.
For example, assume there are five different teams working
on a shared development/test database system, but one teams
needs to make disruptive schema changes to database objects

US 2011/0276584 A1

that are used by the other four teams. Instead of creating a new
database instance for the disruptive work, a DBA can create a
database tenant for disruptive work called DISRUPTIVE
WORK tenant. The DISRUPTIVE WORK tenant objects
(i.e. set of tenant database objects) may be visible to anyone
that connecting with the DISRUPTIVE WORK tenant, but
all other users of the development/test database system will
not see or be influenced by those objects. Thus, users access
ing the DISRUPTIVE WORK tenant could: modify the
apps, change how the table's triggers work, add new table
check constraints, etc. which work would have no impact on
the rest of the users on the development/test database system.
In embodiments, for set of instance database objects that
won't be changed, those objects will continue to be visible
and usable to all members of development/test database sys
tem. In this manner, instance users and tenant users may each
work independently on the same database instance without
affecting one another. Furthermore, in embodiments, public
and tenant users may have independent (i.e. different or the
same) accessibility without limitation.
0033 FIG. 5 is an illustrative representation of a database
cloud system 500 utilizing multi-tenancy in accordance with
embodiments of the present invention. As illustrated, utilizing
methods described above, database system 500 may include
database cloud502 from which database instance 504 may be
created. Instance user 510 may access database instance 504.
In addition, tenant users 508 may access database instance
504 via database tenant 506. As illustrated, each tenant user or
user group that connects to with database cloud 502 can be
given their own unique TENANT name. This will allow a
DBA to host multiple groups on the same database instance.
Each database tenant may be configured with full schema
isolation, so that each database tenant can have their own
unique table schema definitions. For example, two groups can
have a table named FOO.TABLE, and the schema for those
two groups can be exactly the same or entirely different. If a
cloud provider is hosting a database application across mul
tiple tenants, this means that the tenants can evolve their
database schemas independently. Thus, for example, tenant
ABC could upgrade to a new release of a hosted database
application with whatever schema changes that are involved
in that upgrade while not disrupting the other tenants that run
the prior version of that same application. In conventional
systems, a cloud provider would have had to move an upgrad
ing tenant to a different database instance to perform this kind
of upgrade. In some embodiments, a database cloud system
infrastructure (e.g. log space, buffer pool memory, database
product code binaries, etc.) may be shared, so the cloud
provider's costs per tenant may, in turn, be significantly
reduced.

0034. As noted above, many current database manage
ment systems (DBMSs) do not generally have appropriate
support for SAPTM multiple component-one database
(MCOD). Namely, once multiple components share the same
database they lose ability to be efficiently individually
backed-up, recovered, cloned, etc. Therefore, in embodi
ments, database systems disclosed herein may be configured
to operate over an SAPTMMCOD system. In those embodi
ments, each of the MCOD user groups may be assigned their
own unique TENANT name. SAPTM systems may be config
ured with thousands of tables. Many of these tables contain
rows that are exactly the same from one user group to the next
(e.g. city Zip code lookup tables, state sales tax rate tables,
etc.). Tables that are exactly the same for all user groups may

Nov. 10, 2011

be created in the PUBLIC tenant, so that a single physical
copy may be shared by multiple tenants. Tables that contain
tenant-specific data can be created uniquely within a given
tenant namespace, so that the table definition and the content
of that table is private to that particular tenant group. This
configuration allows multiple MCOD groups to run in a
single database instance creating unique tables only when
absolutely necessary. When a SAPTM database catalog is par
titioned by TENANT, it is a simple matter for SAPTM to
restore the database catalog for a given tenant to a particular
point in time, so that the tenant's schema was restored to a
prior point of consistency without forcing other tenants to
make the same change. This would give SAPTM a much higher
degree of independence across the various MCOD groups
that happen to be running on the same instance.
0035. Further as noted above, when customers create
shared test systems, they typically do not grant any special
administrative privileges to the individual developers on that
system, since the developer might misuse those privileges and
impact the other developers that run on that same database
system. Therefore, in embodiments, database systems dis
closed herein may be configured for shared test systems. In
embodiments, objects may be created uniquely within a given
TENANT namespace. The same may be applied to database
privileges. For example, a developer with database adminis
tration authority (DBADM) privileges on a JOE SMITH ten
ant would be able to:

0.036 bind a package containing all the SQL statements
he wants to study:

0037 issue EXPLAIN on these statements to look at
access path (with the help of the automated development
tools he's using);

0.038 have those tools automatically issue SQL access
path hints to see if those hints improve performance of
the statements; and

0039 have the tools create additional tables and indexes
to see if modified schema changes improve perfor
mance—All without affecting the database instance.

0040. Thus, embodiments disclosed herein would allow a
DBA to create a privileged “sandbox” for a developer, allow
ing the developer's sophisticated toolset to experiment with
various database features and functions that would ordinarily
require a great deal of the DBA's time.
0041 FIG. 6 is an illustrative flowchart 600 of a method
for processing a query in a multi-tenancy environment in
accordance with embodiments of the present invention. At a
first step 602, the method receives a query. Queries may be
received in any manner known in the art without departing
from embodiments disclosed herein. At a next step 604, the
method determines whether a query includes objects corre
sponding with a set of tenant database objects in a database
tenant. If the method determines at a step 604 that the query
includes objects corresponding with a set of tenant database
objects in a database tenant, the method proceeds to a step 606
to process the tenant database object in a tenant production
table, whereupon the method continues to a step 610. If the
method determines at a step 604 that the query does not
include objects corresponding with a set of tenant database
objects in a database tenant, the method proceeds to a step 608
to process objects corresponding with a set of instance data
base objects in an instance production table, whereupon the
method continues to a step 610. At a step 610, the method
determines whether the processed object is the last object. If
the method determines at a step 610 that the processed object

US 2011/0276584 A1

is not the last object, the method continues to a step 604. If the
method determines at a step 610 that the processed object is
the last object, the method ends.
0042. While this invention has been described in terms of
several embodiments, there are alterations, permutations, and
equivalents, which fall within the scope of this invention. It
should also be noted that there are many alternative ways of
implementing the methods, computer program products, and
apparatuses of the present invention. Furthermore, unless
explicitly stated, any method embodiments described herein
are not constrained to a particular order or sequence. Further,
the Abstract is provided herein for convenience and should
not be employed to construe or limit the overall invention,
which is expressed in the claims. It is therefore intended that
the following appended claims be interpreted as including all
Such alterations, permutations, and equivalents as fall within
the true spirit and scope of the present invention.
What is claimed is:
1. A database system comprising:
a database;
a database instance of the database, wherein the database

instance includes a set of instance database objects, and
wherein the database instance is accessible by at least an
instance user, and

at least one database tenant associated with the database
instance, wherein the at least one database tenant
includes a set of tenant database objects, wherein the at
least one database tenant provides access to the database
instance by the at least one tenant user, such that the at
least one instance user and the at least one tenant user
may independently access the database instance without
affecting one another, wherein each of the at least one
instance user and the at least one tenant user are config
ured with independent accessibility.

2. The database system of claim 1 further comprising:
an instance production table associated with the database

instance for storing a portion of the set of instance data
base objects, the instance production table accessible by
the instance user and the at least one tenant user wherein
at least some of the set of tenant database objects corre
spond with a portion of the set of instance database
objects; and

a tenant production table associated with the database
instance for storing the set oftenant database objects, the
tenant production table accessible by the at least one
tenant user.

3. The database system of claim 2, wherein the instance
production table and the tenant production table include at
least: table contents, table layouts, and table access control
rules.

4. The database system of claim 1, wherein operations
performed utilizing the at least one database tenant are con
figured for accessing the database instance without changing
the database instance.

5. The database system of claim 1, wherein the set of
instance database objects are accessible by the at least one
tenant user.

6. The database system of claim 1 further comprising a
structured query language (SQL) register and bind option for
providing access to the database tenant for the at least one
tenant user.

7. The database system of claim 1 further comprising a data
definition language (DDL) statement selected from the group
consisting of a create tenant DDL for creating the database

Nov. 10, 2011

tenant, a drop tenant DDL for dropping the database tenant, a
grant tenant DDL for granting access to the database tenant,
and a revoke DDL for revoking access to the database tenant.

8. The database system of claim 1, wherein the at least one
database tenant is addressable by a namespace of the form,
DATABASE.TENANTSCHEMA.TABLENAME, wherein
DATABASE identifies a database system instance, wherein
TENANT identifies a database tenant, wherein SCHEMA
identifies a table owner, and wherein TABLENAME identi
fies a table within the SCHEMA.

9. The database system of claim 1, wherein the database
system is configured to operate over a cloud computing sys
tem.

10. The database system of claim 1, wherein the database
system is configured to operate overan SAPTM multiple com
ponent-one database system.

11. A method for providing multi-tenancy in a database
system for a plurality of users associated with a database
instance of a database utilizing an electronic computing
device, the method comprising:

causing the electronic computing device to create the data
base instance, the database instance configured for pro
viding a set of instance database objects, wherein the
database instance is accessible by at least an instance
user,

creating at least one database tenant associated with the
database instance, wherein the at least one database ten
ant includes a set oftenant database objects, wherein the
at least one database tenant provides access to the data
base instance by the at least one tenant user, Such that the
at least one instance user and the at least one tenant user
may independently access the database instance without
affecting one another, wherein each of the at least one
instance user and the at least one tenant user are config
ured with independent accessibility.

12. The method of claim 11 further comprising:
generating an instance production table associated with the

database instance for storing a portion of the set of
instance database objects, the instance production table
accessible by the instance user and the at least one tenant
user, wherein at least some of the set of tenant database
objects correspond with a portion of the set of instance
database objects; and

generating a tenant production table associated with the
database instance for storing the set of tenant database
objects, the tenant production table accessible by the at
least one tenant user.

13. The method of claim 12, wherein the instance produc
tion table and the tenant production table include at least:
table contents, table layouts, and table access control rules.

14. The method of claim 11, wherein operations performed
utilizing the at least one database tenant are configured for
accessing the database instance without changing the data
base instance.

15. The method of claim 1, wherein the set of instance
database objects are accessible by the at least one tenant user.

16. The method of claim 11 further comprising providing a
structured query language (SQL) register and bind option for
providing access to the database tenant for the at least one
tenant user.

17. The method of claim 11 further comprising providing a
data definition language (DDL) statement selected from the
group consisting of a create tenant DDL for creating the
database tenant, a drop tenant DDL for dropping the database

US 2011/0276584 A1

tenant, a grant tenant DDL for granting access to the database
tenant, and a revoke DDL for revoking access to the database
tenant.

18. The method of claim 11, wherein the at least one
database tenant is addressable by a namespace of the form,
DATABASE.TENANTSCHEMA.TABLENAME, wherein
DATABASE identifies a database system instance, wherein
TENANT identifies a database tenant, wherein SCHEMA
identifies a table owner, and wherein TABLENAME identi
fies a table within the SCHEMA.

19. The method of claim 11, wherein the database is con
figured to operate over a cloud computing system.

20. The method of claim 11, wherein the database is con
figured to operate over an SAPTM multiple component-one
database system.

21. The method of claim 12 further comprising:
receiving a query to the database;
determining whether the query includes a first object cor

responding with the set of tenant database objects;
if the first object corresponds with the set oftenant database

objects, processing the first object from the tenant pro
duction table; else

processing the first object from the instance production
table.

22. A computing device program product for providing
multiply privileged access with a database for a plurality of
users utilizing a database instance of the database utilizing an
electronic computing device, the computing device program
product comprising:

a computer readable medium;
first programmatic instructions for creating the database

instance, the database instance configured for providing
a set of instance database objects, wherein the database
instance is accessible by at least an instance user;

second programmatic instructions for creating at least one
database tenant associated with the database instance,
wherein the at least one database tenant includes a set of
tenant database objects, wherein the at least one data
base tenant provides access to the database instance by

Nov. 10, 2011

the at least one tenant user, Such that the at least one
instance user and the at least one tenant user may inde
pendently access the database instance without affecting
one another, wherein each of the at least one instance
user and the at least one tenant user are configured with
independent accessibility.

23. The computing device program product of claim 22
further comprising:

third programmatic instructions for generating an instance
production table associated with the database instance
for storing a portion of the set of instance database
objects, the instance production table accessible by the
instance user and the at least one tenant user, wherein at
least Some of the set of tenant database objects corre
spond with a portion of the set of instance database
objects; and

fourth programmatic instructions for generating a tenant
production table associated with the database instance
for storing the set of tenant database objects, the tenant
production table accessible by the at least one tenant
USC.

24. The computing device program product of claim 22
further comprising:

fifth programmatic instructions for receiving a query to the
database;

sixth programmatic instructions for determining whether
the query includes a first object corresponding with the
set of tenant database objects;

if the first object corresponds with the set oftenant database
objects, processing the first object from the tenant pro
duction table; else

seventh programmatic instructions for processing the first
object from the instance production table.

25. The computing device program product of claim 22,
wherein operations performed utilizing the at least one data
base tenant are configured for accessing the database instance
without changing the database instance.

c c c c c

